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 

Abstract—This work presents a memristive device model 

capable of accurately matching a wide range of characterization 

data collected from a tantalum oxide memristor. Memristor 

models commonly use a set of equations and fitting parameters to 

match the complex dynamic conductivity pattern observed in these 

devices. Along with the proposed model, a procedure is also 

described that can be used to optimize each fitting parameter in 

the model relative to an I-V curve. Therefore, model parameters 

are self-updated based on this procedure when a new cyclic I-V 

sweep is provided for model optimization. This model will 

automatically provide the best possible match to the 

characterization data without any additional optimization from 

the user.  

In this work multiple cyclic I-V characterizations are modeled 

from ten different tantalum oxide devices (on the same wafer). 

Additionally, studies were completed to demonstrate the amount 

of variation present between devices on a wafer, as well as the 

amount of variation present within a single device. Methods for 

modeling this variation are then proposed, resulting in an accurate 

and complete, automated, memristor modeling approach. 

 
Index Terms—memristor, memristive, device model, tantalum 

oxide 

I. INTRODUCTION 

HE memristor was theorized in 1971 [1], and was first 

discovered in physical form in 2008 [2, 3]. The memristor 

devices we consider in this work are non-volatile nanoscale 

two-terminal passive circuit elements that have dynamic 

resistance dependent on the total charge applied between the 

positive and negative terminals. Given its unique device 

properties, the memristor has been proposed for use in many 

 
 

novel memory [4], logic [5,6], and neuromorphic systems. 

Memristor based neuromorphic systems are especially 

interesting, as they involve using memristors to mimic the 

functionality of a synapse in brain tissue [7, 8]. Just as 

electrochemical pulses are applied to a synapse to change 

connection strength, voltage pulses can be applied to a 

memristor to change the resistance. Memristors can be arranged 

in a crossbar [9] to provide high density and high connectivity, 

leading to massively parallel analog computation. Using this 

approach, several memristor based neural systems have been 

proposed including on-line learning [10], and deep network 

implementation [11]. Neuromorphic systems based on 

memristor crossbars have potential to perform at a power 

efficiency of 6 to 8 orders of magnitude greater than that of 

traditional RISC processors [12]. 

 Many of these neuromorphic systems require advanced 

memristor programming techniques that set each memristor to 

a specific resistance value, as opposed to the on/off nature of 

digital memory. Therefore, accurate modeling of memristors is 

essential for understanding the limitations of these devices, 

especially when they are programmed to represent a complex 

matrix of synaptic connections. 

Since the initial fabrication and modeling efforts by HP Labs 

[2], several different memristor device structures and materials 

have been published [7,8,13-16]. The wide variety in memristor 

structure and composition has led to the development of many 

different memristor modeling techniques. Several compact 

models have been proposed that present equations that 

approximate the functionality of published memristor devices. 

Work in [17-21] represent some early developments in 

memristor modeling including window functions for state 

variable bounding and hyperbolic sine functions for device 

curvature modeling. Some physical models have been 

developed based on a study of internal device mechanisms and 

are able to model concepts such as temperature dependence and 

ion migration [22-24]. Models in [25-31] provide studies of 

previous concepts and implement degrees of flexibility within 

memristor models in terms of the type of device that can be 

modeled. Furthermore, a number of subcircuits have been 

proposed that provide the capability of modeling memristors in 

SPICE simulations [32–36]. Some of these models [18, 32, 37-
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39], are based on the memristor equations first proposed by HP 

Labs in [2]. Additionally, advances in modeling have been 

published [40] based on the original memristor equations 

proposed by Prof. Chua [1]. The remainder of the memristor 

models are either closely correlated to device hardware [17, 20, 

34, 41-45], and/or based on more complex physical 

mechanisms [19, 33, 46-50] such as the metal-insulator-metal 

(MIM) tunnel junction [51]. Work presented in [52] provides a 

detailed Verilog-A model of an HfO2 device that accounts for 

several physical mechanisms and device variation. 

Additionally, work in [53] describes a device based on HfO2 

and Al2O3, which shows strong non-linear behavior that is 

explained by Fowler-Nordheim tunneling. 

This review of existing literature shows the many aspects of 

memristor model development have been studied thus far. 

Many well-constructed models have been proposed. Some are 

specific to a single device, some closely match internal physical 

phenomena, and some can be used to fit multiple different 

memristor devices using a model parameter tuning process. 

However, one universal trend that has emerged from this study 

is that memristor characteristics can differ greatly based on 

device construction. Changes in device size and material 

composition lead to wildly different conductivity ranges, 

switching speeds, I-V characteristic shape, and appropriate 

electron transmission models. This puts a great burden on those 

who are developing memristor devices. It seems the user may 

have to implement a significantly different modeling technique 

for each type of memristor device they are developing. Some 

models are more flexible than others, but none provide a 

streamlined automatic optimization process to quickly generate 

a model accurate to a specific set of characterization data. 

The modeling process proposed in this work aims to provide 

this ability. Using only a cyclic voltage sweep to obtain a 

memristor’s pinched hysteresis, the method proposed in this 

work can generate an optimized model. The user no longer has 

to tune fitting parameters individually for each tested device. 

The proposed parameter extraction process is able to 

automatically generate a model for each characterized device 

without any additional human optimization. Since all data 

required can be generated using cyclic voltage I-V 

characterizations, an accurate model that accounts for device 

variation, wafer variation, and switching noise can be 

developed with a characterization system as simple as a 

Keithley 2400 Sourcemeter [54]. 

We demonstrate this process using a set of TaOx device 

characterizations. Furthermore, we show this model can be used 

to determine the amount of variation between devices on a 

wafer, as well as the amount of variation between hysteresis 

loops in a single device. Our studies show how this data can be 

used to add realistic variation to a memristor model, leading to 

accurate representation of dynamic switching. We show that the 

proposed memristor model provides a strong qualitative fit 

when compared to alternative general and versatile voltage 

controlled compact memristor models. Finally, we show the 

proposed modeling methodology is also capable of modeling 

memristors with a non-linear I-V characteristic. 

The novel aspects of this work include: 

1) A step-by-step parameter extraction procedure that can 

generate a complete compact memristor model from only a 

cyclic voltage device characterization. 

2) A model that is capable of self-updating its parameters upon 

the input of new characterization data, which can also be used 

to determine, device variation and switching noise. 

3) A method for using the rate of change in device 

conductivity to determine both voltage threshold position and 

device switching speed. 

4) Finally, a memristor device model that has been shown to 

closely match both linear and non-linear memristor devices. 

In a general sense, we present an optimized memristor 

modeling workflow with respect to an experimenter. We start 

with a model [55] that is known for its extreme flexibility in 

matching a wide range of memristive devices. Then in this 

paper, we combine work in [55] with an automatic parameter 

extraction procedure so that any experimenter can quickly 

generate a memristor model by following this methodology.  

The rest of the paper is organized as follows: Section II 

describes the memristor device that was characterized and 

modeled for this work. Section III describes the set of 

memristor model equations on which this model is based. 

Section IV is a multipart section that describes how each of the 

required model parameters can be extracted from an IV curve. 

Section V displays model simulation results, and Section VI 

discusses how this model can be used to study device 

variability. Section VII compares the proposed model to other 

leading general memristor models and shows how the model 

performs when matching a memristor with a non-linear I-V 

characteristic. Lastly, Section VIII concludes the paper. 

II. MEMRISTOR DEVICE STRUCTURE 

Experiments in this work utilized TaOx/Ta-based ReRAM 

memristive devices, following the basic cell stack illustrated in 

Fig. 1. This ReRAM cell is designed to augment the final metal 

(Metal 5, see Fig. 2) of a 350 nm CMOS process back end of 

line (BEOL). The process flow is summarized in Fig. 2, where 

Steps 1-5 create a TiN-capped W via, on which the 

TiN/TaOx/Ta/TiN bit stack is deposited.  

 
Fig. 1. Sandia TiN/TaOx/Ta/TiN CMOS compatible ReRAM cell. 

 

Chemical Mechanical Polishing (CMP) is necessary to create 

a smooth surface and avoid random protrusions into the 

switching oxide. The full bit stack deposition is illustrated in 

Step 6, consisting of a sequential sputter deposition of 20 nm 

TiN, 10 nm TaOx, 15 nm Ta, and 20 nm TiN without breaking 

vacuum. The TaOx is deposited using a reactive sputtering 

technique described in [56], to attain the desired stoichiometry 

required for switching. The bit stack is etched, and a similar top 
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via set is created as illustrated in Steps 7-9, followed by the 

deposition and definition of the top metal. 

These devices require electroforming, and this was done 

using a voltage ramp that started at zero volts and increased 

linearly until a voltage between +3 and +4V was reached with 

a 20 µA compliance on the TiN electrode adjacent to the Ta 

layer. The SET switching occurs at voltages of +1 to +2V and 

RESET switching occurs at between -1 and -2V, both using 

pulse widths from 10ns to 1us. These devices were 

characterized using read voltages typically 50 to 200 mV. SET 

and RESET resistances vary significantly based on the method 

of forming and switching used (static I-V versus pulsed). 

Depending on these parameters, the device resistance can range 

from 2.7kΩ to >1MΩ. Devices typically have an endurance 

between 100k and 10M cycles, depending on the method of 

switching. 

 

 
Fig. 2. TaOx ReRAM process flow. 

III. MEMRISTOR DEVICE MODEL 

This section provides a detailed presentation of the 

memristor model that was developed to automatically extract 

necessary fitting parameters for shaping current voltage 

characteristics for the device described in Section II. The model 

presented in this paper is based on the work presented in [17, 

55,57-59]. We have shown that this modeling approach is quite 

versatile, and it has been quantitatively matched to several 

different types of memristor devices with an average error of 

about 6% (when comparing the absolute difference in current 

between the model and the physical characterization data). A 

SPICE version of the model has also been presented [55], and 

one of the key benefits of our model is scalability, allowing us 

to simulate over 3000 devices in a circuit in SPICE [57]. In the 

following subsection, some improvements are made to the 

model equations for this study.  

A. Memristor Model Used in This Study 

This memristor model is based on three different 

characteristics observed in memristors: an approximation of 

electron transmission effects in eq. (1), a voltage threshold for 

state variable motion in eq. (2), and a non-linear velocity 

function for oxygen vacancy or dopant drift in eqs. (3) and (4). 

Similar equations were presented previously in [55,58], where 

model concepts are described in much more detail along with 

several verification experiments. The model was modified as 

seen in eq. (1) so that a strict minimum conductivity bound 

could be built into the I-V equation, which was not the case with 

the original generalized memristor model [55] (in that case, 

minimum conductivity was set depending on the minimum 

value for x(t)). 

Eq. (1) describes the I-V characteristic for the model. This 

equation does not commit to a specific electron transmission 

equation since the logical choice may differ for different 

memristor devices. However, two common transmission 

equations used to fit the data are those that relate to either MIM 

or Ohmic conduction [33,51,60]. 

 

))(1))((()())(()( 21 txtVhtxtVhti          (1) 

 

The I-V relationship also depends on the state variable x(t), 

which provides the change in resistance based on the physical 

changes within each device. For example, if the device to be 

modeled has a flat (linear) conduction region in its high 

conductivity state, then h1 will most likely follow an Ohmic 

transmission equation (thus h1=σV(t)). If the low conductivity 

state follows the hyperbolic sine pattern of a metal insulator 

diode, then that pattern can be captured by h2 (thus 

h2=γsinh(δV(t))). The state variable is able to blend these two 

functions during the switching process. In this model, the state 

variable is a value between 0 and 1 that directly impacts 

conductivity.  

Several memristor devices will require two different 

transmission equations depending on device state. In this work 

we refer to this combination of transmission equations as the 

conductivity profile of a device. Using this approach, we can 

duplicate the conductivity profile proposed in [33] by setting h1 

to model Schottky conduction and setting h2 to model MIM 

conduction (thus h1= γsinh(δV(t)) and h2=α(1-exp(-βV(t)))). 

The change in the state variable is based on two different 

functions, namely, g(V(t)) and f(x(t)). The function g(V(t)) in 

eq. (2) is responsible for implementing the threshold voltage 

that must be surpassed to induce a change in the value of the 

state variable. Eq. (2) provides the possibility of having 

different thresholds based on the polarity of the input voltage. 

This is required to provide a better fit to the characterization 

data, since memristors commonly show different threshold 

values depending on whether the input voltage is positive or 

negative. The exponential value subtracted in eq. (2) is a 

constant term that ensures the value of the function g(V(t)) starts 

at 0 once either voltage threshold is surpassed. In addition to the 

positive and negative thresholds (Vp and Vn), the magnitude of 

the exponentials (Ap and An) can be adjusted. The magnitude of 

the exponential represents how quickly the state changes once 

the threshold is surpassed. 
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The second function used to model the state variable f(x(t)), 

can be seen in equations (3) and (4). This function models non-

linear ion motion. In physical memristor devices, it becomes 

harder to change the state of a device when the state variable 

approaches either boundary. This function provides the 

possibility of modeling the motion of the state variable 

differently depending on the polarity of the input voltage. 

When ηV(t)>0, the state variable motion is described by eq. 

(3), otherwise the motion is described by eq. (4). The term η 

was introduced to represent the direction of the motion of the 

state variable relative to the voltage polarity. When η=1, a 

positive voltage above the threshold increases the value of the 

state variable, and when η=–1, a positive voltage results in a 

decrease in the state variable (as in [18,70]).  

The function f(x(t)) divides the state variable motion into two 

different regions depending on the existing state of the device. 

The state variable motion is constant up until the point xp or xn. 

At this point the motion of the state variable is limited by an 

exponential decay function. The parameters (xp and xn) are 

required so that this model is able to match dynamics of several 

types of devices. 
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In equation (5), wp(x,xp) is a windowing function that ensures 

f(x) equals 0 when x(t)=1. In (6), wn(x,xn) keeps x(t) from 

becoming less than 0 when the current flow is reversed. 
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Equation (7) is used to model state variable motion and is based 

on g(V(t)) and f(x(t)), as well as the directionality variable η. 
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B. Discussion 

These equations are chosen as the basis for the proposed 

model because they have been proven to provide a large degree 

of flexibility when modeling a wide range of memristor devices 

[70]. One of the main reasons for this is that the equations 

provide a lot of freedom to model the various non-linear 

phenomena that exist in memristors. One potential source of 

non-linearity is the diode-like I-V curvature observed in 

memristors that are developed using dielectric films 

sandwiched between metal electrodes. In some cases [68], this 

type of non-linearity is a positive result because it significantly 

reduces the amount of crosstalk between devices in a high 

density memristor crossbar. In our proposed model, this 

curvature can be reproduced by selecting a hyperbolic sine 

function for the h1 and/or h2 terms (depending on the specific 

device) in equation (1). Another source of non-linearity 

includes the presence of a write voltage threshold. If this 

voltage is not surpassed, little to no resistance change will occur 

within the memristor. In the proposed model we have the 

flexibility to determine this threshold based on the patterns in 

the physical characterization data. Lastly, a third source of non-

linearity that exists in memristor devices occurs during the state 

change process. It has been observed [18,32] that linear state 

variable motion is not present across the entire resistance range 

of a memristor device. Instead, rate of resistance change 

appears to decay near the minimum and maximum resistance 

limits. In the proposed model, a method is presented to 

determine the point at which resistance change is slowed as a 

boundary value is reached. 

IV. PARAMETER EXTRACTION PROCEDURE 

This section discusses the parameter extraction procedure 

that was developed based on the data collected from the TaOx 

devices. This data includes a set of I-V characteristics that cover 

multiple cyclic I-V sweeps of ten different devices on the wafer. 

Using this procedure, the model can be automatically optimized 

to match any I-V curve in this dataset. To begin the parameter 

extraction process, a single I-V characterization was chosen 

from this data. The I-V curve selected for demonstrating the 

modeling procedure is displayed in Fig. 3.  

 
Fig. 3.  I-V Characteristic chosen for use in developing a parameter extraction 
method. 

 

The plot in Fig. 3 displays the data after the flat-line 

compliance values have been removed, because these data 

produce a non-linearity that is difficult (and not necessary) to 

model. The time-conductivity and time-voltage plots for the 

sweep are displayed in Fig. 4. The conductivity plot is displayed 

so that the data can be viewed in a different arrangement; here 

it is very clear that the conductivity changes when a particular 

voltage magnitude is surpassed in either direction. When a 

negative voltage is applied there is a decrease in conductivity, 
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however the memristor conductivity also increases with voltage 

magnitude due to the presence of the metal-insulator junction. 

The clear sudden conductivity decrease shown at approximately 

3.4 s is assumed to be due to the memristor switching effect. 

A. Finding the Switching Thresholds 

The first step in developing the parameter extraction method 

is to determine the position of the voltage switching thresholds. 

Finding these is a logical first step because these thresholds act 

as dividers between the different modes of memristor operation. 

These modes could be described as: stable off, switching on, 

stable on, and switching off. Once the thresholds are obtained, 

these different regions can be studied individually. 

 
Fig. 4.  Device voltage and conductivity during the cyclic sweep experiment as 

a function of time. 

 

We define the voltage threshold as the point at which the 

greatest change in conductivity occurs in either the positive or 

negative direction. The plots in Fig. 5 display this process. To 

obtain the positive voltage threshold we use the section of I-V 

data that encompasses the rising part of the positive voltage 

sweep. The current corresponding to this section of the voltage 

sweep is shown in Fig. 5 (a) and the change in conductivity Δg 

(where Δg = Δi/ΔV) is displayed in Fig. 5 (c).  

The change in conductivity shows an abrupt spike at 0.91 V, 

and this is decided to be value for the positive voltage threshold, 

Vp. Similarly, when determining the negative voltage switching 

threshold, there is an abrupt spike in Δg at negative 1.425 V (see 

Fig. 5 (d)) at the decreasing edge of the negative voltage sweep. 

Therefore, the voltage thresholds are determined in the 

parameter extraction process by numerically differentiating the 

change in conductivity during switching, and locating the 

maximum and minimum values for Δg. 

B. Determine Equations to Fit Stable On and Stable Off 

States 

To model the stable device states, a decision must be made 

as to how electron transmission should be modeled. The I-V 

characteristic studied tends to show a metal-insulator-metal 

hyperbolic sine curve in its stable off state, and an Ohmic 

conduction during the stable on state. Therefore, the stable on 

and stable off states are modeled using equations (8) and (9). 

 

 
Fig. 5.  Plots displaying the how the memristor threshold voltages are 

determined showing (a) the current corresponding to the rising part of the 

positive voltage sweep, (b) the current corresponding to the falling edge of the 
negative voltage sweep, (c) the change in conductivity for the voltage region 

covered in (a), and (d) the change in conductivity for the voltage region covered 

in (b). 

 

𝑖𝑜𝑛 = 𝑔𝑚𝑎𝑥𝑣(𝑡)                     (8) 

 

𝑖𝑜𝑓𝑓 = 𝑔𝑚𝑖𝑛sinh⁡(𝑏𝑣(𝑡))                 (9) 

 

 
Fig. 6.  I-V characteristic with the functions displayed that are able to fit the 
data collected for the stable on and stable off states. 

 

To extract the parameters gmax, gmin, and b, a non-linear least-

squares regression algorithm is used. In the case of the stable 

on state, data is used that is located between the falling edge of 

the positive sweep and the part of the falling edge during the 

negative sweep that is greater than the negative switching 

threshold. For the stable off state, the data used is located 

between the rising part of the negative sweep as well as the 

rising part of the positive sweep that is less than the positive 

voltage threshold. The experimental data, as well as the curves 

optimized for each case, are displayed in Fig. 6. In this case the 

fitting parameters were determined as follows: gmax = 2.021 mS, 

gmin = 7.490 µS, and b = 2.62. 

C. Modeling State Variable Dynamics 

At this point the voltage thresholds have been obtained and 

the stable conductivity states have been modeled as a function 

of voltage. Now the dynamic resistance switching components 
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will be added to the model. In this model the dynamic resistance 

will be controlled using a state variable that holds any numeric 

value between 0 and 1. When the state is 0, the model will be in 

its minimum conductivity state, and when the state variable is 

1, the model will be in its maximum conductivity state. The full 

I-V relationship for this device can be described by equation 

(10).  

 

))(1))((sinh()()()( minmax txtbvgtxtvgti      (10) 

 

Equation (10) shows that the conductivity of the modeled 

device will be completely Ohmic when x = 1, and it will follow 

the pattern of a metal-insulator junction when x = 0. When the 

state variable is something other than 0 or 1, the device current 

will be derived due to a combination of the MIM and Ohmic 

behaviors. 

Now that the state variable is included in the I-V 

characteristic, the parameters in the equations used to control 

the state variable dynamics must be determined. These include 

the parameters Ap, An, xp, and xn displayed in equations (2) 

through (4) (the thresholds in eq. (2) Vp and Vn have already 

been determined). 

D. Determine Ap and An 

The function g(v(t)) determines whether or not the state 

variable changes depending on the magnitude of the applied 

voltage. The threshold voltage magnitudes have already been 

determined for both the positive and negative regimes. 

However, the speed at which the state variable changes once the 

threshold has been exceeded has not yet been determined. To 

determine Ap and An, the change in conductivity over time in 

this I-V characterization was used. This is plotted in Fig. 7 

along with the conductivity-time plot for convenience. The 

point of maximum conductivity change in the positive regime 

(gpk,p) is about 14 mS/s and the maximum change in the negative 

realm (gpk,n) is about 4 mS/s. These values are easily extracted 

because these are just the conductivity values corresponding to 

the voltages that were already selected as the positive and 

negative threshold values. 

Before the values for Ap and An can be determined, these 

changes in conductivity values must be converted into 

quantities that relate to a change in state variable. This is done 

using equations (11) and (12). In these equations, the points of 

maximum conductivity change (gpk,p and gpk,n) correspond to 

the areas where the most active device switching occurs. In 

other words, gpk,p and gpk,n have maximum impact on memristor 

dynamics when the model is operating according to linear state 

variable motion. This occurs after the write voltage threshold is 

surpassed and before any state variable boundaries have been 

reached. However, Ap and An must control the rate of change of 

the state variable in the model and not the direct rate of change 

of conductivity. Therefore gpk,p and gpk,n must be divided by the 

conductivity range available in a given memristor device to 

obtain a normalized rate of change that corresponds to a state 

variable domain of [0,1]. Using equations (11) and (12), the 

values for Ap and An in this device were determined to be 72.5 

and 21 respectively. 

minmax

,

gg

g
Ap

ppk




 

(11) 

minmax

,

gg

g
An

npk




 

(12) 

 

 
Fig. 7.  Plots displaying the conductivity and the change in conductivity in this 
device over time. 

E. Determine xp and xn 

The last parameters that must be computed to complete the 

model are the boundaries for linear state variable motion, xp and 

xn. In memristor devices, resistance change typically becomes 

more difficult upon approaching either the minimum or 

maximum conductivity state [8,13]. The conductivity plot in 

Fig. 8 shows the points where there is an abrupt change in the 

speed of state variable change in this sample device, gslow,p and 

gslow,n. To determine the precise values of these points relative 

to state variable position, equations (13) and (14) are used. 

These equations use the conductivity data point collected from 

the I-V characterization that falls directly after the point of 

greatest change in conductivity in either direction. The amount 

of conductivity change at this point relative to the total amount 

of conductivity change is used to obtain the value for state 

variable change. 

 

 
Fig. 8.  Plot of device conductivity over time that shows the points where the 

speed of state variable motion is reduced. 

 

minmax

min,

gg

gg
xp

pslow






 

(13) 

minmax

min,

gg

gg
xn

nslow






 

(14) 

gpk,p

gpk,n

gslow,p

gslow,n
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V. DEVICE MODEL SIMULATION RESULTS 

Now that the general parameter extraction approach has been 

defined, different experiments can be carried out and devices 

can be modeled and simulated without any further human 

interaction during parameter fitting. When plugging all of the 

extracted parameters into the model equations, it produces the 

I-V curve displayed in Fig. 9. The stable on and stable off states 

are matched very well. Additionally, the overall shape of the 

curve is matched well. At approximately 1 V, resistance change 

saturates to a stable Ohmic relationship in both the device 

characterization and the model. However, in the negative 

regime, the modeled switching behavior is slightly delayed 

compared to the characterization data. This could be due to the 

lack of dynamic data available from a single cyclic sweep. In 

other words, it is difficult in some cases for a cyclic 

voltammetry setup to accurately track high speed memristor 

switching due to limitations in sample rate. One option to fix 

this could be to add a second characterization experiment where 

resistance change is induced from a single high speed, high 

resolution voltage pulse to determine more accurate switching 

dynamics. However, this is less desirable because it 

significantly increases the time dedicated to device 

characterization in the in an experimenter’s work flow. 

Furthermore, the equipment required to perform pulse 

characterizations as opposed to cyclic sweeps is significantly 

more expensive and specialized. 

Alternatively, we chose to remedy this inaccuracy by 

producing a single model from the combination of three cyclic 

characterizations. Using three sweeps instead of one, we are 

able to collect a larger amount of device data without using 

more complex experiments or more expensive equipment. This 

allows a greater number of experimenters to use our modeling 

method. By utilizing multiple switching instances, we are able 

generate a model that captures the average effect of these 

characterizations. As a result, Fig. 10 shows an adjusted model 

where average switching speed falls within bounds of these 

characterization data for both positive and negative switching. 

 
Fig. 9. Complete I-V characteristic generated using the model as well as the 

experimental characterization data.  
 

As shown in Fig. 10, repetitive cyclic sweeps of the same 

memristor device produce slight variations in the resulting I-V 

characteristic. The proposed parameter extraction procedure 

was applied to each of these three sweeps (the first being the 

result in Fig. 9) and the resulting parameters are displayed in 

Table I. The average of all the determined parameters from each 

of the three sweeps was used to develop a single model for this 

device (also displayed in Fig. 10). In this case the proposed 

model is capable of producing the average shape of several 

device characterizations and produces a much stronger overall 

fit. 
 

 
Fig. 10. Plots displaying multiple sweeps from a TaOx device along with the 

model that was generated based on all sweeps of the input current-voltage data. 
 

TABLE I 

FITTING PARAMETERS USED TO MATCH EACH OF THE THREE CYCLIC SWEEPS 

APPLIED TO A TARGET MEMRISTOR DEVICE AS WELL AS THE AVERAGE USED TO 

PLOT THE SIMULATION RESULT IN FIG. 10. 

Param. Sweep 1 Sweep 2 Sweep 3 Avg. 

Vth,p 0.910 0.980 0.770 0.887 

Vth,n -1.425 -1.245 -1.155 -1.275 

gmin 7.490×10-6 1.035×10-5 1.134×10-5 9.726×10-6 

gmax 2.021×10-4 2.040×10-4 2.164×10-4 2.075×10-4 

Ap 72.475 120.580 242.643 145.233 

An 21.016 10.302 111.628 47.649 

xp 0.899 0.856 0.590 0.782 

xn 0.676 0.744 0.760 0.726 

b 2.62 2.502 2.470 2.531 

 

Furthermore, this parameter extraction procedure can not 

only be used to determine the optimal curve for multiple 

sweeps, it can also be used to determine the modeling curves of 

different memristor devices. The plots in Fig. 11 show how this 

model is able to automatically adapt based on input data 

obtained from four different TaOx devices on a wafer. In the 

case of Fig. 11, each model curve was generated according to 

the procedure outlined in Section IV. Based on the input data 

loaded into the parameter extraction script, the output model is 

able to provide a match to characterization data in terms of 

voltage threshold, stable conductivity states, switching speed, 

and overall curvature. 
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Fig. 11.  Characterization data and modeling results for four different devices 
where each plot (a) through (d) is from a different memristor device. 

VI. CAPTURING DEVICE VARIABILITY 

Virtually all memristor devices exhibit some degree of 

stochasticity when changing conductivity states [61,62]. Fig. 10 

shows that memristor I-V characteristics can vary between 

consecutive cyclic sweeps, and Fig. 11 shows that it is highly 

unlikely that two devices on the same wafer will perform 

identically. Thus, it is unlikely that a memristor device can be 

reprogrammed precisely to its previous state without some error 

bound. Therefore, techniques to handle noise during memristor 

switching were developed using this memristor model. 

Therefore, when simulating complex multistate memristor 

programming, the proposed model will provide a closer match 

to what may be a more realistically attainable programming 

precision. 

When studying the experimental characterizations, the data 

commonly show variation in both the threshold voltage for 

switching and the path and speed of resistance change. 

Therefore, additive Gaussian noise was applied to the 

parameters Ap, An, Vth,p, and Vth,n. The mean and standard 

deviation of the Gaussian noise were collected based on the 

parameter sets in Table II. In the case of Ap and An, the additive 

noise applied to each parameter is updated upon each 

simulation time step to achieve the non-uniform switching 

effect shown in Fig. 12. This is meant to mimic the non-uniform 

ionic motion. As for Vth,p, and Vth,n, the noise added to each of 

these parameters is updated in the model once every time a 

voltage sweep is applied. This is to mimic the low likelihood 

that repetitive switching occurs at precisely the same voltage. 

 
TABLE II 

SETS OF MODELING PARAMETERS USED TO DETERMINE THE MEAN AND 

STANDARD DEVIATION OF SWITCHING NOISE IN THE PROPOSED MEMRISTOR 

MODEL. 

Param. 
Sweep 

1 

Sweep 

2 

Sweep 

3 
Mean 

Std. 

Dev. 

Vth,p 0.880 0.800 0.870 0.850 0.036 

Vth,n -1.200 -1.215 -1.275 -1.230 0.032 

Ap 125.35 16.293 16.361 52.668 51.395 

An 59.323 8.893 8.462 22.559 23.875 

Fig. 12 (a) shows the experimental data collected from a 

single device on the wafer, and Fig. 12 (b) displays the model 

result. This modeling technique shows a switching region that 

is much less predictable when programming, and much more 

realistic. 
 

 
           (a)                                   

 
                       (b) 
Fig. 12.  Comparison between (a) experimental data and (b) model when 
additive Gaussian noise is applied to the model during switching. 

VII. MEMRISTOR MODEL CASE STUDY: MODEL COMPARISON 

AND FLEXIBILITY ANALYSIS 

This section discusses two simulation experiments. The first 

presents a set of results that show how three alternative 

memristor models known for their versatility are able to match 

the experimental data displayed in Fig. 10. The second study 

shows how the model presented in this work is able to match 

the characterization of a memristor that exhibits more non-

linearity compared to the device that was used to develop the 

presented model. 

A. Memristor Model Comparison 

To complete this memristor model comparison, three 

different voltage controlled models that are known to be 

applicable to a large number of devices were each set to fit the 

experimental data in Fig. 10. The first result displayed in Fig. 

13 was generated using the generalized memristor model [55] 

on which this work was based. This model fits the data fairly 

well, but it has trouble modeling different types of curvature 

simultaneously, as its current equation is solely based on a 

hyperbolic sine function. Fig. 13 shows that it is hard to realize 

the desired curvature in the off state without introducing too 

much curvature in the on state. 

(a) (b)

(c) (d)
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Fig. 14 presents a result where the non-linear drift model [2] 

with the Biolek window function [32] is set to match the 

experimental data of the device utilized in this work. This was 

one of the earliest generally applicable compact memristor 

models, and it can be used to provide a very close match to the 

theoretical memristor as it was originally proposed [1]. It can 

also be set to match nearly any device. However, it has some 

shortcomings when matching the switching dynamics found in 

physical thinfilm devices. For example, this model operates 

based on simple Ohmic transmission, and no threshold for 

resistive programming is present. This leads to the significant 

differences observed between model and the experimental data 

in Fig. 14. 

Voltage (V)

-2 -1.5 -1 -0.5 0 0.5 1 1.5

 
Fig. 13. Result when using the generalized memristor model [55] to match the 

presented tantalum oxide device. Model parameters are set as follows: Vp = 

0.85, Vn = 1.15, Ap = 1500, An = 400, xp = 0.48, xn = 0.13, αp = 10, αn = 18, a1 

= 0.00014, a2 = 0.00014, b = 1.2, x0 = 0.2, η = 1. 

 

Voltage (V)

-2 -1.5 -1 -0.5 0 0.5 1 1.5

 
Fig. 14. Result when using the non-linear drift memristor model [2,32] to match 
the presented tantalum oxide device. Model parameters are set as follows: RON 

= 3500, ROFF = 27k, D = 25×10-9, µV=10-7, x0 = 0.1, p = 1.  

 

Lastly, Fig. 15 presents the simulation result when the 

VTEAM model [28] is set to match the experimental data. In 

this case, the experimental data was flipped across the 

horizontal and vertical axis so that the VTEAM model could be 

used without modification [28]. In this case, set switching is 

matched very well, but some discrepancies can be observed 

during the reset switching process. 

On the other hand, the model presented in the previous 

sections of this paper is capable of handling multiple electron 

transmission phenomena and switching dynamics in a way that 

results in a closer match to experimental data. Furthermore, our 

presented model also provides a methodology for optimally 

gathering all fitting parameters with minimal input form the 

user.  

Voltage (V)

-2 -1.5 -1 -0.5 0 0.5 1 1.5

 
Fig. 15. Result when using the VTEAM memristor model [28] to match the 
presented tantalum oxide device. Model parameters are set as follows: von = -

0.6, voff = 0.78, RON = 4800, ROFF = 700k, kon = -0.1, koff = 10-8, αon = 18, αoff = 

2, won = 0, woff = 25×10-9, winit = 0, with an exponential I-V relationship selected. 

B. Memristor Model Flexibility 

In this study, we break away from the tantalum oxide 

memristors that have been analyzed heavily in this work, and 

we apply this model to an alternative device published in [14]. 

This is a titanium oxide device that possesses a significantly 

more non-linear I-V characteristic. First, a dataset for this 

device characterization had to be generated since raw 

characterization data is not publically available. Since the 

proposed model requires that fitting parameters be generated 

based on time domain data, the data displayed in [14] had to be 

sampled at a constant rate (based on the assumption that the 

original data was also collected at a constant rate). Therefore, 

this original plot was sampled at 300 dots per gridline, and the 

current was sampled at 30 pixel (or 0.1 V) intervals. Thus, 57 

uniformly spaced data points were collected to produce the 

experimental data points displayed in Fig. 16. This data 

collection procedure was noted because it allows users of this 

model to fit virtually any publicly available I-V characteristic, 

as long as data is carefully extracted. 

Recall from eq. (1) that the presented model determines 

device current flow as a state variable dependent ratio of 

h1(V(t)) and h2(V(t)). Furthermore, the selection of h1(V(t)) and 

h2(V(t)) is based on the conductivity profile of the device in 

question. For the tantalum oxide device used to develop this 

model, the best fit was obtained when h1(V(t)) was set to model 

an Ohmic relationship and h2(V(t)) was set to model a MIM 

relationship. However, the device in Fig. 16 has a more non-

linear characteristic with heavy curvature displayed in both the 

minimum and maximum conductance states. Therefore, a MIM 

(hyperbolic sine) transmission equation was used for h1(V(t)) 

and h2(V(t)) as shown eqs. (15) and (16). Furthermore, the 
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experimental data in Fig. 16 shows significant asymmetry in the 

minimum conductivity of the device. Therefore, the equation 

chosen to represent current flow at the minimum conductivity 

state is polarity dependent (see eq. (16)). Other than this 

expected equation substitution, all other model equations 

remained the same and the modeling procedure was able to 

generate a close match to the experimental data. Note that the 

gap in the pinched hysteresis loop in the upper right is due to 

the current compliance limit on the characterization system. 

The model has a slight mismatch during the reset switching 

process. In the future, we plan to explore how this may be 

corrected by using data from multiple different types of 

characterization experiments to generate a model. 

 

ℎ1(𝑉(𝑡)) = 𝑔𝑚𝑎𝑥 sinh(𝑏𝑚𝑎𝑥𝑉(𝑡))          (15) 

 

ℎ2(𝑉(𝑡)) = {
𝑔𝑚𝑖𝑛,𝑝 sinh(𝑏𝑚𝑖𝑛,𝑝𝑉(𝑡)) ,⁡⁡⁡⁡𝑉(𝑡) ≥ 0

𝑔𝑚𝑖𝑛,𝑛 sinh(𝑏𝑚𝑖𝑛,𝑛𝑉(𝑡)) ,⁡⁡⁡⁡𝑉(𝑡) < 0
     (16) 

Voltage (V)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 
Fig. 16. Result when using the model presented in this work to match the 
characterization data for the TiO2-x device presented in [14]. Model parameters 

are as follows: Vth,p = 1.4, Vth,n = -0.5, gmin,p = 1.23×10-9, gmin,n = 2.36×10-6, gmax 

= 1.12×10-5, Ap = 907.1, An = 120.2,  xp = 0.1547, xn = 0.7124, bmax = 5.42, bmin,p 
= 8.2, bmin,n = 1.7. 

VIII. CONCLUSION 

This work presents a memristor device model and an 

automated procedure for matching the model to 

characterization data with minimal human interaction. Using 

this model, groups of fitting parameters can be obtained from 

several device characterizations very quickly, leading to a faster 

accurate modeling technique. Implementing a model based on 

several device characterizations allows for realistic device 

variation to be implemented, and it also allows for a more 

accurate model fit.  

We plan to investigate several different aspects of this work 

in the future. First, we plan to test this parameter extraction 

technique on different memristor devices to further test the 

generalizability of this procedure. Also, we plan on using this 

model within neural system [10,11,63] simulations to produce 

more accurate studies of neuromorphic memristor hardware. If 

we simulate a memristor crossbar that accounts for inter and 

intra device variation, we can study the limits of these devices 

as trainable memory elements within a neuromorphic core or 

function block. With previous techniques, generating an 

individual model for each device would be tedious and time 

consuming. Alternatively, the proposed model makes it 

possible to simulate each device in a crossbar quickly, 

conveniently, and accurately. 
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