
Memristor Based Autoencoder for Unsupervised Real-Time

Network Intrusion and Anomaly Detection

Md. Shahanur Alam, B. Rasitha Fernando, Yassine Jaoudi, Chris Yakopcic, Raqibul Hasan, Tarek M.

Taha, and Guru Subramanyam

Dept. Of Electrical and Computer Engineering, University of Dayton, Dayton, OH, USA

{alamm8, fernandob1, jaoudiy1, cyakopcic1, hasanm1, tarek.taha, gsubramanyam1}@udayton.edu

ABSTRACT

Custom low power hardware for real-time network security and

anomaly detection are in great demand, as these would allow for

efficient security in battery-powered network devices. This paper

presents a memristor based system for real-time intrusion detection,

as well as an anomaly detection based on autoencoders. Intrusion

detection is based on a single autoencoder, and the overall detection

accuracy of this system is 92.91% with a malicious packet detection

accuracy of 98.89%. The system described in this paper is also

capable of using two autoencoders to perform anomaly detection

using real-time online learning. Using this system, we show that

anomalous data is flagged by the system, but over time the system

stops flagging a particular datatype if its presence is abundant.

Utilizing memristors in these designs allows us to present extreme

low power systems for intrusion and anomaly detection, while

sacrificing little accuracy.

CCS CONCEPTS

CCS → Hardware → Emerging technologies → Analysis and

design of emerging devices and systems → Emerging

architectures

KEYWORDS

Memristor, Autoencoder, NSL-KDD, Neuromorphic

1 Introduction

The incredible ubiquitousness of the internet has led to more

diverse protocols, services, and applications [1]. This has also

increased the chance of breaches in system security, allowing theft

of confidential information. Information is among the most

valuable assets for any institution [2]. Thus, any network intrusion

which places data confidentiality, integrity, or availability at risk

can cause dramatic losses for the organization. According to [3], a

continuous surveillance of networks looking in real time for

anomalous behavior is necessary to prevent intrusion.

Two of the prominent methods for performing network

intrusion detection include rule/signature-based detection, as well

as anomaly-based detection. Rule-based automatic intrusion

detection systems such as SNORT are widely used. In a rule-based

system, an incoming packet is compared with a list of known

malicious signatures to determine if a particular data packet

contains an attack [4]. However, this does little against attacks that

SNORT is not already aware of. Thus, SNORT is unable to detect

new types of attacks, typically called ‘zero day’ attacks [4]. Deep

learning systems are promising candidates for the improvement of

anomaly-based intrusion detection systems due to their pattern

recognition and pattern reconstruction capabilities [5,6]. Deep

networks that are adaptable and can perform self-organization to

learn new features [4] are needed to detect ‘zero day’ attacks in

real-time.

There are two types of learning in neural networks: supervised

and unsupervised. Unsupervised learning does not require labeled

data, and thus is a strong candidate for anomaly detection, as real-

time network traffic will also not be labeled [7]. A key problem

with this approach is that the learning in deep networks requires

significant memory, computation time, and power consumption

[8]. Thus, these networks are typically implemented using Graphics

Processing Units (GPUs) that consume more than 200W of power.

Thus, these systems are not practical for edge computing.

In the IoT era, many physical devices are connected to the

internet that perform very sophisticated tasks like automation,

industrial processes, human health analysis, and environmental

monitoring [9]. The integration of real-world objects with the

internet brings network security threats into the realm of our daily

activities. Real-time anomaly detection has a high demand in the

network security industry. Besides intrusion detection, other

important applications of these types of systems include malware

detection [8].

To enable this anomaly detection on low power devices,

building unsupervised deep learning circuits using memristors is a

This work was supported through funding from the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ICONS '19, July 23–25, 2019, Knoxville, TN, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7680-8/19/07…$15.00

https://doi.org/10.1145/3354265.3354267

ICONS’19, July, 2019, Knoxville, Tennessee, USA M. S. Alam et al.

viable solution [10]. Memristors are a new class of nanoscale

semiconductor device. They are non-volatile and can retain their

resistance state when powered off. New types of neuromorphic

systems have been proposed recently that utilize memristor

crossbars to implement deep networks very efficiently [10]. They

have high density and extreme low-power, as they perform many

multiply-add operations in parallel in the analog domain [10,11].

In this work, we propose a network intrusion and real-time

anomaly detection system that utilizes memristor crossbars to

construct autoencoders. Autoencoders are able to learn in an

unsupervised fashion and can recognize anomalous data quickly

and accurately. Furthermore, since we are using memristor devices

to carry out the critical computations required of autoencoders, our

proposed system will operate at significantly lower power relative

to alternative traditional approaches [10]. The system proposed in

this work is capable of performing two different processes. The first

is a feedforward intrusion detection process. In this case, the system

is first trained using a set of normal, benign, network data to

determine a baseline. Then the system is tested in a runtime mode

as it is supplied a mix of normal and malicious data. This system

was able recognize the difference between normal and attack data

at greater than 92% accuracy.

The second process capable of execution via the proposed

system employs a feedback path to provide self-learning during

real-time operation. This system was successfully used to detect

anomalous data. Furthermore, if data that was once considered

anomalous becomes more prevalent over time, this system is able

to recognize this pattern and forget this anomaly. However, as new

anomalies are presented to the system, they are still recognized.

This paper is organized as follows: Section II discusses related

work, and Section III provides details on the dataset used in this

study. Section IV describes the memristor based auto encoder

design, and Section V details the experimental method carried out

in this work. Section VI provides the results and discussion while

Section VII contains a brief conclusion.

2 Related Work

Few papers have been presented that describe using memristor

crossbars as part of a neuromorphic intrusion detection system.

Work in [12] presents memristor based intrusion detection

hardware implemented as a supervised multilayer perceptron

(MLP), which achieved a classification accuracy greater than 99%

when using the KDD Cup’99 dataset. Work in [13] presents a

memristor based deep packet inspection (DPI) system for high

speed intrusion detection and classification.

On the other hand, more studies have been conducted that

describe intrusion detection based on deep learning that is not tied

to a specific hardware design. Network intrusion detection is

studied in [7] using unsupervised learning via autoencoders and a

restricted Boltzmann machine (RBM) that achieved up to 92.12%

detection accuracy with k-means clustering. Work has also been

presented using the NSL-KDD dataset for intrusion detection in

unsupervised deep learning [14]. An autoencoder with five hidden

layers achieved 96.3% classification accuracy with a support vector

machine (SVM) on the KDDTest+ data set [14]. Researchers are

also exploring convolutional neural networks (CNNs) for intrusion

detection, where a preprocessing unit is used to increase the

dimensionality of the input network data [15]. A deep autoencoder

trained in a greedy layer-wise fashion achieved 94.53% accuracy

[16].

As an alternative, in this work we describe an autoencoder as

part of a memristor based neuromorphic system with real-time

detection. Our results also show that we are able to train our system

during runtime to only respond to anomalous data. To the best of

our knowledge, no other memristor based system capable of both

unsupervised intrusion detection and anomaly detection has yet

been published.

3 The NSL-KDD Dataset

NSL-KDD dataset is a revised version of the KDD Cup’99

dataset currently hosted by the University of New Brunswick [17].

In the NSL-KDD dataset, the significant redundancy originally

present in the KDD Cup’99 dataset has been removed [17]. The

portion of the data in the NSL-KDD dataset dedicated to training

has a total of 125,973 packets, each containing one of 23 different

datatypes: (1) back, (2) buffer_overflow, (3) ftp_write, (4)

guess_passwd, (5) imap, (6) ipsweep, (7) land, (8) loadmodule, (9)

multihop, (10) neptune, (11) nmap, (12) normal, (13) perl,

(14) phf, (15) pod, (16) portsweep, (17) rootkit, (18) satan, (19)

smurf, (20) spy, (21) teardrop, (22) warezclient, and (23)

warezmaster [18]. Each packet has 43 attributes, where 42 of the

attributes match those found in the KDD Cup’99 data (including

the data label), and the 43rd describes the level of classification

difficulty of the corresponding packet [18]. The NSL-KDD data

used in this study contains 67,343 packets that are considered

normal benign data, while the remaining 58,630 packets in the

dataset are considered malicious. Fig. 1 presents two sample data

packets. Fig. 1 (a) presents a normal data sample and Fig. 1 (b)

presents a malicious data packet. Both packets contain numerical

data, as well as alphanumeric data within certain attributes,

including the 2nd position (protocol/type), the 3rd position (service),

the 4th position (flag), and the 42nd position (the attack type).

0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,1,0,0,

150,25,0.17,0.03,0.17,0,0,0,0.05,0,normal,20
(a)

0,tcp,ftp_data,SF,334,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,1,0,0,

2,20,1,0,1,0.20,0,0,0,0,warezclient,15
(b)

0,0.5,0.188,0.629,3.55e07,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.00391,0.003
91, 0,0,0,0,1,0,0,0.588,0.098,0.17,0.03,0.17,0,0,0,0.05,0,0,0.9523

(c)

0,0.5,0.188,0.629,2.42e07,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.00391,0.003

9, 0,0,0,0,1,0,0,0.0078,0.078,1,0,1,0.2,0,0,0,0,1,0.714
(d)

Figure 1. Examples of a (a) normal data packet, (b) malicious

data packet, (c) normalized normal data packet, and (d)

normalized malicious data packet.

Before training the network, all packets need to undergo minor
preprocessing. The alphanumeric data was converted into numeric

M. S. Alam et al. ICONS’19, July, 2019, Knoxville, Tennessee, USA

data and all data was normalized. The 42nd position in the data set
stores the labels of the packets. Normal packet labels are denoted
as ‘0’ while all types malicious data have a label of ‘1’. The three
remaining features in the 2nd to 4th positions are alphanumeric and
need to be adjusted (see Fig. 1 (a) & (b)). For example, the 2nd
position has three possible strings (tcp, udp, icmp), and these can
be replaced by 1, 2 and 3 respectively. Then the dataset is
normalized according to the largest value contained within each
attribute. The processed versions of the packets displayed in Figs.
1 (a) and (b) are shown in Figs. 1 (c) and (d) respectively. The last
processing step was to remove the 20th attribute in the dataset, as a
zero was present in this position for all packets.

4 Memristor Based Autoencoder

4.1 Autoencoder Design

An autoencoder (AE) is a type of unsupervised neural network.

The main purpose of an autoencoder is to perform feature learning

in a way that reduces the dimensionality of incoming data. Once

the minimum dimensionality is achieved, the autoencoder should

then be able to reconstruct the original data with little to no error

[7]. The autoencoder layout used in this work is displayed in Fig.

2, where the encoder and decoder layers sit on either side of a

bottleneck layer, which produces features in their most compressed

form. The encoder (∅) and decoder (𝜙) processes are shown in

equations (1) and (2).

Figure 2. Conceptual diagram of an autoencoder.

The output of the autoencoder described in Fig. 2 can be

obtained by carrying out equations (3-6) where b denotes a bias

value, and f(x) denotes neuron activation function.

∅: 𝑋 → ℱ (1)

𝜙:ℱ → 𝑋 (2)

𝐿1𝑗 = 𝑓(∑ 𝑤1(𝑖,𝑗). 𝑥𝑖 + 𝑏1𝑗
41
𝑖=1) (3)

𝐿2𝑘 = 𝑓(∑ 𝑤2(𝑗,𝑘). ℎ1𝑗 + 𝑏2𝑘
90
𝑗=1) (4)

𝐿3𝑗 = 𝑓(∑ 𝑤2(𝑘,𝑗)
′ . ℎ2𝑘 + 𝑏3𝑗

10
𝑘=1) (5)

𝐿4𝑖 = 𝑓(∑ 𝑤1(𝑗,𝑖)
′ . ℎ3𝑗 + 𝑏4𝑖

90
𝑗=1) (6)

4.2 Memristor Autoencoder

To build on previous work in autoencoder based intrusion

detection [5,6], we propose a memristor crossbar-based system for

performing unsupervised network intrusion detection. Memristor

devices [19] are a strong candidate for the basis of a low power

embedded neuromorphic system. Memristors are commonly

patterned in what is known as a crossbar structure, which is capable

of performing many multiply-add operation in a parallel fashion in

the analog domain [20].

Memristors are typically utilized in neuromorphic systems to

approximate the concept of synaptic connectivity. Thus,

memristors can be used to store the connection strength between a

neuron and all incoming connections. This is demonstrated in Fig.

3. This circuit requires two memristors to represent a single weight

because the dynamic resistance of a memristor can really only be

used to store a single positive bounded value. The left column of

memristors represents a positive excitatory connection and the right

column represents an inhibitory connection. In a given row, if

𝜎𝑖+ > 𝜎𝑖− then a net positive synaptic weight is observed,

otherwise a negative synaptic weight will be present [21].

Assume that the value of the dot product (DPj) can be calculated

according to equation (7) as the voltage difference between the left

and right column wires. Thus, each memristor crossbar in this

system essentially performs a set of dot product calculations

between the neuron input voltages and the net conductance of each

memristor pair. The memristor device considered in this work has

maximum conductance 𝜎𝑚𝑎𝑥 = 2 × 10−5 Ω−1 and minimum

conductance 𝜎𝑚𝑖𝑛 = 1 × 10−7 Ω−1.

The output, yj in Fig. 3 represents the neuron output. When the

power rails of the op-amps, VDD and VSS are set to 0 V and 1 V

respectively. The sigmoid presented in equation (8) is typically

used as the activation function in deep learning. However, in the

presented memristor based neuromorphic system the approximated

sigmoid function in equation (9) is used, as it is easier to generate

using an amplifier circuit [12]. Fig. 4 displays the typical sigmoid

function along with the approximation used in this work.

Figure 3. Circuit diagram for a single memristor based neuron.

. .
 .

. .
 .

x1

x2

xi

x41

. .
 .

. .
 .

h1,3

h1,4

h1,j

h1,90

h1,1

h1,2

. .
 .

. .
 .

x'1

x'2

x'i

x'41

. .
 .

. .
 .

h3,3

h3,4

h3,j

h3,90

h3,1

h3,2

. .
 .

. .
 .

h2,1

h2,k

h2,10

w'1(j,i)w2(j,k)

w'2(k,j)
w1(i,j)

A
B

β

yj

+ -

+ -

A
A

Memristor

C

Synapse

R
Rf

R

A
B

β

yj

+ -

+ -

A
A

Memristor

C

Synapse

R
Rf

R

. . .

x1
x2

xN
xN+1

x3

Bias

𝜎𝑖−
𝜎𝑖+

ICONS’19, July, 2019, Knoxville, Tennessee, USA M. S. Alam et al.

𝐷𝑃𝑗 = ∑ 𝑥𝑖 × (𝜎𝑖𝑗
+ − 𝜎𝑖𝑗

−)𝑁+1
𝑖=1 (7)

𝑓(𝑥) =
1

1+𝑒−𝑥
 (8)

𝑔(𝑥) = {
1, 𝑥 > 2
0.25𝑥 + 0.5, |𝑥| ≤ 2
0, 𝑥 < 2

 (9)

Figure 4. Plot displaying the traditional sigmoid function along

with the approximation used in this work.

Fig. 5 displays a circuit diagram that shows how multiple

neuron circuits can be patterned using a memristor crossbar. One

of these circuits will be required for each layer in the autoencoder.

Thus, five crossbars will be needed to implement the autoencoder

presented in Fig. 2.

. . .

x2

xN+1

x1
x2

. . .

xN

x1

xN=

yM

A1

A
B

β

yj

+ -

+ -

A
A

Memristor

C

Synapse

R
Rf

R

A2 A3 AM

y3y2y1

x3
x4
x5

Figure 5. Circuit diagram displaying how a memristor crossbar

can implement one layer of the proposed autoencoder.

4.3 Memristor Autoencoder

The training algorithm for the memristor crossbar based

autoencoder is conceptually similar to that of a multilayer neural

network, as the autoencoder is trained layer by layer. The proposed

autoencoder has three hidden layers in addition to the input and

output layers. The proposed training algorithm and training circuit

has been adopted from [10,12,21-23]:

1) Apply the input pattern xi to the input layer crossbar. Thus,

the crossbar will compute the dot product DPj for each neuron and

propagate the output signal yj.

2) For each output layer crossbar, the error is computed as the

difference between the input xi and the output yj as in equation (10).

𝛿𝑗 = (𝑥𝑗 − 𝑦𝑗)𝑓
′(𝐷𝑃𝑗) (10)

3) Backpropagate the error from each hidden layer neuron 𝑗 as

in equation (11).

𝛿𝑗 = ∑ 𝛿𝑘𝑘 𝑤𝑘,𝑗𝑓
′(𝐷𝑃𝑗) (11)

4) Update the weights according to the error function with a

learning rate 𝜂. The weight update rule is Δ𝑤𝑗 = 𝜂𝛿𝑗𝑥.

5) Repeat this process until the error converges to a specified

value.

In the proposed system we utilize on-chip learning, meaning

that memristor resistance will be tuned during the training process

as the result of a learning algorithm. The memristor resistance is

altered due to a set of incoming voltage pulses applied to specific

devices for specific times. One of the advantages of on-chip

training is that it accounts for the variation in resistance present

across an array of memristor devices [22]. The memristor device

modeled for this study has a resistance ratio of approximately 200

and a write threshold voltage of 1.3V.

5 Memristor Based Autoencoder

An autoencoder is an unsupervised learning neural network.

The detection technique is essentially threshold-based detection.

Similarly, threshold-based intrusion detection and clustering was

used by V. Nikulin [24], and Aron Laszka [25]. In our work, the

input layer and output layer feature sizes are the same and can be

considered one-dimensional vectors. Fig. 6 shows a block diagram

of the proposed method for real-time intrusion detection.

Figure 6. Schematic diagram of AE based real-time intrusion

detection. AE-1 is pre-trained with 90% of the normal data and

AE-2 is initialized with random weights.

Positive

Normal Data

Malicious Data

AE-2:Real-Time Training

Known

Unknown

AE-1: Pretrained Section

Router

SNORT

1
2
3
4

Positive

Negative

Enterprise Network

Positive=Normal + ‘zero day’
packets

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

M. S. Alam et al. ICONS’19, July, 2019, Knoxville, Tennessee, USA

The SNORT system is first used to catch all known attacks.

Then all normal data and missed attack packets are sent to a pre-

trained autoencoder. This autoencoder is trained with only normal

packets. The test data consists randomly dispersed normal and

malicious data, and the network does not have any predetermined

knowledge of testing data types. However, as data passes through

the network, vector distance can be measured between the input and

the regenerated output packet. As the network was trained with

only normal data packets, the malicious packets likely provide a

larger vector distance than that of the normal packets. The network

can then detect normal and malicious packets based on a vector

distance threshold.

5.1 Real Time Intrusion Detection and Training

Most traditional intrusion detection systems are rule based, and

if a zero-day attack arrives, this type of system is usually unable to

detect it. So, the network needs some type of system that can protect

against these new attacks. Work in [2] describes an extreme

learning machine (ELM) for real-time intrusion detection, which

includes a clustering manager, decision maker, and an update

manager. Work in [3] proposed a hierarchical temporal memory

(HTM), which is a machine learning system for real-time anomaly

detection in video streams. J. Dromard et. al. implemented an

unsupervised anomaly detection system based on knowledge

databases [26]. G. Kathareios et. al implemented a behavioral

unsupervised real-time anomaly detection system with a shallow

autoencoder [27]. Ideally, intrusion detection should be as prompt

as possible. Deep networks are presenting an opportunity for newer

anomaly detection approaches that can significantly outperform

other machine learning techniques. Thus, we developed an

unsupervised real-time anomaly detection system using deep

learning algorithms on a memristor based neuromorphic system.

The system completes three steps that are required to detect unusual

data (that the network has not seen before). First, we preprocess the

NSL-KDD training data and separate 90% of the normal data for

training. Then, we use the remaining 10% of the normal data and

10% of the malicious data for testing the first autoencoder (denoted

at AE-1 in Fig. 7). Second, we train the first autoencoder (AE-1)

and test it to determine detection accuracy. Third, the second

autoencoder (AE-2 in Fig. 7) has no predetermined knowledge and

was initialized with a set of random weights. AE-1 is able to detect

malicious data types efficiently as it has knowledge of normal

features. Furthermore, any detected malicious packets are sent to

AE-2. Then, AE-2 will learn malicious data in real-time, and thus

will be able to detect new data types as they are presented to the

network.

5.2 Pre-Training

In this system, the training process does not use labels for

learning the packet types. The training computation tracks the

vector distance D between input and output samples as in equation

(12) where Xi and Yi are the input and output vectors respectively.

 𝐷 = √∑(𝑋𝑖 − 𝑌𝑖)
2 (12)

In the last epoch, the mean distance Dm = D/N and standard

deviation DSD (see equation (13)) are used to determine the

threshold for packet detection. The value N denotes the total

number of training samples.

𝐷𝑆𝐷 = √√∑(𝐷−𝐷𝑚)
2

𝑁
 (13)

Fig. 7 shows the real-time intrusion detection algorithm. An

incoming packet is passed through the network, and the difference

in vector distance Δ between the incoming packet and the mean

distance Dm is computed. This difference is compared with the

standard deviation DSD. If Δ is larger than DSD, the data packet is

determined to be malicious. Likewise, if Δ is smaller than DSD, the

packet is determined to be a normal packet. Using this thresholding

technique, normal input data will induce a lower value for Δ than

when input data is malicious since the network is trained with only

normal packet data. If the network determines that a packet is

abnormal, it is sent to the next system for learning, weights are

continuously updated based on these incoming packets, which

leads to more robust real-time anomaly detection. The detection

accuracy is defined as in equation (14). Here, NF represents false

detection and includes false positive and false negative cases. The

value Ns represents the total number of samples in the test set.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑠−𝑁𝐹

𝑁𝑠
× 100% (14)

In the following sections, we show that this thresholding

technique is capable of generating strong intrusion detection

results. Furthermore, we show the power benefits of using

memristors to implement the presented systems.

Figure 7. Flowchart for the proposed real-time intrusion

detection system. L = 0 indicates a normal packet and L = 1

indicates a malicious packet.

6 Results and Discussion

6.1 Intrusion Detection Results

We executed the proposed unsupervised training algorithm and

tested it in real-time on the NSL-KDD dataset. The preprocessed

training data contains a total of 67,343 normal packets and 58,630

malicious data packets. In these experiments, 90% of the normal

data packets are separated from the total to be used as the initial

training dataset. The last 10% of the normal data packets (a total of

6,734) and 10% of the malicious data packets (a total of 5,863) data

were placed in random order and were used as the testing dataset.

AE-1
Forward

 = +
∑(−)

 D=

∑(−)

 = −

Y

 = /0
?

For

 > , = &
 < , =

Data (’)

 = +
∑(−)

 = −

For

 > , &
 < ,

 Unknown
?

AE-2
Forward

Y’

Update Weight of AE-2

ICONS’19, July, 2019, Knoxville, Tennessee, USA M. S. Alam et al.

An autoencoder with a 4190109041 architecture was

implemented in two forms. The first implementation is a

straightforward software autoencoder to be used for baseline

testing. The second implementation was developed to represent a

simulated memristor crossbar. Both of these systems were designed

and implemented in MATLAB. For the memristor based design,

crossbar circuit functionality was built into the simulation for

accurate representation of the hardware.

An input sample and its regenerated counterpart are displayed

in Fig. 8; the regenerated output was determined using the

memristor based AE design. The regenerated sample closely

matches the original input sample.

Figure 8. Sample demonstration of packet regeneration using

the memristor crossbar based AE.

Software

Pre-training Epoch

Figure 9. Plot showing MSE vs. pre-training epoch.

Fig. 9 displays the mean squared error (MSE) in the system

during training for both the straightforward autoencoder and the

memristor based system. The software autoencoder shows a

smooth reduction of error whereas learning in the memristor system

appears to be more fragmented and does not reach the minimum

error value that the software autoencoder is able to attain. This is

most likely because of the reduced dynamic range in the memristor

weight values compared to the floating point weights in software.

Furthermore, in the memristor based autoencoder, the

approximated sigmoid function is used as the activation function,

so this is likely another source of increased error. In both cases,

error reduction diminishes after approximately 50 epochs.

The plot in Fig. 10 displays the standard deviation of the

distance between the input and regenerated sample produced by the

autoencoder during training. The standard deviation acts as a

threshold for classification in the real-time during the testing phase.

The software autoencoder shows lower threshold values when

compared to the memristor case, and this makes sense because the

error is lower in the system that does not possess the complications

of memristor hardware. The effect of thresholding can be

understood more clearly from the detection accuracy in Fig. 11. For

the same initial conditions, the memristor crossbar shows slightly

lower accuracy when compared to the software autoencoder.

Pre-training Epoch

Software

Figure 10. Plot showing the change in the standard deviation

threshold for classification during training.

Pre-training Epoch

Memristor

Software

Figure 11. Plot showing intrusion detection accuracy vs. epoch.

Pre-training Epoch

Memristor
Software

Figure 12. Plot showing false detection number vs. epoch.

M. S. Alam et al. ICONS’19, July, 2019, Knoxville, Tennessee, USA

The accuracy is 95.22% for the software autoencoder which

exceeds the accuracies presented in [7, 16]. The accuracy of the

memristor crossbar-based version is 92.91% when the initial

conditions and pre-training period are matched to the software case.

The accuracy of the memristor system could possibly be increased

by implementing a deeper network (as in [14]) that uses five hidden

layers with higher numbers of neurons, and we intend to study this

in future work.

Memristor
Software

Pre-training Epoch

Figure 13. Plot showing the number of missed malicious

packets during the pre-training process.

Pre-training Epoch

Software

Figure 14. Plot showing the malicious packet detection

accuracy using only the pre-trained autoencoder (AE-1).

Fig. 12 displays the total number of incorrect packet detections

during training. The number is higher in the memristor based

system, which is coherent with the earlier results in this paper. Fig.

13 presents the number of malicious data packets that passed

through the autoencoder. From Table 1, we can see that with same

initial conditions and the same training periods, the accuracy in the

memristor based system is again slightly lower.

Table 1. Intrusion detection accuracy of the autoencoder

system when implemented both in software and the simulated

memristor crossbar.

Pre-trained

Epoch

Global

Accuracy
𝑁𝑀𝑁 𝑁𝑁𝑀 𝑁𝐹 Case

50 95.22% 56 546 602 Software

50 92.91% 65 868 933 Memristor

6.2 Anomaly Detection Results

This experiment demonstrates how the memristor based

autoencoder system is capable of real-time unsupervised learning

when running an anomaly detection application. Four test sets (T1,

T2, T3, and T4) for real-time training have been constructed with

five data types, each of which share 100 samples. The packets used

in this study comprise of normal packets, as well as four different

attack types. A data subset from each of these categories is created

where x1 = normal, x2 = neptune, x3 = satan, x4 = ipsweep, and x5 =

back. The test sets are then created using these data subsets as in

equations (15) through (18). These test sets were developed to

simulate the process of introducing anomalies into the system.

𝑇1 = 𝑥1
1 , 𝑥2

1, 𝑥1
2 , 𝑥2

2, 𝑥1
3 , 𝑥2

3, … (15)

𝑇2 = 𝑥1
1 , 𝑥2

1 , 𝑥3
1 , 𝑥1

2 , 𝑥2
2, 𝑥3

2 , … (16)

𝑇3 = 𝑥1
1 , 𝑥2

1 , 𝑥3
1 , 𝑥4

1 , 𝑥1
2 , 𝑥2

2 , 𝑥3
2 , 𝑥4

2, … (17)

𝑇4 = 𝑥1
1, 𝑥2

1, 𝑥3
1, 𝑥4

1, 𝑥5
1, 𝑥1

2, 𝑥2
2, 𝑥3

2, 𝑥4
2, 𝑥5

2, … (18)

Figure 15. Real-time anomaly detection and anomaly learning

over time on selected packet subsets.

Fig. 15 presents the results of the anomaly detection study. In

this real-time learning example, the threshold and weight values

were updated automatically after each cycle. First, an initialization

step was completed to determine a starting point for the threshold

and weight values using a training dataset that consisted of the

testing dataset from the intrusion detection experiments. Then, the

test set T1 was sent to the system, which consists of 100 normal

data packets and 100 neptune denial of access (DoS) attacks. The

T1 test set was ordered so that normal and neptune packets were

alternated.

The AE-1 is very efficient for the detection of malicious data

(see Fig.14) as it is trained with only normal data, and all malicious

data is then sent to AE-2 for learning first and detection second.

The network is continuously learning over time and the number of

anomalies recognized decreases as more occurrences of the same

anomaly become more prevalent. However, when a new type of

packet comes into the network, it is then recognized as an anomaly.

For example, when the T2 subset is applied to the autoencoder, it

flags the previously unlearned packets 98% of the time (see Fig.

ICONS’19, July, 2019, Knoxville, Tennessee, USA M. S. Alam et al.

14). Although, the more times an attack type shown to the system,

the less likely it is to be flagged as unusual. Thus, this type of

packet becomes less interesting to the system as its presence

becomes more frequent. The network was then tested with the T3

and T4 datasets. Once again, Fig. 15 shows that new datatypes are

flagged by the system with a very high probability. This high

probability then decays over time due to the repetition of this new

data. This online learning process is continuous and over time, the

AE-2 retains its ability to detect anomalies.

6.3 Power, Area, and Timing Analysis

The area, power, and energy have been computed for the

memristor crossbars and peripheral circuits. Table II shows a total

system area of 0.00271 mm2. The system consumes 20.6 mW of

power during the training phase and 7.56 mW during the

recognition phase when running at the maximum clock speed.

Table 2. Power, area, and timing estimates for the proposed

neuromorphic anomaly detection system.

Area (mm2) 0.00271

Training Power (mW) 20.6

Training Time (µs) 4.02

Training Energy: One Sample (nJ) 82

Recognition Power (mW) 7.56

Recognition Time (µs) 0.384

Recognition Energy: One Sample (nJ) 2.90

6 Conclusion

Unsupervised real-time intrusion detection and learning has

been studied in a traditional autoencoder, as well as one

implemented using memristor crossbar technology. The memristor

crossbar designs were able to successfully reproduce the

functionality of the software autoencoder with only a slight

reduction in accuracy. The memristor crossbar based autoencoder

design successfully implemented both network intrusion detection

and anomaly detection. Network intrusion detection was performed

with an accuracy of 92.91% with a malicious packet detection

accuracy of 98.89%. In the case of anomaly detection,

unrecognized datatypes were not only recognized, they became

familiar to the system as their presence became more frequent. In

the future we plan to perform an energy and power comparison to

determine more accurately the throughput efficiency benefits of the

memristor based system.

REFERENCES
[1] Setareh Roshana, Yoan Michel, Anton Akusokd, Amaury Lendasse, “Adaptive

and online network intrusion detection system using clustering and Extreme

Learning Machines”, Journal of the Franklin Institute Vol. 355, pp. 1752–1779,

Iss. 4, March 2018

[2] Setareh Roshana, Yoan Michel, Anton Akusokd, Amaury Lendasse, “Adaptive

and online network intrusion detection system using clustering and Extreme

Learning Machines”, Journal of the Franklin Institute Vol. 355, pp. 1752–1779,

Iss. 4, March 2018

[3] Subutai Ahmada, Alexander Lavina, Scott Purdya, Zuha Agha, “Unsupervised

real-time anomaly detection for streaming data”, Vol. 262, pp. 134-147,

Neurocomputing, 2017

[4] Matilda Rhode b, Pete Burnap b, Kevin Jones, ‘Early-stage malware prediction

using recurrent neural networks’, computers & security Vol. 77, August 2017, pp.

578-594

[5] P. K. Prajapati and M. Dixit, “Un-Supervised MRI Segmentation using Self

Organised Maps,” International Conference on Computational Intelligence and

Communication Networks, pp. 471-474, India, December 2016

[6] Raghavendra Chalapathy, Sanjay Chawla, “Deep Learning for Anomaly

Detection: A Survry”, arXiv:1901.03407v2 [cs.LG], Jan 2019

[7] Md Zahangir Alom, Tarek M. Taha, ‘Network intrusion detection for cyber

security using unsupervised deep learning approaches’, National Aerospace and

Electronic Conference (NAECON), June 2017

[8] Md Zahangir Alom and Tarek M. Taha, “Network Intrusion Detection for Cyber

Security on Neuromorphic Computing System”, 2017 International Joint

Conference on Neural Networks (IJCNN), 14-19 May 2017, Anchorage, AK,

USA.

[9] Bruno Bogaz Zarpelão, Rodrigo Sanches Miani, Cláudio Toshio Kawakani Sean

Carlisto de Alvarenga, “A survey of intrusion detection in Internet of Things”,

Journal of Network and Computer Applications, Vol. 84, pp. 25-37, 2017

[10] C. Yakopcic, M. Z. Alom, and T. M. Taha, “Memristor Crossbar Deep

Network Implementation Based on a Convolutional Neural Network,”

IEEE/INNS International Joint Conference on Neural Networks (IJCNN), pp.

963-970, Vancouver, BC, July 2016.

[11] Raqibul Hasan, Tarek M. Taha, ‘Memristor crossbar based unsupervised

training’, National Aerospace and Electronic Conference (NAECON), Dayton,

USA, June 2015

[12] Yakopcic and T. M. Taha, “Analysis and Design of Memristor Crossbar Based

Neuromorphic Intrusion Detection Hardware,” IEEE/INNS International Joint

Conference on Neural Networks (IJCNN), pp. 1-7, Rio de Janeiro, Brazil, Julys,

2018

[13] Venkataramesh Bontupalli, Chris Yakopcic, Raqibul Hasan, and Tarek M. Taha.

2018. Efficient Memristor-Based Architecture for Intrusion Detection and High-

Speed Packet Classification. J. Emerg. Technol. Comput. Syst. 14, 4, Article 41

(November 2018), 27 pages

[14] Mahmood Yousefi-Azar, Vijay Varadharajan, Len Hamey and Uday Tupakula,

‘Autoencoder-based Feature Learning for Cyber Security Applications’,

International Joint Conference on Neural Networks (IJCNN), Anchorage, USA,

May 2017.

[15] Zhipeng Li, Zheng Qin, Kai Huang, Xiao Yang, and Shuxiong Ye, “Intrusion

Detection Using Convolutional Neural Networks for Representation Learning”,

Springer, 2017, pp. 858–866.

[16] Fahimeh Farahnakian, Jukka Heikkonen, ‘A Deep Auto-Encoder based Approach

for Intrusion Detection System’, International Conference on Advanced

Communications Technology (ICACT), South Korea, February 2018.

[17] NSL-KDD data: https://www.unb.ca/cic/datasets/nsl.html.

[18] Solane Duquea, Dr. Mohd. Nizam bin Omar b,’ Using Data Mining Algorithms

for Developing a Model for Intrusion Detection System (IDS)’, Procedia

Computer Science vol. 61, 46 – 51, November 2015

[19] L. O. Chua, “Memristor—The Missing Circuit Element,” IEEE Transactions on

Circuit Theory, vol. 18, no. 5, pp. 507–519 (1971).

[20] T. M. Taha, R. Hasan, C. Yakopcic, and M. R. McLean, “Exploring the Design

Space of Specialized Multicore Neural Processors,” IEEE/INNS International

Joint Conference on Neural Networks (IJCNN), pp. 1-8, Dallas, TX, August 2013

[21] R. Hasan, T. M. Taha, and C. Yakopcic, “On-chip Training of Memristor

Crossbar Based Multi-layer Neural Networks,” Microelectronics Journal, vol. 66,

no. 8, pp. 31-40, Aug. 2017.

[22] Raqibul Hasan and Tarek M. Taha, “Enabling Back Propagation Training of

Memristor Crossbar Neuromorphic Processors”, International Joint Conference

on Neural Networks (IJCNN), Beijing, July 2014

[23] B. R. Fernando, R. Hasan and M. Tarek Taha, "Low Power Memristor Crossbar

Based Winner Takes All Circuit," 2018 IJCNN, Rio de Janeiro, 2018, pp. 1-6.

[24] V. Nikulin, ‘Threshold-based clustering with merging and regularization in

application to network intrusion detection’, Computational Statistics & Data

Analysis vol. 51, pages 1184 – 1196, November 2006

[25] A. Laszka, W. Abbas, S. S. Sastry, Yevgeniy Vorobeychik, Xenofon Koutsoukos,

‘Optimal Thresholds for Intrusion Detection Systems’, Proceeding of the

Symposium and Bootcamp on the Science of Security, Pittsburgh, Pennsylvania,

USA, April 2016, P. 72-81.

[26] Dromard J., Roudière G., Owezarski P. (2015) Unsupervised Network

Anomaly Detection in Real-Time on Big Data. In: Morzy T., Valduriez P.,

Bellatreche L. (eds) New Trends in Databases and Information Systems.

ADBIS 2015. Communications in Computer and Information Science, vol

539. Springer, Cham

[27] G. Kathareios, A. Anghel, Akos M, R. Clauberg, M. Gusat, “Catch It If You Can:

Real-Time Network Anomaly Detection With Low False Alarm Rates”, IEEE

International Conference on Machine Learning and Applications, Cancun,

Mexico, December 2017.

https://www.unb.ca/cic/datasets/nsl.html

