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Abstract— Edge devices often have to process data at low
power and would benefit from being adaptable. Given that the
data coming into these devices is generally unlabeled,
unsupervised training on these devices is beneficial. This paper
examines a low power approach to implement the winner takes
all algorithm, for self-organizing maps through a memristor
crosshar based circuit. A novel neuron circuit is designed for the
winning neuron detection and lateral inhibition operations. Our
experimental results show that the proposed system can self-
organize based on unlabeled training data. The proposed design
was around 0.002mm? in area and consumed about 0.2mW of
power. When compared to a CPU, the design had a higher error
rate, but was 100 times faster and consumed much lower area
and power. Thus when area or power reduction are crucially
important, this approach is quite viable.

Keywords—  Self-organizing-maps; memristor  crossbars;

winner takes all; online training.

I. INTRODUCTION

There is now a vast proliferation of edge devices that are
generally low power and have limited internet connectivity.
These devices often have to process data at low power and
would benefit from being adaptable. Given that the data
coming into these devices is generally unlabeled, unsupervised
training on these devices is beneficial. This paper examines a
low power approach to implement self-organizing map (a
category of competitive learning networks that does not
require labeled data).

To achieve low power, we utilize memristor based crossbar
circuits for learning. The memristor [1] is a novel non-volatile
device having a large varying resistance range. Physical
memristors can be laid out in a high density grid known as a
crossbar [2]. A memristor crossbar can perform many multiply-
add operations in parallel and the conductance of multiple
memristors in a crossbar can be updated in parallel [3,4].
Multiply-add operations are the dominant operations in neural
networks and the training of neural networks requires the
update of synaptic weights iteratively. As a consequence,
memristors have a great potential as a synaptic element in a
neural network based system design.

This paper implements a memristor crossbar based self-
organizing system which learns from unlabeled data. We are
using memristor crossbars for high synaptic weight density and
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for very low energy parallel analog processing. The system
essentially implements the winner takes all learning algorithm.
A novel neuron circuit is designed for the winner neuron
detection and lateral inhibition operations (to inhibit other
neurons from firing). The proposed system could be used as an
online learning system for unlabeled data clustering.

The most recent results for memristor based neuromorphic
systems can be seen in [3-6]. Alibart [3] and Preioso [4]
examined memristor based linearly separable classifier designs.
Soudry et al. [5] proposed the implementation of gradient
descent based training on memristor crossbar neural networks.
Choi et al. examined dimensionality reduction utilizing a
memristor based PCA (principal component analysis) system
[6]. They implemented Sanger’s learning rule, a derivative of
Hebb’s rule, in memristor crossbar to obtain the principal
components. Diugosz et al. [7] examines CMOS
implementation of winner takes all algorithm which utilizes
Euclidean distance calculation and comparators. Proposed
memristor based design would be significantly area and power
efficient compared to the CMOS implementations.

The proposed design was around 0.002mm? in area and
consumed about 0.2mW of power. When compared to a CPU,
our design had a higher error rate, but was 100 times faster and
consumed much lower area and power. Thus when area or
power reduction are crucially important, this approach is quite
viable. A preliminary version of this work without any area,
power, timing, or accuracy analysis was presented in [8].

The rest of the paper is organized as follows: section II
describes memristor based neuron circuit and implementation
of the winner takes all algorithm for self-organizing system
design. Section III describes experimental setup and results.
Finally, future work in section IV and we concluded our work
in section V.

II. MEMRISTOR BASED SELF-ORGANIZING SYSTEM

A. Learning Algorithm

This work utilizes a variant of the self-organizing-maps
(SOM) algorithm [9] known as winner takes all [10], which is
more suitable for memristor based implementations. In this
algorithm, neurons in a layer compete with each other for
activation. Only the neuron with the highest activation (or
similarity) stays active while all other neurons stay inactive.
The winner takes all learning algorithm is stated below:
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Randomly initialize n neuron weights, w; (for j=1,2,..n)
For each training data, pi

Calculate similarity, s;j between p; and wj; (for j=1,2,..n)

k=arg max; sjj

wi=(1-a) wk +a pi where o is the learning rate
Repeat until convergence

B. Neuron Circuit

Fig. 1 shows the memristor crossbar based neuron circuit
used in this paper. In this figure, each column is implementing
a neuron. The conductance of the memristor at each row of a
column represents the synaptic weight for the corresponding
input in that row. At the bottom of a neuron circuit, there is a
capacitor which accumulates charge after an input is applied to
the network. At steady state, the potential across the capacitor
is the normalized dot product of the inputs and weights ((4o4 +
Bop + Coc + 0.01)/(04toptoctaoyr)) for the neuron in the first
column) as Rj is a high resistance. The capacitor is used to
determine the winning neuron after an input is applied (detailed
later). The neurons have a bias input of OV and the
conductance value corresponding to the bias input is ;. If all
the inputs are 1 without this bias all the V; would be very close
and it would not be easy to distinguish the winner neuron for
this input.
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Fig. 1. Memristor crossbar based neuron circuit for self-organizing circuit
design. A, B, C are the inputs applied as voltage and o4, o5, Gc are the
memristor conductances working as weights of a neuron.

C. Similarity Measure

The training algorithm requires an evaluation of the
similarity between inputs and neuron weights. The cosine
similarity is a popular metric for similarity measure. The
cosine similarity between two vectors X and W; is
XWX W1)]). If we need to compare the similarity
between X and W;. W, a comparison of X.Wy/||Wi|| for
i=1,2,.., n would provide the cosine similarity comparison. In
this paper we propose to use the normalized dot product of the
inputs and weights as the similarity metric between them. The
normalized dot product approximates the cosine similarity by
dividing the dot product by the /-/ norm of W, instead of the /-
2 norm.

Recently, several studies [11,12] used the dot product as a
similarity metric for self-organizing circuit design. The dot
product is a very rough similarity estimate and does not work

TABLE I. NEURON WEIGHTS

Neuron 1 | Neuron 2
Input 1 1 0.9
Input 2 1 0.7

TABLE II. SIMILARITIES BETWEEN INPUT [1 0]" AND THE NEURONS

Dot Cosine Normalized
Product | similarity dot product
Neuron 1 1 0.707 0.5
Neuron 2 0.9 0.789 0.562
Inputs

Neuron output

Neuron outputs

Control

unit reset

Fig. 2. Neuron circuit with additional components for training. ¥, goes
high only for the winner neuron and weights are updated only for that
winner) neuron.

well for clustering/self-organization. Table I shows a 2x2
weight matrix (columns 1 and 2 correspond to neurons 1 and 2
respectively, and each neuron has 2 inputs). Table II shows the
similarity measures for the input [1 0]T by applying different
methods. If the dot product is considered, neuron 1 (column 1)
gives highest similarity over neuron 2. Considering cosine
similarity and normalized dot product, neuron 2 is more similar
to [1 0]" which is more reasonable.

D. Winner Takes All Logic Implementation

In Fig. 1, after a new input is applied, the starting potential
across the capacitor is approximately the normalized dot
product of the inputs and weights (V;=[4o4 + Bop + Coc +
0.01]/[o4+0s+0c +a)] for the neuron in first column) as R; is a
high resistance. The capacitor corresponding to a higher V; will
charge faster than other capacitors and the capacitor which
exceeds a particular threshold first is considered as the winning
neuron. A CMOS inverter is used to detect when a capacitor’s
potential crosses a threshold of 0.1 V (see Fig. 1). The neuron
whose capacitor crosses the threshold voltage first, switches
voltage V, from low to high (referred to as a neuron firing) and
updates the weights in the weight update phase (detailed later).
Fig. 2 shows the additional components for detecting firing and
weight update. The control unit synchronizes the operations
during training and is shared by all the neurons in a crossbar.
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Fig. 3. Timing of the signals during training. After the reset bar pulse the
neurons start integrating currents. The winner neuron fires first and V, goes
high for only for the winner. Then fired signal goes high and no other neuron
can switch ¥, to high. Weight are only updated for the winner neuron.

Once a neuron fires for a particular input, it needs to inhibit
other neurons from firing. This is important, because weights
will be updated only for the winning neuron. The control unit
takes the output of all the neurons and performs a NAND
operation. If any of the neuron outputs switches from high to
low, the output of the NAND gate will switch from low to
high. The control unit propagates this firing event through the
fired line after a small delay. As a result, any other neuron
cannot switch its V, to high, and thus cannot update its weight
in the weight update phase.

E.  Weight Update

In general, a certain energy (or threshold voltage, V) is
required to enable the state change in a memristive device [13].
When the electrical excitation through a memristor exceeds the
threshold, i.e., V(#)>Vy, the resistance of the device changes.
Otherwise, a memristor behaves like a resistor. The device
characterized in [13] has a threshold voltage of about 1.3V.

For the winner neuron, weights are updated in two steps.
The conductance of the memristors corresponding to high
inputs are increased by 2A. After that, the conductance of all
the memristors of that neuron are decreased by A. Fig. 3 shows
the amplitude of different signals during training. Assume that
neuron i fires at time ¢. Just after time ¢, V, of neuron i switches
from low to high, which turns on the NMOS transistor and
discharges the capacitor. Eventually, the potential at the bottom
of the fired neuron becomes V;=-0.5 V (see Fig. 3). Memristors
corresponding to a high input get a potential across them of
about 1.5 V (which is greater than the device threshold voltage)
and increases their conductance. The control unit keeps Vy=
-0.5 Vtill time t+24T.

At time t+24T, the control unit switches V, to +0.5V and
puts a potential of -1V at each of the input rows. This causes
the potential across all the memristors (belonging to the winner
neuron) to become -1.5V and the conductance of the
memristors decrease. This scenario is sustained till time #+347.
At time t+34T, the reset_bar pulse is applied along with V=
-0.5V, fired=0V, and the next training data is applied at the
inputs. The net effect on the winner neuron, is that for the
memristors corresponding a high input, there is an increase in
conductance for A7 time. For the memristors corresponding to
low inputs, the conductance will decrease for time A7T. The
duration 47 determines the learning rate.

III. EXPERIMENTAL SETUP

The memristor crossbar circuits were simulated in SPICE
so that the memristor grid could be evaluated very accurately
considering the crossbar sneak-paths and wire resistances. A
wire resistance of 5Q between memristors in the crossbar is
considered in these simulations. The memristors were
simulated with an accurate model of the device published in
[14]. This device has a minimum resistance of 10 kQ, a
maximum resistance of 100 kQ, and the full resistance range of
the device can be switched in 100 ns by applying 1.5 V across
the device. Values of g, R, and C in Fig. 2 are 10 pS, 1 MQ,
and 100 fF respectively.

We implemented the theoretical SOM in MATLAB
without the ‘forgetting term’ as in [15] to test the proposed
memristor hardware device implementing winner takes all
learning scenario, where the weight update was:

dw;;(t) {OC [x:(£) — w; (), if j En(D)
at 0 ifj & n(t)

Here,

a: learning rate,

wi(t): existing weights

J: winner neuron

n(t): range or size of bubble for the neighboring weights
which is assumed as 1 in our work.

IV. RESULTS

A. 2D Synthetic Data

We considered training synthetic data with 120 two
dimensional vectors which were centered around (0, 1), (1, 0),
and (1, 1). A 3x3 crossbar with randomly initialized
conductances was used for the training. The third row of the
crossbar was the bias input and was connected to ground. Each
resistor in the third row had a conductance value of o1 and was
not trained. Fig. 4 shows the distribution of the inputs, initial
and final trained weights. In different training trials, different
clusters are learned by different neurons in the crossbar, based
on the randomly initialized weights. While the theoretical
approach had a misclassification error of 0%, the proposed
design had an average misclassification rate of 27% (average
error for 1000 trials). The key reason for this is due to the
memristors reaching maximum or minimum conductance
levels after a certain number of training pulses. This problem
does not occur in the theoretical algorithm, and thus the error is
not present there.

As shown in Fig 5(a), we tested another synthetic 2D data
set centered around (0, 0.5), (0.7, 0.3), (0.9, 0.85). We
observed that the proposed approach still gave the same range
of average error (31%). We also observed that the final weight
values leaned towards the extremes of the system (higher or
lower conductance of the memristor) [15]. As shown in Fig
5(b), the final weights of our results were (0.2, 1), (1, 0.1) and
(1, 1) when theoretical results should be at (0, 0.5), (0.7, 0.3)
and (0.9, 0.85) as in 5(c).
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Fig. 4. Plot showing the (a) training data and initial weights for synthetic 2D data, (b) final weights and cluster for the proposed approach, and (c) final weights
and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductancex10*,
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Fig. 5. Plot showing the (a) training data and initial weights for synthetic 2D data with a different initial distribution from Fig. 4, (b) final weights and cluster
for the proposed approach, and (c) final weights and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductancex10*.
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Fig. 6. Plot showing the (a) training data and initial weights for synthetic 3D data, (b) final weights and cluster for the proposed approach, and (c) final weights

and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductancex10*.

B. 3D Synthetic Data

This experiment considered training synthetic data with
160 three dimensional vectors which were centered around (0,
0, 1), (1, 0, 0), (0, 1, 0), and (1, 1, 1). A 4x4 crossbar with
randomly initialized conductances was used for the training.
The fourth row of the crossbar was the bias input and was
connected to ground. Each resistor in the fourth row had a
conductance value of o1 and was not trained. Fig. 6 shows the
distribution of the inputs, initial and final trained
weights.Similar to results in the 2D synthetic data, we observe
some error in our design as well as in the theoretical SOM

implementation. The particular image for the theoretical SOM
given below has zero error, but on average (after 1000 trials)
has a 6.11% mis-classification error while our design has
29.76% error.

C. Wisconsin Breast Cancer Dataset

The Wisconsin Breast Cancer Dataset is a well-known
dataset among the Self Organizing Maps community and
created by Dr. William H. Wolberg (a physician) at the
University of Wisconsin Hospitals, Madison in 1992 [16]. It
has 9 different features scaling from 1 to 10 in integer format,
and has two classes of cancer, benign and malignant. A 10x2
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Fig. 7. Plot showing the (a) training data and initial weights for the Wisconsin Breast Cancer Dataset, (b) final weights and cluster for the proposed approach,
and (c) final weights and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductancex10*.
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Fig. 8. Plot showing the (a) training data and initial weights for the Glass Dataset, (b) final weights and cluster for the proposed approach, and (c) final weights
and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductancex10%.

crossbar with randomly initialized conductances was used for
the training. The tenth row of crossbar was the bias input and
was connected to ground. Each resistor in the tenth row had the
conductance value o) and was not trained. For this dataset, the
proposed design give a 9.5% error while the theoretical SOM
gave 4.2% error as shown in Fig 7.

D. Glass Identification Dataset

The Glass Identification dataset was created by B. German
of the Home Office Forensic Science Service in 1987 [17]. It
has features of glasses with the weight percent of 8 different
periodic table elements in 7 types. All of them are a subset of
two main classes: window glasses or non-window glasses.
Dataset values vary in continuous range between 0 and 100. A
9x2 crossbar with randomly initialized conductances was used
for the training. The ninth row of the crossbar was the bias
input and was connected to ground. Each resistor in the ninth
row had a conductance value of o) and was not trained. The
proposed design had a higher accuracy than the theoretical
SOM for the Glass dataset as shown in Fig 8. Errors were 7%
and 14% for the proposed design and the theoretical SOM
respectively.

E. Power and Performance

Table III shows the area, time and power of the
benchmarks examined. Time and power are given for a single

TABLE III. AREA, TIME AND POWER

Area Time |Power | CPU Matlab
Dataset (mm?) (us) | (mW) | Time (us)

2D synthetic | 0.00165 | 0.258 | 0.190 26.071

3D synthetic | 0.00169 | 0.260 | 0.205 25.518

Breast Cancer | 0.00175 | 0.260 | 0.235 26.282

Glass 0.00173 | 0.258 | 0.228 25.445

TABLE IV. Mis-CLASSIFICATION ERROR FOR DIFFERENT DATASETS
Crossbar size| Memristor | Theoritcal
(features x SOM SOM
Dataset classes) Error % | Error %

2D Synth 3x3 27.10 0.00]
3D Synth 4 x4 29.76 6.11
IBreast Cancer 10 x 2| 9.50) 4.20)
(Glass Identification 9 x 2| 7.20) 14.30]
[Tic Tac Toe 9x2 45.75 50.00]
Z0o 16 x 7, 60.21 72.00]
\Veterabal 6 x 2| 41.42) 29.28
IBalance 4x 2| 47.50 42.00]
IDiabetes 8 x 2| 47.60) 46.20
IAVERAGE 35.12% 29.34%|

sample and a single iteration. Time is in the range of 0.26us
while power in the range of 0.2mW. The CPU implementation
of the theoretical SOM using MATLAB gave an average time
in the range of 26us. When compared to the CPU in terms of
area, time, and power, the proposed design has significant
advantages.



Table IV represent the mis-classification error of the
proposed design as well as the base line theoretical SOM.
Results for five other datasets are presented, along with the
four described earlier. These results show that the proposed
memristor approach has on average about 5.8% more error
than the theoretical approach (though for individual cases, the
actual error may be much higher). The key source of this error
is that the memristor conductance may reach a maximum or
minimum value from multiple inputs.

V. CONCLUSION

This paper presented a memristor crossbar based winner
takes all circuit design for self-organization. The proposed
neuron circuit accumulates charge over time and the neuron
closest (based on the normalized dot product) to the input,
exceeds a threshold voltage before any other neuron. Once a
neuron fires, it inhibits others from firing. Hence only weights
of the winner neuron are updated. Our experimental results
show that the proposed system can self-organize based on the
unlabeled data applied to the system.

The proposed design has significant area, power, and speed
advantages over a digital CPU based design, but has more
error. Thus when area or power reduction are crucially
important, this approach is quite viable. The error is due to the
memristor conductance reaching a limit (max or min) from
multiple resistance changing pulses (one per input). As future
work, an approach is needed to avoid this saturation. The
proposed approach could be used for unsupervised training of
data at very low power consumption. Replacing the neuron
output circuit with specialized devices could also reduce the
area and power consumption of the system.
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