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Memristor Model Optimization Based on
Parameter Extraction from Device
Characterization Data
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Abstract—This work presents a memristive device model
capable of accurately matching a wide range of characterization
data collected from a tantalum oxide memristor. Memristor
models commonly use a set of equations and fitting parameters to
match the complex dynamic conductivity pattern observed in these
devices. Along with the proposed model, a procedure is also
described that can be used to optimize each fitting parameter in
the model relative to an I-V curve. Therefore, model parameters
are self-updated based on this procedure when a new cyclic I-V
sweep is provided for model optimization. This model will
automatically provide the best possible match to the
characterization data without any additional optimization from
the user.

In this work multiple cyclic I-V characterizations are modeled
from ten different tantalum oxide devices (on the same wafer).
Additionally, studies were completed to demonstrate the amount
of variation present between devices on a wafer, as well as the
amount of variation present within a single device. Methods for
modeling this variation are then proposed, resulting in an accurate
and complete, automated, memristor modeling approach.

Index Terms—memristor, memristive, device model, tantalum
oxide

I. INTRODUCTION

HE memristor was theorized in 1971 [1], and was first

discovered in physical form in 2008 [2, 3]. The memristor
devices we consider in this work are non-volatile nanoscale
two-terminal passive circuit elements that have dynamic
resistance dependent on the total charge applied between the
positive and negative terminals. Given its unique device
properties, the memristor has been proposed for use in many
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novel memory [4], logic [5,6], and neuromorphic systems.
Memristor based neuromorphic systems are especially
interesting, as they involve using memristors to mimic the
functionality of a synapse in brain tissue [7, 8]. Just as
electrochemical pulses are applied to a synapse to change
connection strength, voltage pulses can be applied to a
memristor to change the resistance. Memristors can be arranged
in a crossbar [9] to provide high density and high connectivity,
leading to massively parallel analog computation. Using this
approach, several memristor based neural systems have been
proposed including on-line learning [10], and deep network
implementation [11]. Neuromorphic systems based on
memristor crossbars have potential to perform at a power
efficiency of 6 to 8 orders of magnitude greater than that of
traditional RISC processors [12].

Many of these neuromorphic systems require advanced
memristor programming techniques that set each memristor to
a specific resistance value, as opposed to the on/off nature of
digital memory. Therefore, accurate modeling of memristors is
essential for understanding the limitations of these devices,
especially when they are programmed to represent a complex
matrix of synaptic connections.

Since the initial fabrication and modeling efforts by HP Labs
[2], several different memristor device structures and materials
have been published [7,8,13-16]. The wide variety in memristor
structure and composition has led to the development of many
different memristor modeling techniques. Several compact
models have been proposed that present equations that
approximate the functionality of published memristor devices.
Work in [17-21] represent some early developments in
memristor modeling including window functions for state
variable bounding and hyperbolic sine functions for device
curvature modeling. Some physical models have been
developed based on a study of internal device mechanisms and
are able to model concepts such as temperature dependence and
ion migration [22-24]. Models in [25-31] provide studies of
previous concepts and implement degrees of flexibility within
memristor models in terms of the type of device that can be
modeled. Furthermore, a number of subcircuits have been
proposed that provide the capability of modeling memristors in
SPICE simulations [32-36]. Some of these models [18, 32, 37-
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39], are based on the memristor equations first proposed by HP
Labs in [2]. Additionally, advances in modeling have been
published [40] based on the original memristor equations
proposed by Prof. Chua [1]. The remainder of the memristor
models are either closely correlated to device hardware [17, 20,
34, 41-45], and/or based on more complex physical
mechanisms [19, 33, 46-50] such as the metal-insulator-metal
(MIM) tunnel junction [51]. Work presented in [52] provides a
detailed Verilog-A model of an HfO, device that accounts for
several physical mechanisms and device wvariation.
Additionally, work in [53] describes a device based on HfO»
and AlOs, which shows strong non-linear behavior that is
explained by Fowler-Nordheim tunneling.

This review of existing literature shows the many aspects of
memristor model development have been studied thus far.
Many well-constructed models have been proposed. Some are
specific to a single device, some closely match internal physical
phenomena, and some can be used to fit multiple different
memristor devices using a model parameter tuning process.
However, one universal trend that has emerged from this study
is that memristor characteristics can differ greatly based on
device construction. Changes in device size and material
composition lead to wildly different conductivity ranges,
switching speeds, [-V characteristic shape, and appropriate
electron transmission models. This puts a great burden on those
who are developing memristor devices. It seems the user may
have to implement a significantly different modeling technique
for each type of memristor device they are developing. Some
models are more flexible than others, but none provide a
streamlined automatic optimization process to quickly generate
a model accurate to a specific set of characterization data.

The modeling process proposed in this work aims to provide
this ability. Using only a cyclic voltage sweep to obtain a
memristor’s pinched hysteresis, the method proposed in this
work can generate an optimized model. The user no longer has
to tune fitting parameters individually for each tested device.
The proposed parameter extraction process is able to
automatically generate a model for each characterized device
without any additional human optimization. Since all data
required can be generated using cyclic voltage I-V
characterizations, an accurate model that accounts for device
variation, wafer variation, and switching noise can be
developed with a characterization system as simple as a
Keithley 2400 Sourcemeter [54].

We demonstrate this process using a set of TaOx device
characterizations. Furthermore, we show this model can be used
to determine the amount of variation between devices on a
wafer, as well as the amount of variation between hysteresis
loops in a single device. Our studies show how this data can be
used to add realistic variation to a memristor model, leading to
accurate representation of dynamic switching. We show that the
proposed memristor model provides a strong qualitative fit
when compared to alternative general and versatile voltage
controlled compact memristor models. Finally, we show the
proposed modeling methodology is also capable of modeling
memristors with a non-linear I-V characteristic.

The novel aspects of this work include:

1) A step-by-step parameter extraction procedure that can
generate a complete compact memristor model from only a
cyclic voltage device characterization.

2) A model that is capable of self-updating its parameters upon
the input of new characterization data, which can also be used
to determine, device variation and switching noise.

3) A method for using the rate of change in device
conductivity to determine both voltage threshold position and
device switching speed.

4) Finally, a memristor device model that has been shown to
closely match both linear and non-linear memristor devices.

In a general sense, we present an optimized memristor
modeling workflow with respect to an experimenter. We start
with a model [55] that is known for its extreme flexibility in
matching a wide range of memristive devices. Then in this
paper, we combine work in [55] with an automatic parameter
extraction procedure so that any experimenter can quickly
generate a memristor model by following this methodology.

The rest of the paper is organized as follows: Section II
describes the memristor device that was characterized and
modeled for this work. Section III describes the set of
memristor model equations on which this model is based.
Section IV is a multipart section that describes how each of the
required model parameters can be extracted from an IV curve.
Section V displays model simulation results, and Section VI
discusses how this model can be used to study device
variability. Section VII compares the proposed model to other
leading general memristor models and shows how the model
performs when matching a memristor with a non-linear I-V
characteristic. Lastly, Section VIII concludes the paper.

II. MEMRISTOR DEVICE STRUCTURE

Experiments in this work utilized TaOx/Ta-based ReRAM
memristive devices, following the basic cell stack illustrated in
Fig. 1. This ReRAM cell is designed to augment the final metal
(Metal 5, see Fig. 2) of a 350 nm CMOS process back end of
line (BEOL). The process flow is summarized in Fig. 2, where
Steps 1-5 create a TiN-capped W via, on which the
TiN/TaOx/Ta/TiN bit stack is deposited.

Fig. 1. Sandia TiN/TaOx/Ta/TiN CMOS compatible ReRAM cell.

Chemical Mechanical Polishing (CMP) is necessary to create
a smooth surface and avoid random protrusions into the
switching oxide. The full bit stack deposition is illustrated in
Step 6, consisting of a sequential sputter deposition of 20 nm
TiN, 10 nm TaOy, 15 nm Ta, and 20 nm TiN without breaking
vacuum. The TaOy is deposited using a reactive sputtering
technique described in [56], to attain the desired stoichiometry
required for switching. The bit stack is etched, and a similar top
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via set is created as illustrated in Steps 7-9, followed by the
deposition and definition of the top metal.

These devices require electroforming, and this was done
using a voltage ramp that started at zero volts and increased
linearly until a voltage between +3 and +4V was reached with
a 20 pA compliance on the TiN electrode adjacent to the Ta
layer. The SET switching occurs at voltages of +1 to +2V and
RESET switching occurs at between -1 and -2V, both using
pulse widths from 10ns to lus. These devices were
characterized using read voltages typically 50 to 200 mV. SET
and RESET resistances vary significantly based on the method
of forming and switching used (static I-V versus pulsed).
Depending on these parameters, the device resistance can range
from 2.7kQ to >1MQ. Devices typically have an endurance
between 100k and 10M cycles, depending on the method of
switching.

| _Ta(i5nm) |
[ Ta0. [10nm)] |
| TiN(20nm) |

CMOS Metal 5
ILD

ILD w w
CMOS Metal 5 CMOS Metal 5
ILD ILD

CMOS Metal 5 CMOS Metal 5 CMOS Metal 5
ILD ILD

Fig. 2. TaOx ReRAM process flow.

III. MEMRISTOR DEVICE MODEL

This section provides a detailed presentation of the
memristor model that was developed to automatically extract
necessary fitting parameters for shaping current voltage
characteristics for the device described in Section I1. The model
presented in this paper is based on the work presented in [17,
55,57-59]. We have shown that this modeling approach is quite
versatile, and it has been quantitatively matched to several
different types of memristor devices with an average error of
about 6% (when comparing the absolute difference in current
between the model and the physical characterization data). A
SPICE version of the model has also been presented [55], and
one of the key benefits of our model is scalability, allowing us
to simulate over 3000 devices in a circuit in SPICE [57]. In the
following subsection, some improvements are made to the
model equations for this study.

A. Memristor Model Used in This Study

This memristor model is based on three different
characteristics observed in memristors: an approximation of
electron transmission effects in eq. (1), a voltage threshold for
state variable motion in eq. (2), and a non-linear velocity
function for oxygen vacancy or dopant drift in egs. (3) and (4).
Similar equations were presented previously in [55,58], where

model concepts are described in much more detail along with
several verification experiments. The model was modified as
seen in eq. (1) so that a strict minimum conductivity bound
could be built into the I-V equation, which was not the case with
the original generalized memristor model [55] (in that case,
minimum conductivity was set depending on the minimum
value for x(7)).

Eq. (1) describes the I-V characteristic for the model. This
equation does not commit to a specific electron transmission
equation since the logical choice may differ for different
memristor devices. However, two common transmission
equations used to fit the data are those that relate to either MIM
or Ohmic conduction [33,51,60].

i(#) =l (V()x(@) + b, (V ()1 = x(2)) (M

The I-V relationship also depends on the state variable x(z),
which provides the change in resistance based on the physical
changes within each device. For example, if the device to be
modeled has a flat (linear) conduction region in its high
conductivity state, then A; will most likely follow an Ohmic
transmission equation (thus 41=c¥(f)). If the low conductivity
state follows the hyperbolic sine pattern of a metal insulator
diode, then that pattern can be captured by #h» (thus
hy=ysinh(0¥(f))). The state variable is able to blend these two
functions during the switching process. In this model, the state
variable is a value between O and 1 that directly impacts
conductivity.

Several memristor devices will require two different
transmission equations depending on device state. In this work
we refer to this combination of transmission equations as the
conductivity profile of a device. Using this approach, we can
duplicate the conductivity profile proposed in [33] by setting 4,
to model Schottky conduction and setting 4, to model MIM
conduction (thus /= ysinh(0¥(¢)) and ho=a(1-exp(-fV(£)))).

The change in the state variable is based on two different
functions, namely, g(¥(#)) and f(x(f)). The function g(¥(¢)) in
eq. (2) is responsible for implementing the threshold voltage
that must be surpassed to induce a change in the value of the
state variable. Eq. (2) provides the possibility of having
different thresholds based on the polarity of the input voltage.
This is required to provide a better fit to the characterization
data, since memristors commonly show different threshold
values depending on whether the input voltage is positive or
negative. The exponential value subtracted in eq. (2) is a
constant term that ensures the value of the function g(¥(¢)) starts
at 0 once either voltage threshold is surpassed. In addition to the
positive and negative thresholds (7}, and V), the magnitude of
the exponentials (4, and 4,) can be adjusted. The magnitude of
the exponential represents how quickly the state changes once
the threshold is surpassed.

A4, =, V>V,
gV @)=4-4,""=e", Woy<-v, )
0, V<V <V,
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The second function used to model the state variable f(x(z)),
can be seen in equations (3) and (4). This function models non-
linear ion motion. In physical memristor devices, it becomes
harder to change the state of a device when the state variable
approaches either boundary. This function provides the
possibility of modeling the motion of the state variable
differently depending on the polarity of the input voltage.

When nV(#)>0, the state variable motion is described by eq.
(3), otherwise the motion is described by eq. (4). The term #
was introduced to represent the direction of the motion of the
state variable relative to the voltage polarity. When =1, a
positive voltage above the threshold increases the value of the
state variable, and when #=—1, a positive voltage results in a
decrease in the state variable (as in [18,70]).

The function f{x(2)) divides the state variable motion into two
different regions depending on the existing state of the device.
The state variable motion is constant up until the point x, or x;.
At this point the motion of the state variable is limited by an
exponential decay function. The parameters (x, and x,) are
required so that this model is able to match dynamics of several
types of devices.

—(x—x,)
e 7w X, X ), X 2 XP
f(x) = { p( P) (3)
1’ x < )Cp
ey (xx ), x < l-x,
f(x)= o) @
1’ x>1- Xn

In equation (5), w,(x,x,) is a windowing function that ensures
f(x) equals 0 when x(?)=1. In (6), wa(x,x,) keeps x(¢) from
becoming less than 0 when the current flow is reversed.

X —x
w,(x,x,)=—+—+1 (5)
l—xp
X
w,(x,x, :—l—x 6)

Equation (7) is used to model state variable motion and is based
on g(V(t)) and f(x(t)), as well as the directionality variable 7.

& eV () x(0) ™
dt
B. Discussion

These equations are chosen as the basis for the proposed
model because they have been proven to provide a large degree
of flexibility when modeling a wide range of memristor devices
[70]. One of the main reasons for this is that the equations
provide a lot of freedom to model the various non-linear
phenomena that exist in memristors. One potential source of
non-linearity is the diode-like I-V curvature observed in
memristors that are developed using dielectric films
sandwiched between metal electrodes. In some cases [68], this
type of non-linearity is a positive result because it significantly

reduces the amount of crosstalk between devices in a high
density memristor crossbar. In our proposed model, this
curvature can be reproduced by selecting a hyperbolic sine
function for the /; and/or &, terms (depending on the specific
device) in equation (1). Another source of non-linearity
includes the presence of a write voltage threshold. If this
voltage is not surpassed, little to no resistance change will occur
within the memristor. In the proposed model we have the
flexibility to determine this threshold based on the patterns in
the physical characterization data. Lastly, a third source of non-
linearity that exists in memristor devices occurs during the state
change process. It has been observed [18,32] that linear state
variable motion is not present across the entire resistance range
of a memristor device. Instead, rate of resistance change
appears to decay near the minimum and maximum resistance
limits. In the proposed model, a method is presented to
determine the point at which resistance change is slowed as a
boundary value is reached.

IV. PARAMETER EXTRACTION PROCEDURE

This section discusses the parameter extraction procedure
that was developed based on the data collected from the TaOy
devices. This data includes a set of I-V characteristics that cover
multiple cyclic I-V sweeps of ten different devices on the wafer.
Using this procedure, the model can be automatically optimized
to match any I-V curve in this dataset. To begin the parameter
extraction process, a single I-V characterization was chosen
from this data. The I-V curve selected for demonstrating the
modeling procedure is displayed in Fig. 3.

0.4~ : : :
0.2 -
c
o
5 0.2 1
O
-04r- g
-0.6° ; : ;
-2 -1 0 1 2
Voltage (V)

Fig. 3. I-V Characteristic chosen for use in developing a parameter extraction
method.

The plot in Fig. 3 displays the data after the flat-line
compliance values have been removed, because these data
produce a non-linearity that is difficult (and not necessary) to
model. The time-conductivity and time-voltage plots for the
sweep are displayed in Fig. 4. The conductivity plot is displayed
so that the data can be viewed in a different arrangement; here
it is very clear that the conductivity changes when a particular
voltage magnitude is surpassed in either direction. When a
negative voltage is applied there is a decrease in conductivity,
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however the memristor conductivity also increases with voltage
magnitude due to the presence of the metal-insulator junction.
The clear sudden conductivity decrease shown at approximately
3.4 s is assumed to be due to the memristor switching effect.

A. Finding the Switching Thresholds

The first step in developing the parameter extraction method
is to determine the position of the voltage switching thresholds.
Finding these is a logical first step because these thresholds act
as dividers between the different modes of memristor operation.
These modes could be described as: stable off, switching on,
stable on, and switching off. Once the thresholds are obtained,
these different regions can be studied individually.
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Fig. 5. Plots displaying the how the memristor threshold voltages are
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Fig. 4. Device voltage and conductivity during the cyclic sweep experiment as
a function of time.

We define the voltage threshold as the point at which the
greatest change in conductivity occurs in either the positive or
negative direction. The plots in Fig. 5 display this process. To
obtain the positive voltage threshold we use the section of I-V
data that encompasses the rising part of the positive voltage
sweep. The current corresponding to this section of the voltage
sweep is shown in Fig. 5 (a) and the change in conductivity Ag
(where 4g = 4i/AV) is displayed in Fig. 5 (c).

The change in conductivity shows an abrupt spike at 0.91 V,
and this is decided to be value for the positive voltage threshold,
Vp. Similarly, when determining the negative voltage switching
threshold, there is an abrupt spike in 4g at negative 1.425 V (see
Fig. 5 (d)) at the decreasing edge of the negative voltage sweep.
Therefore, the voltage thresholds are determined in the
parameter extraction process by numerically differentiating the
change in conductivity during switching, and locating the
maximum and minimum values for Ag.

B. Determine Equations to Fit Stable On and Stable Off
States

To model the stable device states, a decision must be made
as to how electron transmission should be modeled. The I-V
characteristic studied tends to show a metal-insulator-metal
hyperbolic sine curve in its stable off state, and an Ohmic
conduction during the stable on state. Therefore, the stable on
and stable off states are modeled using equations (8) and (9).

determined showing (a) the current corresponding to the rising part of the
positive voltage sweep, (b) the current corresponding to the falling edge of the
negative voltage sweep, (c) the change in conductivity for the voltage region
covered in (a), and (d) the change in conductivity for the voltage region covered
in (b).

lon = YmaxV(t)

(®)

iofs = Gminsinh(bv(0)) ©)
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Fig. 6. I-V characteristic with the functions displayed that are able to fit the
data collected for the stable on and stable off states.

To extract the parameters gmax, gmin, and b, a non-linear least-
squares regression algorithm is used. In the case of the stable
on state, data is used that is located between the falling edge of
the positive sweep and the part of the falling edge during the
negative sweep that is greater than the negative switching
threshold. For the stable off state, the data used is located
between the rising part of the negative sweep as well as the
rising part of the positive sweep that is less than the positive
voltage threshold. The experimental data, as well as the curves
optimized for each case, are displayed in Fig. 6. In this case the
fitting parameters were determined as follows: gmax =2.021 mS,
Zmin = 7.490 uS, and b = 2.62.

C. Modeling State Variable Dynamics

At this point the voltage thresholds have been obtained and
the stable conductivity states have been modeled as a function
of voltage. Now the dynamic resistance switching components
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will be added to the model. In this model the dynamic resistance
will be controlled using a state variable that holds any numeric
value between 0 and 1. When the state is 0, the model will be in
its minimum conductivity state, and when the state variable is
1, the model will be in its maximum conductivity state. The full
I-V relationship for this device can be described by equation

(10).

i(1) = 8 V(DX(1) + &1y SILh(OV(1))(1=x(2))  (10)

Equation (10) shows that the conductivity of the modeled
device will be completely Ohmic when x = 1, and it will follow
the pattern of a metal-insulator junction when x = 0. When the
state variable is something other than O or 1, the device current
will be derived due to a combination of the MIM and Ohmic
behaviors.

Now that the state variable is included in the I-V
characteristic, the parameters in the equations used to control
the state variable dynamics must be determined. These include
the parameters A4p, An, Xp, and x, displayed in equations (2)
through (4) (the thresholds in eq. (2) ¥, and V, have already
been determined).

D. Determine A, and Ay,

The function g(w(f)) determines whether or not the state
variable changes depending on the magnitude of the applied
voltage. The threshold voltage magnitudes have already been
determined for both the positive and negative regimes.
However, the speed at which the state variable changes once the
threshold has been exceeded has not yet been determined. To
determine A4, and 4, the change in conductivity over time in
this I-V characterization was used. This is plotted in Fig. 7
along with the conductivity-time plot for convenience. The
point of maximum conductivity change in the positive regime
(gpkp) 1s about 14 mS/s and the maximum change in the negative
realm (gpk,n) is about 4 mS/s. These values are easily extracted
because these are just the conductivity values corresponding to
the voltages that were already selected as the positive and
negative threshold values.

Before the values for A4, and A, can be determined, these
changes in conductivity values must be converted into
quantities that relate to a change in state variable. This is done
using equations (11) and (12). In these equations, the points of
maximum conductivity change (gpkp and gpkn) correspond to
the areas where the most active device switching occurs. In
other words, gpkp and gpk,n have maximum impact on memristor
dynamics when the model is operating according to linear state
variable motion. This occurs after the write voltage threshold is
surpassed and before any state variable boundaries have been
reached. However, 4, and 4, must control the rate of change of
the state variable in the model and not the direct rate of change
of conductivity. Therefore gpkp and gpk,» must be divided by the
conductivity range available in a given memristor device to
obtain a normalized rate of change that corresponds to a state
variable domain of [0,1]. Using equations (11) and (12), the
values for A, and 4, in this device were determined to be 72.5
and 21 respectively.

Ap = _Bkr (11)
gmax _gmln
An=—Srr (12)
Eirax ~ Enin
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Fig. 7. Plots displaying the conductivity and the change in conductivity in this
device over time.

E. Determine x, and x,

The last parameters that must be computed to complete the
model are the boundaries for linear state variable motion, x, and
xn. In memristor devices, resistance change typically becomes
more difficult upon approaching either the minimum or
maximum conductivity state [8,13]. The conductivity plot in
Fig. 8 shows the points where there is an abrupt change in the
speed of state variable change in this sample device, gsiow,p and
Zslown. TO determine the precise values of these points relative
to state variable position, equations (13) and (14) are used.
These equations use the conductivity data point collected from
the I-V characterization that falls directly after the point of
greatest change in conductivity in either direction. The amount
of conductivity change at this point relative to the total amount
of conductivity change is used to obtain the value for state
variable change.

o
w

T T T T T T T T T

gslow,p

/

Conductivity (mS)
o

o

o
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o
[N)

25 3 35 4 45
Time (s)

Fig. 8. Plot of device conductivity over time that shows the points where the
speed of state variable motion is reduced.

_ gslow,p_gmin (13)
gmax _gm'm
Xn= gslow,n _gmin (14)

Erax ~ Enin
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V. DEVICE MODEL SIMULATION RESULTS

Now that the general parameter extraction approach has been
defined, different experiments can be carried out and devices
can be modeled and simulated without any further human
interaction during parameter fitting. When plugging all of the
extracted parameters into the model equations, it produces the
I-V curve displayed in Fig. 9. The stable on and stable off states
are matched very well. Additionally, the overall shape of the
curve is matched well. At approximately 1 V, resistance change
saturates to a stable Ohmic relationship in both the device
characterization and the model. However, in the negative
regime, the modeled switching behavior is slightly delayed
compared to the characterization data. This could be due to the
lack of dynamic data available from a single cyclic sweep. In
other words, it is difficult in some cases for a cyclic
voltammetry setup to accurately track high speed memristor
switching due to limitations in sample rate. One option to fix
this could be to add a second characterization experiment where
resistance change is induced from a single high speed, high
resolution voltage pulse to determine more accurate switching
dynamics. However, this is less desirable because it
significantly increases the time dedicated to device
characterization in the in an experimenter’s work flow.
Furthermore, the equipment required to perform pulse
characterizations as opposed to cyclic sweeps is significantly
more expensive and specialized.

Alternatively, we chose to remedy this inaccuracy by
producing a single model from the combination of three cyclic
characterizations. Using three sweeps instead of one, we are
able to collect a larger amount of device data without using
more complex experiments or more expensive equipment. This
allows a greater number of experimenters to use our modeling
method. By utilizing multiple switching instances, we are able
generate a model that captures the average effect of these
characterizations. As a result, Fig. 10 shows an adjusted model
where average switching speed falls within bounds of these
characterization data for both positive and negative switching.
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Fig. 9. Complete I-V characteristic generated using the model as well as the
experimental characterization data.

As shown in Fig. 10, repetitive cyclic sweeps of the same
memristor device produce slight variations in the resulting I-V
characteristic. The proposed parameter extraction procedure
was applied to each of these three sweeps (the first being the
result in Fig. 9) and the resulting parameters are displayed in
Table I. The average of all the determined parameters from each
of the three sweeps was used to develop a single model for this
device (also displayed in Fig. 10). In this case the proposed
model is capable of producing the average shape of several
device characterizations and produces a much stronger overall
fit.
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Fig. 10. Plots displaying multiple sweeps from a TaOy device along with the
model that was generated based on all sweeps of the input current-voltage data.

TABLE 1
FITTING PARAMETERS USED TO MATCH EACH OF THE THREE CYCLIC SWEEPS
APPLIED TO A TARGET MEMRISTOR DEVICE AS WELL AS THE AVERAGE USED TO
PLOT THE SIMULATION RESULT IN FIG. 10.

Param. Sweep 1 Sweep2  Sweep 3 Avg.
Vinp 0.910 0.980 0.770 0.887
Vinn -1.425 -1.245 -1.155 -1.275
Zmin 7.490x10¢ | 1.035x105 | 1.134x10° | 9.726x10°6
Zmax 2.021x10** | 2.040x10* | 2.164x10* | 2.075x10*
Ap 72.475 120.580 242.643 145.233
An 21.016 10.302 111.628 47.649
Xp 0.899 0.856 0.590 0.782
Xn 0.676 0.744 0.760 0.726

b 2.62 2.502 2.470 2.531

Furthermore, this parameter extraction procedure can not
only be used to determine the optimal curve for multiple
sweeps, it can also be used to determine the modeling curves of
different memristor devices. The plots in Fig. 11 show how this
model is able to automatically adapt based on input data
obtained from four different TaOy devices on a wafer. In the
case of Fig. 11, each model curve was generated according to
the procedure outlined in Section IV. Based on the input data
loaded into the parameter extraction script, the output model is
able to provide a match to characterization data in terms of
voltage threshold, stable conductivity states, switching speed,
and overall curvature.
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Fig. 11. Characterization data and modeling results for four different devices
where each plot (a) through (d) is from a different memristor device.

VL

Virtually all memristor devices exhibit some degree of
stochasticity when changing conductivity states [61,62]. Fig. 10
shows that memristor I-V characteristics can vary between
consecutive cyclic sweeps, and Fig. 11 shows that it is highly
unlikely that two devices on the same wafer will perform
identically. Thus, it is unlikely that a memristor device can be
reprogrammed precisely to its previous state without some error
bound. Therefore, techniques to handle noise during memristor
switching were developed using this memristor model.
Therefore, when simulating complex multistate memristor
programming, the proposed model will provide a closer match
to what may be a more realistically attainable programming
precision.

When studying the experimental characterizations, the data
commonly show variation in both the threshold voltage for
switching and the path and speed of resistance change.
Therefore, additive Gaussian noise was applied to the
parameters Ap, An, Vinp, and Vipn. The mean and standard
deviation of the Gaussian noise were collected based on the
parameter sets in Table II. In the case of 4, and 4, the additive
noise applied to each parameter is updated upon each
simulation time step to achieve the non-uniform switching
effect shown in Fig. 12. This is meant to mimic the non-uniform
ionic motion. As for Vinp, and Vi, the noise added to each of
these parameters is updated in the model once every time a
voltage sweep is applied. This is to mimic the low likelihood
that repetitive switching occurs at precisely the same voltage.

CAPTURING DEVICE VARIABILITY

TABLE II
SETS OF MODELING PARAMETERS USED TO DETERMINE THE MEAN AND
STANDARD DEVIATION OF SWITCHING NOISE IN THE PROPOSED MEMRISTOR

MODEL.
Swee Swee Swee Std.
Param. | P ) P 3 P Mean Dev.
Vinp 0.880 0.800 0.870 0.850 0.036
Vinn -1.200 -1.215 -1.275 -1.230 | 0.032
Ap 125.35 16.293 16.361 52.668 | 51.395
An 59.323 8.893 8.462 22.559 | 23.875

Fig. 12 (a) shows the experimental data collected from a
single device on the wafer, and Fig. 12 (b) displays the model
result. This modeling technique shows a switching region that
is much less predictable when programming, and much more
realistic.
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Fig. 12. Comparison between (a) experimental data and (b) model when
additive Gaussian noise is applied to the model during switching.
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VII. MEMRISTOR MODEL CASE STUDY: MODEL COMPARISON
AND FLEXIBILITY ANALYSIS

This section discusses two simulation experiments. The first
presents a set of results that show how three alternative
memristor models known for their versatility are able to match
the experimental data displayed in Fig. 10. The second study
shows how the model presented in this work is able to match
the characterization of a memristor that exhibits more non-
linearity compared to the device that was used to develop the
presented model.

A. Memristor Model Comparison

To complete this memristor model comparison, three
different voltage controlled models that are known to be
applicable to a large number of devices were each set to fit the
experimental data in Fig. 10. The first result displayed in Fig.
13 was generated using the generalized memristor model [55]
on which this work was based. This model fits the data fairly
well, but it has trouble modeling different types of curvature
simultaneously, as its current equation is solely based on a
hyperbolic sine function. Fig. 13 shows that it is hard to realize
the desired curvature in the off state without introducing too
much curvature in the on state.
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Fig. 14 presents a result where the non-linear drift model [2]
with the Biolek window function [32] is set to match the
experimental data of the device utilized in this work. This was
one of the earliest generally applicable compact memristor
models, and it can be used to provide a very close match to the
theoretical memristor as it was originally proposed [1]. It can
also be set to match nearly any device. However, it has some
shortcomings when matching the switching dynamics found in
physical thinfilm devices. For example, this model operates
based on simple Ohmic transmission, and no threshold for
resistive programming is present. This leads to the significant
differences observed between model and the experimental data
in Fig. 14.
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Fig. 13. Result when using the generalized memristor model [55] to match the
presented tantalum oxide device. Model parameters are set as follows: V), =
0.85, V,=1.15, 4,= 1500, 4, = 400, x, = 0.48, x, = 0.13, o, = 10, 0ot = 18, a;
=0.00014, a, =0.00014,b=1.2,x=0.2,n=1.
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Fig. 14. Result when using the non-linear drift memristor model [2,32] to match
the presented tantalum oxide device. Model parameters are set as follows: Rox
=3500, Rorr = 27k, D = 25%107, =107, %9 =0.1,p = 1.

Lastly, Fig. 15 presents the simulation result when the
VTEAM model [28] is set to match the experimental data. In
this case, the experimental data was flipped across the
horizontal and vertical axis so that the VTEAM model could be
used without modification [28]. In this case, set switching is
matched very well, but some discrepancies can be observed
during the reset switching process.

On the other hand, the model presented in the previous
sections of this paper is capable of handling multiple electron
transmission phenomena and switching dynamics in a way that
results in a closer match to experimental data. Furthermore, our
presented model also provides a methodology for optimally
gathering all fitting parameters with minimal input form the
user.
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Fig. 15. Result when using the VTEAM memristor model [28] to match the
presented tantalum oxide device. Model parameters are set as follows: v, = -
0.6, vorr = 0.78, Rox = 4800, Ropr = 700K, kon = -0.1, kot = 108, cton = 18, ator =
2, Won = 0, worr=25%10"%, wini = 0, with an exponential I-V relationship selected.

B.  Memristor Model Flexibility

In this study, we break away from the tantalum oxide
memristors that have been analyzed heavily in this work, and
we apply this model to an alternative device published in [14].
This is a titanium oxide device that possesses a significantly
more non-linear I-V characteristic. First, a dataset for this
device characterization had to be generated since raw
characterization data is not publically available. Since the
proposed model requires that fitting parameters be generated
based on time domain data, the data displayed in [14] had to be
sampled at a constant rate (based on the assumption that the
original data was also collected at a constant rate). Therefore,
this original plot was sampled at 300 dots per gridline, and the
current was sampled at 30 pixel (or 0.1 V) intervals. Thus, 57
uniformly spaced data points were collected to produce the
experimental data points displayed in Fig. 16. This data
collection procedure was noted because it allows users of this
model to fit virtually any publicly available I-V characteristic,
as long as data is carefully extracted.

Recall from eq. (1) that the presented model determines
device current flow as a state variable dependent ratio of
hi(V(%)) and hy(V(?)). Furthermore, the selection of /1(¥(¢)) and
h(V(%)) is based on the conductivity profile of the device in
question. For the tantalum oxide device used to develop this
model, the best fit was obtained when /4:(¥(f)) was set to model
an Ohmic relationship and 42(V(¢)) was set to model a MIM
relationship. However, the device in Fig. 16 has a more non-
linear characteristic with heavy curvature displayed in both the
minimum and maximum conductance states. Therefore, a MIM
(hyperbolic sine) transmission equation was used for 4(V(?))
and hx(V(f)) as shown eqs. (15) and (16). Furthermore, the
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experimental data in Fig. 16 shows significant asymmetry in the
minimum conductivity of the device. Therefore, the equation
chosen to represent current flow at the minimum conductivity
state is polarity dependent (see eq. (16)). Other than this
expected equation substitution, all other model equations
remained the same and the modeling procedure was able to
generate a close match to the experimental data. Note that the
gap in the pinched hysteresis loop in the upper right is due to
the current compliance limit on the characterization system.
The model has a slight mismatch during the reset switching
process. In the future, we plan to explore how this may be
corrected by using data from multiple different types of
characterization experiments to generate a model.

hl (V(t)) = Imax Sinh(bmaxv(t)) (15)
h (V(t)) _ {gmin,p Sinh(bmin,pv(t)) ’ V(t) =0 (16)
2 - .
gmin,n Slnh(bmin,nv(t)) ’ V(t) <0
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Fig. 16. Result when using the model presented in this work to match the
characterization data for the TiO2-x device presented in [ 14]. Model parameters
are as follows: Vinp= 1.4, Vinyn = -0.5, Gminp = 1.23%X107, Ginn = 2.36X10, Ginax
= 1.12x10%, 4, = 907.1, 4, = 120.2, x,= 0.1547, x,= 0.7124, bynax = 5.42, buinp
=8.2, bminn = 1.7.

VIII. CONCLUSION

This work presents a memristor device model and an
automated procedure for matching the model to
characterization data with minimal human interaction. Using
this model, groups of fitting parameters can be obtained from
several device characterizations very quickly, leading to a faster
accurate modeling technique. Implementing a model based on
several device characterizations allows for realistic device
variation to be implemented, and it also allows for a more
accurate model fit.

We plan to investigate several different aspects of this work
in the future. First, we plan to test this parameter extraction
technique on different memristor devices to further test the
generalizability of this procedure. Also, we plan on using this
model within neural system [10,11,63] simulations to produce
more accurate studies of neuromorphic memristor hardware. If
we simulate a memristor crossbar that accounts for inter and
intra device variation, we can study the limits of these devices
as trainable memory elements within a neuromorphic core or
function block. With previous techniques, generating an

individual model for each device would be tedious and time
consuming. Alternatively, the proposed model makes it
possible to simulate each device in a crossbar quickly,
conveniently, and accurately.
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