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Abstract—This paper describes a simulated memristor-based 

neuromorphic system that can be used for ex-situ training of a 

multi-layer perceptron algorithm. The presented programming 

technique can be used to map the weights required of a neural 

algorithm directly onto the grid of resistances in a memristor 

crossbar. Using this weight-to-crossbar mapping approach along 

with the dot product calculation circuit, neural algorithms can be 

easily implemented using this system. To show the effectiveness 

of this circuit, a Multilayer Perceptron is trained to perform 

Sobel edge detection. Following these simulations, an analysis 

was presented that shows how memristor programming accuracy 

and network size are related to output error; the results show 

that network size can be increased to reduce testing error. In 

some cases, the memristors in the circuit may be capable of 

operating with at lower precision if the network size is increased. 

This means that less precise (or lower resolution) memristor 

devices may be used to implement the proposed system. 

Furthermore, a power, timing, and energy analysis shows that 

this circuit has a computation throughput that allows it to 

process 4K UHD video in real time at approximately 337mW. 
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I. INTRODUCTION 

The main obstacles for continued performance 
improvement in future computing systems are reliability and 
power consumption. Embedded neuromorphic processing 
systems have significant advantages to offer, such as the ability 
to solve complex problems while consuming very little power 
and area [1,2]. These neural network accelerators can be used 
for a broad number of applications [3]. Furthermore, Chen et 
al. [4] have shown that Recognition, Mining, and Synthesis 
(RMS) applications (described by Intel as the key application 
drivers of future [3]) can be performed using neural networks.  

The memristor [5] has received significant attention as a 
potential building block for neuromorphic systems. The 
physical realization of the memristor [6] has produced a 
nanoscale non-volatile device with a large varying resistance 
range. Voltage pulses can be applied to memristors to alter 
their conductivity and tune them to a specific resistance state 
[7-9]. Physical memristors [10-13] can be laid out in a high 
density grid known as a crossbar [14-16]. Using this layout, 
memristors have the potential to be fabricated with a synaptic 
density greater than that of brain tissue [17]. Systems based on 
these circuits will produce high density, extreme low-power, 

neuromorphic hardware that is capable of performing many 
multiply-add operations in parallel in the analog domain 
[18,19]. Thus, neuromorphic systems based on memristor 
crossbars [20-25] have potential to perform at a power 
efficiency of 6 to 8 orders of magnitude greater than that of 
traditional RISC processors [26].  

Both memristor-based [27-45] and non-memristor based 
[46-48] wafer-scale hardware implementations of neural 
networks have been proposed. Some of these systems are 
capable of performing in-situ training, or on-chip learning 
[35]. Other systems are based on an ex-situ approach where 
weights are pre-trained in software [29]. Furthermore, groups 
have studied the impact of using memristors to implement 
convolution [49,50] or develop a Convolutional Neural 
Network [50-52]. Thus, a variety of different memristor 
architectures have been proposed that each implement 
different aspects of different neural network algorithms. 

This paper presents a circuit that uses a weight-to-crossbar 
mapping scheme that produces a dot-product output that is 
comparable to what is obtained using traditional software. In 
this system, the memristor conductance values are 
predetermined using an ex-situ training process. Thus, the best 
weights for this system can be pre-determined off chip. We 
use a feedback process to program these crossbars to ensure 
that memristor devices (which commonly exhibit some degree 
of stochastic behavior when switching [53,54]) are correctly 
programmed. We also use a weight programming scheme that 
uses a D-to-A for programming, and we study the minimum 
required bit-width and precision of the D-to-A circuits using a 
detailed study.  

In this work we use the proposed circuit to implement a 
multilayer perceptron trained to perform Sobel edge detection. 
From this example, we show how neural network size may 
impact mean squared error (MSE) in this system, and we show 
that increasing the number of neurons in the circuit allows this 
circuit to utilize lower resolution memristors to obtain the 
same MSE. Furthermore, we perform an energy, power, and 
timing analysis that brings forth a relationship between neural 
network evaluation accuracy and power consumed for real 
time operation. In general, this work presents a circuit that is 
capable of learning digital image processing functionality. 
Thus, due to the highly parallel memristor crossbar design, the 
circuit provides high speed and low power operation. 



Related works [31] have used summing amplifier 
techniques to carry out analog multiply-adds in a memristor 
crossbar, but this paper goes one step further and uses a 
method for weight conversion that allows us to obtain the 
expected dot product values (between the inputs and the 
weight matrix) precisely and reliably. Others have proposed 
alternative transformation strategies for memristor crossbars 
[40], but not to achieve versatile functionality based on 
accurate dot product calculations. We are also not aware of 
any other work that presents a parameter analysis that is able 
to provide a succinct relationship between neural network 
size, training time, MSE, memristor resolution and 
programming accuracy, energy, timing, and power.  

Work in this paper builds on a design that has been 
presented in several iterations. Work in [29] describes the first 
version of this circuit and required a 1T1M (1-Transistor 1-
Memristor) system (as opposed to the 0T1M (0-Transistor 1-
Memristor) system in this work). Next [18,55] describe the 
first instances of the circuit framework described in this paper, 
and detail how this single circuit can be used to implement 
several different neural network algorithms. Work in [56] 
shows how this circuit can be used to train a network capable 
of performing network intrusion detection. Lastly, [19,50] 
show how the presented circuit can be altered to implement a 
convolutional neural network. The unique aspects presented in 
the following work are parameter analyses that allow the user 
to form a relationship between network size, MSE, training 
time, and memristor resolution and programming accuracy. 
Furthermore, we uniquely present an energy, power, and 
timing analysis showing real-time digital image processing is 
feasible with memristor based neural network systems. 

II. MEMRISTOR BASED DOT-PRODUCT CALCULATOR 

The circuit in Fig. 1 is used to implement neurons that are 
capable of producing a true dot product calculation. This 
circuit will be used as the building block in the presented 
memristor crossbar system. In this circuit, two memristors are 
used to represent a single weight so that negative numbers can 
be represented accurately. To achieve this, the weight matrix 
from the neural algorithm W must first be transformed into 
two different matrices [18]. The matrix W+ contains positive 
non-zero elements where Wij > 0 and zeroes in all other 
positions. Therefore, Wij

+ = Wij when Wij > 0 and Wij
+=0 when 

Wij ≤ 0. Likewise, the matrix W- contains positive non-zero 
elements in each position where Wij < 0. Therefore, Wij

- = |Wij| 
when Wij < 0, and Wij

- = 0 where Wij ≥ 0. Using this method, W 
can always be reproduced by subtracting W- from W+. 

Memristor conductivities are used to represent the weight 
values in the neural network. Therefore, the value of each 
weight in the matrices W+ and W- must be converted to a 
bounded number within a conductance range between σmin and 
σmax. Equations (1) and (2) are used to convert the weight 
matrices W+ and W- into matrices of conductivity values (σ+ 
and σ-) that can be programmed into a memristor crossbar. 
Using this weight organization structure, both positive and 
negative weights can be represented because each weight 
value is represented by a pair of memristors, each tied to a 
voltage input that differs only in polarity. Weight polarity is 

determined by the polarity of the voltage input connected to 
the memristor in a given pair with the higher conductivity. 

Adding σmin to all values ensures that all zeros in the W+ 
and W- matrices will be at the minimum conductance level of 
the memristors. The op-amp circuit at the crossbar column 
output in Fig. 1 is used to both scale the column output 
voltage and implement the neuron activation function. This is 
an alternative approach to the systems that require a sigmoid 
activation circuit following an op-amp output such as [31]. It 
is desirable to have a non-binary activation function (such as a 
sigmoid) at each neuron output to allow for non-binary 
outputs and improved classification potential. To accomplish 
this in our work, the amplifier at the output of the circuit is 
used to create a pseudo sigmoid function as shown in Fig. 2. A 
linear amplifier transfer function (bounded by upper and lower 
voltage rails) matches the sigmoid relatively closely (see eq. 
(3)), and the simulation results in the following sections show 
that this is an effective alternative. To obtain the optimal 
linear fit of the sigmoid function m = 1/4 and b = 1/2.  
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Fig. 1. Memristor based neuron circuit that can be replicated across crossbar 

columns where VD1 = 0, VS1 = -1, VD2=1, and VS2=0. 
 

 
Fig. 2. Comparison of the sigmoid transfer function and the amplifier 

alternative (the first op-amp stage will actually produce an inverted result, but 
this will be the eventual outcome seen at the yj

+ output). 

 



The complete circuit in Fig. 1 will operate according to 
equations (4) through (6). The op-amp producing the yj

- output 
acts as a summing amplifier that also accounts for the slope 
and bias required of the approximate sigmoid activation 
function. The yj

- output is then fed into a unity gain inverting 
amplifier to obtain the yj

+ output (see eq. (6)).  
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In eq. (4) the output of the summing amplifier is 
determined. The voltage xN+1 = 1 and is used to drive the bias 
value b for the sigmoid function. The resistance Rg is the 
resistance of the programmable gain memristor Mg. A 
memristor is used to hold this resistance so that Mg can be set 
according to equation (5) during evaluation and set to σMAX 
during programming. The value σb is the conductance of the 
memristor MN+1 and σb=b/Rg. In eq. (5), Rg is set so that the 
summation of conductance and voltage pairs is multiplied by 
the inverse of the scaling factor in equations (1) and (2), as 
well as the slope of the activation function m. Using this 
method, the resulting outputs yj

+ and yj
- will now have a value 

equal to that of the typical dot product performed in a software 
implementation after the activation function has been applied. 
Using this method, the outputs are already formatted for the 
next layer of the network where yj

+ becomes the set of inputs 
for σij

+ and yj
- becomes the set of inputs for σij

-. 

Fig. 3 shows how repetitions of the circuit in Fig. 1 can be 
implemented within a memristor crossbar. The output of each 
crossbar column shows the simplified depiction of the op-amp 
circuit capable of producing the values yj

+ and yj
-. 
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Fig. 3. Diagram displaying the memristor crossbar design for processing a 

single layer of a neural network. 

III. EX-SITU TRAINING PROCESS 

To use the circuit described in the previous section, a 
memristor crossbar must be capable of being programmed to a 
set of precise conductance values. This section describes how 
programming precision will be defined, and will also present 
the programming circuit designed to perform this task. 

A. Memristor Programmability 

The idealized memristor device has a continuous bounded 
programmable resistance range. However, physical memristor 
device characterizations show stricter limitations in device 
programmability. Specifically, there appears to be a limit to 
how many discrete states can be programmed into a memristor 
device, and there is a certain amount of stochastic resistance 
change present when attempting to program a device to a 
specific resistance [18]. For example, work in [57] shows that 
128 states can be programmed into a memristor device, and 
this supports the programming assumptions that we have made 
in the presented work. We go beyond the work in [57] to show 
how feedback programming techniques can be used to 
implement neural network algorithms in crossbar circuits. 

For the system described in this paper we assume that 
there are only a set number of states in the memristor that can 
be accessed. This keeps the size of the D-to-As required for 
ex-situ programming at a minimum. There is also a 
programming precision (α) associated with each memristor 
state to account for stochastic switching noise. In the studies 
in this work, the programming precision is set to 0.01 V (this 
was previously determined as the optimal value for α in this 
circuit in [18]). This will make programming much easier 
because a memristor will only have to be programmed to 
within a set of bounds (instead of an exact resistance value).  

B. Crossbar Programming Circuit  

The circuit designed to implement the programming 
method is capable of programming one device at a time. An 
entire row of devices in the crossbar could be programmed 
simultaneously, but this would increase the chip area devoted 
to the programming circuit. We chose the single device 
approach because the object of this system is to program the 
crossbar once before it is used in a read mode extensively, so 
less importance was placed on programming speed.  

To program each of the weights in this memristor crossbar, 
only one row input xi (where i=1,…,N+1) is active (set to 1V) 
and all other inputs are set to 0V. This will reduce the 
summing amplifier to a simple inverting amplifier. Also, the 
second inverting amplifier that produces yj

+ can be ignored 
during the write process. In this circuit, the feedback 
memristor Mg is held at a constant value σMAX (or RMIN). Using 
this approach, when the target memristor being programmed 
(Mi) is set to σMAX, the output yj

-=-1 V. Likewise, when the 
target memristor Mi is set to σMIN, the output yj

-≈0 V.  

The schematic in Fig. 4 displays the entire programming 
circuit in addition to the active part of the memristor crossbar 
when programming a single memristor. This circuit utilizes 
two D-to-A converters to implement a bounded voltage range 
for successful programming. It is assumed that these D-to-A 
converters have access to the weight values produced using 



the desired learning algorithm in software. Also, it is assumed 
that software is able to convert each floating point weight to a 
value within a set of predefined conductivity states, where the 
size of this set corresponds to the width of the D-to-A used. 
This will essentially convert the weights from floating point to 
much lower resolution values. For the programming process to 
determine that a memristor is programmed, yj

- must be greater 
than τ-α and less than τ+α. The logic at the output of the 
comparators determines whether the memristor conductivity 
should be increased or decreased based the output voltage of 
the two comparators. If resistance is to be decreased, a 
positive write pulse will be applied to the memristor Mi, and if 
the resistance is to be increased, a negative pulse will be 
applied. This process will be repeated until the XOR gate in 
Fig. 4 has a high output, signifying a successfully 
programmed device. This iterative process is what forms the 
feedback programming system. A pulse width known to be 
much smaller than that required to fully switch the memristor 
is used to program the memristors to these specific resistances 
to induce very small amounts of resistance change [7,58].   
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Fig. 4. Circuit used to program a single memristor to a target resistance. 

 

The plot in Fig. 5 shows how the feedback programming 
process operates. The memristor switching characteristic was 
implemented with some switching noise added so that it 
would operate closer to a physical device (such as [59]). Once 
the op-amp output voltage yj

- falls within the dashed lines 
portraying the programming precision bounds, the XOR 
output becomes high and no more programming pulses are 
applied to this memristor. In these studies, memristors were 
assumed to behave according to the model in [60]. 
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Fig. 5. Example of how the feedback programming circuit will drive a 

memristor resistance to a value within the programming precision bounds. 

IV. MLP SOBEL EDGE DETECTION 

In this section, the proposed circuit design was used to 
implement a multilayer perceptron architecture (see Fig. 6 for 
network layout) to perform Sobel edge detection.  
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Fig. 6. Diagram for the perceptron used in this study. 

A. Part 1: Off-Chip Training 

The memristor based neural network is implemented to 
mimic the operation of a 3×3 edge detection kernel. The 
network topology that was used in this study was a 
10→L+1→1 multi-layer perceptron (see Fig. 6). The 10 inputs 
to the first layer represent a 3×3 pixel square and a single bias 
input (therefore N=10). The number of nodes in the hidden 
layer (L) is varied throughout these experiments to study the 
impact of network size, where node L+1 is a bias used in all 
experiments. The output is a single pixel used in part to 
construct the edge detected output image. The edge detected 
image will be constructed as each 9-pixel section of the input 
image is applied to the input layer of the neural net. No zero-
padding is applied to the input image, so the output will have 
2 less pixels in each direction when compared to the input. 

Fig. 7 displays a portion of an image that was input to a 
Sobel edge detector, and Fig. 7 (b) displays the corresponding 
output image (determined using a DSP algorithm, not a neural 
network). To train the neural network, the image in Fig. 7 (b) 
was input to the MLP system and the error was minimized to 
fall below a set threshold (either 0.5 or 0.4 in these 
experiments). In an example case, Fig. 8 shows that the MSE 
was minimized until MSE was less than 0.5 between Fig. 7 (b) 
and the neural network output. 

 
                                              (a)                      (b)  

Fig. 7. Portion of an image (30×30 pixels) that was used the train the neural 

network. Images show (a) the input and (b) the output for the Sobel Edge 
Detector (based on the DSP algorithm, not neural network approximation). 

 
Fig. 8. MSE when training the MLP based on the image in Fig. 7 (b).  



B. Part 2: Memristor Circuit Evaluation 

After the MLP was trained, the weights were programmed 
into the simulated memristor crossbar circuit, and the entire 
image was used to test the network. Fig. 9 displays the output 
comparisons via example image. The entire input image is 
displayed in Fig. 9 (a), and the resulting image due to the DSP 
Sobel filter (not the neural network) can be seen in Fig. 9 (b).  

          
                                  (a)                                                 (b) 

 
                                 (c)                                                 (d) 

Fig. 9. The images displayed are (a) the original input image, (b) the output 

image using the Sobel edge detection algorithm, (c) the output image using 
the memristor-based neural network with a 3-bit D-to-A for programming, 

and (d) the output image using the memristor-based neural network with a 2-

bit D-to-A for programming. In both (c) and (d), α=0.01 V. 

Figs. 9 (c) and (d) show the image outputs generated using 
the memristor neural network. Reducing the bit-width of the 
D-to-A circuits used during programming reduces the number 
of possible conductance values to which the memristors can 
be programmed. As the bit width of the D-to-As is reduced, 
the MSE in the system increases. Fig. 9 (c) shows the output 
image obtained from the memristor based neural network after 
it was programmed using a 3-bit D-to-A. The MSE between 
Figs. 9 (b) and (c) is 0.0033. Fig. 9 (d) shows the resulting 
output image when a 2-bit D-to-A is used for programming. 
Since a fewer number of resistance states can be programmed, 
the error goes up significantly. The MSE between Figs. 9 (b) 
and (d) is 0.0112. 

It should be noted that when comparing the results from 
training and evaluation, the MSE during evaluation is much 
lower. This is because MSE is averaged over all of the pixels 
in the image, and in this case most of the pixels were solid 
black and easily reproduced by the hardware. This large 
amount of dark data brings down the average error when 
compared to the visually complex training image segment. 

V. DESIGN SPACE ANALYSIS 

Now that the initial implementation has been tested, 
several follow-on simulations were performed using this 
system with varying perceptron layouts. The studies in this 

section evaluate the interplay between memristor 
programming bit width, MSE, energy, power, and timing. This 
is an extension of work presented in [18]. 

A. Network Layout Analysis 

The three plots in Fig. 10 show the resulting MSE for three 
different network configurations: the first had 20 hidden 
neurons and a training error threshold of 0.5, the second had 
50 hidden neurons and a training error threshold of 0.5, and 
the third had 50 hidden neurons and a training error threshold 
of 0.4. The training error threshold was pushed lower because 
this was observed to improve testing MSE. Alternatively, it is 
very difficult to achieve a training error of 0.4 with only 20 
hidden nodes, so that result is not considered. Beyond this 
limited design space, it may be possible to further optimize the 
relationship between network size and training threshold to 
determine a stronger configuration. Since the memristor 
system we are proposing uses ex-situ training, all of this 
network layout, design, and analysis can be done in software 
before the final optimized weights are simply downloaded into 
the memristor system.  

After the network layouts and weight matrices were 
determined, these weights were programmed into the 
simulated memristor crossbar system using the ex-situ 
programming approach in Section III. A programming bit 
width of either 2, 3, or 4 was used, so the memristors in this 
system can store either 4, 8, or 16 unique states respectively. 
Each of the plots in Fig. 10 present a data point designating a 
mean MSE for each bit width. This mean is based on 10 
identical iterations of the programming process in Section III 
(see the red, blue, and green circles in each plot), these are not 
10 different training processes. This variation is simply due to 
the error that occurs when programming each memristor in the 
crossbar. Since the memristors start at a high random 
resistance and they are subject to significant variability during 
programming, identical results after programming are rarely 
obtained.  

B. Memristor Resolution Analysis 

To extend this experiment, we determined how large the 
network would have to be before the number of programmable 
states within the memristor devices could be reduced. This 
was done using the same simulation setup and circuit model 
described in Section III, except that the number of hidden 
layers present in the network layout was varied between 
experiments. The result in Table I displays two different 
network options along with the corresponding testing MSE for 
both the 3 and 4-bit programming options. This result shows 
that when the number of hidden nodes in the system is 100 
and the training error threshold is equal to 0.4, the testing error 
with 3-bit programming is less than the error obtained for 4-bit 
programming of the system with 20 hidden nodes and a 
training error threshold of 0.5. This also shows that the size of 
the system can be increased to reduce the required number of 
programmable memristor states in the system. In this case, if a 
MSE less than .0014 is required, either the number of required 
programmable memristor states can be increased, or the size 
of the network can be increased. This makes the system more 
general, as a lower resolution memristor could be used if 



network size is increased. However, five time as many hidden 
layer neurons are required to achieve that result. 

 
          (a) 

 
        (b) 

 
           (c) 

Fig. 10. Simulation results that show resulting MSE for different 

programming bit widths and network arrangements. Plots show (a) a network 
with 20 hidden nodes and a training threshold of 0.5, (b) a network with 50 

hidden nodes and a training threshold of 0.5, and (c) a network with 50 hidden 

nodes and a training threshold of 0.4.  
 

Table I. Results that display the relationship between MSE, network size, and 

programming bit width. 

Number of Hidden 

Nodes (L) 

Training 

Threshold 

Testing 

MSE: 3 Bits 

Testing 

MSE: 4 Bits 

20 0.5 0.00146 0.00124 

100 0.4 0.00092 0.00110 

C. Energy, Timing, and Power Analysis 

In the previous subsection, a relationship between 
memristor resolution and network size has been determined. 
Thus, we can now use the data in this section to determine a 
relationship between memristor resolution and power 
consumption. Tables II and III display the energy and power 
requirements during evaluation of the two network layouts 

compared in Table I (power and energy analysis of the system 
during training will be carried out in future work). 

To generate the data in Tables II and III, a small scale 
SPICE simulation of the circuits used to develop the neural 
network layouts were used. The memristors were simulated 
according to the model in [60,61], and the op-amps in the 
column amplifiers were designed starting from the circuits in 
[62,63] using 180 nm technology. It is assumed that the 
memristors used in this study have a minimum resistance of 
125 kΩ and a maximum resistance of 125 MΩ. The average 
energy consumption of this circuit for a 9-pixel evaluation was 
considered to be the mean energy generated from four 
simulations with different sample inputs. Average energy 
consumption values were then determined for a single 
memristor, and a single column amplifier (which consists of 
two op-amp circuits), and multiplied to determine the energy 
consumption of the entire network layout. Table II shows that 
the large network layout capable of achieving desired MSE 
with lower resolution memristors requires approximately 4.2 
times the energy to operate. Therefore, a tradeoff exists 
between memristor resolution, MSE, and energy consumption. 

Table II. Energy consumption breakdown of the two memristor based MLP 
structures described in Table I. 

Attribute 

Energy Consumption  

System 1 

20 Hidden Neurons 

442 Memristors 

21 Amplifiers 

System 2 

100 Hidden Neurons 

1202 Memristors 

101 Amplifiers 

Avg. Memristor Energy 400 fJ 400 fJ 

Avg. Column Amplifier Energy 23.81 pJ 23.81 pJ 

Total Memristor Energy 176.98 pJ 481.28 pJ 

Total Amplifier Energy 500.04 pJ 2404.97 pJ 

Energy to Generate One Pixel 677.02 pJ 2886.25 pJ 

Energy to Process Image in Fig. 9 43.68 µJ 186.21 µJ 

 
Given that the column amplifier circuit has a resolve time 

of about 100 ns, we assume the maximum operating frequency 
of this system is 10 MHz. Therefore, if real-time video 
processing is required, a single circuit can process at most 10 
million pixels per second. Using this limit, we can determine 
how many copies of the memristor based neuromorphic image 
processing circuit are required to process real-time video of 
different sizes and speeds (see Table III). The power estimates 
in Table III only account for the processing circuit described 
in this work and do not account for clocking, bit-shifting, or 
data splitting. Power consumption is likely to increase if this 
circuit is implemented as part of a larger system.  

Table III. Power consumption and throughput breakdown of the two 
memristor based MLP structures described in Table I. 

Application 

Circuits 

Required for 

Real Time 

Processing 

Power (mW) 

System 1 

20 Hidden 

Neurons 

442 Memristors 

21 Amplifiers 

System 2 

100 Hidden 

Neurons 

1202 Memristors 

101 Amplifiers 

Low Resolution Video 

(640×480 Pixels 24 FPS) 
1 4.99 21.28 

HD Ready Video 

(1280×720 Pixels 30 FPS) 
3 18.72 79.80 

Full HD Video 

(1920×1080 Pixels 30 FPS) 
7 42.12 179.55 

4K UHD Video 

(3840×2160 Pixels 60 FPS) 
50 336.93 1436.38 



VI. CONCLUSION 

This ex-situ system is capable of programming a 
memristor crossbar based on a set of quantized weights 
generated using a traditional software implementation of a 
given learning algorithm. Each memristor crossbar is capable 
of reproducing accurate dot product outputs, so values can be 
transmitted between network layers correctly. Using this 
system, we were able to show successful neural network based 
digital image processing at high throughput and low power. 
The design space analysis in this work details the relationships 
between network size, MSE, memristor resolution, energy, 
power, and timing. Results show that 4K UHD video can be 
processed in real time at a power consumption of 
approximately 337mW if 50 replicas of the neural network 
evaluation circuit are used simultaneously. Likewise, utilizing 
a memristor device that is only capable of storing 8 states 
instead of 16 is likely to cause a 4.2× increase in the 
processing energy required. 

Future work includes scaling the system to see how an N-
layer network will perform. Furthermore, the results presented 
in this work are based on the edge detection of a single image. 
Moving forward, we want to compare these results to neural 
implementations of several other DSP applications to see if 
any other patterns emerge when tuning programming 
parameters. We also plan to study how this design performs 
on a physical memristor crossbar. 
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