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Abstract—A scalable distributed formal analysis (DFA) via
reachable set computation is presented to efficiently evaluate
the stability of large-scale interconnected power networks under
heterogeneous disturbances induced by high penetration of dis-
tributed energy resources (DERs). Based on rigorous mathemat-
ical derivation, DFA is able to directly compute the boundaries
of all possible dynamics and provide stability information, which
is unattainable by traditional time-domain simulations or direct
methods. An N + M decomposition approach is established to
decouple a large-scale networked system and enable distributed
reachable set calculations while also preserving the privacy of each
subsystem. Numerical examples on a networked microgrid sys-
tem show that DFA facilitates the efficient calculation and analysis
of the impact DER disturbances can have on power network dy-
namics, which provides a potent means of optimizing the system’s
operation. Therefore, DFA provides an invaluable tool for design-
ing and operating the interconnected power networks of the future,
which will feature the deep integration of DERs.

Index Terms—Distributed formal analysis, reachable set, dis-
turbances, stability, interconnected power networks, distributed
energy resources (DERs).

I. INTRODUCTION

D
ISTRIBUTED energy resources (DERs) with coordinated

management and interactive supports have demonstrated

resiliency and reliability benefits to electricity customers [1].

However, the increased penetration of DERs in grids leads to

new and unprecedented challenges as well [2], such as stabil-

ity issues and coordination problems. Power electronic devices

are usually used to interface DERs and other components (e.g.,

FACTS, energy storage systems, new type of loads, and HVDC
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links) with the grid. Although they enable ultra-fast grid con-

trol and load changes, the high penetration of power electronic

components will reduce the grid inertia significantly, making

the utility grid highly sensitive to disturbances [3] and threat-

ening power system stability [4]. When the penetration level

of DERs and microgrids is high, disturbances in the grid may

trigger disconnections of a large number of DERs or microgrids

within a short time window. This may pose a great threat to the

bulk power system stability and security. Unfortunately, existing

technologies have not been designed to address such issues.

Recently, formal analysis has emerged as an alternative and

promising solution for the stability analysis of dynamic sys-

tems [5]–[8]. Formal analysis enables one to bound all system

trajectories, which start from a set of unknown but bounded ini-

tial states, and simultaneously take into account the influence of

uncertainties from parameters and/or inputs. The applications

of formal analysis include, but are not limited to identifica-

tions of stability regions [5], control verification [6], [9], tran-

sient stability analysis [7], cyber-security [10], and load flow

calculation [11].

Centralized formal analysis was discussed in [5], [12]. Specif-

ically, [12] presented a numerical procedure for the reachabil-

ity analysis of differential-algebraic equation (DAE) systems.

This work computes reachable sets for uncertain initial states

and inputs in an over-approximative way and can be used

for formal verification of system properties. The work in [5]

combines the centralized formal analysis method with quasi-

diagonalized Gergorin theory to efficiently assess the stability of

networked microgrids and further identify their stability bound-

aries. Since [5] and [12] are centralized methods, they could

be computationally too expensive for evaluating large-scale or

configurable power systems.

Distributed formal analysis (or compositional formal analy-

sis) is presented in [7], [13]. As mentioned in [13], two com-

positional techniques are available. One is to compositionally

compute the set of linearization errors, while abstracting the dy-

namics to linear differential inclusions using the full model as

shown in [13]. The other is to split a large-scale interconnected

grid into subsystems for which the reachable sets are computed

separately as presented in [7].

Formal analysis is a powerful tool beyond existing meth-

ods to tackle the stability issues considering inherent paramet-

ric and/or input uncertainties from various sources in the grid
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such as DERs. Although such uncertainties may be tackled by

using time- or frequency-domain simulation methods, a near-

infinite number of scenarios have to be evaluated. Therefore,

the time-domain or frequency-domain simulation methods have

limited capabilities in handling uncertainties [14], [15]. Even

with Monte Carlo simulations, it is still impossible to verify the

infinitely many scenarios that can happen in a real system [16].

Direct methods can provide correctness proofs as it can be done

using reachability analysis, but they require to find appropriate

Lyapunov functions or contraction functions [17], [18], which

is again difficult if not impossible for a relatively large system

in reality.

Moreover, centralized stability calculation and evaluation

may be impractical for dealing with a large-scale system [19],

[20] and may pose privacy issues when used to integrate

customer-owned DERs or microgrids [21], [22]. Multiple de-

composition techniques offer potent ways to tackle this problem.

A coherency-based decomposition method was proposed in [23]

to decouple slow electromechanical oscillations from fast ones,

in order to study the inter-area mode oscillation phenomenon.

However, oscillation modes are very similar among DERs or

microgrids [24]. A hierarchical spectral clustering methodol-

ogy was adopted in [25] to reveal the internal connectivity

structure of a power transmission system, in order to properly

partition a large-scale system. However, it needed to calculate

the eigenvalues and eigenvectors of a matrix correlated to the

network, which significantly increases the computational bur-

den and highly limits the wide use of this method. A multi-area

Thévenin equivalent circuit approach was used in [26], which

focuses more on optimally dividing the computation among sev-

eral processors. A waveform relaxation method was used in [27]

for transient stability simulations, where subsystems’ informa-

tion is still shared between them. In summary, none of them can

be effectively used in DER-dominated power networks to solve

the above-mentioned stability issue.

In order to overcome the limitations of existing techniques,

a scalable privacy-preserving distributed formal analysis (DFA)

approach using reachable sets is presented to efficiently ana-

lyze the stability of interconnected power systems under dis-

turbances with a focus on large-scale networked microgrids.

Specifically, small signal stability under different disturbances

is investigated. The novelties of the proposed DFA are threefold:

1) An N + M decomposition approach is established

to decouple a large-scale networked system and en-

able distributed reachable set calculations in parallel.

It is a microgrid-dominant decomposition only with

power injection exchanged between microgrids and the

power backbone, which cannot be realized via previ-

ous techniques. Thus, not only it renders central co-

ordination unnecessary, but also can make full use of

distributed computing resources and drastically reduce

computational efforts.

2) A programmable data exchange mechanism is devel-

oped to make the DFA a privacy-preserving approach

that exchanges only limited information with neighboring

systems, which has not been considered previously. There-

fore, it can help guarantee the privacy and security of

information among neighboring systems.

3) The DFA enables the plug-and-play of subsystems (e.g.,

distribution feeders or microgrids), meaning a subsystem

can be easily integrated into or disconnected from an ex-

isting system. This function enables DFA to evaluate the

stability of a configurable power network online, which

cannot be realized via previous techniques.

The remainder of this paper is organized as follows. Section II

establishes the methodological foundations of DFA. Section III

describes partitioning a large-scale system into small active and

passive subsystems using an N + M decomposition approach.

Section IV discusses data exchange between subsystems and

describes how DFA would be implemented. In Section V, tests

on an interconnected networked microgrid system verify the

feasibility and effectiveness of DFA. Conclusions are drawn in

Section VI.

II. DISTRIBUTED FORMAL ANALYSIS VIA REACHABLE

SET CALCULATION

DFA aims to find the bounds of all possible system trajectories

under various disturbances. In this work, we use reachability

analysis to bound all solutions. Typically, reachable sets are

computed for short time intervals τk = [tk , tk+1 ], where tk and

tk+1 are time steps.

A. Distributed Formal Analysis

Assuming that a large-scale system is decomposed into sev-

eral small subsystems, the reachable sets of the overall intercon-

nected system can be obtained based on the results from each

subsystem as shown in (1) and (2) [7], [13].

Re
s(tk+1) = ϕ1R

e
1(tk+1) × ϕ2R

e
2(tk+1) × · · ·

× ϕN +M Re
N +M (tk+1) (1)

Re
s(τk) = ϕ1R

e
1(τk) × ϕ2R

e
2(τk) ×· · ·× ϕN +M Re

N +M (τk)
(2)

where Re
s(tk+1) is the reachable set at time steps, Re

s(τk ) is the

reachable set during time intervals, both for the overall system,

N + M is the number of subsystems (see Section III), × is

the Cartesian product, Re
i (tk+1) is the reachable set of the ith

subsystem at time steps, Re
i (τk ) is the reachable set of the ith

subsystem during time intervals, ϕi is a matrix of ones and

zeros, mapping the local states of the ith subsystem to the states

of the overall system.

B. Formal Analysis in Each Subsystem

Each subsystem is modeled as a set of semi-explicit, index-1,

nonlinear DAEs shown in (3) and (4).

ẋi = fi(xi,yi,pi) (3)

0 = gi(xi,yi,pi) (4)

where xi ∈ R
si is the state variable vector (e.g., integral vari-

able in DER controllers) in the ith subsystem, yi ∈ R
q i is the

corresponding algebraic variable vector (e.g., bus voltage), and

pi ∈ R
p i is the corresponding disturbance vector (e.g., PV fluc-

tuations). Note that DERs’ power-electronic interfaces are mod-

eled using the dynamic averaging method [28].
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For reachability analysis, we linearize each subsystem at each

time step, as presented in [13]:

{

ẋi = fi(x
0
i ,y0

i ,p0
i ) + fx i

∆xi + fy i
∆yi + fp i

∆pi

0 = gi(x
0
i ,y0

i ,p0
i ) + gx i

∆xi + gy i
∆yi + gp i

∆pi

(5)

where (x0
i ,y0

i ,p0
i ) is the operation point, fx i

, fy i
, fp i

, gx i
,

gy i
, and gp i

are the partial derivative matrices with respect to

variables, given as follows:

fx i
=

∂fi

∂xi

fy i
=

∂fi

∂yi

fp i
=

∂fi

∂pi

gx i
=

∂gi

∂xi

gy i
=

∂gi

∂yi

gp i
=

∂gi

∂pi

Since g−1
y i

always exists for a index-1 DAE system [12], the

following equation can be obtained [13].

∆ẋi = [fx i
− fy i

g−1
y i

gx i
]∆xi + [fp i

− fy i
g−1

y i
gp i

]∆pi (6)

Then each subsystem under uncertainties can be abstracted

by the following differential inclusion. Details of the abstraction

can be found in [13].

∆ẋi ∈ Ai∆xi ⊕ Pi (7)

where Ai = fx i
− fy i

g−1
y i

gx i
= [ajk ] ∈ R

q i ×q i is the state ma-

trix of the ith subsystem,⊕ is the Minkowski addition (A ⊕ B =
{a + b|a ∈ A, b ∈ B}), and Pi = [fp i

− fy i
g−1

y i
gp i

]∆pi is a set

of uncertain inputs which can be either formulated using a crisp-

value-based approach [29] or a set-based one [30].

The reachable set of each subsystem can be over-

approximated at each time step via a closed-form solution [13]:

Re
i (tk+1) = eA i rRe

i (tk ) ⊕ Ψ(Ai, r,pi,0) ⊕ Ie
p (pi,∆ , r) (8)

Re
i (τk ) = C

(

Re
i (tk ), eA i rRe

i (tk ) ⊕ Ψ(Ai, r,pi,0)
)

⊕ Ie
p (pi,∆ , r) ⊕ Ie

ξ (9)

where r = tk+1 − tk is the time interval, C(·) returns a con-

vex hull, and eA i r is the matrix exponential. Ψ(Ai, r,pi,0) and

Ie
p (pi,∆ , r) represent the additional reachable set caused by de-

terministic inputs pi,0 and uncertain ones pi,∆ , as derived in

(10) and (11), respectively. Ie
ξ represents the additional reach-

able set to consider the curvature of trajectories from tk to tk+1 .

Ψ(Ai, r,pi,0) =

{

η
∑

j=0

Ai
jrj+1

(j + 1)!

⊕
[

−X(Ai, r)r,X(Ai , r)r
]

}

pi,0 (10)

Ie
p (pi,∆ , r) =

η
∑

j=0

(

Ai
jrj+1

(j + 1)!
pi,∆

)

⊕

{

[

−X(Ai, r)r,X(Ai , r)r
]

⊗ pi,∆

}

(11)

Ie
ξ =

{

(

I ⊕ [−X(Ai, r), X(Ai , r)]
)

⊗Re
i (tk )

}

⊕

{

(

Ĩ ⊕ [−X(Ai, r)r,X(Ai , r)r]
)

⊗ pi,0

}

(12)

where⊗ is a set-based multiplication (A ⊗ B = {ab|a ∈ A, b ∈
B}). X(Ai, r), I , Ĩ involved in (10)–(12) are given in (13)–(15):

X(Ai, r) = e|A i |r −

η
∑

j=0

(|Ai|r)
j

j!
(13)

I =

η
∑

j=2

[

(j
−j

j −1 − j
−1
j −1 )rj , 0

]Ai
j

j!
(14)

Ĩ =

η+1
∑

j=2

[

(j
−j

j −1 − j
−1
j −1 )rj , 0

]Ai
j−1

j!
(15)

More detailed derivations of the above expressions can be

found in [5], [12].

III. PARTITIONING LARGE-SCALE POWER NETWORKS

WITH DERS

It can be computationally expensive to directly implement

formal analysis on a large-scale networked system. Therefore,

grid decomposition offers a solution for scalable DFA.

A. N + M Decomposition

In this section, an N + M decomposition method is presented

to partition a large-scale power network into several smaller

subsystems. Subsystems are coupled by power injection [31],

[32], as shown in Fig. 1(a).

Based on whether a subsystem integrates DERs, the original

large-scale power network can be divided into N + M subsys-

tems, as shown in Fig. 1(b), where N is the number of active

subsystems (i.e., energized by DERs), and M is the number of

passive subsystems (i.e., power backbone).

Then by using the N + M decomposition technique, the

power flow equation of an overall power network can be rewrit-

ten as follows:

Yext · Vext ◦ Vext + SG
ext − SL

ext − SI
ext = 0 (16)

where ◦ is the Hadamard product ((A ◦ B)ij = [aij · bij ], aij ∈
A, bij ∈ B). The other variables in (16) are introduced as fol-

lows:

1) Extended Admittance Matrix: In (16), Yext is the ex-

tended admittance matrix under system partitions as shown

in (17), where Y 11 , . . . ,YN N are the extended admit-

tance matrices correlated to the active subsystems, and

YN +1,N +1 , . . . ,YN +M,N +M are the extended admittance ma-

trices correlated to the passive subsystems. The entries of Y ii
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Fig. 1. Concept of power network partition using N + M decomposition.

are shown in (18).

Yext =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Y 11 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · YN N 0 · · · 0

0 · · · 0 YN +1,N +1 · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · YN +M,N +M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17)

Y ii =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

|y11 | cos β11 |y12 | cos β12 · · · |y1k | cos β1k

|y21 | cos β21 |y22 | cos β22 · · · |y2k | cos β2k

...
...

. . .
...

|yk1 | cos βk1 |yk2 | cos βk2 · · · |ykk | cos βkk

|y11 | sin β11 |y12 | sin β12 · · · |y1k | sin β1k

|y21 | sin β21 |y22 | sin β22 · · · |y2k | sin β2k

...
...

. . .
...

|yk1 | sin βk1 |yk2 | sin βk2 · · · |ykk | sin βkk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

where the admittance between the node l and node k is expressed

as ylk = |ylk | cos αlk + j|ylk | sin αlk , |ylk | is the absolute value

of the branch admittance, αlk is the corresponding angle of

the branch admittance, βlk = θl − θk − αlk , and θl , θk are the

voltage angles at the node l and node k, respectively.

2) Extended Voltage Vectors: In (16), Vext is the bus volt-

age vector after system partition as shown in (19), Vext is the

extended bus voltage vector as shown in (20).

Vext =
[

V11 , . . . , VN N , . . . , VN +M,N +M

]T
(19)

Vext =

[

V11 , V11 , . . . ,VN N ,

VN N , . . . , VN +M,N +M , VN +M,N +M

]T

(20)

where V11 , . . . ,VN N are the voltage vectors in the active sub-

systems, and VN +1,N +1 , . . . ,VN +M,N +M are the voltage vec-

tors in the passive subsystems.

3) Extended Power Vectors: In (16), SG
ext is the vector show-

ing power injections from DERs to active subsystems; SL
ext is

the vector of power loads in each subsystem; and SI
ext is the

vector of exchange power on the interfaces between subsystems

and has the following properties:
� When line loss is considered during calculation, SI

ext,i

and SI′

ext,i in Fig. 1(b) are different; otherwise, they are

the same.
� Some of the entries in SI

ext are correlated with others,

which means they need to be updated together at each

time step. This issue is solved by the proposed status flag

method introduced in Section IV.

B. Partitioning Large-Scale Power Networks

Because DERs are not supposed to appear in passive susb-

systems under the N + M decomposition, the entries in SG
ext

correlated to the passive subsystems is zero. Then, the algebraic

equations of the overall system can be rewritten as follows:
{

Ykk · Vkk ◦ Vkk + SG
kk − SL

kk − SI
kk = 0

Yjj · Vjj ◦ Vjj − SL
jj − SI

jj = 0
(21)

where k = 1, . . . , N , j = N + 1, . . . , N + M .

From (21), it can be seen that the admittance matrix of the

original entire system is fully decoupled into several indepen-

dent sub-matrices, because of the introduction of equivalent

power injections on the interfaces between subsystems. There-

fore, the calculation of SI
ext is essential and is introduced in

Section IV.

IV. IMPLEMENTATION OF DFA IN POWER NETWORKS

A. Procedure of DFA

Our overall procedure for DFA is presented in Fig. 2. Initially,

the N + M decomposition is used to partition an interconnected

power network into several subsystems modeled as in (3) and

(4). The set of power flow in each subsystem is calculated in

parallel based on data exchange between subsystems.

Next, subsystems’ linearization is conducted via (5). In a

next step, (8) and (9) are used to compute reachable sets in each
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Fig. 2. Flowchart of DFA calculation.

subsystem in parallel based on reachable sets exchange between

subsystems. If the reachable sets on the interfaces converge, the

overall reachable set can be obtained based on (1) and (2).

Otherwise, the power flow is updated and reachable sets in each

subsystem are re-computed. More details about reachable sets

calculation can be found in [13].

The DFA process terminates when the simulation time ends

or the reachable set results are too conservative to be useful.

B. Distributed Algorithm and Data Exchange

Two nested iterations are used in the distributed algorithm,

where the inner loop solves power flow or computes reachable

sets in each subsystem while the outer loop updates exchange

power until the stopping criterion is met. The overall iteration

process is terminated when one of the following two criteria is

satisfied:

∆ski ≤ ǫo (22)

Lo > Itermax
o (23)

where ∆ski = Yki · Vki ◦ Vki − Yki · V
P
ki ◦ VP

ki is the

change of power exchange between subsystem k and subsys-

tem i, Vki = [Vk ,Vi] is the voltage vector at the current step,

VP
ki = [VP

k ,VP
i ] is the voltage vector at the previous step, ǫo

is a given threshold of the outer loop iteration, Lo is the itera-

tion number, and Itermax
o is the given upper limit of iteration

number.

1) Distributed Algorithm: The power transferred through

coupling lines is exchanged among two neighboring subsys-

tems, i.e., SI
ext shown in Fig. 1(b) and SI

kk or SI
jj in (21).

Specifically, they are updated based on the interface voltage

of their neighboring subsystems, as shown in (24), where the

power flow calculation in the passive subsystem j is given as an

example:

{

Yjj · Vjj ◦ Vjj − SL
jj − SI

jj = 0

SI
jj = Yji · Vji ◦ Vji

(24)

where Yji is the admittance matrix of the interface branch be-

tween subsystem j and its neighboring subsystem i, the ex-

pression of Yji can be derived via (18), Vji = [Vj ,V
P
i ] is the

voltage vector. Once the interface voltage VP
i is obtained from

previous iterations in subsystem i, it will be treated as a refer-

ence bus and maintain a constant value until the computation

of power flow (or reachable sets) in subsystem j completes,

i.e., Vj is obtained. The aforementioned inner loop iteration is

terminated when one of the following two criteria is satisfied:

∆Vjj ≤ ǫi (25)

Li > Itermax
i (26)

where ∆Vjj is the voltage increments between iterations in

subsystem j, ǫi is a given threshold of the inner loop iteration,

Li is the iteration number, and Itermax
i is the given upper limit

of iteration number.

Note that, during the inner loop iterations in subsystem j,

the power exchange between subsystem j and subsystem i is

updated correspondingly at each iteration step due to the update

of Vj in subsystem j. Thus, physical laws (e.g., Ohms law) on

the line linking two subsystems are fully respected for each time

interval.

2) Data Exchange Between Subsystems: Since both power

flow calculation and reachable set computation in subsystems

are carried out based on interface information, data exchange

between subsystems plays an essential role in our DFA imple-

mentation. Taking into account different iterations and calcu-

lation times which may be used in subsystems, we introduce

a status flag to communicate the computation progress in each

subsystem, as defined in (27):

Flag = [Subsystem-ID,Convergence,Results] (27)

where Subsystem-ID is the ID of the neighboring subsystem,

Convergence is a binary indicator of whether the subsystem is

converged or not, where 1 means convergence and 0 means not

converged, Results are the final voltages at the interface after

the iteration in this subsystem stops. The use of flag is inspired

by [33]; its update can be implemented, for instance, through a

software-defined technique as detailed in [34].

The introduction of the status Flag concept has the following

three advantages:
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Fig. 3. Data exchange between subsystems.

� Each subsystem always uses the latest converged results

from its neighboring subsystems.
� It is a privacy-preserving design with only interface data

transferred, which means it helps ensure data security. In

the future, we will use a data encryption technique to ensure

the integrity and confidentiality of the interface data, and

to protect against attacks such as monster-in-the-middle

(MitM) attacks.
� Flag is modifiable, which means features can be easily

added or removed based on needs.

The basic idea of data exchange is given in Fig. 3, with the

following three steps involved within one time step:

1) Each subsystem updates the information of its interface

with other subsystems, i.e.,SI
kk orSI

jj in (21). Specifically,

in distributed power flow calculation, they are crisp-value-

based data, whereas in subsystems’ reachable set calcu-

lation, it is set-based data. Meanwhile, status Flags are

transmitted as well to confirm the validity of the data.

2) Once status Flags correlated to one subsystem show all

its interface data is available, the inner loop power flow or

reachable set calculation will be carried out. For example,

subsystem 1 will not run its calculation until it receives

the interface data and status Flags from subsytems 2, 3,

and i, when they are interconnected as shown in Fig. 3.

Therefore, power flows or reachable sets will be computed

in parallel based on the data from last iterations in the

neighboring subsystem.

3) After the iterations in the subsystems finish, the corre-

sponding interface data and status Flags are broadcast to

their neighbors in the outer loop for the next iteration.

V. TEST AND VALIDATION OF DFA

A typical networked microgrid system shown in Fig. 4 is used

to test and validate the presented DFA approach by analyzing

what impact is imposed by DERs on system dynamics. In order

to better illustrate this impact, the networked microgrid system

is operated in islanded mode, which means the circuit breaker

is open. More details of the test system can be found in [5].

The DFA algorithms are developed on the basis of the CORA

toolbox [35]. The simulation step size is set to 0.01 s.

Fig. 4. A typical networked microgrid system.

Fig. 5. Voltage magnitude comparison in Case I.

A. Verification of N + M Decomposition

In order to better validate the effectiveness of the N + M
decomposition, two different partitions are presented.

1) Case I. Partitioning Into Two Subsystems: The original

networked microgrid system is partitioned into two active sub-

systems: N = 2 and M = 0 in (21). Specifically, the branch

between node 6 and node 10 is broken down, i.e., subsystem 1

comprises microgrids 1, 3, and 6, whereas subsystem 2 com-

prises microgrids 2, 4, and 5. Based on the partitioning described

above, subsystem 1 conducts its power flow calculation by using

the power injection from node 10. At the same time, subsystem

2 conducts power flow calculation by using the power injection

from node 6.

Fig. 5 shows the voltage magnitude comparison between the

N + M decomposition method and the centralized calculation.
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Fig. 6. Iterations of power flow calculation in the subsystem 1 in Case I.

Fig. 7. Iterations of power flow calculation in the subsystem 2 in Case I.

Fig. 8. Iterations on the interface of two subsystems.

Fig. 6 and Fig. 7 show the changes of variables during the

Newton iterations in subsystem 1 and subsystem 2, respectively.

Fig. 8 demonstrates the differences of power injections on the

interface between the current iteration and the previous one. The

stopping criteria of subsystem 1 and subsystem 2 are set as ǫi =
1.0e − 10, whereas that of their interface is set as ǫo = 1.0e − 5.

In order to better illustrate the value changes during iterations,

the L2 expression is adopted with the following conversion [36]:

||ri ||2 = −10/ln(||vi ||2) (28)

where ||ri ||2 is the L2 value shown in figures at each point, and

||vi ||2 is the corresponding L2 value of the real value during

iterations.

From Figs. 5–8, it can be seen that:
� Result comparisons on Fig. 5 have verified the feasibility

and effectiveness of N + M decomposition in distributed

power flow calculation.
� The calculation in each subsystem is a non-monotonic pro-

cess. The reason is that calculations in each subsystem are

carried out based on the interface data (SI
kk and SI

jj in (21))

at the previous iteration step. However, after subsystems

exchange data, their incrementals involved in the Newton

iteration may become large again at the next iteration step

Fig. 9. Iterations of power flow calculation in the subsystem 1 in Case II.

Fig. 10. Iterations on the interface in Case II.

(e.g., point B in Fig. 6) even though the current step is

converged (e.g., point A in Fig. 6).
� Sub-iterations in subsystems may be different from each

other, which validates the necessity of status Flags. For

example, during iteration step 2, four sub-iterations are

needed before the calculation is converged in subsys-

tem 1; however, only three sub-iterations are involved in

subsystem 2.
� The iterations on the interface of subsystems are monoton-

ically decreasing, which means N + M decomposition is

an effective method in distributedly calculating the power

flow of networked microgrids.

2) Case II. Partitioning Into Four Subsystems: In this test,

the original networked microgrid system is decoupled into four

subsystems to further validate the N + M decomposition and

compare it with the results in case I. Specifically, the broken

branches are 6–7, 6–10, 15–16. The other settings are the same

as those in case I. Fig. 9 shows the changes of variables during

iterations in subsystem 1 which includes microgrid 1 and micro-

grid 6. Fig. 10 demonstrates the differences in power injection on

the interface between the current iteration and the previous one.

We gain the following insights from comparing case I

with II:
� The more subsystems there are, the less calculation time

it may need to finish one iteration in each subsystem. For

instance, in Fig. 6, 0.05 s is taken to complete the four sub-

iterations in the first iteration. Meanwhile, it only takes

0.03 s to finish the four iterations in case II, which is only

60% of that in case I.
� From Figs. 6–10, it can be seen that the more subsystems

there are, the more iterations it may need to converge.

For instance, it takes 10 iterations to finally converge in

case I, whereas it requires 15 iterations in case II. This
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Fig. 11. 3-D reachable sets of Xp i , Xq i in Microgrid 3 of the subsystem 1.

Fig. 12. Reachable sets of Xp i , Xq i in Microgrid 3 of the subsystem 1 pro-
jected to the time line.

intuitive result is caused by the frequent data exchange

between subsystems.

B. Reachable Set Calculation via DFA

In this test, case I is adopted. Meanwhile, multiple ac-

tive power fluctuations are introduced in microgrid 2, i.e.,

±1%,±5%,±8%,±10% and ±12% around its baseline power

output.

1) Reachability Analysis: Fig. 11 shows the three dimen-

sional reachable set along the time line with a cross section

zoomed in at 0.2 s, where x-axis shows simulation time, y-axis

shows the value of control variable of active power (Xpi), z-axis

shows the value of control variable of reactive power (Xqi).

Fig. 12 and Fig. 13 show the cross sectional views of reachable

sets in microgrid 3 and microgrid 4, respectively. More details

of Xpi and Xqi can be found in [5].

From Figs. 11–13, it can be seen that:
� DFA is able to calculate the operation boundaries of a net-

worked microgrid system subject to different uncertainty

levels, which validates that the presented N + M decom-

position technique can be effectively combined with the

reachability analysis.

Fig. 13. Reachable sets of Xp i , Xq i in Microgrid 4 of the subsystem 2
projected to the time line.

TABLE I
DEVIATIONS COMPARISON BETWEEN ACTIVE AND REACTIVE POWER

� The zoomed-in plot in Fig. 11 shows that the size of reach-

able sets increase as the uncertainty level increases. The

correctness of the DFA result is further verified by the

comparison between DFA and the centralized formal anal-

ysis via reachable set (FAR) as shown in [5], which is not

shown here due to the exact same results.
� Fluctuations in active power can also impact microgrids’

reactive power output as shown in Fig. 12 and Fig. 13 due

to the presence of resistances in backbone feeders [28].

For instance, Table I summarizes the deviations of Xpi

and Xqi at 1.5 s based on the results shown in Fig. 12.
� Since reachable sets enclose the bound of all system trajec-

tories, different disturbances may lead to different reach-

able sets; and thus, it can be used to pinpoint critical

disturbances on stability. Furthermore, it can be adopted

to estimate the stability margin of power systems subject

to uncertainties [5].

2) Impacts of DERs on Interconnected Systems: To better

illustrate how stability issues deteriorate and what impact is

imposed by DERs on the interconnected grid, more severe

DER disturbances are introduced in microgrid 2, i.e., ±20%

and ±30% around its baseline active power output at 0.5 s and

1.0 s, respectively. Fig. 14 shows the cross sectional views of

reachable sets in microgrid 3, from which it can be seen that:
� When more severe disturbances are considered in DERs,

the size of cross-section of the reachable sets (possible

values of all system trajectories at a given point in time)

drastically increase or even system trajectories may di-

verge quickly from its original operation point as shown in

Fig. 14. This is consistent with the engineering experience,

that the stability of the interconnected system deteriorates
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Fig. 14. Reachable sets of Xp i , Xq i in Microgrid 3 when more uncertainties
are introduced.

TABLE II
CALCULATION TIMES FOR 1.5 S DYNAMICS ON A 3.4 GHZ PC

with the integration of more DERs without a proper coor-

dination.
� Through reachable set results, critical disturbances can be

pinpointed, and further actions (e.g., adaptive control) can

be conducted to enhance the stability of interconnected

systems.

Besides, the results in [13] also show how the stability perfor-

mance deteriorates when distributed generations are integrated

into systems.

3) Efficiency of DFA: The computation times among DFA,

FAR, and time domain simulations (TDS) are given in Ta-

ble II, where ten calculations of TDS has been considered for

comparison.

From Table II, it can be seen that:
� DFA is a competitive and efficient method in calculating

reachable sets and analyzing stability performance.
� The results from one run of DFA calculation are able to

enclose all possible (infinitely many) system trajectories

obtained via TDS, which means DFA is always more effi-

cient than deterministic TDS.
� DFA takes a little more calculation time than FAR due to

data exchange between subsystems.
� Because the complexity of reachability analysis is

O(n5) [13], DFA will outperform FAR or TDS when the

system scale n is large enough. It also justifies the poten-

tial and efficiency of DFA in handing large-scale power

systems.

4) Reachable Set Changes During Iterations: Fig. 15 shows

the iteration process of the reachable set between Xpi and Xqi

in microgrid 3 at 0.2 s and 1.0 s, respectively. From Fig. 15, it

can be seen that:

Fig. 15. Reachable set iterations.

� Converged reachable sets in subsystems can be obtained

after several iterations.
� Reachable sets can be calculated via parallel iterations,

which enables the plug and play of subsystems and makes

the corresponding distributed stability analysis possible.

VI. CONCLUSIONS

We have presented a novel distributed formal analysis (DFA)

enabling efficient stability analysis of large interconnected

power grids under a high penetration of DERs. An N + M
decomposition method is presented to decouple large-scale sys-

tems to compute reachable sets more efficiently while also pre-

serving information privacy within the subsystems. Numerical

tests on a typical networked microgrid system have confirmed

the feasibility and effectiveness of DFA.

DFA will be applicable for not only forecasting and mon-

itoring grid performance, but also formally verifying various

resiliency enhancement strategies such as new schemes for sys-

tem integrity protection and automation to facilitate the exten-

sive employment of DERs. In our future work, we will further

extend DFA to obtain possible operation ranges of microgrid

systems. Our quasi-diagonalized Geršgorin method presented

in [5] will be upgraded to a distributed version which will be

further integrated with DFA to enable more efficient calculation

of stability margin.
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M. Althoff, “Formal LPV control for transient stability of power systems,”
in Proc. IEEE Power Energy Soc. Gen. Meeting, Chicago, IL, USA, 2017,
pp. 1–5.

[7] A. El-Guindy, Y. C. Chen, and M. Althoff, “Compositional transient sta-
bility analysis of power systems via the computation of reachable sets,” in
Proc. Amer. Control Conf., 2017, pp. 2536–2543.

[8] Y. Susuki et al., “A hybrid system approach to the analysis and design of
power grid dynamic performance,” Proc. IEEE, vol. 100, no. 1, pp. 225–
239, Jan. 2012.

[9] Y. Susuki, T. Sakiyama, T. Ochi, T. Uemura, and T. Hikihara, “Verifying
fault release control of power system via hybrid system reachability,” in
Proc. 40th North Amer. Power Symp., 2008, pp. 1–6.

[10] S. Chong et al., “Report on the NSF workshop on formal methods for
security,” 2016, arXiv:1608.00678.

[11] X. Jiang, Y. C. Chen, and A. D. Domı́nguez-Garcı́a, “A set-theoretic
framework to assess the impact of variable generation on the power flow,”
IEEE Trans. Power Syst., vol. 28, no. 2, pp. 855–867, May 2013.

[12] M. Althoff and B.-H. Krogh, “Reachability analysis of nonlinear
differential-algebraic systems,” IEEE Trans. Autom. Control, vol. 59, no. 2,
pp. 371–383, Feb. 2014.

[13] M. Althoff, “Formal and compositional analysis of power systems using
reachable sets,” IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2270–2280,
Sep. 2014.

[14] N. Duan and K. Sun, “Power system simulation using the multistage
Adomian decomposition method,” IEEE Trans. Power Syst., vol. 32, no. 1,
pp. 430–441, Jan. 2017.

[15] J. Kwon, X. Wang, F. Blaabjerg, and C. L. Bak, “Frequency-domain
modeling and simulation of DC power electronic systems using har-
monic state space method,” IEEE Trans. Power Electron., vol. 32, no. 2,
pp. 1044–1055, Feb. 2017.

[16] T.-E. Huang, Q. Guo, and H. Sun, “A distributed computing platform
supporting power system security knowledge discovery based on on-
line simulation,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1513–1524,
May 2017.

[17] H.-D. Chang, C.-C. Chu, and G. Cauley, “Direct stability analysis of
electric power systems using energy functions: Theory, applications, and
perspective,” Proc. IEEE, vol. 83, no. 11, pp. 1497–1529, Nov. 1995.

[18] H.-D. Chiang, F. F. Wu, and P. P. Varaiya, “A BCU method for direct
analysis of power system transient stability,” IEEE Trans. Power Syst.,
vol. 9, no. 3, pp. 1194–1208, Aug. 1994.

[19] E. Ghahremani and I. Kamwa, “Local and wide-area PMU-based decen-
tralized dynamic state estimation in multi-machine power systems,” IEEE

Trans. Power Syst., vol. 31, no. 1, pp. 547–562, Jan. 2016.
[20] Q. Zhou, K. Sun, K. Mohanram, and D. C. Sorensen, “Large power grid

analysis using domain decomposition,” in Proc. Des. Automat. Test Eur.

Conf., 2006, vol. 1, pp. 1–6.
[21] A. Hussain, V.-H. Bui, and H.-M. Kim, “A resilient and privacy-preserving

energy management strategy for networked microgrids,” IEEE Trans.

Smart Grid, vol. 9, no. 3, pp. 2127–2139, May 2018.
[22] S. A. Salinas and P. Li, “Privacy-preserving energy theft detection in

microgrids: A state estimation approach,” IEEE Trans. Power Syst., vol. 31,
no. 2, pp. 883–894, Mar. 2016.

[23] J. H. Chow, “Time-scale separation in power system swing dynamics:
Singular perturbations and coherency,” in Encyclopedia of Systems and

Control. London, U.K.: Springer, 2015, pp. 1465–1469.
[24] Y. Li, W. Gao, and J. Jiang, “Stability analysis of microgrids with multiple

DER units and variable loads based on MPT,” in Proc. IEEE Power Energy

Soc. Gen. Meeting, National Harbor, MD, USA, 2014, pp. 1–5.
[25] R. J. Sánchez-Garcı́a et al., “Hierarchical spectral clustering of power

grids,” IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2229–2237, Sep. 2014.
[26] P. Zhang, J. Marti, and H. Dommel, “Network partitioning for real-time

power system simulation,” in Proc. Int. Conf. Power Syst. Transients,
Montreal, QC, Canada, 2005, pp. 1–6.

[27] M. Crow and M. Ilic, “The parallel implementation of the waveform
relaxation method for transient stability simulations,” IEEE Trans. Power

Syst., vol. 5, no. 3, pp. 922–932, Aug. 1990.
[28] C. Wang, Y. Li, K. Peng, B. Hong, Z. Wu, and C. Sun, “Coordinated opti-

mal design of inverter controllers in a micro-grid with multiple distributed
generation units,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2679–2687,
Aug. 2013.

[29] P. Nayak and A. Devulapalli, “A fuzzy logic-based clustering algorithm
for WSN to extend the network lifetime,” IEEE Sensors J., vol. 16, no. 1,
pp. 137–144, Jan. 2016.

[30] M. Althoff and B. H. Krogh, “Zonotope bundles for the efficient compu-
tation of reachable sets,” in Proc. 50th IEEE Conf. Decis. Control Eur.

Control, 2011, pp. 6814–6821.
[31] M. Khanabadi, Y. Fu, and L. Gong, “A fully parallel stochastic multiarea

power system operation considering large-scale wind power integration,”
IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 138–147, Jan. 2018.

[32] L. Keyan, S. Wanxing, and L. Yun-Hua, “Research on parallel algorithm
of DC optimal power flow in large interconnection power grids,” in Proc.

8th Int. Conf. Elect. Mach. Syst., 2005, vol. 2, pp. 1031–1036.
[33] Z. Zhang, Y. Cheng, S. Nepal, D. Liu, Q. Shen, and F. Rabhi, “A reliable

and practical approach to kernel attack surface reduction of commodity
OS,” 2018, arXiv:1802.07062.

[34] L. Ren et al., “Enabling resilient distributed power sharing in networked
microgrids through software defined networking,” Appl. Energy, vol. 210,
pp. 1251–1265, 2018.

[35] M. Althoff and D. Grebenyuk, “Implementation of interval arithmetic in
CORA 2016,” in Proc. 3rd Int. Workshop Appl. Verification Continuous

Hybrid Syst., 2016, pp. 91–105.
[36] K. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge,

MA, USA: MIT Press, 2012.

Yan Li (SM’13) received the B.Sc. and M.Sc. de-
grees in electrical engineering from Tianjin Univer-
sity, Tianjin, China, in 2008 and 2010, respectively.
She is currently working toward the Ph.D. degree
in electrical engineering with the University of Con-
necticut, Storrs, CT, USA. Her research interests in-
clude microgrids and networked microgrids, formal
analysis, power system stability and control, software
defined networking, and cyber-physical security.

Peng Zhang (M’07–SM’10) received the Ph.D. de-
gree in electrical engineering from The University of
British Columbia, Vancouver, BC, Canada, in 2009.
He is the Centennial Professor, Charles H. Knapp
Chair Professor and an Associate Professor in elec-
trical engineering with the University of Connecticut,
Storrs, CT, USA. He is also the Francis L. Castleman
Professor in Engineering Innovation at the University
of Connecticut. He was a System Planning Engineer
with British Columbia Hydro and Power Authority,
Vancouver, BC, Canada. His research interests in-

clude microgrids, power system stability and control, cyber security, and smart
ocean systems.

Dr. Zhang is an individual member of CIGRÉ. He is an Editor for the IEEE
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