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Abstract— Edge devices often have to process data at low 

power and would benefit from being adaptable. Given that the 

data coming into these devices is generally unlabeled, 

unsupervised training on these devices is beneficial. This paper 

examines a low power approach to implement the winner takes 

all algorithm, for self-organizing maps through a memristor 

crossbar based circuit. A novel neuron circuit is designed for the 

winning neuron detection and lateral inhibition operations. Our 

experimental results show that the proposed system can self-

organize based on unlabeled training data. The proposed design 

was around 0.002mm2 in area and consumed about 0.2mW of 

power. When compared to a CPU, the design had a higher error 

rate, but was 100 times faster and consumed much lower area 

and power. Thus when area or power reduction are crucially 

important, this approach is quite viable. 

Keywords— Self-organizing-maps; memristor crossbars; 

winner takes all; online training. 

I. INTRODUCTION 

There is now a vast proliferation of edge devices that are 

generally low power and have limited internet connectivity. 

These devices often have to process data at low power and 

would benefit from being adaptable. Given that the data 

coming into these devices is generally unlabeled, unsupervised 

training on these devices is beneficial. This paper examines a 

low power approach to implement self-organizing map (a 

category of competitive learning networks that does not 

require labeled data). 
To achieve low power, we utilize memristor based crossbar 

circuits for learning. The memristor [1] is a novel non-volatile 
device having a large varying resistance range. Physical 
memristors can be laid out in a high density grid known as a 
crossbar [2]. A memristor crossbar can perform many multiply-
add operations in parallel and the conductance of multiple 
memristors in a crossbar can be updated in parallel [3,4]. 
Multiply-add operations are the dominant operations in neural 
networks and the training of neural networks requires the 
update of synaptic weights iteratively. As a consequence, 
memristors have a great potential as a synaptic element in a 
neural network based system design. 

This paper implements a memristor crossbar based self-
organizing system which learns from unlabeled data. We are 
using memristor crossbars for high synaptic weight density and 

for very low energy parallel analog processing. The system 
essentially implements the winner takes all learning algorithm. 
A novel neuron circuit is designed for the winner neuron 
detection and lateral inhibition operations (to inhibit other 
neurons from firing). The proposed system could be used as an 
online learning system for unlabeled data clustering. 

The most recent results for memristor based neuromorphic 
systems can be seen in [3-6]. Alibart [3] and Preioso [4] 
examined memristor based linearly separable classifier designs. 
Soudry et al. [5] proposed the implementation of gradient 
descent based training on memristor crossbar neural networks. 
Choi et al. examined dimensionality reduction utilizing a 
memristor based PCA (principal component analysis) system 
[6]. They implemented Sanger’s learning rule, a derivative of 
Hebb’s rule, in memristor crossbar to obtain the principal 
components. Długosz et al. [7] examines CMOS 
implementation of winner takes all algorithm which utilizes 
Euclidean distance calculation and comparators. Proposed 
memristor based design would be significantly area and power 
efficient compared to the CMOS implementations. 

The proposed design was around 0.002mm2 in area and 
consumed about 0.2mW of power. When compared to a CPU, 
our design had a higher error rate, but was 100 times faster and 
consumed much lower area and power. Thus when area or 
power reduction are crucially important, this approach is quite 
viable. A preliminary version of this work without any area, 
power, timing, or accuracy analysis was presented in [8]. 

The rest of the paper is organized as follows: section II 
describes memristor based neuron circuit and implementation 
of the winner takes all algorithm for self-organizing system 
design. Section III describes experimental setup and results. 
Finally, future work in section IV and we concluded our work 
in section V. 

II. MEMRISTOR BASED SELF-ORGANIZING SYSTEM 

A. Learning Algorithm 

This work utilizes a variant of the self-organizing-maps 
(SOM) algorithm [9] known as winner takes all [10], which is 
more suitable for memristor based implementations. In this 
algorithm, neurons in a layer compete with each other for 
activation. Only the neuron with the highest activation (or 
similarity) stays active while all other neurons stay inactive. 
The winner takes all learning algorithm is stated below: 
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Randomly initialize n neuron weights, wj (for j=1,2,..n)  
For each training data, pi  
 Calculate similarity, sij between pi and wj (for j=1,2,..n)  

k=arg maxj sij  
wk=(1-α) wk +α pi   where α is the learning rate  

Repeat until convergence 

B. Neuron Circuit 

Fig. 1 shows the memristor crossbar based neuron circuit 
used in this paper. In this figure, each column is implementing 
a neuron. The conductance of the memristor at each row of a 
column represents the synaptic weight for the corresponding 
input in that row. At the bottom of a neuron circuit, there is a 
capacitor which accumulates charge after an input is applied to 
the network. At steady state, the potential across the capacitor 
is the normalized dot product of the inputs and weights ((AσA + 
BσB + CσC + 0.σL)/(σA+σB+σC+σL)) for the neuron in the first 
column) as Rh is a high resistance. The capacitor is used to 
determine the winning neuron after an input is applied (detailed 
later). The neurons have a bias input of 0V and the 
conductance value corresponding to the bias input is σL. If all 
the inputs are 1 without this bias all the Vi would be very close 
and it would not be easy to distinguish the winner neuron for 
this input. 

 

Fig. 1. Memristor crossbar based neuron circuit for self-organizing circuit 
design. A, B, C are the inputs applied as voltage and σA, σB, σC are the 
memristor conductances working as weights of a neuron. 

C. Similarity Measure 

The training algorithm requires an evaluation of the 
similarity between inputs and neuron weights. The cosine 
similarity is a popular metric for similarity measure. The 
cosine similarity between two vectors X and W1 is 
X.W1/(||X||.||W1||). If we need to compare the similarity 
between X and W1...Wn, a comparison of X.Wi/||Wi|| for 
i=1,2,.., n would provide the cosine similarity comparison. In 
this paper we propose to use the normalized dot product of the 
inputs and weights as the similarity metric between them. The 
normalized dot product approximates the cosine similarity by 
dividing the dot product by the l-1 norm of Wi instead of the l-
2 norm.  

Recently, several studies [11,12] used the dot product as a 
similarity metric for self-organizing circuit design. The dot 
product is a very rough similarity estimate and does not work 

well for clustering/self-organization. Table I shows a 2×2 
weight matrix (columns 1 and 2 correspond to neurons 1 and 2 
respectively, and each neuron has 2 inputs). Table II shows the 
similarity measures for the input [1 0]T by applying different 
methods. If the dot product is considered, neuron 1 (column 1) 
gives highest similarity over neuron 2. Considering cosine 
similarity and normalized dot product, neuron 2 is more similar 
to [1 0]T which is more reasonable. 

D. Winner Takes All Logic Implementation  

In Fig. 1, after a new input is applied, the starting potential 
across the capacitor is approximately the normalized dot 
product of the inputs and weights (V1=[AσA + BσB + CσC + 
0.σl]/[σA+σB+σC +σl] for the neuron in first column) as Rh is a 
high resistance. The capacitor corresponding to a higher Vi will 
charge faster than other capacitors and the capacitor which 
exceeds a particular threshold first is considered as the winning 
neuron. A CMOS inverter is used to detect when a capacitor’s 
potential crosses a threshold of 0.1 V (see Fig. 1). The neuron 
whose capacitor crosses the threshold voltage first, switches 
voltage Vg from low to high (referred to as a neuron firing) and 
updates the weights in the weight update phase (detailed later). 
Fig. 2 shows the additional components for detecting firing and 
weight update. The control unit synchronizes the operations 
during training and is shared by all the neurons in a crossbar. 

TABLE I.  NEURON WEIGHTS 

 Neuron 1 Neuron 2 

Input 1 1 0.9 

Input 2 1 0.7 

TABLE II.   SIMILARITIES BETWEEN INPUT [1 0]T
 AND THE NEURONS 

 Dot 

Product 

Cosine 

similarity 

Normalized 

dot product 

Neuron 1 1 0.707 0.5 

Neuron 2 0.9 0.789 0.562 

 
Fig. 2. Neuron circuit with additional components for training. Vg goes 

high only for the winner neuron and weights are updated only for that 

winner) neuron. 

 



 
Fig. 3. Timing of the signals during training. After the reset_bar pulse the 

neurons start integrating currents. The winner neuron fires first and Vg goes 
high for only for the winner. Then fired signal goes high and no other neuron 

can switch Vg to high. Weight are only updated for the winner neuron. 

Once a neuron fires for a particular input, it needs to inhibit 
other neurons from firing. This is important, because weights 
will be updated only for the winning neuron. The control unit 
takes the output of all the neurons and performs a NAND 
operation. If any of the neuron outputs switches from high to 
low, the output of the NAND gate will switch from low to 
high. The control unit propagates this firing event through the 
fired line after a small delay. As a result, any other neuron 
cannot switch its Vg to high, and thus cannot update its weight 
in the weight update phase. 

E. Weight Update 

In general, a certain energy (or threshold voltage, Vth) is 
required to enable the state change in a memristive device [13]. 
When the electrical excitation through a memristor exceeds the 
threshold, i.e., V(t)>Vth, the resistance of the device changes. 
Otherwise, a memristor behaves like a resistor. The device 
characterized in [13] has a threshold voltage of about 1.3V. 

For the winner neuron, weights are updated in two steps. 
The conductance of the memristors corresponding to high 
inputs are increased by 2Δ. After that, the conductance of all 
the memristors of that neuron are decreased by Δ. Fig. 3 shows 
the amplitude of different signals during training. Assume that 
neuron i fires at time t. Just after time t, Vg of neuron i switches 
from low to high, which turns on the NMOS transistor and 
discharges the capacitor. Eventually, the potential at the bottom 
of the fired neuron becomes Vb=-0.5 V (see Fig. 3). Memristors 
corresponding to a high input get a potential across them of 
about 1.5 V (which is greater than the device threshold voltage) 
and increases their conductance. The control unit keeps Vb=     
-0.5 V till time t+2ΔT. 

At time t+2ΔT, the control unit switches Vb to +0.5V and 
puts a potential of -1V at each of the input rows. This causes 
the potential across all the memristors (belonging to the winner 
neuron) to become -1.5V and the conductance of the 
memristors decrease. This scenario is sustained till time t+3ΔT. 
At time t+3ΔT, the reset_bar pulse is applied along with Vb=   
-0.5V, fired=0V, and the next training data is applied at the 
inputs. The net effect on the winner neuron, is that for the 
memristors corresponding a high input, there is an increase in 
conductance for ΔT time. For the memristors corresponding to 
low inputs, the conductance will decrease for time ΔT. The 
duration ΔT determines the learning rate. 

III. EXPERIMENTAL SETUP 

The memristor crossbar circuits were simulated in SPICE 
so that the memristor grid could be evaluated very accurately 
considering the crossbar sneak-paths and wire resistances. A 
wire resistance of 5Ω between memristors in the crossbar is 
considered in these simulations. The memristors were 
simulated with an accurate model of the device published in 
[14]. This device has a minimum resistance of 10 kΩ, a 
maximum resistance of 100 kΩ, and the full resistance range of 
the device can be switched in 100 ns by applying 1.5 V across 
the device. Values of σl, Rh and C in Fig. 2 are 10 μS, 1 MΩ, 
and 100 fF respectively. 

We implemented the theoretical SOM in MATLAB 
without the ‘forgetting term’ as in [15] to test the proposed 
memristor hardware device implementing winner takes all 
learning scenario, where the weight update was: 

 

Here, 
α: learning rate,  
wij(t):  existing weights 
 j: winner neuron  
η(t): range or size of bubble for the neighboring  weights 

which is assumed as 1 in our work.  

IV. RESULTS 

A. 2D Synthetic Data  

We considered training synthetic data with 120 two 
dimensional vectors which were centered around (0, 1), (1, 0), 
and (1, 1). A 3×3 crossbar with randomly initialized 
conductances was used for the training. The third row of the 
crossbar was the bias input and was connected to ground. Each 
resistor in the third row had a conductance value of σl and was 
not trained. Fig. 4 shows the distribution of the inputs, initial 
and final trained weights. In different training trials, different 
clusters are learned by different neurons in the crossbar, based 
on the randomly initialized weights. While the theoretical 
approach had a misclassification error of 0%, the proposed 
design had an average misclassification rate of 27% (average 
error for 1000 trials). The key reason for this is due to the 
memristors reaching maximum or minimum conductance 
levels after a certain number of training pulses. This problem 
does not occur in the theoretical algorithm, and thus the error is 
not present there.  

As shown in Fig 5(a), we tested another synthetic 2D data 
set centered around (0, 0.5), (0.7, 0.3), (0.9, 0.85). We 
observed that the proposed approach still gave the same range 
of average error (31%). We also observed that the final weight 
values leaned towards the extremes of the system (higher or 
lower conductance of the memristor) [15]. As shown in Fig 
5(b), the final weights of our results were (0.2, 1), (1, 0.1) and 
(1, 1) when theoretical results should be at (0, 0.5), (0.7, 0.3) 
and (0.9, 0.85) as in 5(c). 



B. 3D Synthetic Data  

This experiment considered training synthetic data with 
160 three dimensional vectors which were centered around (0, 
0, 1), (1, 0, 0), (0, 1, 0), and (1, 1, 1). A 4×4 crossbar with 
randomly initialized conductances was used for the training. 
The fourth row of the crossbar was the bias input and was 
connected to ground. Each resistor in the fourth row had a 
conductance value of σl and was not trained. Fig. 6 shows the 
distribution of the inputs, initial and final trained 
weights.Similar to results in the 2D synthetic data, we observe 
some error in our design as well as in the theoretical SOM 

implementation. The particular image for the theoretical SOM 
given below has zero error, but on average (after 1000 trials) 
has a 6.11% mis-classification error while our design has 
29.76% error. 

C. Wisconsin Breast Cancer Dataset 

The Wisconsin Breast Cancer Dataset is a well-known 
dataset among the Self Organizing Maps community and 
created by Dr. William H. Wolberg (a physician) at the 
University of Wisconsin Hospitals, Madison in 1992 [16]. It 
has 9 different features scaling from 1 to 10 in integer format, 
and has two classes of cancer, benign and malignant. A 10×2 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Plot showing the (a) training data and initial weights for synthetic 2D data, (b) final weights and cluster for the proposed approach, and (c) final weights 
and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductance×104. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Plot showing the (a) training data and initial weights for synthetic 2D data with a different initial distribution from Fig. 4, (b) final weights and cluster 

for the proposed approach, and (c) final weights and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductance×104. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Plot showing the (a) training data and initial weights for synthetic 3D data, (b) final weights and cluster for the proposed approach, and (c) final weights 

and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductance×104. 



crossbar with randomly initialized conductances was used for 
the training. The tenth row of crossbar was the bias input and 
was connected to ground. Each resistor in the tenth row had the 
conductance value σl and was not trained. For this dataset, the 
proposed design give a 9.5% error while the theoretical SOM 
gave 4.2% error as shown in Fig 7. 

D. Glass Identification Dataset 

The Glass Identification dataset was created by B. German 
of the Home Office Forensic Science Service in 1987 [17]. It 
has features of glasses with the weight percent of 8 different 
periodic table elements in 7 types. All of them are a subset of 
two main classes: window glasses or non-window glasses. 
Dataset values vary in continuous range between 0 and 100. A 
9×2 crossbar with randomly initialized conductances was used 
for the training. The ninth row of the crossbar was the bias 
input and was connected to ground. Each resistor in the ninth 
row had a conductance value of σl and was not trained. The 
proposed design had a higher accuracy than the theoretical 
SOM for the Glass dataset as shown in Fig 8. Errors were 7% 
and 14% for the proposed design and the theoretical SOM 
respectively. 

E. Power and Performance 

Table III shows the area, time and power of the 
benchmarks examined. Time and power are given for a single 

sample and a single iteration. Time is in the range of 0.26µs 
while power in the range of 0.2mW. The CPU implementation 
of the theoretical SOM using MATLAB gave an average time 
in the range of 26µs. When compared to the CPU in terms of 
area, time, and power, the proposed design has significant 
advantages. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Plot showing the (a) training data and initial weights for the Wisconsin Breast Cancer Dataset, (b) final weights and cluster for the proposed approach, 

and (c) final weights and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductance×104. 
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(c) 

Fig. 8. Plot showing the (a) training data and initial weights for the Glass Dataset, (b) final weights and cluster for the proposed approach, and (c) final weights 

and cluster for the Matlab implementation of the SOM algorithm. Weights are plotted as conductance×104. 

 

TABLE III.  AREA, TIME AND POWER 

Dataset 

Area 

(mm2) 

Time 

(µs) 

Power 

(mW) 

CPU Matlab 

Time (µs) 

2D synthetic 0.00165 0.258 0.190 26.071 

3D synthetic 0.00169 0.260 0.205 25.518 

Breast Cancer 0.00175 0.260 0.235 26.282 

Glass 0.00173 0.258 0.228 25.445 
 
TABLE IV.  MIS-CLASSIFICATION ERROR FOR DIFFERENT DATASETS 

Dataset 

Crossbar size 

(features × 

classes) 

Memristor 

SOM    

Error % 

Theoritcal 

SOM 

Error % 

2D Synth 3 x 3 27.10 0.00 

3D Synth 4 x 4 29.76 6.11 

Breast Cancer 10 x 2 9.50 4.20 

Glass Identification 9 x 2 7.20 14.30 

Tic Tac Toe 9 x 2 45.75 50.00 

Zoo 16 x 7  60.21 72.00 

Veterabal 6 x 2 41.42 29.28 

Balance 4 x 2 47.50 42.00 

Diabetes 8 x 2 47.60 46.20 

AVERAGE  35.12% 29.34% 

 



Table IV represent the mis-classification error of the 
proposed design as well as the base line theoretical SOM. 
Results for five other datasets are presented, along with the 
four described earlier. These results show that the proposed 
memristor approach has on average about 5.8% more error 
than the theoretical approach (though for individual cases, the 
actual error may be much higher). The key source of this error 
is that the memristor conductance may reach a maximum or 
minimum value from multiple inputs.  

V. CONCLUSION 

This paper presented a memristor crossbar based winner 
takes all circuit design for self-organization. The proposed 
neuron circuit accumulates charge over time and the neuron 
closest (based on the normalized dot product) to the input, 
exceeds a threshold voltage before any other neuron. Once a 
neuron fires, it inhibits others from firing. Hence only weights 
of the winner neuron are updated. Our experimental results 
show that the proposed system can self-organize based on the 
unlabeled data applied to the system. 

The proposed design has significant area, power, and speed 
advantages over a digital CPU based design, but has more 
error. Thus when area or power reduction are crucially 
important, this approach is quite viable. The error is due to the 
memristor conductance reaching a limit (max or min) from 
multiple resistance changing pulses (one per input). As future 
work, an approach is needed to avoid this saturation. The 
proposed approach could be used for unsupervised training of 
data at very low power consumption. Replacing the neuron 
output circuit with specialized devices could also reduce the 
area and power consumption of the system. 
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