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ABSTRACT 

Custom low power hardware for real-time network security and 

anomaly detection are in great demand, as these would allow for 

efficient security in battery-powered network devices. This paper 

presents a memristor based system for real-time intrusion detection, 

as well as an anomaly detection based on autoencoders. Intrusion 

detection is based on a single autoencoder, and the overall detection 

accuracy of this system is 92.91% with a malicious packet detection 

accuracy of 98.89%. The system described in this paper is also 

capable of using two autoencoders to perform anomaly detection 

using real-time online learning. Using this system, we show that 

anomalous data is flagged by the system, but over time the system 

stops flagging a particular datatype if its presence is abundant. 

Utilizing memristors in these designs allows us to present extreme 

low power systems for intrusion and anomaly detection, while 

sacrificing little accuracy. 
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1 Introduction 

The incredible ubiquitousness of the internet has led to more 

diverse protocols, services, and applications [1]. This has also 

increased the chance of breaches in system security, allowing theft 

of confidential information. Information is among the most 

valuable assets for any institution [2]. Thus, any network intrusion 

which places data confidentiality, integrity, or availability at risk 

can cause dramatic losses for the organization. According to [3], a 

continuous surveillance of networks looking in real time for 

anomalous behavior is necessary to prevent intrusion. 

Two of the prominent methods for performing network 

intrusion detection include rule/signature-based detection, as well 

as anomaly-based detection. Rule-based automatic intrusion 

detection systems such as SNORT are widely used. In a rule-based 

system, an incoming packet is compared with a list of known 

malicious signatures to determine if a particular data packet 

contains an attack [4]. However, this does little against attacks that 

SNORT is not already aware of. Thus, SNORT is unable to detect 

new types of attacks, typically called ‘zero day’ attacks [4]. Deep 

learning systems are promising candidates for the improvement of 

anomaly-based intrusion detection systems due to their pattern 

recognition and pattern reconstruction capabilities [5,6]. Deep 

networks that are adaptable and can perform self-organization to 

learn new features [4] are needed to detect ‘zero day’ attacks in 

real-time.  

There are two types of learning in neural networks: supervised 

and unsupervised. Unsupervised learning does not require labeled 

data, and thus is a strong candidate for anomaly detection, as real-

time network traffic will also not be labeled [7]. A key problem 

with this approach is that the learning in deep networks requires 

significant memory, computation time, and power consumption 

[8]. Thus, these networks are typically implemented using Graphics 

Processing Units (GPUs) that consume more than 200W of power. 

Thus, these systems are not practical for edge computing. 

In the IoT era, many physical devices are connected to the 

internet that perform very sophisticated tasks like automation, 

industrial processes, human health analysis, and environmental 

monitoring [9]. The integration of real-world objects with the 

internet brings network security threats into the realm of our daily 

activities. Real-time anomaly detection has a high demand in the 

network security industry. Besides intrusion detection, other 

important applications of these types of systems include malware 

detection [8]. 

To enable this anomaly detection on low power devices, 

building unsupervised deep learning circuits using memristors is a 
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viable solution [10]. Memristors are a new class of nanoscale 

semiconductor device. They are non-volatile and can retain their 

resistance state when powered off. New types of neuromorphic 

systems have been proposed recently that utilize memristor 

crossbars to implement deep networks very efficiently [10]. They 

have high density and extreme low-power, as they perform many 

multiply-add operations in parallel in the analog domain [10,11]. 

In this work, we propose a network intrusion and real-time 

anomaly detection system that utilizes memristor crossbars to 

construct autoencoders. Autoencoders are able to learn in an 

unsupervised fashion and can recognize anomalous data quickly 

and accurately. Furthermore, since we are using memristor devices 

to carry out the critical computations required of autoencoders, our 

proposed system will operate at significantly lower power relative 

to alternative traditional approaches [10]. The system proposed in 

this work is capable of performing two different processes. The first 

is a feedforward intrusion detection process. In this case, the system 

is first trained using a set of normal, benign, network data to 

determine a baseline. Then the system is tested in a runtime mode 

as it is supplied a mix of normal and malicious data. This system 

was able recognize the difference between normal and attack data 

at greater than 92% accuracy. 

The second process capable of execution via the proposed 

system employs a feedback path to provide self-learning during 

real-time operation. This system was successfully used to detect 

anomalous data. Furthermore, if data that was once considered 

anomalous becomes more prevalent over time, this system is able 

to recognize this pattern and forget this anomaly. However, as new 

anomalies are presented to the system, they are still recognized. 

This paper is organized as follows: Section II discusses related 

work, and Section III provides details on the dataset used in this 

study. Section IV describes the memristor based auto encoder 

design, and Section V details the experimental method carried out 

in this work. Section VI provides the results and discussion while 

Section VII contains a brief conclusion. 

2 Related Work 

Few papers have been presented that describe using memristor 

crossbars as part of a neuromorphic intrusion detection system. 

Work in [12] presents memristor based intrusion detection 

hardware implemented as a supervised multilayer perceptron 

(MLP), which achieved a classification accuracy greater than 99% 

when using the KDD Cup’99 dataset. Work in [13] presents a 

memristor based deep packet inspection (DPI) system for high 

speed intrusion detection and classification.   

On the other hand, more studies have been conducted that 

describe intrusion detection based on deep learning that is not tied 

to a specific hardware design. Network intrusion detection is 

studied in [7] using unsupervised learning via autoencoders and a 

restricted Boltzmann machine (RBM) that achieved up to 92.12% 

detection accuracy with k-means clustering.  Work has also been 

presented using the NSL-KDD dataset for intrusion detection in 

unsupervised deep learning [14]. An autoencoder with five hidden 

layers achieved 96.3% classification accuracy with a support vector 

machine (SVM) on the KDDTest+ data set [14]. Researchers are 

also exploring convolutional neural networks (CNNs) for intrusion 

detection, where a preprocessing unit is used to increase the 

dimensionality of the input network data [15]. A deep autoencoder 

trained in a greedy layer-wise fashion achieved 94.53% accuracy 

[16].  

As an alternative, in this work we describe an autoencoder as 

part of a memristor based neuromorphic system with real-time 

detection. Our results also show that we are able to train our system 

during runtime to only respond to anomalous data. To the best of 

our knowledge, no other memristor based system capable of both 

unsupervised intrusion detection and anomaly detection has yet 

been published. 

3 The NSL-KDD Dataset 

NSL-KDD dataset is a revised version of the KDD Cup’99 

dataset currently hosted by the University of New Brunswick [17]. 

In the NSL-KDD dataset, the significant redundancy originally 

present in the KDD Cup’99 dataset has been removed [17]. The 

portion of the data in the NSL-KDD dataset dedicated to training 

has a total of 125,973 packets, each containing one of 23 different 

datatypes: (1) back, (2) buffer_overflow, (3) ftp_write, (4) 

guess_passwd, (5) imap, (6) ipsweep, (7) land, (8) loadmodule, (9)  

multihop,  (10)  neptune,  (11)  nmap,  (12)  normal,  (13)  perl,  

(14)  phf,  (15)  pod,  (16) portsweep, (17) rootkit, (18) satan, (19) 

smurf, (20) spy, (21) teardrop, (22) warezclient, and (23) 

warezmaster [18]. Each packet has 43 attributes, where 42 of the 

attributes match those found in the KDD Cup’99 data (including 

the data label), and the 43rd describes the level of classification 

difficulty of the corresponding packet [18]. The NSL-KDD data 

used in this study contains 67,343 packets that are considered 

normal benign data, while the remaining 58,630 packets in the 

dataset are considered malicious. Fig. 1 presents two sample data 

packets. Fig. 1 (a) presents a normal data sample and Fig. 1 (b) 

presents a malicious data packet. Both packets contain numerical 

data, as well as alphanumeric data within certain attributes, 

including the 2nd position (protocol/type), the 3rd position (service), 

the 4th position (flag), and the 42nd position (the attack type).  

0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,1,0,0,

150,25,0.17,0.03,0.17,0,0,0,0.05,0,normal,20 
(a) 

0,tcp,ftp_data,SF,334,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,1,0,0,

2,20,1,0,1,0.20,0,0,0,0,warezclient,15 
(b) 

0,0.5,0.188,0.629,3.55e07,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.00391,0.003
91, 0,0,0,0,1,0,0,0.588,0.098,0.17,0.03,0.17,0,0,0,0.05,0,0,0.9523 

(c) 

0,0.5,0.188,0.629,2.42e07,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.00391,0.003

9, 0,0,0,0,1,0,0,0.0078,0.078,1,0,1,0.2,0,0,0,0,1,0.714 
(d) 

Figure 1. Examples of a (a) normal data packet, (b) malicious 

data packet, (c) normalized normal data packet, and (d) 

normalized malicious data packet.  

Before training the network, all packets need to undergo minor 
preprocessing. The alphanumeric data was converted into numeric 



M. S. Alam et al.  ICONS’19, July, 2019, Knoxville, Tennessee, USA 

 

 

data and all data was normalized. The 42nd position in the data set 
stores the labels of the packets. Normal packet labels are denoted 
as ‘0’ while all types malicious data have a label of ‘1’. The three 
remaining features in the 2nd to 4th positions are alphanumeric and 
need to be adjusted (see Fig. 1 (a) & (b)). For example, the 2nd 
position has three possible strings (tcp, udp, icmp), and these can 
be replaced by 1, 2 and 3 respectively.  Then the dataset is 
normalized according to the largest value contained within each 
attribute. The processed versions of the packets displayed in Figs. 
1 (a) and (b) are shown in Figs. 1 (c) and (d) respectively. The last 
processing step was to remove the 20th attribute in the dataset, as a 
zero was present in this position for all packets. 

4 Memristor Based Autoencoder 

4.1 Autoencoder Design 

An autoencoder (AE) is a type of unsupervised neural network. 

The main purpose of an autoencoder is to perform feature learning 

in a way that reduces the dimensionality of incoming data. Once 

the minimum dimensionality is achieved, the autoencoder should 

then be able to reconstruct the original data with little to no error 

[7]. The autoencoder layout used in this work is displayed in Fig. 

2, where the encoder and decoder layers sit on either side of a 

bottleneck layer, which produces features in their most compressed 

form. The encoder (∅) and decoder (𝜙) processes are shown in 

equations (1) and (2).  

 
 

Figure 2. Conceptual diagram of an autoencoder. 

The output of the autoencoder described in Fig. 2 can be 

obtained by carrying out equations (3-6) where b denotes a bias 

value, and f(x) denotes neuron activation function. 

 

∅: 𝑋 → ℱ      (1) 

𝜙:ℱ → 𝑋      (2) 

𝐿1𝑗 = 𝑓(∑ 𝑤1(𝑖,𝑗). 𝑥𝑖 + 𝑏1𝑗
41
𝑖=1 )   (3) 

𝐿2𝑘 = 𝑓(∑ 𝑤2(𝑗,𝑘). ℎ1𝑗 + 𝑏2𝑘
90
𝑗=1 )            (4) 

𝐿3𝑗 = 𝑓(∑ 𝑤2(𝑘,𝑗)
′ . ℎ2𝑘 + 𝑏3𝑗

10
𝑘=1 )         (5) 

𝐿4𝑖 = 𝑓(∑ 𝑤1(𝑗,𝑖)
′ . ℎ3𝑗 + 𝑏4𝑖

90
𝑗=1 )         (6) 

4.2 Memristor Autoencoder 

To build on previous work in autoencoder based intrusion 

detection [5,6], we propose a memristor crossbar-based system for 

performing unsupervised network intrusion detection. Memristor 

devices [19] are a strong candidate for the basis of a low power 

embedded neuromorphic system. Memristors are commonly 

patterned in what is known as a crossbar structure, which is capable 

of performing many multiply-add operation in a parallel fashion in 

the analog domain [20].  

Memristors are typically utilized in neuromorphic systems to 

approximate the concept of synaptic connectivity. Thus, 

memristors can be used to store the connection strength between a 

neuron and all incoming connections. This is demonstrated in Fig. 

3. This circuit requires two memristors to represent a single weight 

because the dynamic resistance of a memristor can really only be 

used to store a single positive bounded value. The left column of 

memristors represents a positive excitatory connection and the right 

column represents an inhibitory connection. In a given row, if 

𝜎𝑖+ > 𝜎𝑖−  then a net positive synaptic weight is observed, 

otherwise a negative synaptic weight will be present [21].   

Assume that the value of the dot product (DPj) can be calculated 

according to equation (7) as the voltage difference between the left 

and right column wires. Thus, each memristor crossbar in this 

system essentially performs a set of dot product calculations 

between the neuron input voltages and the net conductance of each 

memristor pair. The memristor device considered in this work has 

maximum conductance 𝜎𝑚𝑎𝑥 = 2 × 10−5 Ω−1  and minimum 

conductance 𝜎𝑚𝑖𝑛 = 1 × 10−7 Ω−1.  

The output, yj in Fig. 3 represents the neuron output. When the 

power rails of the op-amps, VDD and VSS are set to 0 V and 1 V 

respectively. The sigmoid presented in equation (8) is typically 

used as the activation function in deep learning. However, in the 

presented memristor based neuromorphic system the approximated 

sigmoid function in equation (9) is used, as it is easier to generate 

using an amplifier circuit [12]. Fig. 4 displays the typical sigmoid 

function along with the approximation used in this work. 

 

Figure 3. Circuit diagram for a single memristor based neuron. 
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𝐷𝑃𝑗 = ∑ 𝑥𝑖 × (𝜎𝑖𝑗
+ − 𝜎𝑖𝑗

−)𝑁+1
𝑖=1        (7) 

𝑓(𝑥) =
1

1+𝑒−𝑥
           (8) 

 

𝑔(𝑥) = {
1,                      𝑥 > 2
0.25𝑥 + 0.5, |𝑥| ≤ 2
0,                      𝑥 < 2

    (9) 

 

 

Figure 4. Plot displaying the traditional sigmoid function along 

with the approximation used in this work. 

Fig. 5 displays a circuit diagram that shows how multiple 

neuron circuits can be patterned using a memristor crossbar. One 

of these circuits will be required for each layer in the autoencoder. 

Thus, five crossbars will be needed to implement the autoencoder 

presented in Fig. 2.  
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Figure 5. Circuit diagram displaying how a memristor crossbar 

can implement one layer of the proposed autoencoder. 

4.3 Memristor Autoencoder 

The training algorithm for the memristor crossbar based 

autoencoder is conceptually similar to that of a multilayer neural 

network, as the autoencoder is trained layer by layer. The proposed 

autoencoder has three hidden layers in addition to the input and 

output layers. The proposed training algorithm and training circuit 

has been adopted from [10,12,21-23]:  

1) Apply the input pattern xi to the input layer crossbar. Thus, 

the crossbar will compute the dot product DPj for each neuron and 

propagate the output signal yj.  

2) For each output layer crossbar, the error is computed as the 

difference between the input xi and the output yj as in equation (10). 

𝛿𝑗 = (𝑥𝑗 − 𝑦𝑗)𝑓
′(𝐷𝑃𝑗)      (10) 

3) Backpropagate the error from each hidden layer neuron 𝑗 as 

in equation (11). 

𝛿𝑗 = ∑ 𝛿𝑘𝑘 𝑤𝑘,𝑗𝑓
′(𝐷𝑃𝑗)      (11) 

4) Update the weights according to the error function with a 

learning rate 𝜂. The weight update rule is Δ𝑤𝑗 = 𝜂𝛿𝑗𝑥. 

5) Repeat this process until the error converges to a specified 

value.  

In the proposed system we utilize on-chip learning, meaning 

that memristor resistance will be tuned during the training process 

as the result of a learning algorithm. The memristor resistance is 

altered due to a set of incoming voltage pulses applied to specific 

devices for specific times. One of the advantages of on-chip 

training is that it accounts for the variation in resistance present 

across an array of memristor devices [22]. The memristor device 

modeled for this study has a resistance ratio of approximately 200 

and a write threshold voltage of 1.3V. 

5 Memristor Based Autoencoder 

An autoencoder is an unsupervised learning neural network. 

The detection technique is essentially threshold-based detection. 

Similarly, threshold-based intrusion detection and clustering was 

used by V. Nikulin [24], and Aron Laszka [25]. In our work, the 

input layer and output layer feature sizes are the same and can be 

considered one-dimensional vectors. Fig. 6 shows a block diagram 

of the proposed method for real-time intrusion detection.  

 

 

Figure 6. Schematic diagram of AE based real-time intrusion 

detection. AE-1 is pre-trained with 90% of the normal data and 

AE-2 is initialized with random weights. 
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The SNORT system is first used to catch all known attacks. 

Then all normal data and missed attack packets are sent to a pre-

trained autoencoder. This autoencoder is trained with only normal 

packets. The test data consists randomly dispersed normal and 

malicious data, and the network does not have any predetermined 

knowledge of testing data types. However, as data passes through 

the network, vector distance can be measured between the input and 

the regenerated output packet. As the network was trained with 

only normal data packets, the malicious packets likely provide a 

larger vector distance than that of the normal packets. The network 

can then detect normal and malicious packets based on a vector 

distance threshold. 

5.1 Real Time Intrusion Detection and Training 

Most traditional intrusion detection systems are rule based, and 

if a zero-day attack arrives, this type of system is usually unable to 

detect it. So, the network needs some type of system that can protect 

against these new attacks. Work in [2] describes an extreme 

learning machine (ELM) for real-time intrusion detection, which 

includes a clustering manager, decision maker, and an update 

manager. Work in [3] proposed a hierarchical temporal memory 

(HTM), which is a machine learning system for real-time anomaly 

detection in video streams. J. Dromard et. al. implemented an 

unsupervised anomaly detection system based on knowledge 

databases [26]. G. Kathareios et. al implemented a behavioral 

unsupervised real-time anomaly detection system with a shallow 

autoencoder [27]. Ideally, intrusion detection should be as prompt 

as possible. Deep networks are presenting an opportunity for newer 

anomaly detection approaches that can significantly outperform 

other machine learning techniques. Thus, we developed an 

unsupervised real-time anomaly detection system using deep 

learning algorithms on a memristor based neuromorphic system. 

The system completes three steps that are required to detect unusual 

data (that the network has not seen before). First, we preprocess the 

NSL-KDD training data and separate 90% of the normal data for 

training. Then, we use the remaining 10% of the normal data and 

10% of the malicious data for testing the first autoencoder (denoted 

at AE-1 in Fig. 7). Second, we train the first autoencoder (AE-1) 

and test it to determine detection accuracy. Third, the second 

autoencoder (AE-2 in Fig. 7) has no predetermined knowledge and 

was initialized with a set of random weights. AE-1 is able to detect 

malicious data types efficiently as it has knowledge of normal 

features. Furthermore, any detected malicious packets are sent to 

AE-2. Then, AE-2 will learn malicious data in real-time, and thus 

will be able to detect new data types as they are presented to the 

network.  

5.2 Pre-Training 

In this system, the training process does not use labels for 

learning the packet types. The training computation tracks the 

vector distance D between input and output samples as in equation 

(12) where Xi and Yi are the input and output vectors respectively.  
 

 𝐷 = √∑(𝑋𝑖 − 𝑌𝑖)
2      (12) 

 

In the last epoch, the mean distance Dm = D/N and standard 

deviation DSD (see equation (13)) are used to determine the 

threshold for packet detection. The value N denotes the total 

number of training samples.  

 

𝐷𝑆𝐷 = √√∑(𝐷−𝐷𝑚)
2

𝑁
     (13) 

 

Fig. 7 shows the real-time intrusion detection algorithm. An 

incoming packet is passed through the network, and the difference 

in vector distance Δ between the incoming packet and the mean 

distance Dm is computed. This difference is compared with the 

standard deviation DSD. If Δ is larger than DSD, the data packet is 

determined to be malicious. Likewise, if Δ is smaller than DSD, the 

packet is determined to be a normal packet. Using this thresholding 

technique, normal input data will induce a lower value for Δ than 

when input data is malicious since the network is trained with only 

normal packet data. If the network determines that a packet is 

abnormal, it is sent to the next system for learning, weights are 

continuously updated based on these incoming packets, which 

leads to more robust real-time anomaly detection. The detection 

accuracy is defined as in equation (14). Here, NF represents false 

detection and includes false positive and false negative cases. The 

value Ns represents the total number of samples in the test set. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑠−𝑁𝐹

𝑁𝑠
× 100%    (14) 

 

In the following sections, we show that this thresholding 

technique is capable of generating strong intrusion detection 

results. Furthermore, we show the power benefits of using 

memristors to implement the presented systems. 

 

 

Figure 7. Flowchart for the proposed real-time intrusion 

detection system. L = 0 indicates a normal packet and L = 1 

indicates a malicious packet. 

6 Results and Discussion 

6.1 Intrusion Detection Results 

We executed the proposed unsupervised training algorithm and 

tested it in real-time on the NSL-KDD dataset. The preprocessed 

training data contains a total of 67,343 normal packets and 58,630 

malicious data packets. In these experiments, 90% of the normal 

data packets are separated from the total to be used as the initial 

training dataset. The last 10% of the normal data packets (a total of 

6,734) and 10% of the malicious data packets (a total of 5,863) data 

were placed in random order and were used as the testing dataset. 
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An autoencoder with a 4190109041 architecture was 

implemented in two forms. The first implementation is a 

straightforward software autoencoder to be used for baseline 

testing. The second implementation was developed to represent a 

simulated memristor crossbar. Both of these systems were designed 

and implemented in MATLAB. For the memristor based design, 

crossbar circuit functionality was built into the simulation for 

accurate representation of the hardware. 

An input sample and its regenerated counterpart are displayed 

in Fig. 8; the regenerated output was determined using the 

memristor based AE design. The regenerated sample closely 

matches the original input sample.  

 
 

Figure 8. Sample demonstration of packet regeneration using 

the memristor crossbar based AE. 

Software

Pre-training Epoch  

Figure 9. Plot showing MSE vs. pre-training epoch. 

Fig. 9 displays the mean squared error (MSE) in the system 

during training for both the straightforward autoencoder and the 

memristor based system. The software autoencoder shows a 

smooth reduction of error whereas learning in the memristor system 

appears to be more fragmented and does not reach the minimum 

error value that the software autoencoder is able to attain. This is 

most likely because of the reduced dynamic range in the memristor 

weight values compared to the floating point weights in software. 

Furthermore, in the memristor based autoencoder, the 

approximated sigmoid function is used as the activation function, 

so this is likely another source of increased error. In both cases, 

error reduction diminishes after approximately 50 epochs. 

The plot in Fig. 10 displays the standard deviation of the 

distance between the input and regenerated sample produced by the 

autoencoder during training. The standard deviation acts as a 

threshold for classification in the real-time during the testing phase. 

The software autoencoder shows lower threshold values when 

compared to the memristor case, and this makes sense because the 

error is lower in the system that does not possess the complications 

of memristor hardware. The effect of thresholding can be 

understood more clearly from the detection accuracy in Fig. 11. For 

the same initial conditions, the memristor crossbar shows slightly 

lower accuracy when compared to the software autoencoder. 

Pre-training Epoch

Software

 

Figure 10. Plot showing the change in the standard deviation 

threshold for classification during training. 
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Figure 11. Plot showing intrusion detection accuracy vs. epoch. 
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Figure 12. Plot showing false detection number vs. epoch. 
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The accuracy is 95.22% for the software autoencoder which 

exceeds the accuracies presented in [7, 16]. The accuracy of the 

memristor crossbar-based version is 92.91% when the initial 

conditions and pre-training period are matched to the software case. 

The accuracy of the memristor system could possibly be increased 

by implementing a deeper network (as in [14]) that uses five hidden 

layers with higher numbers of neurons, and we intend to study this 

in future work. 

Memristor
Software

Pre-training Epoch  

Figure 13. Plot showing the number of missed malicious 

packets during the pre-training process. 

Pre-training Epoch

Software

 

Figure 14. Plot showing the malicious packet detection 

accuracy using only the pre-trained autoencoder (AE-1). 

Fig. 12 displays the total number of incorrect packet detections 

during training. The number is higher in the memristor based 

system, which is coherent with the earlier results in this paper. Fig. 

13 presents the number of malicious data packets that passed 

through the autoencoder. From Table 1, we can see that with same 

initial conditions and the same training periods, the accuracy in the 

memristor based system is again slightly lower. 

Table 1. Intrusion detection accuracy of the autoencoder 

system when implemented both in software and the simulated 

memristor crossbar. 

Pre-trained 

Epoch 

Global 

Accuracy 
𝑁𝑀𝑁 𝑁𝑁𝑀  𝑁𝐹 Case 

50 95.22% 56 546 602 Software 

50 92.91% 65 868 933 Memristor 

6.2 Anomaly Detection Results 

This experiment demonstrates how the memristor based 

autoencoder system is capable of real-time unsupervised learning 

when running an anomaly detection application. Four test sets (T1, 

T2, T3, and T4) for real-time training have been constructed with 

five data types, each of which share 100 samples. The packets used 

in this study comprise of normal packets, as well as four different 

attack types. A data subset from each of these categories is created 

where x1 = normal, x2 = neptune, x3 = satan, x4 = ipsweep, and x5 = 

back. The test sets are then created using these data subsets as in 

equations (15) through (18). These test sets were developed to 

simulate the process of introducing anomalies into the system. 

  

𝑇1 =  𝑥1
1 , 𝑥2

1, 𝑥1
2 , 𝑥2

2,  𝑥1
3 ,  𝑥2

3, …     (15) 

𝑇2 = 𝑥1
1 , 𝑥2

1 , 𝑥3
1 , 𝑥1

2 ,  𝑥2
2,  𝑥3

2  , …     (16) 

𝑇3 = 𝑥1
1 , 𝑥2

1 , 𝑥3
1 , 𝑥4

1 , 𝑥1
2 , 𝑥2

2 , 𝑥3
2 , 𝑥4

2, …    (17) 

𝑇4 =  𝑥1
1, 𝑥2

1, 𝑥3
1, 𝑥4

1, 𝑥5
1, 𝑥1

2, 𝑥2
2, 𝑥3

2, 𝑥4
2, 𝑥5

2, …   (18) 

 

 

Figure 15. Real-time anomaly detection and anomaly learning 

over time on selected packet subsets. 

Fig. 15 presents the results of the anomaly detection study. In 

this real-time learning example, the threshold and weight values 

were updated automatically after each cycle. First, an initialization 

step was completed to determine a starting point for the threshold 

and weight values using a training dataset that consisted of the 

testing dataset from the intrusion detection experiments. Then, the 

test set T1 was sent to the system, which consists of 100 normal 

data packets and 100 neptune denial of access (DoS) attacks. The 

T1 test set was ordered so that normal and neptune packets were 

alternated.  

The AE-1 is very efficient for the detection of malicious data 

(see Fig.14) as it is trained with only normal data, and all malicious 

data is then sent to AE-2 for learning first and detection second. 

The network is continuously learning over time and the number of 

anomalies recognized decreases as more occurrences of the same 

anomaly become more prevalent. However, when a new type of 

packet comes into the network, it is then recognized as an anomaly. 

For example, when the T2 subset is applied to the autoencoder, it 

flags the previously unlearned packets 98% of the time (see Fig. 
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14). Although, the more times an attack type shown to the system, 

the less likely it is to be flagged  as unusual. Thus, this type of 

packet becomes less interesting to the system as its presence 

becomes more frequent. The network was then tested with the T3 

and T4 datasets. Once again, Fig. 15 shows that new datatypes are 

flagged by the system with a very high probability. This high 

probability then decays over time due to the repetition of this new 

data. This online learning process is continuous and over time, the 

AE-2 retains its ability to detect anomalies.  

6.3 Power, Area, and Timing Analysis 

The area, power, and energy have been computed for the 

memristor crossbars and peripheral circuits. Table II shows a total 

system area of 0.00271 mm2. The system consumes 20.6 mW of 

power during the training phase and 7.56 mW during the 

recognition phase when running at the maximum clock speed.  

Table 2. Power, area, and timing estimates for the proposed 

neuromorphic anomaly detection system.  

Area (mm2) 0.00271 

Training Power (mW) 20.6 

Training Time (µs) 4.02 

Training Energy: One Sample (nJ) 82 

Recognition Power (mW) 7.56 

Recognition Time (µs) 0.384 

Recognition Energy: One Sample (nJ) 2.90 

6 Conclusion 

Unsupervised real-time intrusion detection and learning has 

been studied in a traditional autoencoder, as well as one 

implemented using memristor crossbar technology. The memristor 

crossbar designs were able to successfully reproduce the 

functionality of the software autoencoder with only a slight 

reduction in accuracy. The memristor crossbar based autoencoder 

design successfully implemented both network intrusion detection 

and anomaly detection. Network intrusion detection was performed 

with an accuracy of 92.91% with a malicious packet detection 

accuracy of 98.89%. In the case of anomaly detection, 

unrecognized datatypes were not only recognized, they became 

familiar to the system as their presence became more frequent. In 

the future we plan to perform an energy and power comparison to 

determine more accurately the throughput efficiency benefits of the 

memristor based system. 
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