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Abstract

Arctic shrubification is an observable consequence of climate change, already
resulting in ecological shifts and global-scale climate feedbacks including changes in
land surface albedo and enhanced evapotranspiration. However, the rate at which
shrubs can colonize previously glaciated terrain in a warming world is largely un-
known. Reconstructions of past vegetation dynamics in conjunction with climate
records can provide critical insights into shrubification rates and controls on plant
migration, but paleoenvironmental reconstructions based on pollen may be biased by
the influx of exotic pollen to tundra settings. Here, we reconstruct past plant commu-
nities using sedimentary ancient DNA (sedaDNA), which has a more local source area
than pollen. We additionally reconstruct past temperature variability using bacterial
cell membrane lipids (branched glycerol dialkyl glycerol tetraethers) and an aquatic
productivity indicator (biogenic silica) to evaluate the relative timing of postglacial
ecological and climate changes at a lake on southern Baffin Island, Arctic Canada. The
sedaDNA record tightly constrains the colonization of dwarf birch (Betula, a thermo-
philous shrub) to 5.9 + 0.1 ka, ~3 ka after local deglaciation as determined by cosmo-
genic °Be moraine dating and >2 ka later than Betula pollen is recorded in nearby lake
sediment. We then assess the paleovegetation history within the context of summer
temperature and find that paleotemperatures were highest prior to 6.3 ka, followed
by cooling in the centuries preceding Betula establishment. Together, these molecular
proxies reveal that Betula colonization lagged peak summer temperatures, suggesting
that inefficient dispersal, rather than climate, may have limited Arctic shrub migration
in this region. In addition, these data suggest that pollen-based climate reconstruc-
tions from high latitudes, which rely heavily on the presence and abundance of pollen
from thermophilous taxa like Betula, can be compromised by both exotic pollen fluxes

and vegetation migration lags.
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1 | INTRODUCTION

Rapid summer warming in the Arctic is expected to promote an in-
crease in the biomass, cover, and abundance of deciduous shrubs,
as well as the northward migration of shrubline (Myers-Smith et al.,
2011). This ‘shrubification’ response to warming has been confirmed
experimentally (Chapin, Shaver, Giblin, Nadelhoffer, & Laundre,
1995; Walker et al., 2006; Zamin & Grogan, 2012), and is already
observable both in plot studies (EImendorf et al., 2012; Tape, Sturm,
& Racine, 2006) and via remote sensing (Goetz, Bunn, Fiske, &
Houghton, 2005; Ju & Masek, 2016; Myneni, Keeling, Tucker, Asrar,
& Nemani, 1997). Increased woody vegetation at high latitudes not
only impacts local biodiversity and ecological interactions (Fauchald,
Park, Temmervik, Myneni, & Hausner, 2017; Walker et al., 2006), but
also plays an important role in the global climate system by decreas-
ing albedo and increasing atmospheric water vapor (Bonfils et al.,
2012; Pearson et al., 2013; Sturm, Douglas, Racine, & Liston, 2005;
Swann, Fung, Levis, Bonan, & Doney, 2010). The rate at which shru-
bification will proceed in the future, however, is largely unknown,
meaning that these positive feedbacks on climate warming may
not be correctly captured by current earth system models (Pearson
etal., 2013).

The rates and patterns of tundra ecosystem change following
the last glacial cycle can provide insights into how shrubs move
north in a warming world and colonize previously glaciated terrain.
Paleorecords based on fossil pollen and plant macrofossils have re-
vealed dramatic biogeographical shifts of Arctic plants in response
to repeated Quaternary glacial-interglacial cycles (Birks, 2008;
Davis & Shaw, 2001). These traditional paleoecological approaches
are compromised in treeless landscapes, however, because of the
long-distance wind dispersal of pollen from Arctic shrubs and bo-
real trees that contribute to the pollen signal (Birks & Birks, 2000;

Jacobson & Bradshaw, 1981), and the sparseness of macrofossils in
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sedimentary records (Anderson-Carpenter et al., 2011). How quickly
Arctic vegetation re-colonizes landscapes following deglaciation
thus remains an open question. A genetic study of modern Arctic
flora pointed to the rapid and repeated postglacial plant colonization
of Svalbard, thereby suggesting that shrub establishment in some
remote northern regions is limited primarily by climate rather than
long-distance dispersal (Alsos et al., 2007). Yet, direct evidence that
shrub ranges can rapidly shift in a warming climate to fill an ecologi-
cal niche, particularly on Arctic islands, is lacking.

In this study, we explore postglacial vegetation patterns at a
lake on southern Baffin Island (Nunavut, Canada) in the context of
Holocene climate fluctuations. Baffin Island is an ideal setting to test
the efficiency of postglacial shrub colonization, as it was completely
ice-covered during the Last Glacial and isolated from southern pop-
ulations of shrubs. We first constrain the timing of local deglaciation
by dating a lake-impounding moraine with cosmogenic 10Be and cal-
ibrating previously published e ages from nearby deglacial raised
marine deposits (Figure 1). We then analyze ancient plant DNA from
a lake sediment core via sedaDNA metabarcoding, a powerful tech-
nique for detecting local terrestrial and aquatic plant taxa through
time (Alsos et al., 2018; Niemeyer, Epp, Stoof-leichsenring, & Herzschuh,
2016; Parducci et al., 2017; Sjogren et al., 2016). We combine this
vegetation record with paleothermometry based on bacterial lipids
(branched glycerol dialkyl glycerol tetraethers, brGDGTs; Russell,
Hopmans, Loomis, Liang, & Sinninghe, 2018) and an aquatic produc-
tivity proxy (biogenic silica, BSi) to evaluate the establishment and
subsequent evolution of tundra and aquatic communities through
climate fluctuations at one well-characterized site. This novel com-
bination of molecular proxies in a lake sediment core provides a
detailed view into postglacial ecosystem development during the
insolation-driven warmth of the early Holocene (Holocene Thermal
Maximum, HTM), most notably in identifying the colonization timing

of the thermophilous shrub Betula (dwarf birch).

FIGURE 1 Google Earth image of
study area on southern Baffin Island,
including modern Betula distribution
from Jacobs, Mode, and Dowdeswell
(1985), sites of previously published 4C
dates (Andrews & Short, 1983), and site
of pollen record mentioned in text (blue
circle; HL = Hikwa Lake). Satellite image
of Lake Qaupat (QPT; Digital Globe)
highlights impounding lateral moraine
(dashed red line) with °Be sample
locations and core location (orange star) in
the central basin of the lake
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2 | MATERIALS AND METHODS

2.1 | Study area

Lake Qaupat (QPT; informal name) is a small (0.08 km?, max depth
9.2 m) moraine-impounded lake near Frobisher Bay, southern
Baffin Island (63.67771°N, 68.19820°W, 35 m a.s.l.; Figure 1). This
area was occupied by the Laurentide Ice Sheet during the Last
Glacial Maximum and into the early Holocene, until the Foxe Dome
sector of the Laurentide Ice Sheet retreated through Frobisher
Bay between ~11 and 7 ka (ka = thousands of years before pre-
sent; Miller, 1980; Squires, 1984). The QPT catchment is 14.5 km?
with a modern vegetation cover of dwarf-shrub tundra dominated
by Betula glandulosa (here considered synonymous with B. nana
spp. exilis after Saarela, Sokoloff, & Bull, 2017), Salix spp. (willow),
other ericaceous shrubs, and sedges. Dwarf birch is near its north-
ern limit at QPT (Figure 1), except for a few isolated populations
around southeastern Baffin Island where it grows in favorable mi-
croclimates and protected pockets (Andrews, Mode, & Davis, 1980;
Andrews, Mode, Webber, Miller, & Jacobs, 1980; Jacobs, Mode, &
Dowdeswell, 1985). The present discontinuous distribution of B.
glandulosa on Baffin Island and Greenland indicates that other fac-
tors besides summer temperature—including possibly timing of
deglaciation—may help explain its distribution, but it is generally
viewed as a climate indicator and a representative species of Low
Arctic tundra (Fredskild, 1991; Jacobs, Mode, Squires, & Miller,
1985). Pollen records from this area, including nearby Hikwa Lake
(Figure 1; Kerwin, Overpeck, Webb, & Anderson, 2004; Mode &
Jacobs, 1987), suggest the continuous postglacial presence of
Betula, although long-distance wind transport introduced exotic
pollen from Alnus (alder), Picea (spruce), and Pinus (pine)—none of
which grow on Baffin Island today—into these records, rendering

the Holocene establishment timing of Betula ambiguous.

2.2 | Field sampling

We collected two ~1.5-m lake sediment cores (QPT16-2A and
QPT16-3A) in April 2016 using a modified Nesje coring system
(Nesje, 1992) from the lake ice. Both cores were taken from the
center of the lake's central deep basin in 8.8 and 9.2 m of water.
Cores were kept cold in a snowbank for the duration of the field
campaign and then stored at 4°C until processing. For moraine ex-
posure dating, we collected the top 2-4 cm of moraine-crest boul-
ders using a hammer and chisel. We recorded sample locations and
elevations with a Garmin Global Positioning System. Topographic
shielding at the site is negligible, and we observed that the moraine
crest was windswept and snow free in spring 2016, suggesting that
snow shielding is negligible as well.

2.3 | 1°Be exposure dating

Laboratory processing took place at the University of Colorado

Cosmogenic Isotope Laboratory. Rock samples were crushed and
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sieved to isolate the 250-550 um fraction, which was then etched
in dilute HCl and HF-HNOj, acids to remove any organics and non-
quartz minerals. Further removal of feldspars and mafic minerals
was completed via froth flotation followed by heavy liquid separa-
tion, and final etching in HF-HNO, yielded sufficiently clean quartz
as determined by inductively coupled plasma optical emission spec-
trometry. Chemical procedures for the isolation of beryllium were
modified from Kohl & Nishiizumi, 1992; von Blanckenburg, Belshaw,
& O'Nions, 1996. We spiked 30 g of quartz with Be carrier (Table
S1) and then dissolved the samples in HF-HNO,. Samples were
converted to sulfides and then chlorides using H,SO, and HCI, re-
spectively. Fe and Ti were removed through high pH precipitation,
followed by precipitation of Be and Al at pH 8. Be was separated
from Al and other remaining ions via cation column chromatogra-
phy. Be(OH), was precipitated at pH 8, dried, and combusted to
form BeO, and then mixed with Niobium powder and packed into
steel cylinders. One process blank was prepared. *°Be/’Be isotope
ratio measurements were made via accelerator mass spectrometry
(AMS) at the Purdue Rare Isotope Measurement Lab. Ages were
calibrated using the CRONUS-Earth online calculator with the
Baffin Bay production rate (Young, Schaefer, Briner, & Goehring,
2013) and the time-constant scaling scheme of Lal (1991) and Stone
(2000). We evaluated the spread in ages (i.e., determined whether
the distribution of ages was primarily caused by measurement un-
certainty or ‘geologic uncertainty’, altered inventories of °Be due
to inheritance or postdepositional disturbance of the boulder) using
the reduced chi-squared statistic after Balco (2011). A reduced chi-
squared value of ~1 or less indicates that the spread of ages is likely
due to measurement uncertainty rather than geologic uncertainty.

2.4 | Core sampling and description

Core QPT16-2A was split and opened in a dedicated ancient DNA
clean laboratory at Curtin University in June 2016. We sampled
for sedaDNA, BSi, and radiocarbon (plant macrofossils) following
standard protocols for aDNA sampling (e.g., full clean laboratory
personal protective equipment, bleaching, and UV irradiation of
sample tools; see Supporting information). Core QPT16-3A was split
and opened at the University of Colorado and one-half sampled for
brGDGT analyses and radiocarbon. The archive half was transported
to the University of Minnesota LacCore facility for split-core mul-
tisensor scanning including high-resolution point sensor magnetic
susceptibility. The archive half was subsequently analyzed using
an ITRAX X-ray fluorescence (XRF) core scanner at the University
of Massachusetts, Amherst, to determine elemental abundances.
Scans were carried out using a molybdenum tube with a downcore
resolution of 300 pum. The voltage and current were set to 30 kV and
55 mA, respectively, with an XRF count time of 10 s.

2.5 | Radiocarbon dating and age model

Previously published radiocarbon ages were recalibrated using
CALIB 7.1 (Stuiver, Reimer, & Reimer, 2018) with the Marinel3
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calibration curve (Reimer et al., 2013) and a reservoir correction
(AR) of 150 + 60 years based on the recommended AR for south-
east Baffin Island (Coulthard, Furze, Pienkowski, Chantel Nixon, &
England, 2010). For lake sediment radiocarbon dating, plant mac-
rofossils were cleaned in deionized water and freeze-dried before
undergoing acid-base-acid pretreatment and conversion to graphite
at the INSTAAR Laboratory for AMS Radiocarbon Preparation and
Research lab. ¥*C measurements were made at the UC Irvine AMS
facility. We calibrated radiocarbon ages and produced age-depth
models using a smooth-spline function in the R Software package
CLAM version 2.2 (Blaauw, 2010), which relies on the IntCal13 cali-
bration curve (Reimer et al., 2013). The composite core age model
includes radiocarbon ages from both cores, with depth correlation
based on two sets of statistically overlapping radiocarbon ages
(Figure 2; Table S2). Composite depths account for minor differences

in upper sediment dewatering.

2.6 | sedaDNA extraction and analysis

Sampling, extraction, and analysis of sedaDNA using metabarcod-
ing were conducted at the Trace and Environmental DNA Lab at
Curtin University. See Supporting information for a description of
extraction, PCR, and sequencing methods. Briefly, we extracted
sedaDNA from 44 samples taken from the full length of core
QPT16-2A (Figure 2) <2 months after core collection. Two repli-
cate 500 mg subsamples, taken from the interior of the core to
minimize contamination, were digested in a digest buffer follow-
ing Grealy et al. (2015). One extraction control was prepared for
each batch of 11 samples. Sediment digests were concentrated
in Vivaspin centrifugal concentrators, added to a binding buffer
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following Dabney et al. (2013), and purified via MinElute PCR
Purification Kit.

Serial dilutions of the extracts (full concentration, 1/5, 1/10)
were amplified using quantitative polymerase chain reaction (qPCR)
with two universal plant (plastid) assays: the P6 loop of the plastid
trnL (UAA) intron (hereafter shortened to ‘trnL P6 loop’; Taberlet
et al., 2007) and, for a subset of 26 samples, a short region of the
chloroplast gene rbcL (CBOL Plant Working Group et al., 2009;
Poinar et al., 1998). Primer sequences are listed in Supporting infor-
mation. Cycle threshold (C;) values were typically lowest for the 1/5
and 1/10 dilution (ranging from 22 to 28) indicating the presence
of PCR inhibitors in the primary (undiluted) extracts. These gPCR
data enabled an optimal level of input DNA into each metabarcod-
ing reaction and a robust evaluation (in the absence of inhibition) of
down-core sedaDNA preservation (Figure S2). Typically, 1/10 dilu-
tions of the original extract were then PCR amplified (two replicates
per sample) with unique (never previously used) multiplex identi-
fiers (MID tags) for each metabarcoding assay using a single-step
amplification approach. The efficacy of each MID-tagged PCR was
tracked using gPCR to ensure robust and consistent amplifications
were achieved.

Amplicons were pooled based on gPCR end-points and blended
into a sequencing library. The library was prepared for sequencing
by ligating on the Illumina adapter to the MID-tagged products using
a PCR-free ligation method following Kozarewa and Turner (2011).
The ligated library was size-selected via Pippin Prep and then se-
quenced using a standard MiSeq flow cell following manufacturer
instructions.

Sequencing data was processed using Geneious (https://www.
geneious.com) v10.2 following the bioinformatics approach of

FIGURE 2 Core lithostratigraphy,
locations of DNA samples, high-resolution
magnetic susceptibility of core QPT16-3A,
and composite age-depth model. Blue
and green circles indicate locations of
plant macrofossils dated with **C (Table $3),
and dashed lines highlight statistically
overlapping ages used to correlate the
two cores. The age-depth model is
plotted on a composite depth scale and
was generated with the CLAM smooth-
spline function (Blaauw, 2010). Outlier
ages are indicated in red; one additional

1 1
8.0 7.0 6.0 5.0 4.0

30 20 10 00
Age (cal kyr BP)

outlier is beyond the scale of this figure
(see Table S3)
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Coghlan et al. (2015) to identify and remove primers, adapters, and
MID tags, filter out short (artifact) sequences and singletons, evalu-
ate read-quality (using Q-scores), and collapse duplicates into unique
sequences. Chimeras were identified using USEARCH with the
UCHIME de novo method (Edgar, Haas, Clemente, Quince, & Knight,
2011) and removed in Geneious. A Basic Local Alignment Search Tool
nucleotide (BLASTn) search was then conducted against the National
Centre for Biotechnology Information GenBank database (Altschul,
Gish, Pennsylvania, & Park, 1990; Benson et al., 2000). BLAST re-
sults were assessed taxonomically in MEtaGenomic ANalyzer v5.10
(Huson, Auch, Qi, & Schuster, 2007; parameters: top 5%, min score
65, min support of 1). Taxonomic results were manually compared
with the Arctic plant database of Sgnstebg et al. (2010) and the online
database Flora of the Canadian Arctic Archipelago (https://nature.ca/
aaflora/data). Any taxa not found in the Arctic databases, known food
contaminants, and taxa that did not represent >1% of any individual
sample were marked as presumed contamination and removed from
further analysis. Other than singleton removal, we did not apply an
abundance cutoff threshold for accepting a result as a true positive
on a per-sample basis because our hypotheses relied more sensitively
on avoiding false negatives (i.e., inferring absence relied on a strict
requirement of ‘zero’ reads). Sequencing results from the extraction
controls is contained in Table S6 and suggested minimal cross-
contamination or laboratory background contamination. rbcL and
trnL P6 loop metabarcoding data are available from the Dryad Digital
Repository.

In order to assess community-wide changes in vegetation
through time, we conducted nonmetric multidimensional scaling
(NMDS) ordination analysis (Kruskal, 1964; Paliy & Shankar, 2016;
Shi, 1993) on taxonomic abundance data for each primer as well
as presence-absence in a combined dataset (collapsed to lowest
common taxonomic resolution). We performed NMDS analysis
using the R software package vegan (Oksanen et al., 2016; http://
CRAN.R-project.org/package=vegan), using the default Bray-Curtis
dissimilarity index and 50 iterations for each run. We conducted a
permutational analysis of variance (PERMANOVA; Anderson, 2017)
to assess the significance of community change through time using
the Adonis function within vegan, with a Bray-Curtis dissimilarity

matrix and 999 permutations.

2.7 | brGDGT paleothermometry

We estimated past temperatures using the temperature-depend-
ent distribution of bacterial brGDGTs, a class of membrane-span-
ning lipids produced by bacteria, brGDGTs (Schouten, Hopmans, &
Sinninghe Damsté, 2013; Sinninghe, Hopmans, Pancost, Schouten,
& Geenevasen, 2000; Weijers, Schouten, van den Donker, Hopmans,
& Sinninghe Damsté, 2007). The brGDGT paleothermometer was
originally developed for soils but has since been calibrated and
applied in lake settings, in which the sedimentary biomarkers are
nearly ubiquitous (Pearson et al., 2011; Tierney & Russell, 2009;
Zink, Vandergoes, Mangelsdorf, Dieffenbacher-Krall, & Schwark,
2010). Here we rely on an African lake calibration to mean annual air
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temperature (MAAT), based on the Methylation index of Branched
Tetraethers (MBT;Me) of Russell et al. (2018), as it is currently one
of the only lake-based calibration that incorporates the improved
chromatographic separation of brGDGT isomers (Hopmans,
Schouten, & Sinninghe Damsté, 2016). However, we emphasize that
at high-latitude sites, brGDGTs likely reflect summer temperature
(Dang et al., 2018; Pearson et al., 2011; Shanahan, Hughen, & Van
Mooy, 2013) and that a regional calibration is required for more reli-
able absolute temperatures. Thus, rather than interpreting absolute
temperatures, we focus on prominent changes in mean-normalized
temperature anomalies, which are robust across a variety of avail-
able calibrations (Figure S5).

Lipids were extracted, filtered, and analyzed for GDGTs via
high-performance liquid chromatography-atmospheric pressure
chemical ionization-mass spectrometry at the INSTAAR Organic
Geochemistry Lab at the University of Colorado Boulder. See
Supporting information for full methods.

2.8 | BSianalysis

Samples were ground with a mortar and pestle and mixed with KBr
in a 1:50 dilution and analyzed with a Fourier Transform Infrared
Spectrometer (FTIRS), following procedures of Liu, Colman, Brown,
Minor, and Li (2013) and Vogel, Rosén, Wagner, Melles, and Persson
(2008). Measurements were made in triplicate, with the mean and
standard deviation presented. While published FTIRS-inferred BSi
calibrations indicate a linear relationship between %BSi and absorb-
ance units, the relationship differs between individual lakes (Liu
et al., 2013). We thus report BSi in FTIRS absorbance units and only
interpret relative changes through the record rather than absolute
values.

3 | RESULTS

3.1 | Timing of deglaciation

Four boulder samples from the lateral moraine impounding Lake
QPT vyielded °Be exposure ages between 8.2 and 9.8 ka, with a
mean and SD of 9.1 + 0.7 ka (Table S1; Figure S1). The reduced
chi-squared value for this set of ages is 0.93; thus, the mean age
of 9.1 ka is an appropriate estimate of the moraine age. This age is
corroborated by calibrated radiocarbon ages on marine shells from
ice-proximal deltaic and raised tidal sediments from the Burton
Bay region (Figure 1; Andrews & Short, 1983). A mollusk shell in
deltaic sediment 6 km SE of QPT (down-paleoflow and thus mor-
phostratigraphically older) dated to 8.9 + 0.6 cal ka BP (calibrated
age in thousands of years before 1950; hereafter shortened to
ka), and four sets of marine bivalves from the head of Burton Bay
(2-5 km NW of QPT, up-paleoflow) ranged in age from 7.7 to 8.1 ka
(Table $2). Together, the 1°Be and *C ages provide compelling evi-
dence that the QPT catchment became ice-free between ~9 and
8 ka, providing a viable substrate for plant colonization after that
point.
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3.2 | Sediment core description and chronology

We recovered two sediment cores in April 2016, QPT16-2A (1.45 m)
and QPT16-3A (1.29 m), taken ~8 m apart in the central basin of Lake
QPT (Figure 2). The cores both contained an intact sediment-water
interface and ~1 m of gray-brown organic-rich sediment with moss
layers underlain by laminated gray-black finer-grained sediment with
higher magnetic susceptibility values, likely deposited in a glaciola-
custrine setting. Neither of the cores extends into a glacial till, which
we presume underlies the glaciolacustrine sediment, indicating that
we did not capture the full deglacial sequence. See Supporting infor-
mation text and Figure S3 for elemental abundance results.

Twelve radiocarbon dates from plant macrofossils, six from
each core, went into a composite smooth-spline age-depth model
after discarding three outlier ages (Table S3; Figure 2). The outliers
were each >25 SDs from the mean modeled age, likely due to dis-
crete stratigraphic reworking events. Two sets of statistically over-
lapping ages were used to correlate the cores, accounting for minor
differences in dewatering compaction in their upper portions; see
Supporting information text for additional core correlation details.
The age model produced extrapolated basal ages of 7.4 + 0.3 ka (26
uncertainty) in core QPT16-2A and 6.8 + 0.2 ka in core QPT16-3A.
These basal ages have relatively large uncertainty due to a lack of
datable material below 1 m core depth; however, most of the core,
and the interval on which we focus our interpretation, has much
lower uncertainty, with an average 2¢ error of 57 years from 6.5 ka
to present. The difference between the moraine age (9.1 £ 0.7 ka) and
the basal age of QPT16-2A (7.4 + 0.3 ka) is primarily due to the lack of
recovery of the full deglacial sequence. The age model also revealed
a decrease in sedimentation rate after 5.0 ka; higher sedimentation
rates prior to 5 ka may be a result of more clastic material on the land-

scape following deglaciation and/or higher productivity prior to 5 ka.

3.3 | Paleovegetation from sedaDNA

All 44 sediment samples, taken at an average temporal resolution
of 170 years (Figure 2) yielded amplifiable plant DNA using the two

universal plant assays, trnL P6 loop (all samples) and rbcL (subset of 26
samples). gPCR threshold cycle (C;) values, indicative of PCR amplifi-
cation success and thus the quantity of suitable target sequences for
amplification, averaged 25.3 for the trnL Pé loop assays and did not
systematically decrease downcore, indicating that DNA preservation
was sufficiently high for the full 7.4 ka record (Figure S2). Following
data deconvolution and initial filtering (see Supporting information),
the full trnL P6 loop dataset yielded 637,849 reads (average 14,497 per
sample); after final quality filtering, these yields decreased to 633,783
reads (average 14,404 per sample; Tables S4 and S5; Figure S2). The
rbcl dataset yielded 174,969 reads (average 6,729 per sample) before
final filtering and 170,098 reads (average 6,542 per sample) after final
filtering. Following final quality filtering, trnL P6 loop assays yielded
13 distinct taxa with a mean of 8.4 per sample, and rbcl yielded 22
taxa with a mean of 8.4 per sample (Tables S4 and S5; Figure S2).
Seven of these taxa were represented by both trnL P6 loop and rbcL,
although typically at different taxonomic resolution; for example, the
trnL P6 loop assay allowed for the identification of Empetrum nigrum
(crowberry) to species level, whereas rbcL did not provide a discrimi-
nation beyond the Ericaceae family level. Importantly, both meta-
barcoding assays consistently captured the two dominant deciduous
shrubs in this area, Salix and Betula (Figure 3). Because PCR amplifica-
tion results in sequence abundance that may not be representative of
original copy numbers in a sample, we focused our analysis on pres-
ence/absence and normalized data.

Salix was present in both records (to genus level for rbcL and
tribe level, Saliceae, for trnL Pé loop) throughout the full core,
with absence in only four of 44 samples in one of two plant assays.
Conversely, Betula (identified to genus level in trnL Pé loop and fam-
ily level, Betulaceae, in rbcl) was absent for the lowest 50 cm of the
core in both assays—10 samples for trnL P6 loop and six samples for
rbcL. Betula's initial appearance differed by just one sample interval
(~70 years) for the two metabarcoding assays and subsequently re-
mained present throughout the rest of the record (Figure 3). The con-
sistent presence of Salix DNA from the base of the core serves as a
taphonomic control, indicating that the sudden Betula appearance was

unlikely to be an artifact of poor preservation below that level. Thus,

IP(Stm(I;p I bt 0 Absent

Betula
rel. abundance (%)

Salix
rel. abundance (%)
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FIGURE 3 sedaDNA metabarcoding
results for two woody shrubs. Downcore
record of Betula and Salix, plotted

as relative abundance of taxa (as a
percentage of total post-filtered sample
reads) for each sample and binned, for
trnL Pé loop (green) and rbcL (blue) assays.
Betula appears in the record at 5.9 ka,
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we argue this approach successfully identified the colonization timing
of dwarf birch, at 5.9 £ 0.1 ka, as corroborated by two genetic markers.

Nonmetric multidimensional scaling analysis of the trnL Pé loop
abundance data yielded a minimum stress of 0.18, indicating that
the ordination represented the full dataset reasonably well. The
biplot in Figure 4 represents community composition in reduced
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FIGURE 4 Nonmetric multidimensional scaling (NMDS) axes 1
and 2 biplot for trnL P6 loop assays, with sample age overlay and
taxa scores
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dimensionality space, defined by NMDS axes 1 and 2, such that sam-
ples plotting more closely together had more similar plant communi-
ties. A sample age overlay reveals a coherent temporal trend, which
is driven primarily by a decrease in NMDS axis 1 values from early to
mid-Holocene samples (Figure 4), and a later increase in NMDS axis 2
values. PERMANOVA confirms that plant communities differed sig-
nificantly between the early (>6 ka; n = 10) and later (<6 ka; n = 34)
intervals of the record (pseudo-F = 9.90, p < .001). NMDS taxa scores
provide further insight into what drove these community trends
through time. Because aquatic taxa (Callitriche spp. and Myriophyllum
sibiricum) plot most strongly on NMDS axis 1, a decrease in axis 1 val-
ues from early to mid-Holocene likely signifies a decrease in aquatic
plants. Indeed, in the combined metabarcoding dataset, M. sibiricum
is absent after 4.9 ka and Callitriche spp. are absent after 4.3 ka fol-

lowing their dominance early in the record (Tables S4 and S5).

3.4 | Paleoclimate proxies: brGDGT-inferred
temperatures and BSi

All 27 samples from core QPT16-3A yielded sufficient concentra-
tions of brGDGTs for temperature estimates using multiple calibra-
tions (Figure S5). Calculated temperatures were highest early in the
record, with positive anomalies ranging from 1.4 to 3.7°C and be-
tween 6.7 and 6.3 ka (Figure 5) based on a recent lake calibration
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FIGURE 5 Paleoenvironmental reconstruction from Lake Qaupat (QPT). (a) §'%0-inferred temperature reconstruction for the last 10 ka
from the Agassiz Ice Cap (Lecavalier et al., 2017). (b) Branched glycerol dialkyl glycerol tetraethers (BrGDGT)-inferred mean annual air
temperature (mean-normalized, with calibration root mean squared error as gray band; Russell et al., 2018). (c) Nonmetric multidimensional
scaling (NMDS) axis 1 scores from DNA metabarcoding results (trnL P6 loop only). (d) Relative biogenic silica (BSi) concentration (with SD
as gray band). Dashed line indicates Betula colonization at 5.9 ka. Mean '°Be age of the lake-impounding moraine (orange) and regional
radiocarbon ages (Andrews & Short, 1983; yellow) constrain progressive deglaciation over the study area
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(Russell et al., 2018). At ~6.2 ka, temperatures dropped rapidly, with
negative anomalies persisting through 5.2 ka. A transient warming
centered at 4.9 ka preceded diminished and less variable temper-
atures for the remainder of the record. Given the calibration root
mean squared error of 2.4°C (Russell et al., 2018), we subsequently
focus on the changes that exceeded the uncertainty envelope of the
paleothermometer—primarily the shift from warmer to cooler tem-
peratures centered at ~6.2 ka.

We also investigated paleoclimate qualitatively using FTIRS-in-
ferred BSi (Liu et al., 2013; Vogel et al., 2008). BSi concentrations
represent diatom abundance and productivity in lakes (Conley, 1988;
Conley & Schelske, 2001) and by proxy, spring or summer tempera-
ture (Geirsdéttir, Miller, Thordarson, & Olafsdottir, 2009; McKay,
Kaufman, & Michelutti, 2008), although other factors like nutrient
availability can also affect BSi concentration. BSi values were high-
est early in the record, peaking at 6.6 ka before declining steadily
through 5.9 ka (Figure 5). Following a temporary uptick centered at
5.5 ka, BSi values dropped to lower and less variable levels for the
remaining 5.0 ka of the record, coinciding with a decrease in sedi-

mentation rate.

4 | DISCUSSION

Taken together, the proxy data outline the postglacial climatic
and ecological evolution of the QPT catchment on Baffin Island,
Arctic Canada. Following deglaciation after 9.1 ka, the catchment
became available for primary terrestrial succession and lake on-
togeny. Our sedaDNA data indicate that by the start of the lake
sediment record at 7.4 ka, soil development and ecological suc-
cession had proceeded sufficiently to facilitate the establishment
of vascular plants including Salix, Vaccinium (blueberry genus),
and E. nigrum (Table S3). A peak in algal productivity, defined by
maximum BSi values, is concurrent with a peak in aquatic vegeta-
tion, as inferred from NMDS axis 1 values, at 6.7 ka (Figure 5).
This relatively productive lake environment was likely a result of
high summer lake water temperatures and/or a long ice-free sea-
son, and is indeed mirrored in high temperatures inferred from
brGDGTs between 6.7 and 6.3 ka. The presence of Callitriche
hermaphroditica early in the sedaDNA record, and its dominance
(77%-98% of reads) between 6.8 and 6.4 ka, provides further
evidence of warm conditions during this time; in the modern, this
species requires minimum July temperatures of ~14°C (Clarke
et al., 2018; Viliranta et al., 2015), ~6°C warmer than the modern
July mean temperature in Igaluit. Successional processes and soil
development in the surrounding catchment also likely promoted
high lacustrine productivity during this time (Engstrom, Fritz,
Almendinger, & Juggins, 2000; Fritz & Anderson, 2013). We note
that the two QPT sediment cores extend back to only 7.4 and
6.8 ka, respectively, and thus probably miss peak temperatures
of the true HTM, which was likely prior to 8 ka in the Eastern
Canadian Arctic (Axford, Briner, Miller, & Francis, 2009; Briner
et al., 2016; Lecavalier et al., 2017).

All proxy values—brGDGT-inferred temperatures, sedaDNA
NMDS axis 1, and BSi—then declined in the centuries preceding 6 ka,
indicative of a deteriorating climate and waning aquatic productiv-
ity. A temporary increase in BSi centered at 5.5 ka signifies that
aquatic productivity did not monotonically decline through this pe-
riod, but the proxies together generally point to warmest conditions
and high productivity prior to 6 ka. Additionally, factors other than
temperature (e.g., low-oxygen conditions and associated changes in
the microbial community) could possibly influence the brGDGT-de-
rived temperature reconstruction (see Supporting information), but
our record is consistent with independent proxy data indicating a
warmer climate before 6 ka. The pre-6 ka cooling episode was also
captured by a peat section from nearby Grinnell Bay (~150 km to
the east), which contains a prominent cryoturbated paleosol that
dated to 6.3 + 0.4 ka (Jacobs, Mode, Squires, et al., 1985). Moreover,
a 8'80-inferred temperature reconstruction from the Agassiz ice
cap also suggests modest cooling from 6.5 to 6.0 ka, and, more
broadly, that the warmest temperatures of the Holocene occurred
before 6 ka (Figure 5; Lecavalier et al., 2017). Given the multi-proxy
evidence for declining temperatures prior to 6 ka, it is surprising to
find strong evidence for the colonization of Betula—a temperature-
sensitive shrub—at 5.9 ka. The catchment was likely ice-free ~3 ka
prior, and soil development allowed for the establishment of Salix
and other tundra plants at least 1.3 ka earlier. Climatic conditions
appeared to be warm enough for Betula establishment from the start
of the record, and subsequently declined markedly. Yet dwarf birch
did not become established during peak temperatures, as would be
predicted by a rapid dispersal model (Alsos et al., 2007), but instead
colonized after several centuries of deteriorating climate. This find-
ing suggests that dispersal mechanisms, whether by bird, sea ice, or
other means (Alsos, Ehrich, et al., 2016; Alsos, Sjogren, et al., 2016;
Birks, 2008), may have in fact been a limiting factor in shrub coloni-
zation of southern Baffin Island. The earlier colonization of Salix ver-
sus Betula could reflect more proximal source areas or taxa-specific
dispersal limitations.

The sedaDNA results indicating the delayed arrival of Betula
contradict the interpretation of a palynological record from nearby
Hikwa Lake that contains Betula pollen throughout its ~8 ka extent
(Mode & Jacobs, 1987), a feature that is ubiquitous among pollen
records from the region (Gajewski, 2015a; Kerwin et al., 2004). This
contrast highlights the different source areas of pollen versus se-
daDNA. Pollen can be wind-transported long distances, such that
tree species from within the Betula genus, which produce large
amounts of pollen that is difficult to distinguish from that of Betula
shrub species, are likely contributing exotic pollen from northeast-
ern mainland Canada (Kerwin et al., 2004). This issue is particularly
problematic in treeless landscapes where local pollen production
is relatively low and wind transport of some pollen types is highly
effective (Birks, 2008). Alternatively, the fact that the sedaDNA in-
dicated no Betula from early in the record even when exotic Betula
pollen was likely present supports other recent work concluding
that sedaDNA has a predominantly local source from within a lake
catchment (Alsos et al., 2018; Niemeyer, Epp, Stoof-Leichsenring,
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Pestryakova, & Herzschuh, 2017; Sjégren et al., 2016) and is not
derived from pollen grains (at least with standard extraction tech-
niques; see Parducci et al., 2017). The DNA-based colonization tim-
ing of Betula at 5.9 ka coincides with an increase in Betula pollen in
the Hikwa lake record at ~6 ka (Mode & Jacobs, 1987), which we
suggest results from a shift from background-exotic flux to addi-
tional locally sourced Betula pollen.

Our combination of molecular proxies reveals that a tempera-
ture-sensitive shrub became established significantly after optimal
climatic conditions and remained present through the cooler con-
ditions of the late Holocene. Taken more broadly, this supports the
notion that some types of thermophilous vegetation may lag climate
on the order of 1,000 years (Davis & Shaw, 2001; Prentice, Bartlein,
& Webb, 1991)—particularly in the Arctic, where migration distances
can be vast and rapid climate changes are pronounced. The presence
of a migration barrier (Hudson Strait) from the presumed southern
source area in this case also likely decreased the efficiency of disper-
sal (Davis, Woods, Webb, & Futyma, 1986). Similar lags in shrub mi-
gration have been noted in Greenland, with Betula arriving between
8 and 6 ka and Alnus later yet, at ~4 ka (Bennike, 1999; Fredskild,
1991; Gajewski, 2015a). In contrast, studies from other remote Arctic
islands, including Svalbard and Iceland, have suggested rapid post-
glacial shrub colonization (Alsos, Ehrich, et al., 2016; Alsos, Sjogren,
et al., 2016; Rundgren & Ingdlfsson, 1999). This is the first definitive
evidence from the Canadian Arctic Archipelago of a shrub migration
lag, possibly because of the proximity of tree pollen sources.

One consequence of a sluggish vegetation response to climate
is that pollen-based temperature reconstructions may inaccurately
capture the timing of past climate change. Indeed, a temperature
reconstruction based on the Hikwa Lake pollen record yields peak
Holocene summer temperatures between 4.2 and 3.2 *C years
BP (4.7-3.4 ka) when Betula pollen is at its maximum (Kerwin et al.,
2004). This mid-Holocene rise in Betula (as well as Alnus) pollen is a
common feature of lake records from southern Baffin Island (Briner
et al., 2016) and may have been caused by migration lags or greater
or more common southerly winds transporting exotic pollen (Kerwin
et al., 2004). As a result, palynological records generally point to a
later HTM in this region than do ice core records (Lecavalier et al.,
2017) or chironomid-inferred temperature reconstructions (Axford
et al., 2009) and may introduce a time-lag bias for Arctic proxy com-
pilations (Gajewski, 2015b; Kaufman et al., 2004).

Dispersal-limited migration for certain woody plant species may
limit the rate of current and future Arctic shrubification and delay the
impacts of its associated climate feedbacks, particularly for islands or
otherwise isolated areas. Importantly, however, migration is a neces-
sary mechanism for vegetation to respond to rapid climate change
(Aitken, Yeaman, Holliday, Wang, & Curtis-McLane, 2008; Chen, Hill,
Ohlemiiller, Roy, & Thomas, 2011; Thuiller et al., 2008). If migration
barriers can result in delays on the order of 1,000 years, as seems to
have been the case in the postglacial past on Baffin Island, species
may not be able to shift their ranges quickly enough to keep up with
rapidly shifting environmental conditions where geographic barriers
exist. We note that dispersal limitations are species-specific (Thuiller
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et al., 2008) and barrier-specific, and additional paleoecological work
is required to broaden our understanding of high-latitude vegetation
dynamics. Insights from such paleovegetation reconstructions can be
used to improve the representation of vegetation-related feedbacks
in earth system models and validate species distribution models
(Guisan & Wilfried, 2005), both of which are critical in predicting the

climatic and ecological future of the planet.
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