

Design Space Evaluation of a Memristor Crossbar

Based Multilayer Perceptron for Image Processing

Chris Yakopcic*, B. Rasitha Fernando, and Tarek M. Taha

Dept. Of Electrical and Computer Engineering

University of Dayton

Dayton, OH, USA
*cyakopcic1@udayton.edu

Abstract—This paper describes a simulated memristor-based

neuromorphic system that can be used for ex-situ training of a

multi-layer perceptron algorithm. The presented programming

technique can be used to map the weights required of a neural

algorithm directly onto the grid of resistances in a memristor

crossbar. Using this weight-to-crossbar mapping approach along

with the dot product calculation circuit, neural algorithms can be

easily implemented using this system. To show the effectiveness

of this circuit, a Multilayer Perceptron is trained to perform

Sobel edge detection. Following these simulations, an analysis

was presented that shows how memristor programming accuracy

and network size are related to output error; the results show

that network size can be increased to reduce testing error. In

some cases, the memristors in the circuit may be capable of

operating with at lower precision if the network size is increased.

This means that less precise (or lower resolution) memristor

devices may be used to implement the proposed system.

Furthermore, a power, timing, and energy analysis shows that

this circuit has a computation throughput that allows it to

process 4K UHD video in real time at approximately 337mW.

Keywords—memristor, memristive, perceptron, dot-product

I. INTRODUCTION

The main obstacles for continued performance
improvement in future computing systems are reliability and
power consumption. Embedded neuromorphic processing
systems have significant advantages to offer, such as the ability
to solve complex problems while consuming very little power
and area [1,2]. These neural network accelerators can be used
for a broad number of applications [3]. Furthermore, Chen et
al. [4] have shown that Recognition, Mining, and Synthesis
(RMS) applications (described by Intel as the key application
drivers of future [3]) can be performed using neural networks.

The memristor [5] has received significant attention as a
potential building block for neuromorphic systems. The
physical realization of the memristor [6] has produced a
nanoscale non-volatile device with a large varying resistance
range. Voltage pulses can be applied to memristors to alter
their conductivity and tune them to a specific resistance state
[7-9]. Physical memristors [10-13] can be laid out in a high
density grid known as a crossbar [14-16]. Using this layout,
memristors have the potential to be fabricated with a synaptic
density greater than that of brain tissue [17]. Systems based on
these circuits will produce high density, extreme low-power,

neuromorphic hardware that is capable of performing many
multiply-add operations in parallel in the analog domain
[18,19]. Thus, neuromorphic systems based on memristor
crossbars [20-25] have potential to perform at a power
efficiency of 6 to 8 orders of magnitude greater than that of
traditional RISC processors [26].

Both memristor-based [27-45] and non-memristor based
[46-48] wafer-scale hardware implementations of neural
networks have been proposed. Some of these systems are
capable of performing in-situ training, or on-chip learning
[35]. Other systems are based on an ex-situ approach where
weights are pre-trained in software [29]. Furthermore, groups
have studied the impact of using memristors to implement
convolution [49,50] or develop a Convolutional Neural
Network [50-52]. Thus, a variety of different memristor
architectures have been proposed that each implement
different aspects of different neural network algorithms.

This paper presents a circuit that uses a weight-to-crossbar
mapping scheme that produces a dot-product output that is
comparable to what is obtained using traditional software. In
this system, the memristor conductance values are
predetermined using an ex-situ training process. Thus, the best
weights for this system can be pre-determined off chip. We
use a feedback process to program these crossbars to ensure
that memristor devices (which commonly exhibit some degree
of stochastic behavior when switching [53,54]) are correctly
programmed. We also use a weight programming scheme that
uses a D-to-A for programming, and we study the minimum
required bit-width and precision of the D-to-A circuits using a
detailed study.

In this work we use the proposed circuit to implement a
multilayer perceptron trained to perform Sobel edge detection.
From this example, we show how neural network size may
impact mean squared error (MSE) in this system, and we show
that increasing the number of neurons in the circuit allows this
circuit to utilize lower resolution memristors to obtain the
same MSE. Furthermore, we perform an energy, power, and
timing analysis that brings forth a relationship between neural
network evaluation accuracy and power consumed for real
time operation. In general, this work presents a circuit that is
capable of learning digital image processing functionality.
Thus, due to the highly parallel memristor crossbar design, the
circuit provides high speed and low power operation.

Related works [31] have used summing amplifier
techniques to carry out analog multiply-adds in a memristor
crossbar, but this paper goes one step further and uses a
method for weight conversion that allows us to obtain the
expected dot product values (between the inputs and the
weight matrix) precisely and reliably. Others have proposed
alternative transformation strategies for memristor crossbars
[40], but not to achieve versatile functionality based on
accurate dot product calculations. We are also not aware of
any other work that presents a parameter analysis that is able
to provide a succinct relationship between neural network
size, training time, MSE, memristor resolution and
programming accuracy, energy, timing, and power.

Work in this paper builds on a design that has been
presented in several iterations. Work in [29] describes the first
version of this circuit and required a 1T1M (1-Transistor 1-
Memristor) system (as opposed to the 0T1M (0-Transistor 1-
Memristor) system in this work). Next [18,55] describe the
first instances of the circuit framework described in this paper,
and detail how this single circuit can be used to implement
several different neural network algorithms. Work in [56]
shows how this circuit can be used to train a network capable
of performing network intrusion detection. Lastly, [19,50]
show how the presented circuit can be altered to implement a
convolutional neural network. The unique aspects presented in
the following work are parameter analyses that allow the user
to form a relationship between network size, MSE, training
time, and memristor resolution and programming accuracy.
Furthermore, we uniquely present an energy, power, and
timing analysis showing real-time digital image processing is
feasible with memristor based neural network systems.

II. MEMRISTOR BASED DOT-PRODUCT CALCULATOR

The circuit in Fig. 1 is used to implement neurons that are
capable of producing a true dot product calculation. This
circuit will be used as the building block in the presented
memristor crossbar system. In this circuit, two memristors are
used to represent a single weight so that negative numbers can
be represented accurately. To achieve this, the weight matrix
from the neural algorithm W must first be transformed into
two different matrices [18]. The matrix W+ contains positive
non-zero elements where Wij > 0 and zeroes in all other
positions. Therefore, Wij

+ = Wij when Wij > 0 and Wij
+=0 when

Wij ≤ 0. Likewise, the matrix W- contains positive non-zero
elements in each position where Wij < 0. Therefore, Wij

- = |Wij|
when Wij < 0, and Wij

- = 0 where Wij ≥ 0. Using this method, W
can always be reproduced by subtracting W- from W+.

Memristor conductivities are used to represent the weight
values in the neural network. Therefore, the value of each
weight in the matrices W+ and W- must be converted to a
bounded number within a conductance range between σmin and
σmax. Equations (1) and (2) are used to convert the weight
matrices W+ and W- into matrices of conductivity values (σ+
and σ-) that can be programmed into a memristor crossbar.
Using this weight organization structure, both positive and
negative weights can be represented because each weight
value is represented by a pair of memristors, each tied to a
voltage input that differs only in polarity. Weight polarity is

determined by the polarity of the voltage input connected to
the memristor in a given pair with the higher conductivity.

Adding σmin to all values ensures that all zeros in the W+
and W- matrices will be at the minimum conductance level of
the memristors. The op-amp circuit at the crossbar column
output in Fig. 1 is used to both scale the column output
voltage and implement the neuron activation function. This is
an alternative approach to the systems that require a sigmoid
activation circuit following an op-amp output such as [31]. It
is desirable to have a non-binary activation function (such as a
sigmoid) at each neuron output to allow for non-binary
outputs and improved classification potential. To accomplish
this in our work, the amplifier at the output of the circuit is
used to create a pseudo sigmoid function as shown in Fig. 2. A
linear amplifier transfer function (bounded by upper and lower
voltage rails) matches the sigmoid relatively closely (see eq.
(3)), and the simulation results in the following sections show
that this is an effective alternative. To obtain the optimal
linear fit of the sigmoid function m = 1/4 and b = 1/2.

 

  min
minmax

max



 


  W

W
 (1)

 
  min

minmax

max



 


  W

W
 (2)

-x2

-xN

xN+1

x1

x2

. . .

xN

-x1

. . .

σij
+

σij
-

+

-

+

-

Mg

Rf

Rf

yj
- yj

+

VD1

VS1

VD2

VS2

σb

Fig. 1. Memristor based neuron circuit that can be replicated across crossbar

columns where VD1 = 0, VS1 = -1, VD2=1, and VS2=0.

Fig. 2. Comparison of the sigmoid transfer function and the amplifier

alternative (the first op-amp stage will actually produce an inverted result, but
this will be the eventual outcome seen at the yj

+ output).

The complete circuit in Fig. 1 will operate according to
equations (4) through (6). The op-amp producing the yj

- output
acts as a summing amplifier that also accounts for the slope
and bias required of the approximate sigmoid activation
function. The yj

- output is then fed into a unity gain inverting
amplifier to obtain the yj

+ output (see eq. (6)).











,0

,

,1

bmvy j

2v

ve


1

1
 (3) 2v

2v

In eq. (4) the output of the summing amplifier is
determined. The voltage xN+1 = 1 and is used to drive the bias
value b for the sigmoid function. The resistance Rg is the
resistance of the programmable gain memristor Mg. A
memristor is used to hold this resistance so that Mg can be set
according to equation (5) during evaluation and set to σMAX
during programming. The value σb is the conductance of the
memristor MN+1 and σb=b/Rg. In eq. (5), Rg is set so that the
summation of conductance and voltage pairs is multiplied by
the inverse of the scaling factor in equations (1) and (2), as
well as the slope of the activation function m. Using this
method, the resulting outputs yj

+ and yj
- will now have a value

equal to that of the typical dot product performed in a software
implementation after the activation function has been applied.
Using this method, the outputs are already formatted for the
next layer of the network where yj

+ becomes the set of inputs
for σij

+ and yj
- becomes the set of inputs for σij

-.

Fig. 3 shows how repetitions of the circuit in Fig. 1 can be
implemented within a memristor crossbar. The output of each
crossbar column shows the simplified depiction of the op-amp
circuit capable of producing the values yj

+ and yj
-.

  







 



  bN

N

i

ijiijigj xxxRy  1

1

 (4)

 minmax

)max(

 


W
mRg (5)

  jj

f

f

j yy
R

R
y (6)

σij
+

σij
--x2

xN+1

x1
x2

. . .

xN

-x1

. . .

y1
+

. . .

-xN

=

σb

y1
-

y2
+

y2
-

yj
+

yj
-

yM
+

yM
-

Fig. 3. Diagram displaying the memristor crossbar design for processing a

single layer of a neural network.

III. EX-SITU TRAINING PROCESS

To use the circuit described in the previous section, a
memristor crossbar must be capable of being programmed to a
set of precise conductance values. This section describes how
programming precision will be defined, and will also present
the programming circuit designed to perform this task.

A. Memristor Programmability

The idealized memristor device has a continuous bounded
programmable resistance range. However, physical memristor
device characterizations show stricter limitations in device
programmability. Specifically, there appears to be a limit to
how many discrete states can be programmed into a memristor
device, and there is a certain amount of stochastic resistance
change present when attempting to program a device to a
specific resistance [18]. For example, work in [57] shows that
128 states can be programmed into a memristor device, and
this supports the programming assumptions that we have made
in the presented work. We go beyond the work in [57] to show
how feedback programming techniques can be used to
implement neural network algorithms in crossbar circuits.

For the system described in this paper we assume that
there are only a set number of states in the memristor that can
be accessed. This keeps the size of the D-to-As required for
ex-situ programming at a minimum. There is also a
programming precision (α) associated with each memristor
state to account for stochastic switching noise. In the studies
in this work, the programming precision is set to 0.01 V (this
was previously determined as the optimal value for α in this
circuit in [18]). This will make programming much easier
because a memristor will only have to be programmed to
within a set of bounds (instead of an exact resistance value).

B. Crossbar Programming Circuit

The circuit designed to implement the programming
method is capable of programming one device at a time. An
entire row of devices in the crossbar could be programmed
simultaneously, but this would increase the chip area devoted
to the programming circuit. We chose the single device
approach because the object of this system is to program the
crossbar once before it is used in a read mode extensively, so
less importance was placed on programming speed.

To program each of the weights in this memristor crossbar,
only one row input xi (where i=1,…,N+1) is active (set to 1V)
and all other inputs are set to 0V. This will reduce the
summing amplifier to a simple inverting amplifier. Also, the
second inverting amplifier that produces yj

+ can be ignored
during the write process. In this circuit, the feedback
memristor Mg is held at a constant value σMAX (or RMIN). Using
this approach, when the target memristor being programmed
(Mi) is set to σMAX, the output yj

-=-1 V. Likewise, when the
target memristor Mi is set to σMIN, the output yj

-≈0 V.

The schematic in Fig. 4 displays the entire programming
circuit in addition to the active part of the memristor crossbar
when programming a single memristor. This circuit utilizes
two D-to-A converters to implement a bounded voltage range
for successful programming. It is assumed that these D-to-A
converters have access to the weight values produced using

the desired learning algorithm in software. Also, it is assumed
that software is able to convert each floating point weight to a
value within a set of predefined conductivity states, where the
size of this set corresponds to the width of the D-to-A used.
This will essentially convert the weights from floating point to
much lower resolution values. For the programming process to
determine that a memristor is programmed, yj

- must be greater
than τ-α and less than τ+α. The logic at the output of the
comparators determines whether the memristor conductivity
should be increased or decreased based the output voltage of
the two comparators. If resistance is to be decreased, a
positive write pulse will be applied to the memristor Mi, and if
the resistance is to be increased, a negative pulse will be
applied. This process will be repeated until the XOR gate in
Fig. 4 has a high output, signifying a successfully
programmed device. This iterative process is what forms the
feedback programming system. A pulse width known to be
much smaller than that required to fully switch the memristor
is used to program the memristors to these specific resistances
to induce very small amounts of resistance change [7,58].

+ -

Selected
Memristor

+ -

D-to-A D-to-A

Equivalent circuit for the crossbar
when programming a single memristor

xi

VA1=τ-α VA2=τ+α

Increase
Resistance

Decrease
Resistance

No Change

+

-

Mg

Mi

Fig. 4. Circuit used to program a single memristor to a target resistance.

The plot in Fig. 5 shows how the feedback programming
process operates. The memristor switching characteristic was
implemented with some switching noise added so that it
would operate closer to a physical device (such as [59]). Once
the op-amp output voltage yj

- falls within the dashed lines
portraying the programming precision bounds, the XOR
output becomes high and no more programming pulses are
applied to this memristor. In these studies, memristors were
assumed to behave according to the model in [60].

0 20 40 60 80 100
-0.5

-0.4

-0.3

-0.2

-0.1

0

Iteration (i)

V
o
lt
a
g
e
 (

V
)

Output Voltage (y
j
-)

Target Voltage ()

 ± 

Fig. 5. Example of how the feedback programming circuit will drive a

memristor resistance to a value within the programming precision bounds.

IV. MLP SOBEL EDGE DETECTION

In this section, the proposed circuit design was used to
implement a multilayer perceptron architecture (see Fig. 6 for
network layout) to perform Sobel edge detection.

f(y)

u1

u2

uk

uL

uL+1

.
.
.

.
.
.

x1

x2

x3

xi

xN-1

xN

.
.

.
.
.
.

y

Fig. 6. Diagram for the perceptron used in this study.

A. Part 1: Off-Chip Training

The memristor based neural network is implemented to
mimic the operation of a 3×3 edge detection kernel. The
network topology that was used in this study was a
10→L+1→1 multi-layer perceptron (see Fig. 6). The 10 inputs
to the first layer represent a 3×3 pixel square and a single bias
input (therefore N=10). The number of nodes in the hidden
layer (L) is varied throughout these experiments to study the
impact of network size, where node L+1 is a bias used in all
experiments. The output is a single pixel used in part to
construct the edge detected output image. The edge detected
image will be constructed as each 9-pixel section of the input
image is applied to the input layer of the neural net. No zero-
padding is applied to the input image, so the output will have
2 less pixels in each direction when compared to the input.

Fig. 7 displays a portion of an image that was input to a
Sobel edge detector, and Fig. 7 (b) displays the corresponding
output image (determined using a DSP algorithm, not a neural
network). To train the neural network, the image in Fig. 7 (b)
was input to the MLP system and the error was minimized to
fall below a set threshold (either 0.5 or 0.4 in these
experiments). In an example case, Fig. 8 shows that the MSE
was minimized until MSE was less than 0.5 between Fig. 7 (b)
and the neural network output.

 (a) (b)

Fig. 7. Portion of an image (30×30 pixels) that was used the train the neural

network. Images show (a) the input and (b) the output for the Sobel Edge
Detector (based on the DSP algorithm, not neural network approximation).

Fig. 8. MSE when training the MLP based on the image in Fig. 7 (b).

B. Part 2: Memristor Circuit Evaluation

After the MLP was trained, the weights were programmed
into the simulated memristor crossbar circuit, and the entire
image was used to test the network. Fig. 9 displays the output
comparisons via example image. The entire input image is
displayed in Fig. 9 (a), and the resulting image due to the DSP
Sobel filter (not the neural network) can be seen in Fig. 9 (b).

 (a) (b)

 (c) (d)

Fig. 9. The images displayed are (a) the original input image, (b) the output

image using the Sobel edge detection algorithm, (c) the output image using
the memristor-based neural network with a 3-bit D-to-A for programming,

and (d) the output image using the memristor-based neural network with a 2-

bit D-to-A for programming. In both (c) and (d), α=0.01 V.

Figs. 9 (c) and (d) show the image outputs generated using
the memristor neural network. Reducing the bit-width of the
D-to-A circuits used during programming reduces the number
of possible conductance values to which the memristors can
be programmed. As the bit width of the D-to-As is reduced,
the MSE in the system increases. Fig. 9 (c) shows the output
image obtained from the memristor based neural network after
it was programmed using a 3-bit D-to-A. The MSE between
Figs. 9 (b) and (c) is 0.0033. Fig. 9 (d) shows the resulting
output image when a 2-bit D-to-A is used for programming.
Since a fewer number of resistance states can be programmed,
the error goes up significantly. The MSE between Figs. 9 (b)
and (d) is 0.0112.

It should be noted that when comparing the results from
training and evaluation, the MSE during evaluation is much
lower. This is because MSE is averaged over all of the pixels
in the image, and in this case most of the pixels were solid
black and easily reproduced by the hardware. This large
amount of dark data brings down the average error when
compared to the visually complex training image segment.

V. DESIGN SPACE ANALYSIS

Now that the initial implementation has been tested,
several follow-on simulations were performed using this
system with varying perceptron layouts. The studies in this

section evaluate the interplay between memristor
programming bit width, MSE, energy, power, and timing. This
is an extension of work presented in [18].

A. Network Layout Analysis

The three plots in Fig. 10 show the resulting MSE for three
different network configurations: the first had 20 hidden
neurons and a training error threshold of 0.5, the second had
50 hidden neurons and a training error threshold of 0.5, and
the third had 50 hidden neurons and a training error threshold
of 0.4. The training error threshold was pushed lower because
this was observed to improve testing MSE. Alternatively, it is
very difficult to achieve a training error of 0.4 with only 20
hidden nodes, so that result is not considered. Beyond this
limited design space, it may be possible to further optimize the
relationship between network size and training threshold to
determine a stronger configuration. Since the memristor
system we are proposing uses ex-situ training, all of this
network layout, design, and analysis can be done in software
before the final optimized weights are simply downloaded into
the memristor system.

After the network layouts and weight matrices were
determined, these weights were programmed into the
simulated memristor crossbar system using the ex-situ
programming approach in Section III. A programming bit
width of either 2, 3, or 4 was used, so the memristors in this
system can store either 4, 8, or 16 unique states respectively.
Each of the plots in Fig. 10 present a data point designating a
mean MSE for each bit width. This mean is based on 10
identical iterations of the programming process in Section III
(see the red, blue, and green circles in each plot), these are not
10 different training processes. This variation is simply due to
the error that occurs when programming each memristor in the
crossbar. Since the memristors start at a high random
resistance and they are subject to significant variability during
programming, identical results after programming are rarely
obtained.

B. Memristor Resolution Analysis

To extend this experiment, we determined how large the
network would have to be before the number of programmable
states within the memristor devices could be reduced. This
was done using the same simulation setup and circuit model
described in Section III, except that the number of hidden
layers present in the network layout was varied between
experiments. The result in Table I displays two different
network options along with the corresponding testing MSE for
both the 3 and 4-bit programming options. This result shows
that when the number of hidden nodes in the system is 100
and the training error threshold is equal to 0.4, the testing error
with 3-bit programming is less than the error obtained for 4-bit
programming of the system with 20 hidden nodes and a
training error threshold of 0.5. This also shows that the size of
the system can be increased to reduce the required number of
programmable memristor states in the system. In this case, if a
MSE less than .0014 is required, either the number of required
programmable memristor states can be increased, or the size
of the network can be increased. This makes the system more
general, as a lower resolution memristor could be used if

network size is increased. However, five time as many hidden
layer neurons are required to achieve that result.

 (a)

 (b)

 (c)

Fig. 10. Simulation results that show resulting MSE for different

programming bit widths and network arrangements. Plots show (a) a network
with 20 hidden nodes and a training threshold of 0.5, (b) a network with 50

hidden nodes and a training threshold of 0.5, and (c) a network with 50 hidden

nodes and a training threshold of 0.4.

Table I. Results that display the relationship between MSE, network size, and

programming bit width.

Number of Hidden

Nodes (L)

Training

Threshold

Testing

MSE: 3 Bits

Testing

MSE: 4 Bits

20 0.5 0.00146 0.00124

100 0.4 0.00092 0.00110

C. Energy, Timing, and Power Analysis

In the previous subsection, a relationship between
memristor resolution and network size has been determined.
Thus, we can now use the data in this section to determine a
relationship between memristor resolution and power
consumption. Tables II and III display the energy and power
requirements during evaluation of the two network layouts

compared in Table I (power and energy analysis of the system
during training will be carried out in future work).

To generate the data in Tables II and III, a small scale
SPICE simulation of the circuits used to develop the neural
network layouts were used. The memristors were simulated
according to the model in [60,61], and the op-amps in the
column amplifiers were designed starting from the circuits in
[62,63] using 180 nm technology. It is assumed that the
memristors used in this study have a minimum resistance of
125 kΩ and a maximum resistance of 125 MΩ. The average
energy consumption of this circuit for a 9-pixel evaluation was
considered to be the mean energy generated from four
simulations with different sample inputs. Average energy
consumption values were then determined for a single
memristor, and a single column amplifier (which consists of
two op-amp circuits), and multiplied to determine the energy
consumption of the entire network layout. Table II shows that
the large network layout capable of achieving desired MSE
with lower resolution memristors requires approximately 4.2
times the energy to operate. Therefore, a tradeoff exists
between memristor resolution, MSE, and energy consumption.

Table II. Energy consumption breakdown of the two memristor based MLP
structures described in Table I.

Attribute

Energy Consumption

System 1

20 Hidden Neurons

442 Memristors

21 Amplifiers

System 2

100 Hidden Neurons

1202 Memristors

101 Amplifiers

Avg. Memristor Energy 400 fJ 400 fJ

Avg. Column Amplifier Energy 23.81 pJ 23.81 pJ

Total Memristor Energy 176.98 pJ 481.28 pJ

Total Amplifier Energy 500.04 pJ 2404.97 pJ

Energy to Generate One Pixel 677.02 pJ 2886.25 pJ

Energy to Process Image in Fig. 9 43.68 µJ 186.21 µJ

Given that the column amplifier circuit has a resolve time

of about 100 ns, we assume the maximum operating frequency
of this system is 10 MHz. Therefore, if real-time video
processing is required, a single circuit can process at most 10
million pixels per second. Using this limit, we can determine
how many copies of the memristor based neuromorphic image
processing circuit are required to process real-time video of
different sizes and speeds (see Table III). The power estimates
in Table III only account for the processing circuit described
in this work and do not account for clocking, bit-shifting, or
data splitting. Power consumption is likely to increase if this
circuit is implemented as part of a larger system.

Table III. Power consumption and throughput breakdown of the two
memristor based MLP structures described in Table I.

Application

Circuits

Required for

Real Time

Processing

Power (mW)

System 1

20 Hidden

Neurons

442 Memristors

21 Amplifiers

System 2

100 Hidden

Neurons

1202 Memristors

101 Amplifiers

Low Resolution Video

(640×480 Pixels 24 FPS)
1 4.99 21.28

HD Ready Video

(1280×720 Pixels 30 FPS)
3 18.72 79.80

Full HD Video

(1920×1080 Pixels 30 FPS)
7 42.12 179.55

4K UHD Video

(3840×2160 Pixels 60 FPS)
50 336.93 1436.38

VI. CONCLUSION

This ex-situ system is capable of programming a
memristor crossbar based on a set of quantized weights
generated using a traditional software implementation of a
given learning algorithm. Each memristor crossbar is capable
of reproducing accurate dot product outputs, so values can be
transmitted between network layers correctly. Using this
system, we were able to show successful neural network based
digital image processing at high throughput and low power.
The design space analysis in this work details the relationships
between network size, MSE, memristor resolution, energy,
power, and timing. Results show that 4K UHD video can be
processed in real time at a power consumption of
approximately 337mW if 50 replicas of the neural network
evaluation circuit are used simultaneously. Likewise, utilizing
a memristor device that is only capable of storing 8 states
instead of 16 is likely to cause a 4.2× increase in the
processing energy required.

Future work includes scaling the system to see how an N-
layer network will perform. Furthermore, the results presented
in this work are based on the edge detection of a single image.
Moving forward, we want to compare these results to neural
implementations of several other DSP applications to see if
any other patterns emerge when tuning programming
parameters. We also plan to study how this design performs
on a physical memristor crossbar.

REFERENCES

[1] T. M. Taha, R. Hasan, C. Yakopcic, and M. R. McLean, "Exploring the
Design Space of Specialized Multicore Neural Processors," IEEE
International Joint Conference on Neural Networks (IJCNN), pp. 1-8,
Dallas, TX, Aug. 2013.

[2] B. Belhadj, A. J. L. Zheng, R. Héliot, and O. Temam. “Continuous real-
world inputs can open up alternative accelerator designs,” ACM/IEEE
International Symposium on Computer Architecture (ISCA), Tel-Aviv,
Israel, June, 2013.

[3] P. Dubey, “Recognition, mining and synthesis moves computers to the
era of tera,” Technology@Intel Magazine, Feb. 2005.

[4] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A.
Nere, S. Qiu, M. Sebag, O. Temam, “BenchNN: On the Broad Potential
Application Scope of Hardware Neural Network Accelerators,” IEEE
International Symposium on Workload Characterization (IISWC), pp.
36-45, San Diego, CA, November 2012.

[5] L. O. Chua, "Memristor—The Missing Circuit Element," IEEE
Transactions on Circuit Theory, vol. 18, no. 5, pp. 507–519, Jan. 1971.

[6] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing Memristor found,” Nature, 453, pp. 80–83, Oct. 2008.

[7] C. Yakopcic and T. M. Taha, “Determining optimal switching speed for
memristors in a neuromorphic system,” Electronics Letters, vol. 51 no.
21, pp. 1637-1639, October, 2015.

[8] C. Yakopcic, T. M. Taha, and M. R. McLean, “Method for ex-situ
training in a memristor-based neuromorphic circuit using a robust
weight programming method,” Electronics Letters, vol. 51, no. 12, pp.
899-900, June, 2015.

[9] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Impact of
Memristor Switching Noise in a Neuromorphic Crossbar” IEEE
National Aerospace and Electronics Conference (NAECON), pp. 320-
326, Dayton, OH, June, 2015.

[10] C. Yakopcic, S. Wang, W. Wang, E. Shin J. Boeckl, G. Subramanyam,
and T. M. Taha, “Filament Formation in Lithium Niobate Memristors
Supports Neuromorphic Programming Capability” Neural Computing
and Applications (Forthcoming).

[11] S. Wang, W. Wang, C. Yakopcic, E. Shin, G. Subramanyam and T. M.
Taha, “Experimental study of LiNbO3 memristors for use in
neuromorphic computing,” Microelectronic Engineering, vol. 168, pp.
37–40, Jan. 2017.

[12] S. Wang, W. Wang, C. Yakopcic, E. Shin, G. Subramanyam and T. M.
Taha, “Reconfigurable Neuromorphic Crossbars Based on Titanium
Oxide Memristors,” Electronics Letters, vol. 52, no. 20, pp. 1673-1675,
Sept. 2016.

[13] C. Yakopcic, S. Wang, W. Wang, E. Shin, G. Subramanyam and T.
Taha, “Methods for High Resolution Programming in Lithuim Niobate
Memristors for Neuromorphic Hardware,” IEEE/INNS International
Joint Conference on Neural Networks (IJCNN), pp. 1704-1708,
Anchorage, AK, May 2017.

[14] S. H. Jo, K.-H. Kim, and W. Lu, "High-Density Crossbar Arrays Based
on a Si Memristive System" Nano Letters, vol. 9, no. 2, pp. 870-874,
Jan. 2009.

[15] C. Yakopcic and T. M. Taha, “Model for maximum crossbar size based
on input driver impedance,” Electronics Letters, vol. 52 no. 1, pp. 25-27,
Jan. 2016.

[16] C. Yakopcic, R. Hasan, and T. M. Taha, “Hybrid Crossbar Architecture
for a Memristor Based Cache,” Microelectronics Journal, vol. 46, no.
11, pp. 1020-1032, November, 2015.

[17] G. S. Snider, “Cortical computing with memristive nanodevices,”
SciDAC Review, Winter 2008, pp. 58–65. Available at
http://www.scidacreview.org/0804/pdf/hardware.pdf

[18] C. Yakopcic, R. Hasan, and T. M. Taha, “Flexible Memristor Based
Neuromorphic System for Implementing Multi-layer Neural Network
Algorithms,” International Journal of Parallel, Emergent and Distributed
Systems, vol. 33, no. 4, pp. 408-429, Aug. 2018.

[19] C. Yakopcic, Z. Alom and T. Taha, “Extremely Parallel Memristor
Crossbar Architecture for Convolutional Neural Network
Implementation,” IEEE/INNS International Joint Conference on Neural
Networks (IJCNN), pp. 1696-1703, Anchorage, AK, May 2017.

[20] R. Hasan, T. M. Taha, and C. Yakopcic, “On-chip Training of
Memristor Crossbar Based Multi-layer Neural Networks,”
Microelectronics Journal, vol. 66, pp. 31-40, Aug. 2017.

[21] R. Hasan, T. Taha and C. Yakopcic, “On-chip Training of Memristor
Based Deep Neural Networks,” IEEE/INNS International Joint
Conference on Neural Networks (IJCNN), pp. 3527-3534, Anchorage,
AK, May 2017.

[22] R. Hasan, T. Taha, C. Yakopcic, and D. Mountain, “High Throughput
Neural Network based Embedded Streaming Multicore Processors,”
IEEE International Conference on Rebooting Computing (ICRC), pp. 1-
8, San Diego, CA, Oct. 2016.

[23] R. Uppala, C. Yakopcic, and T. M. Taha, “Methods for Reducing
Memristor Crossbar Simulation Time” IEEE National Aerospace and
Electronics Conference (NAECON), pp. 312-319, Dayton, OH, June,
2015.

[24] R. Hasan, C. Yakopcic, and T. M. Taha, “Ex-situ Training of Dense
Memristor Crossbar for Neuromorphic Applications,” IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH),
pp. 75-81, Boston, MA, July 2015.

[25] C. Yakopcic and T. M. Taha, “Ex-Situ Programming in a Neuromorphic
Memristor Based Crossbar Circuit” IEEE National Aerospace and
Electronics Conference (NAECON), pp. 300-304, Dayton, OH, June,
2015.

[26] T. M. Taha, R. Hasan, and C. Yakopcic, “Memristor Crossbar Based
Multicore Neuromorphic Processors,” IEEE International SOCC, pp.
383-389, Las Vegas, NV, 2014.

[27] C. Yakopcic, R. Hasan, T. M. Taha, M. McLean, and D. Palmer,
"Memristor-based neuron circuit and method for applying a learning
algorithm in SPICE," IET Electronics Letters, vol. 50, no. 7, pp. 492-
494, April 2014.

[28] C. Yakopcic and T. M. Taha, “Energy efficient perceptron pattern
recognition using segmented memristor crossbar arrays,” IEEE
International Joint Conference on Neural Networks (IJCNN), pp. 1–8,
Dallas, TX, Aug. 2013.

[29] C. Yakopcic, R. Hasan, and T. M. Taha, “Memristor Based
Neuromorphic Circuit for Ex-Situ Training of Multi-Layer Neural

Network Algorithms,” IEEE International Joint Conference on Neural
Networks (IJCNN), pp. 1-7, Killarney, Ireland, July 2015.

[30] D. Soudry, D. D. Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
"Memristor-Based Multilayer Neural Networks With Online Gradient
Descent Training,” IEEE Trans. on Neural Networks and Learning
Systems, vol. 26, no. 10, pp. 2408-2421, Oct. 2015.

[31] Boxun Li; Yuzhi Wang; Yu Wang; Chen, Y.; Huazhong Yang,
"Training itself: Mixed-signal training acceleration for memristor-based
neural network," 19th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 361-366, Makuhari, Japan, Jan. 2014.

[32] D. Chabi, W. Zhao, D. Querlioz, J.-O. Klein, “Robust Neural Logic
Block (NLB) Based on Memristor Crossbar Array” IEEE/ACM
International Symposium on Nanoscale Architectures, pp.137-143, San
Diego, CA, June, 2011.

[33] C. Zamarreño-Ramos, L. A. Camuñas-Mesa, J. A. Pérez-Carrasco, T.
Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco, “On
spike-timing-dependent-plasticity, memristive devices, and building a
self-learning visual cortex,” Frontiers in Neuroscience, Neuromorphic
Engineering, vol. 5, Article 26, pp. 1-22, Mar. 2011.

[34] F. Alibart, E. Zamanidoost, and D.B. Strukov, "Pattern classification by
memristive crossbar circuits with ex-situ and in-situ training", Nature
Communications, 4(2072), pp. 1-7, June, 2013.

[35] R. Hasan and T. M. Taha, “Enabling Back Propagation Training of
Memristor Crossbar Neuromorphic Processors,” IEEE International
Joint Conference on Neural Networks, pp. 21-28,Beijing, China, July,
2014.

[36] M. Hu, H. Li, Q. Wu, G.S. Rose, and Y. Chen, "Memristor crossbar
based hardware realization of BSB recall function," International Joint
Conference on Neural Networks (IJCNN), pp. 1-7, Brisbane, Australia,
June, 2012

[37] J. H. Lee and K. K. Likharev, “Defect-tolerant nanoelectronic pattern
classifiers,” International Journal of Circuit Theory and Applications,
vol. 35, no. 3, pp. 239–264, May, 2007.

[38] D. Chabi, D. Querlioz, W. Zhao, and J. Klein, “Robust learning
approach for neuro-inspired nanoscale crossbar architecture,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol.
10, no. 1, pp. 1-20, Jan. 2014.

[39] D. Querlioz, O. Bichler, and C. Gamrat, “Simulation of a memristor
based spiking neural network immune to device variations,” IEEE
International Joint Conference on Neural Networks, pp. 1775–1781, San
Jose, CA, USA, July 2011.

[40] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman,
“Memristor crossbar-based neuromorphic computing system: A case
study,” IEEE Trans. On Neural Networks and Learning Systems, vol.
25, no. 10, pp. 1864–1878, Oct. 2014.

[41] J. Starzyk and Basawaraj, “Memristor crossbar architecture for
synchronous neural networks,” IEEE Transactions on Circuits and
Systems I, vol. 61, pp. 2390 – 2401, Aug. 2014.

[42] P. Sheridan, W. Ma, and W. Lu, “Pattern recognition with memristor
networks,” IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1078–1081, Melbourne, Austrailia, June, 2014.

[43] Y. Kim, Y. Zhang, and P. Li, “A digital neuromorphic vlsi architecture
with memristor crossbar synaptic array for machine learning,” IEEE
International SOC Conference (SOCC), pp. 328–333, Niagra Falls, NY,
Sept. 2012.

[44] A. M. Sheri, A. Rafique, W. Pedrycz, M. Jeon, "Contrastive divergence
for memristor-based restricted Boltzmann machine" Engineering
Applications of Artificial Intelligence, vol. 37, pp. 336-342, Jan. 2015.

[45] I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost and D. Strukov, "Efficient
Training Algorithms for Neural Networks Based on Memristive
Crossbar Circuits", IEEE International Joint Conference on Neural
Networks (IJCNN), pp. 1-8, Killarney, Ireland, July 2015.

[46] J. Schemmel, J. Fieres, K. Meier, “Wafer-Scale Integration of Analog
Neural Networks”, IEEE International Joint Conference on Neural
Networks (IJCNN), Hong Kong, China, June, 2008.

[47] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, D. S. Modha,
“A digital neurosynaptic core using embedded crossbar memory with

45pJ per spike in 45nm,” IEEE Custom Integrated Circuits Conference
(CICC), pp.1-4, San Jose, CA, Sept. 2011.

[48] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S.
Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar,
D. S. Modha, “Building block of a programmable neuromorphic
substrate: A digital neurosynaptic core,” IEEE International Joint
Conference on Neural Networks (IJCNN), pp.1-8, Brisbane, Australia,
June 2012.

[49] Y. Shim, A. Sengupta, K. Roy, “Low-Power Approximate Convolution
Computing Unit with Domain-Wall Motion Based “Spin-Memristor” for
Image Processing Applications,” 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), August, 2016.

[50] C. Yakopcic, M. Z. Alom, T. M. Taha, “Memristor Crossbar Deep
Network Implementation Based on a Convolutional Neural Network”
IEEE/INNS International Joint Conference on Neural Networks, pp. 963
– 970, July, 2016.

[51] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, V. Srikumar, “ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars,” ACM/IEEE 43rd Annual International
Symposium on Computer Architecture, pp. 14-26, June, 2016.

[52] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y, Xie,
“PRIME: A Novel Processing-in-memory Architecture for Neural
Network Computation in ReRAM-based Main Memory,” ACM/IEEE
43rd Annual International Symposium on Computer Architecture, pp.
27-39, June, 2016.

[53] W. Yi, F. Perner, M. S. Qureshi, H. Abdalla, M. D. Pickett, J. J. Yang,
M.-X. M. Zhang, G. Medeiros-Ribeiro, R. S. Williams, "Feedback write
scheme for memristive switching devices," Appl Phys A (2011) 102:
973–982, DOI 10.1007/s00339-011-6279-2.

[54] S. Yu, Y. Wu, and H.-S. P. Wong, "Investigating the switching
dynamics and multilevel capability of bipolar metal oxide resistive
switching memory," Applied Physics Letters 98, 103514 (2011).

[55] C. Yakopcic and T. M. Taha, “Memristor Crossbar Based
Implementation of a Multilayer Perceptron” IEEE National Aerospace
and Electronics Conference (NAECON), pp. 38-43, Dayton, OH, June
2017.

[56] C. Yakopcic and T. M. Taha, “Analysis and Design of Memristor
Crossbar Based Neuromorphic Intrusion Detection Hardware,”
IEEE/INNS International Joint Conference on Neural Networks
(IJCNN), pp. 1-7, Rio de Janeiro, Brazil, July, 2018.

[57] F. Alibart, L. Gao, B. Hoskins, and D.B. Strukov, “High-precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm”, Nanotechnology vol. 23, art. 075201, pp. 1-7, Jan. 2012

[58] C. Yakopcic, R. Hasan, T. M. Taha, and D. Palmer, “SPICE Analysis of
Dense Memristor Crossbars for Low Power Neuromorphic Processor
Designs” IEEE National Aerospace and Electronics Conference, pp. 305
– 311, Dayton, OH, June, 2015.

[59] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano Letters, vol. 10, pp. 1297–1301, Mar. 2010.

[60] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers,
“A Memristor Device Model,” IEEE Electron Device Letters, vol. 30,
no. 10, pp. 1436-1438, Oct. 2011.

[61] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino,
“Generalized Memristive Device SPICE Model and its Application in
Circuit Design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32, no. 8, pp. 1201-1214, August,
2013.

[62] A. Yadav, “Design of Two-Stage CMOS Op-Amp and Analyze the
Effect of Scaling,” International Journal of Engineering Research and
Applications, vol. 2 no. 5, pp. 647-654, Sept.-Oct. 2012.

[63] Siddarth, M. Garg, A. Gahlaut, “Comparative Study of CMOS Op-Amp
in 45nm and 180nm Technology,” Journal of Engineering Research and
Applications, vol. 4, no. 7, pp. 64-67, July, 2014.

