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Abstract—Memristor devices have the potential to drive a new 

class of specialized low power embedded hardware. The unique 

characteristics of these non-volatile and nanoscale devices allow 

them to perform parallel analog computing with extreme 

efficiency. To help facilitate the design of such systems, this paper 

describes the fabrication and characterization process used to 

develop memristors that are strong candidates for use in 

neuromorphic systems. In this work two different types of 

memristor devices, those with a GeTe switching layer, and those 

with a VO2 switching layer, are characterized and analyzed. These 

results are used to determine device suitability for use in 

neuromorphic computing applications through the properties of 

symmetry, reliability, stability, and programmability. In short, 

repeatable multi-level resistive switching has been investigated 

and the results have been summarized. 

Keywords—memristor, neuromorphic, hysteresis, multi-level 

resistive switching 

I. INTRODUCTION 

The memristor [1] is a non-volatile two-terminal passive 
circuit element with a wide programmable resistance range. 
Memristors can be laid out in a high density grid known as a 
crossbar [2], which gives them the potential to be fabricated with 
an areal density greater than that of synapses in brain tissue [1]. 
These crossbars can be used to produce high density, extreme 
low-power, neuromorphic hardware [3-5] capable of performing 
many parallel multiply-add operations in the analog domain. 
Existing papers [3-5] based on the simulation of neuromorphic 
memristor crossbars show promising results with these large 
high density structures. Furthermore, Neuromorphic systems 
based on memristor crossbars have potential to perform at a 
power efficiency of 6 to 8 orders of magnitude greater than that 
of traditional RISC processors [4]. However, before these 
systems can be developed, physical memristor crossbars must 
first be investigated. 

As opposed to non-volatile memory systems [6,7], the ideal 
memristor in neuromorphic systems should have multiple 
resistance levels that allow for a programmable resistance range 
[3,8-16]. Work in [17-25] shows many different applications for 
memristors in neuromorphic computing where crossbars are 
used to carry out high speed, low power computation. In this 
work, two different types of memristors are studied in terms of 
efficacy and reliability. These include memristors based on 
germanium telluride (GeTe), as well as memristors based on 
vanadium oxide (VO2). Since the physical realization of the 

memristor at HP Labs [1], several institutions [2,14,16,26,27] 
have presented memristive switching in a wide array of 
materials. However, resistive switching thinfilms that contain 
GeTe and VO2 have not garnered the attention of more 
commonly used materials such as TiO2 [16] and TaO2 [28]. 
Therefore, this paper aims to analyze memristor devices based 
on these materials to determine the quality of their resistive 
switching properties. Furthermore, we aim to determine whether 
these materials are suitable for developing memristors that are 
capable of supporting neuromorphic circuit functionality. 

This paper is organized as follows: Section II describes 
memristor structures and deposition methods. Device 
characterization results are presented in Section III, and Section 
IV provides a brief results discussion in terms of device 
suitability for neuromorphic systems. The conclusion is 
provided in Section V. 

II. MEMRISTOR DEVICES 

The memristor devices presented in this work were 
deposited as a Metal-Insulator-Metal (MIM) stack on Si wafers. 
In each chase, the substrate is silicon (Si) topped with 2 μm of 
Plasma Enhanced Chemical Vapor Deposited (PECVD) silicon 
dioxide (SiO2) [29]. Both devices were patterned with the same 
mask set using photolithography. Fig. 1 shows microscopic 
images displaying an array of isolated memristor devices, as 
well as a single 4 × 4 memristor crossbar. The numbers in Fig. 
1 (a) correspond to the device overlap area in µm2 for each 
individual memristor. Likewise, the digit ‘5’ in Fig. 1 (b) 
represents an overlap area of 5 µm2 for each memristor device 
in the crossbar.  
 

 
(a)                                                                 (b)  

Fig. 1. Microscopic images displaying (a) an array of isolated memristor 

devices, and (b) a 4 × 4 memristor crossbar array. 

A. The Germanium Telluride Memristor 

The thinfilm layers that make up the germanium telluride 
memristor studied in this work can be viewed in Fig. 2 (a). The 

(a) (b)



top and bottom electrodes for this device consist of Pt, with the 
addition of Ti films for adhesion. Electrodes were deposited 
using the E-beam evaporation, and a pulsed laser deposition 
(PLD) process was utilized for the deposition of a 40 nm thick 
germanium telluride (GeTe) switching layer for all memristor 
devices on this wafer.  

B. The Vanadium Oxide Memristor 

The layer structure for the vanadium oxide memristor is 
displayed in Fig. 2. (b). In this case the electrode structure 
comprises of Pt and Au, with Ti for adhesion and Au isolation. 
A 50 nm vanadium oxide (VO2) switching layer was deposited 
using the same PLD process as that used to deposit GeTe. 
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Fig. 2. Cross-sectional diagrams of the two memristors studied in this work 

including (a) the device based on GeTe, and (b) the device based on VO2. 

III. DEVICE CHARACTERIZATION 

Electrical characterization for each memristor wafer was 
performed with an electrical measurement system consisting of 
a semiconductor characterization system (Keithley 2400-SCS) 
and a probing station. A MATLAB script was developed to 
control the Keithley system to ensure maximum versatility. 
Using this setup, we are able to apply any arbitrary voltage 
sequence to the a probed memristor wafer, with a minimum 
sample pulse width of one Power Line Cycle (PLC), which is 
about 17 ms. Highly non-linear switching kinetics are observed 
in the electrical characterization of each memristor device [30]. 

A. The Germanium Telluride Memristor 

The I-V characteristic obtained from a 7.5 um2 GeTe 
memristor device is depicted in Fig. 3. A repetitive cyclical 
voltage sweep was applied to the top electrode, and the bottom 
electrode was set to ground. At approximately 0.7 V the device 
current increases which bring the memristor device to its low 
resistance state (LRS). This mechanism is called SET. If no 
further external bias acts upon the memristor, it should 
theoretically retain the low resistive state until significant 
charge is once again applied. To turn the memristor off, a bias 
of opposite polarity is applied. In this case the memristor device 
was RESET at approximately 0.75 V. This switching pattern 
produces the familiar bowtie-shaped pinched hysteresis loop 
that is characteristic of memristors. To ensure the device safety, 

a compliance current of 3 mA is fixed within the test setup. The 
cyclic voltage sweep was repeated eight times to test device 
stability with successive stimuli. This GeTe memristor shows 
strong repeatability with only minor degradation in hysteresis 
during the 8th cycle.  

 
Fig. 3. Plot displaying the I-V characteristic of a 7.5 µm2 GeTe memristor 
showing resistive switching over multiple cyclic voltage sweeps. 

 

Furthermore, the electrical characterization in Fig. 4 shows 
hysteresis in both the positive and negative regimes for ten 
consecutive voltage sweeps. In this case, even with identical 
cyclic inputs, identically overlapped hysteresis is not achieved. 
Rather, some deviation is seen between cycles. This is assumed 
to be due to the existence of quasi fermi levels within the device 
electrodes, which would alter the population of electrons 
available between cycles. Furthermore, a continuously high 
field stress may alter tunnel current probability between cycles 
based on the changing state of the chalcogenide thinfilm.  

 
Fig. 4. Characterization of a 10 μm2 GeTe memristor displaying the slight 
variations observed in ten repetitive cyclic voltage sweeps.  

 
In Fig. 4, the SET voltage is found to be approximately 0.75 

V. Assuming read voltage is less than 0.15 V, it can be 
concluded from this characterization that it is possible to retain 



multiple resistance states due to the tunneling of charge carriers 
from the electrode quasi fermi levels towards the traps within 
the switching layer. With every individual trial, different 
resistive states are obtained after the SET voltage is applied. 
The inset in Fig. 4 shows a closer view of the existence of 
multiple states within the READ voltage range. 

The result in Fig. 5 displays a characterization of a GeTe 
memristor where multiple RESET sweeps are applied after a 
single SET sweep. Each consecutive RESET sweep pushes the 
current level to a lower position. 

 
Fig. 5. Semi-log plot displaying an I-V characeristic where multiple negative 
voltage sweeps are applied after a single SET sweep on a 10µm2 GeTe 

memristor. 

 

The current levels corresponding to the positive SET 
sweeps are shown with the blue line in the right half plane of 
Fig. 5. Application of two RESET sweeps with a minimum 
voltage of -0.8 V produces two distinct hysteresis loops, which 
signifies an intermediate resistive state during the RESET 
process.  

To further investigate the presence of intermediate 
resistance states, electrical characterization was performed by 
varying the current compliance level between cyclic sweeps. A 
cyclic sweep with a magnitude of 2 V both along the positive 
and negative direction was applied three times, each with a 
different current compliance. A zero-crossing pinched 
hysteresis is observed when current compliance is set to either 
40 µA, 400 µA, or 4 mA. These results are displayed in Fig. 6. 

Fig. 7 displays current compliance dependent multi-level 
switching from a 5 µm2 device from the same GeTe wafer. This 
is a similar experiment to the one shown in Fig. 6, although the 
compliance current is varied from 30 µA to 3 mA to facilitate a 
smaller device area. This experiment also produces individual 
resistive states, although the current loops produced at the 300 
µA and 3 mA compliance levels are much closer together when 
compared to the result in Fig. 6. This is because the compliance 
current was not reached in these cases, so compliance had less 
impact on device current.  

The characterization results obtained from these GeTe 
memristors can be explained by the elastic trap assisted 
tunneling phenomenon. Distinct trap energy levels within GeTe 
dominate the charge transport mechanism. Multiple stable 

resistance states can be observed which produce a hysteresis at 
different compliance currents. Experimentally, it was found 
that these GeTe based memristor devices are capable of 
retaining multiple states based on different current 
compliances. It may be possible to construct a neuromorphic 
circuit based on memristors that are capable of a slower 
transition from a high resistance state (HRS) to a low resistance 
state (LRS) by emulating this compliance with a series 
transistor in a 1T1M crossbar design [31].  

 
Fig. 6. Compliance current dependent multi-level resistive switching for a GeTe 

memristor with device area of 12.5 µm2. 

 

 
Fig. 7. A characterization result where compliance current is used to induce 

intermediate resistance states with a more subtle change based on a reduced 

voltage sweep magnitude in a 5µm2 GeTe memristor. 

B. The Vanadium Oxide Memristor 

The I-V characteristic obtained from the vanadium oxide 
(VO2) memristor device is shown in Fig. 8. In this case the 
compliance current was fixed at 3 mA. Based on this data, the 
SET voltage is approximately 1 V, and the RESET voltage is in 
the range of -1 V. When looking at Fig. 8, several non-linear 
jumps can be observed near the switching points. In future 
work, we aim to take advantage of these semi-stable current 
changes to induce multistage programmability.  



 
Fig. 8. Memristor I-V characteristic of 10µm2 VO2 device.  

IV. DISCUSSION 

When studying the results obtained in this work, one notices 
a high degree of variability in these devices. However, that is 
not necessarily harmful to the desired neuromorphic computing 
applications [17-25]. This is because the goal in these 
neuromorphic systems is to program memristor devices along a 
continuous conductivity range, as opposed to inducing uniform 
binary switching. Many neuromorphic programming 
approaches contain a feedback mechanism to ensure the correct 
value is written within a memristor [12,15,22,23], even if that 
value is not obtained in a single cycle. Furthermore, work in 
[32] shows that stochastic devices are a necessity in some 
electronic computation systems, as they alleviate the need for 
expensive random number generators. Thus, we desire a device 
that is flexibly programmable over one that is perfectly 
uniform. 

V. CONCLUSION 

This paper presents two memristor devices, one based on 
GeTe and one based on VO2. Based on the corresponding I-V 
characterizations, hysteresis and intermediate resistance states 
can be observed. The experiments in this work determined that 
there is a programmable resistance range within these devices.  

In the future we plan to develop methods for creating 
devices with a smaller cross-sectional area using higher 
resolution fabrication methods. We also plan to perform 
electrical characterizations that test thermal stability.  Finally, 
we plan on testing memristor crossbars to determine if 
structures based on the devices examined are capable of 
learning. 
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