—
— OO0 d &N L B~

—

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38

39

40

41
42
43

/
i mbey
08
Type of the Paper (Review.)

The State of the Art Survey on Deep Learning Theory
and Architectures

Md Zahangir Aloml*, Tarek M. Taha', Chris Yakopcicl, Stefan Westbergl, Paheding Sidike?, Mst
Shamima Nasrin!, Brian C Van Essen’, Abdul A S. Awwal®, and Vijayan K. Asari'

Dept. of Electrical and Computer Engineering, University of Dayton, OH 45469, USA
Dept. Earth and Atmospheric Sciences, Saint Louis University, MO 63108, USA
Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
Correspondence: alommI@udayton.edu

¥ @ N =

Received: date; Accepted: date; Published: date

Abstract: In recent years, deep learning has garnered tremendous success in a variety of
application domains. This new field of machine learning has been growing rapidly and has been
applied to most traditional application domains, as well as some new areas that present more
opportunities. Different methods have been proposed based on different categories of learning,
including supervised, semi-supervised, and un-supervised learning. Experimental results show
state-of-the-art performance using deep learning when compared to traditional machine learning
approaches in the fields of image processing, computer vision, speech recognition, machine
translation, art, medical imaging, medical information processing, robotics and control,
bio-informatics, natural language processing (NLP), cybersecurity, and many others. This survey
presents a brief survey on the advances that have occurred in the area of DL, starting with the Deep
Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN) including Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial
Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent
developments such as advanced variant DL techniques based on these DL approaches. This work
considers most of the papers published after 2012 from when the history of deep learning began.
Furthermore, DL approaches that have been explored and evaluated in different application
domains are also included in this survey. We also included recently developed frameworks, SDKs,
and benchmark datasets that are used for implementing and evaluating deep learning approaches.
There are some surveys that have been published on Deep Learning using Neural Networks [1, 38]
and a survey on RL [234]. However, those papers have not discussed individual advanced
techniques for training large-scale deep learning models and the recently developed method of
generative models [1].

Keywords: Deep Learning; Convolutional Neural Network (CNN); Recurrent Neural Network
(RNN); Auto-Encoder (AE); Restricted Boltzmann Machine (RBM); Deep Belief Network (DBN);
Generative Adversarial Network (GAN); Deep Reinforcement Learning (DRL); Transfer Learning.

1. Introduction

Since the 1950s, a small subset of Artificial Intelligence (Al), often called Machine Learning (ML), has
revolutionized several fields in the last few decades. Neural Networks (NN) is a subfield of ML, and it was

this subfield that spawned Deep Learning (DL). Since its inception DL has been creating ever larger

Electronics 2018, 7, x; doi: FOR PEER REVIEW www.mdpi.com/journal/electronics

mailto:alomm1@udayton.edu

44
45
46
47
48
49
50
51
52
53
54
55
56

57

58
59
60
61
62

63
64

65

Electronics 2018, 7, x FOR PEER REVIEW 2 of 74

disruptions, showing outstanding success in almost every application domain. Figure 1 shows the taxonomy
of Al. DL which uses either deep architectures of learning or hierarchical learning approaches), is a class of
ML developed largely from 2006 onward. Learning is a procedure consisting of estimating the model
parameters so that the learned model (algorithm) can perform a specific task. For example, in Artificial Neural
Networks (ANN), the parameters are the weight matrices. DL, on the other hand, consists of several layers in
between the input and output layer which allows for many stages of non-linear information processing units
with hierarchical architectures to be present that are exploited for feature learning and pattern classification [1,
2]. Learning methods based on representations of data can also be defined as representation learning [3].
Recent literature states that DL based representation learning involves a hierarchy of features or concepts,
where the high-level concepts can be defined from the low-level ones and low-level concepts can be defined
from high-level ones. In some articles, DL has been described as a universal learning approach that is able to

solve almost all kinds of problems in different application domains. In other words, DL is not task specific

[4].

1.1. Type of Deep Learning Approaches

Deep learning approaches can be categorized as follows: supervised, semi-supervised or
partially supervised, and unsupervised. In addition, there is another category of learning approach
called Reinforcement Learning (RL) or Deep RL (DRL) which are often discussed under the scope of
semi-supervised or sometimes under unsupervised learning approaches.

Brain-Inspired

Figure 1. The taxonomy of AI. Al: Artificial Intelligence, ML, NN, DL, and Spiking Neural Networks (SNN)
according to [294].

66

67
68
69
70
71
72
73
74
75

76

77
78
79
80

81

82
83
84
85
86
87
88
&9

90

91
92
93
94
95
96
97
98
99
100
101
102
103
104

Electronics 2018, 7, x FOR PEER REVIEW 30f74

1) Deep Supervised Learning

Supervised learning is a learning technique that uses labeled data. In the case of supervised DL
approaches, the environment has a set of inputs and corresponding outputs (x;,y,;)~p. For example,
if for input xt, the intelligent agent predicts y, = f(x;), the agent will receive a loss value [(y;, ;).
The agent will then iteratively modify the network parameters for better approximation of the
desired outputs. After successful training, the agent will be able to get the correct answers to
questions from the environment. There are different supervised learning approaches for deep
leaning including Deep Neural Networks (DNN), Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN) including Long Short Term Memory (LSTM), and Gated

Recurrent Units (GRU). These networks are described in Sections 2, 3, 4, and 5, respectively.

2) Deep Semi-supervised Learning

Semi-supervised learning is learning that occurs based on partially labeled datasets. In some
cases, DRL and Generative Adversarial Networks (GAN) are used as semi-supervised learning
techniques. GAN is discussed in Section VII. Section VIII surveys DRL approaches. Additionally,
RNN including LSTM and GRU are used for semi-supervised learning as well.

3) Deep Unsupervised Learning

Unsupervised learning systems are ones that can without the presence of data labels. In this
case, the agent learns the internal representation or important features to discover unknown
relationships or structure within the input data. Often clustering, dimensionality reduction, and
generative techniques are considered as unsupervised learning approaches. There are several
members of the deep learning family that are good at clustering and non-linear dimensionality
reduction, including Auto-Encoders (AE), Restricted Boltzmann Machines (RBM), and the recently
developed GAN. In addition, RNNs, such as LSTM and RL, are also used for unsupervised learning
in many application domains [243]. Sections 6 and 7 discuss RNNs and LSTMs in detail.

4) Deep Reinforcement Learning (RL)

Deep Reinforcement Learning is a learning technique for use in unknown environments. DRL
began in 2013 with Google Deep Mind [5, 6]. From then on, several advanced methods have been
proposed based on RL. Here is an example of RL: if environment samples inputs: x,~p , agent
predict: y, = f(x,), agent receive cost: c;~P(c¢|x;,J,) where P is an unknown probability
distribution, the environment asks an agent a question, and gives a noisy score as the answer.
Sometimes this approach is called semi-supervised learning as well. There are many
semi-supervised and un-supervised techniques that have been implemented based on this concept
(in Section 8). In RL, we do not have a straight forward loss function, thus making learning harder
compared to traditional supervised approaches. The fundamental differences between RL and
supervised learning are: first, you do not have full access to the function you are trying to optimize;
you must query them through interaction, and second, you are interacting with a state-based
environment: input x; depends on previous actions.

Depending upon the problem scope or space, one can decide which type of RL needs to be

applied for solving a task. If the problem has a lot of parameters to be optimized, DRL is the best

105
106
107

108
109

110

111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

128

Electronics 2018, 7, x FOR PEER REVIEW 4 of 74

way to go. If the problem has fewer parameters for optimization, a derivation free RL approach is

good. An example of this is annealing, cross entropy methods, and SPSA.

Figure 2. Category of Deep Leaning approaches.

1.2. Feature Learning

A key difference between traditional ML and DL is in how features are extracted. Traditional
ML approaches use handcrafted engineering features by applying several feature extraction
algorithms such as Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF),
GIST, RANSAC, Histogram Oriented Gradient (HOG), Local Binary Pattern (LBP), Empirical Mode
Decomposition (EMD) for speech analysis, and many more. Finally, the learning algorithms
including support vector machine (SVM), Random Forest (RF), Principle Component Analysis
(PCA), Kernel PCA (KPCA), Linear Decrement Analysis (LDA), Fisher Decrement Analysis (FDA),
and many more are applied for classification on the extracted features [298]. Additionally, other
boosting approaches are often used where several learning algorithms are applied on the features of
a single task or dataset and a decision is made according to the multiple outcomes from the different
algorithms.

On the other hand, in the case of DL, the features are learned automatically and are represented
hierarchically in multiple levels. This is the strong point of DL against traditional machine learning
approaches. The following table shows the different feature-based learning approaches with

different learning steps.

Table 1. Different feature learning approaches.

Approaches Learning steps

Rule-based Input Hand-design | Output
features

Traditional Input Hand-design | Mapping from | Output

Machine Learning features features

Representation Input Features Mapping from | Output

Learning features

Deep Learning Input Simple Complex Mapping from | Output
features features features

Electronics 2018, 7, x FOR PEER REVIEW 50f 74

129
130 A
131 Figure 3. Applications of DL approaches [161].

132 1.3. Why and When to apply DL

133 DL is employed in several situations where machine intelligence would be useful (see Figure 3):
134 e Absence of a human expert (navigation on Mars)

135 e Humans are unable to explain their expertise (speech recognition, vision, and language
136 understanding)

137 ¢ The solution to the problem changes over time (tracking, weather prediction, preference, stock,
138 price prediction)

139 ¢ Solutions need to be adapted to the particular cases (biometrics, personalization).

140 e The problem size is too vast for our limited reasoning capabilities (calculation webpage ranks,
141 matching ads to Facebook, sentiment analysis).

142 At present, DL is being applied in almost all areas. As a result, this approach is often called a

143 universal learning approach. Some example applications are shown in Figure 4.

144

Object detection [71] Image or video Segmentation [77]

Autonomous Car [71] Medicine and biology[102]

Brian Cancer Detection [102] Skin cancer recognition [102] Speech recognition [24]

Figure 4. Example images where DL is applied successfully and achieved state-of-the-art performance.

145

146
147

148
149
150
151
152
153
154
155
156
157
158
159
160

161

162

163

164
165

166

Electronics 2018, 7, x FOR PEER REVIEW 6 of 74

1.4. The state-of-the-art performance of DL

There are some outstanding successes in the fields of computer vision and speech recognition

as discussed below:

a) Image classification on ImageNet dataset. One of the large-scale problems is named Large Scale
Visual Recognition Challenge (LSVRC). CNN and its variants as one of the DL branches showed
state-of-the-art accuracy on the ImageNet task [11, 285]. The following graph shows the success
story of DL techniques overtime on ImageNet-2012 challenge. In detail, ResNet-152 showed
3.57% error rate which outperformed human accuracy.

b) Automatic speech recognition. The initial success in the field of speech recognition on the

popular TIMIT dataset (common data set are generally used for evaluation) was with small-scale

recognition tasks [24]. The TIMIT Acoustic-Phonetic continuous speech Corpus contains 630

speakers from eight major dialects of American English, where each speaker reads 10 sentences.

Figure 6 summarizes the error rates including these early results and is measured as percent phone

error rate (PER) over the last 20 years. The bar graph clearly shows that the recently developed DL

approaches (top of the graph) perform better compared to any other previous machine learning

approaches on the TIMIT dataset.

The experimental results on ImageNet-2012

18 16.4
16
14
_ 12 11.2
X 10
< 7.4
g 8 6.7 ;
s 6 3.57
4
: n B
0
2012 2013 2014 2014 2015
AlexNet[7] Clarifia[8] VGG-16 [9] GoogLeNet- ResNet- Human
19 [10] 152[11]
Model & Year
Figure 5. Accuracy for ImageNet classification challenge with different DL models.
1.5. Why DL?

a) Universal learning approach

The DL approach is sometimes called universal learning because it can be applied to almost any

application domain.

b) Robust

167
168
169

170

171
172
173
174

175

176
177
178
179

180

181

182

183
184

Electronics 2018, 7, x FOR PEER REVIEW 7 of 74

Deep learning approaches do not require the precisely designed feature. Instead, optimal
features are automatically learned for the task at hand. As a result, the robustness to natural

variations of the input data is achieved.

¢) Generalization

The same DL approach can be used in different applications or with different data types. This
approach is often called transfer learning. In addition, this approach is helpful where the problem
does not have sufficient available data. There are a number of literatures that have discussed this

concept (See Section 4).

d) Scalability

The DL approach is highly scalable. Microsoft invented a deep network known as ResNet [11].
This network contains 1202 layers and is often implemented at a supercomputing scale. There is a
big initiative at Lawrence Livermore National Laboratory (LLNL) in developing frameworks for

networks like this, which can implement thousands of nodes [24].

Phone error rate (PER) in percentage(%)

Segmental RNN[23]
Attention-based RNNJ[22]
RNN transducer[19]
Ensemble...
DCNN [20]
CTC[19]
CDNN w. Haters...
DSC with 2nd pass[16]
End-to-end DL [17]
Discriminative segmetal...
Deep Segmental NN[15]

Boundary-factored...

First-pass SCRF [13]

Figure 6. Phone error rate (PER) for TIMIT dataset.

1.6. Challenges of DL

There are several challenges for DL:
= Big data analytics using DL

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203
204

205
206
207
208
209
210
211
212
213
214

215
216
217
218

Electronics 2018, 7, x FOR PEER REVIEW 8 of 74

* Scalability of DL approaches

= Ability to generate data which is important where data is not available for learning the system
(especially for computer vision task such as inverse graphics).

» Energy efficient techniques for special purpose devices including mobile intelligence, FPGAs,
and so on.

* Multi-task and transfer learning or multi-module learning. This means learning from different
domains or with different models together.

* Dealing with causality in learning.

Most of the above-mentioned challenges have already been considered by the DL community.
Firstly, for the big data analytics challenge, there is a good survey that was conducted in 2014 [25]. In
this paper, the authors explained details on how DL can deal with different criteria including
volume, velocity, variety, and veracity of the big data problem. The authors also showed different
advantages of DL approaches when dealing with big data problems [25, 26, and 27]. Figure 7 clearly
demonstrates that the performance of traditional ML approaches shows better performance for
lesser amounts of input data. As the amount of data increases beyond a certain number, the
performance of traditional machine learning approaches becomes steady, whereas DL approaches increase

with respect to the increment of the amount of data.

Old Machine Learning

Figure 7. The performance of deep learning with respect to the amount of data.

Secondly, in most of the cases for solving large-scale problems, the solution is being implemented on
High-Performance Computing (HPC) system (super-computing, cluster, sometimes considered cloud
computing) which offers immense potential for data-intensive business computing. As data explodes in
velocity, variety, veracity, and volume, it is getting increasingly difficult to scale compute performance using
enterprise-class servers and storage in step with the increase. Most of the articles considered all the demands
and suggested efficient HPC with heterogeneous computing systems. In one example, Lawrence Livermore
National Laboratory (LLNL) has developed a framework which is called Livermore Big Artificial Neural
Networks (LBANN) for large-scale implementation (in super-computing scale) for DL which clearly supplants
the issue of scalability of DL [24].

Thirdly, generative models are another challenge for deep learning. One example is the GAN,
which is an outstanding approach for data generation for any task which can generate data with the
same distribution [28]. Fourthly, multi-task and transfer learning which we have discussed in

Section 7. Fourthly, there is a lot of research that has been conducted on energy efficient deep

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249

250
251
252
253
254
255

256
257

258

259

Electronics 2018, 7, x FOR PEER REVIEW 9of74

learning approaches with respect to network architectures and hardwires. Section 10 discusses this
issue.

Can we make any uniform model that can solve multiple tasks in different application
domains? As far as the multi-model system is concerned, one article from Google titled “One Model
To Learn Them All” [29] is a good example. This approach can learn from different application
domains including ImageNet, multiple translation tasks, Image captioning (MS-COCO dataset),
speech recognition corpus and English parsing task. We will be discussing most of the challenges
and respective solutions through this survey. There are some other multi-task techniques that have
been proposed in the last few years [30- 32].

Finally, a learning system with causality has been presented, which is a graphical model that
defines how one may infer a causal model from data. Recently a DL based approach has been
proposed for solving this type of problem [33]. However, there are other many challenging issues
have been solved in the last few years which were not possible to solve efficiently before this
revolution. For example, image or video captioning [34], style transferring from one domain to
another domain using GAN [35], text to image synthesis [36], and many more [37].

There are some surveys that have been conducted recently in the DL field [294, 295]. These
papers survey on DL and its revolution, but they did not address the recently developed generative
model called GAN [28]. In addition, they discuss little RL and did not cover recent trends of DRL
approaches [1, 39]. In most of the cases, the surveys that have been conducted are on different DL
approaches individually. There is a good survey which is based on Reinforcement Learning
approaches [40, 41]. Another survey exists on transfer learning [42]. One survey has been conducted
on neural network hardware [43]. However, the main objective of this work is to provide an overall
idea on deep learning and its related fields including deep supervised (e.g. DNN, CNN, and RNN),
unsupervised (e.g. AE, RBM, GAN) (sometimes GAN also used for semi-supervised learning tasks)
and DRL. In some cases, DRL is considered to be a semi-supervised or an unsupervised approach. In
addition, we have considered the recently developing trends in this field and applications which are
developed based on these techniques. Furthermore, we have included the framework and
benchmark datasets which are often used for evaluating deep learning techniques. Moreover, the
name of the conferences and journals are also included which are considered by this community for
publishing their research articles.

The rest of the paper has been organized in the following ways: the detailed surveys of DNNs
are discussed in Section II, Section III discusses on CNN. Section IV describes different advanced
techniques for efficient training of DL approaches. Section V. discusses on RNNs. AEs and RBMs are
discussed in Section VI. GANs with applications are discussed in Section VIL. RL is presented in
Section VIII. Section IX explains transfer learning. Section X. presents energy efficient approaches
and hardwires for DL. Section XI discusses deep learning frameworks and standard development
kits (SDK). The benchmarks for different application domains with web links are given in Section

XII. The conclusions are made in Section XIII.

2. Deep Neural Network

2.1. The history of DNN

260
261
262
263
264
265
266

267
268

269
270

271

272
273
274

275
276
277

278
279

280
281
282

283

284
285
286

Electronics 2018, 7, x FOR PEER REVIEW 10 of 74

A brief history of neural networks highlighting key events is as shown in Figure 8.
Computational neurobiology has conducted significant research on constructing computational
models of artificial neurons. Artificial neurons, which try to mimic the behavior of the human brain,
are the fundamental component for building ANNs. The basic computational element (neuron) is
called a node (or unit) which receives inputs from external sources and has some internal parameters
(including weights and biases that are learned during training) which produce outputs. This unit is

called a perceptron. The fundamental of ANN is discussed in [1, 3].

©1943: McCulloch & Pitts show that neurons can be combined to construct a Turing
machine (using ANDs, ORs, & NOTs) [44].

*1958: Rosenblatt shows that perceptron’s will converge if what they are trying to
learn can be represented [45].

*1969: Minsky & Papert show the limitations of perceptron’s, killing research in
neural networks for a decade [46].

¢1985: The backpropagation algorithm by Geoffrey Hinton et al. [47] revitalizes the
field.

#1988: Neocognitron: a hierarchical neural network capable of visual pattern
recognition [48].

©1998: CNNs with Backpropagation for document analysis by Yan LeCun [49].

*2006: The Hinton lab solves the training problem for DNNs [50,51].

#2012 - pressent: A variety of deep learning algorithms are increasingly emerging.

Figure 8. The history of deep learning development.

ANNS s or general NNs consist of Multilayer Perceptron’s (MLP) which contain one or more hidden layers with

multiple hidden units (neurons) in them. For details on MLP, please see in [1,3,47]

2.2. Gradient Descent

The gradient descent approach is a first-order optimization algorithm which is used for finding
the local minima of an objective function. This has been used for training ANNSs in the last couple of

decades successfully [1,47].

2.3. Stochastic Gradient Descent (SGD)
Since a long training time is the main drawback for the traditional gradient descent approach, the

SGD approach is used for training Deep Neural Networks (DNN) [1,52].

2.4.Back-Propagation (BP)

DNN is trained with the popular Back-Propagation (BP) algorithm with SGD [47,53]. In the case
of MLPs, we can easily represent NN models using computation graphs which are directive acyclic
graphs. For that representation of DL, we can use the chain-rule to efficiently calculate the gradient

from the top to the bottom layers with BP as shown in [47, 53].

2.5. Momentum

Momentum is a method which helps to accelerate the training process with the SGD approach.
The main idea behind it is to use the moving average of the gradient instead of using only the

current real value of the gradient. We can express this with the following equation mathematically:

b7
288
bgo
290
291
292
203
204
295
296
297
298

299

300
301
302
303
304
305
306
307
308
309

10
11
12
313

315
316

317

318
B19
320

321

322

323

Electronics 2018, 7, x FOR PEER REVIEW 11 of 74

V=Y Vo1 —n V F(Oi_1)
(1)

0,=0,_1+ v,
(2)
Here vy is the momentum and 7 is the learning rate for the tth round of training. Other popular
approaches have been introduced during the last few years which are explained in section IX under
the scope of optimization approaches. The main advantage of using momentum during training is to
prevent the network from getting stuck in la ocal minimum. The values of momentum are y € (0,1].
It is noted that a higher momentum value overshoots its minimum, possibly making the network
unstable. In general, v is set to 0.5 until the initial learning stabilizes and is then increased to 0.9 or

higher [54].

2.6. Learning rate (1)

The learning rate is an important component for training DNN. The learning rate is the step size
considered during training which makes the training process faster. However, selecting the value of
the learning rate is sensitive. For example: if you choose a larger value for 17, the network may start
diverging instead of converging. On the other hand, if you choose a smaller value for 7, it will take
more time for the network to converge. In addition, it may easily get stuck in local minima. The
typical solution for this problem is to reduce the learning rate during training [52].

There are three common approaches used for reducing the learning rate during training:
constant, factored, and exponential decay. First, we can define a constant { which is applied to
reduce the learning rate manually with a defined step function. Second, the learning rate can be

adjusted during training with the following equation:

¢

Me =1oB e)
where 7, is the tth round learning rate, 7, is the initial learning rate, and g is the decay factor with
a value between the range of (0,1).

The step function format for exponential decay is:

t
ne = nopl7el @)
The common practice is to use a learning rate decay of § = 0.1 to reduce the learning rate by a factor

of 10 at each stage.
2.7. Weight decay

Weight decay is used for training deep learning models as a L2 regularization approach, which
helps to prevent overfitting the network and model generalization. L2 regularization for F(6,x) can

be define as

Q=)
E(F(0,%),y) = e(F(0,%),y) + 31 Q 6)

The gradient for the weight 6 is:

24

325

326
327
328
329
330
331
332
333
334
335
336
337

338
339

340
341
342
343
344
345
346
347
348
349
350
351
352

Electronics 2018, 7, x FOR PEER REVIEW 12 of 74

agm
=10 @)

General practice is to use the value A = 0.0004. A smaller A will accelerate training.

Other necessary components for efficient training including data preprocessing and
augmentation, network initialization approaches, batch normalization, activation functions,
regularization with dropout, and different optimization approaches (as discussed in Section 4).

In the last few decades, many efficient approaches have been proposed for better training of
deep neural networks. Before 2006, attempts taken at training deep architectures failed: training a
deep supervised feed-forward neural network tended to yield worse results (both in training and in
test error) than shallow ones (with 1 or 2 hidden layers). Hinton’s revolutionary work on DBNs
spearheaded a change in this in 2006 [50, 53].

Due to their composition, many layers of DNNs are more capable of representing highly varying nonlinear
functions compared to shallow learning approaches [56-58]. Moreover, DNNs are more efficient for learning
because of the combination of feature extraction and classification layers. The following sections discuss in

detail about different DL approaches with necessary components.

3. Convolutional Neural Network (CNN)
3.1. CNN overview

This network structure was first proposed by Fukushima in 1988 [48]. It was not widely used,
however, due to limits of computation hardware for training the network. In the 1990s, LeCun et al.
[49] applied a gradient-based learning algorithm to CNNs and obtained successful results for the
handwritten digit classification problem. After that, researchers further improved CNNs and
reported state-of-the-art results in many recognition tasks. CNNs have several advantages over
DNNs, including being more like the human visual processing system, being highly optimized in
the structure for processing 2D and 3D images, and being effective at learning and extracting
abstractions of 2D features. The max pooling layer of CNNs is effective in absorbing shape
variations. Moreover, composed of sparse connections with tied weights, CNNs have significantly
fewer parameters than a fully connected network of similar size. Most of all, CNNs are trained with
the gradient-based learning algorithm and suffer less from the diminishing gradient problem. Given
that the gradient-based algorithm trains the whole network to minimize an error criterion directly,

CNNs can produce highly optimized weights.

353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

Electronics 2018, 7, x FOR PEER REVIEW 13 of 74

Input FeaturcMaps Feature Maps Feature Maps Feature Maps
48x48 6@44x44. 5@22x22 12@18x18 12@ 9x&
§-
|
|
Convolution Max-pooling Convolution Max-pooling
l J Classification
Features extraction

Figure 9. The overall architecture of the CNN includes an input layer, multiple alternating convolution and max-pooling layers, one

fully-connected layer and one classification layer.

Figure 9 shows the overall architecture of CNNs consists of two main parts: feature extractors
and a classifier. In the feature extraction layers, each layer of the network receives the output from its
immediate previous layer as its input and passes its output as the input to the next layer. The CNN
architecture consists of a combination of three types of layers: convolution, max-pooling, and
classification. There are two types of layers in the low and middle-level of the network:
convolutional layers and max-pooling layers. The even numbered layers are for convolutions and
the odd-numbered layers are for max-pooling operations. The output nodes of the convolution and
max-pooling layers are grouped into a 2D plane called feature mapping. Each plane of a layer is
usually derived of the combination of one or more planes of previous layers. The nodes of a plane
are connected to a small region of each connected planes of the previous layer. Each node of the
convolution layer extracts the features from the input images by convolution operations on the input
nodes.

Higher-level features are derived from features propagated from lower level layers. As the
features propagate to the highest layer or level, the dimensions of features are reduced depending
on the size of the kernel for the convolutional and max-pooling operations respectively. However,
the number of feature maps usually increased for representing better features of the input images for
ensuring classification accuracy. The output of the last layer of the CNN is used as the input to a
fully connected network which is called classification layer. Feed-forward neural networks have
been used as the classification layer as they have better performance [50, 58]. In the classification
layer, the extracted features are taken as inputs with respect to the dimension of the weight matrix of
the final neural network. However, the fully connected layers are expensive in terms of network or
learning parameters. Nowadays, there are several new techniques including average pooling and
global average pooling that is used as an alternative of fully-connected networks. The score of the
respective class is calculated in the top classification layer using a soft-max layer. Based on the
highest score, the classifier gives output for the corresponding classes. Mathematical details on
different layers of CNNs are discussed in the following section.

a) Convolutional layer

381
382
383
384
385

86
387

ESS
89
390
391
392

393

394
395
396
397
398
399
400
401

02

403
404
405
406
407
408
409
410

411
412
413
414
415
416
417

Electronics 2018, 7, x FOR PEER REVIEW 14 of 74

In this layer, feature maps from previous layers are convolved with learnable kernels. The output of
the kernels goes through a linear or non-linear activation function such as a(sigmoid, hyperbolic
tangent, Softmax, rectified linear, and identity functions) to form the output feature maps. Each of
the output feature maps can be combined with more than one input feature map. In general, we

have that

x} = f (Ziew; xi 7 % Ky + b))
(8)

where x/ is the output of the current layer, x{~" is the previous layer output, k{; is the kernel for
the present layer, and b} are the biases for the current layer. M; represents a selection of input
maps. For each output map, an additive bias b is given. However, the input maps will be
convolved with distinct kernels to generate the corresponding output maps. The output maps
finally go through a linear or non-linear activation function (such as sigmoid, hyperbolic tangent,

Softmax, rectified linear, or identity functions).

b) Sub-sampling layer

The subsampling layer performs the downsampled operation on the input maps. This is commonly
known as the pooling layer. In this layer, the number of input and output feature maps does not
change. For example, if there are N input maps, then there will be exactly N output maps. Due to
the down sampling operation, the size of each dimension of the output maps will be reduced,
depending on the size of the down sampling mask. For example: if a 2x2 down sampling kernel is
used, then each output dimension will be the half of the corresponding input dimension for all the

images. This operation can be formulated as
xj = down(xj™"))

where down(.) represents a sub-sampling function. Two types of operations are mostly
performed in this layer: average pooling or max-pooling. In the case of the average pooling
approach, the function usually sums up over NxN patches of the feature maps from the previous
layer and selects the average value. On the other hand, in the case of max-pooling, the highest value
is selected from the NxN patches of the feature maps. Therefore, the output map dimensions are
reduced by n times. In some special cases, each output map is multiplied with a scalar. Some
alternative sub-sampling layers have been proposed, such as fractional max-pooling layer and

sub-sampling with convolution. These are explained in Section 4.6.

c) Classification layer

This is the fully connected layer which computes the score of each class from the extracted
features from a convolutional layer in the preceding steps. The final layer feature maps are
represented as vectors with scalar values which are passed to the fully connected layers. The fully
connected feed-forward neural layers are used as a soft-max classification layer. There are no strict
rules on the number of layers which are incorporated in the network model. However, in most cases,

two to four layers have been observed in different architectures including LeNet [49], AlexNet [7],

418
419
420
421

422
423
424
425
426

427

428

429
430

431
432

33

434
435
436
437
438

439

440
441
442
443

444

Electronics 2018, 7, x FOR PEER REVIEW 15 of 74

and VGG Net [9]. As the fully connected layers are expensive in terms of computation, alternative
approaches have been proposed during the last few years. These include the global average pooling
layer and the average pooling layer which help to reduce the number of parameters in the network

significantly.

In the backward propagation through the CNNs, the fully connected layer updates following the
general approach of fully connected neural networks (FCNN). The filters of the convolutional layers
are updated by performing the full convolutional operation on the feature maps between the
convolutional layer and its immediate previous layer. Figure 10 shows the basic operations in the

convolution and sub-sampling of an input image.

Figure 10. Feature maps after performing convolution and pooling operations.

d) Network parameters and required memory for CNN
The number of computational parameters is an important metric to measure the complexity of a

deep learning model. The size of the output feature maps can be formulated as follows:

_ N-F)
s

M

+1 (10)

where N refers to the dimensions of the input feature maps, F refers to the dimensions of the filters
or the receptive field, M refers to the dimensions of output feature maps, and S stands for the
stride length. Padding is typically applied during the convolution operations to ensure the input and
output feature map have the same dimensions. The amount of padding depends on the size of the

kernel. Equation 17 is used for determining the number of rows and columns for padding.
P=(F-1)/2 (11)

Here P is the amount of padding and F refers to the dimension of the kernels. Several criteria are
considered for comparing the models. However, in most of the cases, the number of network
parameters and the total amount of memory are considered. The number of parameters (Parm,;) of

[*" layer is the calculated based on the following equation:

Parml=(FXFXFMl_1)XFMl (12)

445

A46

A47
A48
449
450
A51
452

453

454

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

471
472

473
474
475
476
477
478
479
480

481
482

Electronics 2018, 7, x FOR PEER REVIEW 16 of 74
If bias is added with the weights, then the above equation can be written as follows:

Parm; = (F x (F+1) X FM,_;) X FM, (13)

Here the total number of parameters of [*" lathe yer can be represented with P, , FM, is for the
total number of output feature maps, and FM;_; is the total number of input feature maps or
channels. For example, let's assume the [** layer has FM,_; = 32 input features maps, FM, = 64
output feature maps, and the filter size is F = 5. In this case, the total number of parameters with
bias for this layeraa is Parm; = (5 X 5 X 33) X 64 = 528,000. Thus, the amount of memory (Mem,)

needs for the operations of the [*" layer can be expressed as
Meml:(leleFMl) (14)

3.2. Popular CNN architectures

In this section, several popular state-of-the-art CNN architectures will be examined. In general,
most deep convolutional neural networks are made of a key set of basic layers, including the
convolution layer, the sub-sampling layer, dense layers, and the soft-max layer. The architectures
typically consist of stacks of several convolutional layers and max-pooling layers followed by a fully
connected and SoftMax layers at the end. Some examples of such models are LeNet [49], AlexNet [7],
VGG Net [9], NiN [60] and all convolutional (All Conv) [61]. Other alternatives and more efficient
advanced architectures have been proposed including GoogLeNet with Inception units [10, 64],
Residual Networks [11], DenseNet [62], and FractalNet [63]. The basic building components
(convolution and pooling) are almost the same across these architectures. However, some
topological differences are observed in the modern deep learning architectures. Of the many DCNN
architectures, AlexNet [7], VGG [9], GoogLeNet [10, 64], Dense CNN [62] and FractalNet [63] are
generally considered the most popular architectures because of their state-of-the-art performance on
different benchmarks for object recognition tasks. Among all of these structures, some of the
architectures are designed especially for large-scale data analysis (such as GoogLeNet and ResNet),
whereas the VGG network is considered a general architecture. Some of the architectures are dense

in terms of connectivity, such as DenseNet [62]. Fractal Network is an alternative of ResNet.

a) LeNet (1998)

Although LeNet was proposed in the 1990s, limited computation capability and memory
capacity made the algorithm difficult to implement until about 2010 [49]. LeCun et al. [49], however,
proposed CNNs with the back-propagation algorithm and experimented on handwritten digit
dataset to achieve state-of-the-art accuracy. The proposed CNN architecture is well-known as
LeNet-5 [49]. The basic configuration of LeNet-5 is as follows (see Figure 11): 2 convolutions (conv)
layers, 2 sub-sampling layers, 2 fully connected layers, and an output layer with the Gaussian
connection. The total number of weights and Multiply and Accumulates (MACs) are 431k and 2.3M,

respectively.

As computational hardware started improving in capability, CNNs stated becoming popular as an

effective learning approach in the computer vision and machine learning communities.

483
484

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

506

507
508

Electronics 2018, 7, x FOR PEER REVIEW 17 of 74

Input : 32x32
Convolution (6@28x28)
Subsampling(6@14x14)
Convolution (16@10x10)

Output (10)

Subsampling(16@5x5)

Figure 11. The architecture of LeNet.

b) AlexNet (2012)

In 2012, Alex Krizhevesky and others proposed a deeper and wider CNN model compared to
LeNet and won the most difficult ImageNet challenge for visual object recognition called the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [7]. AlexNet achieved
state-of-the-art recognition accuracy against all the traditional machine learning and computer
vision approaches. It was a significant breakthrough in the field of machine learning and computer
vision for visual recognition and classification tasks and is the point in history where interest in deep
learning increased rapidly.

The architecture of AlexNet is shown in Figure 12. The first convolutional layer performs
convolution and max-pooling with Local Response Normalization (LRN) where 96 different
receptive filters are used that are 11x11 in size. The max pooling operations are performed with 3x3
filters with a stride size of 2. The same operations are performed in the second layer with 5x5
filters. 3x3 filters are used in the third, fourth, and fifth convolutional layers with 384, 384, and 296
feature maps respectively. Two fully connected (FC) layers are used with dropout followed by a
Softmax layer at the end. Two networks with similar structure and the same number of feature maps
are trained in parallel for this model. Two new concepts, Local Response Normalization (LRN) and
dropout, are introduced in this network. LRN can be applied in two different ways: first applying on
single channel or feature maps, where an NxN patch is selected from the same feature map and
normalized based on the neighborhood values. Second, LRN can be applied across the channels or

feature maps (neighborhood along the third dimension but a single pixel or location).

Conv. & RelU

Conv. & RelLU
Conv. & RelLU

Conv., MXP, LRN
Soft-max

Conv., MXP, LRN

Figure 12. The architecture of AlexNet: Convolution, max-pooling, LRN and fully connected (FC) layer.

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

526
527
528
529
530
531
532
533
534
535
536

537
538

539
540
541
542
543
544
545
546

Electronics 2018, 7, x FOR PEER REVIEW 18 of 74

AlexNet has 3 convolution layers and 2 fully connected layers. When processing the ImageNet
dataset, the total number of parameters for AlexNet can be calculated as follows for the first layer:
input samples are 224x224x3, filters (kernels or masks) or a receptive field that has a size 11, the
stride is 4, and the output of the first convolution layer is 55x55x96. According to the equations in
section 3.1.4, we can calculate that this first layer has 290400 (55x55x96) neurons and 364 (11 x11x3 =
363 + 1 bias) weights. The parameters for the first convolution layer are 290400364 = 105,705,600.
Table II shows the number of parameters for each layer in millions. The total number of weights and

MAC:s for the whole network are 61M and 724M, respectively.

c¢) ZFNet/ Clarifai (2013)

In 2013, Matthew Zeiler and Rob Fergue won the 2013 ILSVRC with a CNN architecture which
was an extension of AlexNet. The network was called ZFNet [8], after the authors’ names. As CNNs
are expensive computationally, an optimum use of parameters is needed from a model complexity
point of view. The ZFNet architecture is an improvement of AlexNet, designed by tweaking the
network parameters of the latter. ZFNet uses 7x7 kernels instead of 11x11 kernels to significantly
reduce the number of weights. This reduces the number of network parameters dramatically and

improves overall recognition accuracy.

d) Network in Network (NiN)

This model is slightly different from the previous models where a couple of new concepts are
introduced [60]. The first concept is to use multilayer perception convolution, where convolutions
are performed with 1x1 filters that help to add more nonlinearity in the models. This helps to
increase the depth of the network, which can then be regularized with dropout. This concept is used

often in the bottleneck layer of a deep learning model.

The second concept is to use Global Average Pooling (GAP) as an alternative of fully connected
layers. This helps to reduce the number of network parameters significantly. GAP changes the
network structure significantly. By applying GAP on a large feature map, we can generate a final

low dimensional feature vector without reducing the dimension of the feature maps.

e) VGGNET (2014)

The Visual Geometry Group (VGG), was the runner-up of the 2014 ILSVRC [9]. The main
contribution of this work is that it shows that the depth of a network is a critical component to
achieve better recognition or classification accuracy in CNNs. The VGG architecture consists of two
convolutional layers both of which use the ReLU activation function. Following the activation
function is a single max pooling layer and several fully connected layers also using a ReLU
activation function. The final layer of the model is a Softmax layer for classification. In VGG-E [9]
the convolution filter size is changed to a 3x3 filter with a stride of 2. Three VGG-E [9] models,
VGG-11, VGG-16, and VGG-19; were proposed the models had 11,16, and 19 layers respectively.

547
548
549
550
551
552
553

554
555

556
557
558
559
560
561

562
563
564
565
566
567
568
569
570
571
572
573
574

Electronics 2018, 7, x FOR PEER REVIEW 19 of 74

Inputs

]]
- -
7] [7}
[v4 o
og o
> >
c c
0 0
o v}

Conv. & RelLU
Conv. & RelLU
Max-pooling
Conv. & RelLU
Conv. & RelLU
Soft-max

Figure 13. The basic building block of VGG network: Convolution (Conv) and FC for fully connected layers

All versions of the VGG-E models ended the same with three fully connected layers. However, the
number of convolution layers varied VGG-11 contained 8 convolution layers, VGG-16 had 13
convolution layers, and VGG-19 had 16 convolution layers. VGG-19, the most computational
expensive model, contained 138Mweights and had 15.5M MACs.

f) GoogLeNet (2014)

GoogLeNet, the winner of ILSVRC 2014[10], was a model proposed by Christian Szegedy of
Google with the objective of reducing computation complexity compared to the traditional CNN.
The proposed method was to incorporate “Inception Layers” that had variable receptive fields,
which were created by different kernel sizes. These receptive fields created operations that captured

sparse correlation patterns in the new feature map stack.

Filter
concatenation

3x3 convolutional 5x5 convolutional 1x1 convolutional 3x3 Max-pooling

Previous layer

Figure 14. Inception layer: naive version

The initial concept of the Inception layer can be seen in Figure 14. GoogLeNet improved the
state of the art recognition accuracy using a stack of Inception layers seen in Figure 15. The
difference between the naive inception layer and final Inception Layer was the addition of 1x1
convolution kernels. These kernels allowed for dimensionality reduction before computationally
expensive layers. GoogLeNet consisted of 22 layers in total, which was far greater than any network
before it. However, the number of network parameters GoogLeNet used was much lower than its
predecessor AlexNet or VGG. GoogLeNet had 7M network parameters when AlexNet had 60M and
VGG-19 138M. The computations for GoogLeNet also were 1.53G MACs far lower than that of
AlexNet or VGG.

575

576

577
578

579
580
581
582
583
584

585
586

587
588
589
590
591
592

593

594
595
596
597
598

Electronics 2018, 7, x FOR PEER REVIEW 20 of 74

Filter
concatenation

1x1 convolutional 5x5 convolutional 3x3 convoluticnal 1x1 convolutional

S 1x1 convolutional 1x1 convolutional 3x3 Max-pooling

Previous layer

Figure 15. Inception layer with dimension reduction

8) Residual Network (ResNet in 2015)

The winner of ILSVRC 2015 was the Residual Network architecture, ResNet [11]. Resnet was
developed by Kaiming He with the intent of designing ultra-deep networks that did not suffer from
the vanishing gradient problem that predecessors had. ResNet is developed with many different
numbers of layers; 34, 50,101, 152, and even 1202. The popular ResNet50 contained 49 convolution
layers and 1 fully connected layer at the end of the network. The total number of weights and MACs
for the whole network are 25.5M and 3.9M respectively.

RelLU activation

Convolution

Convolution

RelU activation

Figure 16. Basic diagram of the Residual block.

The basic block diagram of the ResNet architecture is shown in Figure 16. ResNet is a
traditional feedforward network with a residual connection. The output of a residual layer can be
defined based on the outputs of (I —1)** which comes from the previous layer defined as x;_; .
F(x,-1) is the output after performing various operations (e.g. convolution with different size of
filters, Batch Normalization (BN) followed by an activation function such as a ReLU on x;_,). The

final output of residualthe unitis x; which can be defined with the following equation:

xp=F(x-1)+ x4 (15)

The residual network consists of several basic residual blocks. However, the operations in the
residual block can be varied depending on the different architecture of residual networks [11]. The
wider version of the residual network was proposed by Zagoruvko el at. In 2016 [66], another
improved residual network approach known as aggregated residual transformation [67]. Recently,

some other variants of residual models have been introduced based on the Residual Network

599
600
601
602

603
604
605
606

07

608
609
610
611
612

613
614

615
616
617
618
619
620

621
622

623

Electronics 2018, 7, x FOR PEER REVIEW 21 of 74

architecture [68, 69, and 70]. Furthermore, there are several advanced architectures that are
combined with Inception and Residual units. The basic conceptual diagram of Inception-Residual

unit is shown in the following Figure 17.

RelU activation

5x5 conwv.

1x1 conwv.

RelU activation

Figure 17. The basic block diagram for Inception Residual unit

Mathematically, this concept can be represented as
0 =F(xf © ¢)+ x4 (16)

where the symbol © refers the concentration operations between two outputs from the 3x3 and 5x5
filters. After that, the convolution operation is performed with 1x1 filters. Finally, the outputs are
added with the inputs of this block of x;_;. The concept of Inception block with residual connections
is introduced in the Inception-v4 architecture [65]. The improved version of the Inception-Residual

network known as PolyNet was recently proposed [70, 290].

h) Densely Connected Network (DenseNet)

DenseNet developed by Gao Huang and others in 2017[62], which consists of densely
connected CNN layers, the outputs of each layer are connected with all successor layers in a dense
block [62]. Therefore, it is formed with dense connectivity between the layers rewarding it the name
“DenseNet”. This concept is efficient for feature reuse, which dramatically reduces network
parameters. DenseNet consists of several dense blocks and transition blocks, which are placed

between two adjacent dense blocks. The conceptual diagram of a dense block is shown in Figure 18.

Figure 18. A 4-layer Dense block with a growth rateof k= 3.

624
025

626

0627
628
629
630
631
632

633
634

635
636
637
638
639

640
641
642

643

644
645
646
647
648
649
650

Electronics 2018, 7, x FOR PEER REVIEW 22 of 74

Each layer takes all the preceding feature maps as input. When deconstructing Figure 19, the "

layer received all the feature maps from previous layers of x,, x;,x, ***x;_; as input:

x; = Hy([xo, %1, %5 x1-1]) (17)

where [xg,x;,%, - x;_4] are the concatenated features for layers 0, - ,l—1 and H(-) is
considered as a single tensor. It performs three different consecutive operations:
Batch-Normalization (BN) [110], followed by a ReLU [58] and a 3 X 3 convolution operation. In the
transaction block, 1 X 1 convolutional operations are performed with BN followed by a 2 x 2
average pooling layer. This new model shows state-of-the-art accuracy with a reasonable number

of network parameters for object recognitions tasks.

i) FractalNet (2016)

This architecture is an advanced and alternative architecture of ResNet model, which is efficient
for designing large models with nominal depth, but shorter paths for the propagation of gradient
during training [63]. This concept is based on drop-path which is another regularization approach
for making large networks. As a result, this concept helps to enforce speed versus accuracy tradeoffs.

The basic block diagram of FractalNet is shown in Figure 19.

@ v
Convolution layer - Fractal Block
1 Joining layer IS Pooling layer

Figure 19. The detailed FractalNet module on the left and FractalNet on the right.

3.3. CapsuleNet

CNNs are an effective methodology for detecting features of an object and achieving good
recognition performance compared to state of the art handcrafted feature detectors. There are limits
to CNNs, which are that it does not take into account special relationships, perspective, size, and
orientation, of features. For example: if you have a face image, it does not matter the placement of
different components (nose, eye, mouth etc.) of the faces neurons of a CNN will wrongly active and
recognition as a face without considering special relationships (orientation, size). Now, imagine a

neuron which contains the likelihood with properties of features (perspective, orientation, size etc.).

651
652
653

654

655
656
657
658
659
l660
661
662
663
664
665

666
667
668
669
670
671
672
673

Electronics 2018, 7, x FOR PEER REVIEW 23 of 74

This special type of neurons, capsules, can detect face efficiently with distinct information. The
capsule network consists of several layers of capsule nodes. The first version of capsule network

(CapsNet) consisted of three layers of capsule nodes in an encoding unit.

16
—_
/ DigitCaps
151]

§ 10

L -—lo o 10
32

;= [Bx 19

Figure 20. A CapsNet encoding unit with 3 layers. The instance of each class is represented with a vector of a
capsule in DigitCaps layer that is used for calculating classification loss. The weights between the primary

capsule layer and DigitCaps layer are represented with W;;.

This architecture for MNIST (28x28) images, the 256 9x9 kernels are applied with a stride 1, so
the output is (28 —9 + 1 = 20) with 256 feature maps. Then the outputs are fed to the primary
capsule layer which is a modified convolution layer that generates an 8-D vector instead of a scalar.
In the first convolutional layer, 9x9 kernels are applied with stride 2, the output dimension is
((20-9)/2 +1 = 6). The primary capsules are used 8x32 kernels which generates 32x8x6x6 (32

groups for 8 neurons with 6x6 size).

16
\\ FC FC FC
kY ReLU RelU Sigmoid
“.\ f’ i ,.-" '_‘ .
\‘\ ji \\ ; ’if \\ /’
\ Ay rd
10 W
b4
i.‘ kY
l’
- ’If
f‘!
/

.,

3 A A
AV4 k4
;’A\\ A
\ \ / \\
N / "\
A /512 iy
7 S

784

A

iy
kY

s
/10245,
i ‘\\‘

7
4

B = 0 Masked = Representation of the reconstruction target

Figure 21. The decoding unit where a digit is reconstructed from DigitCaps layer representation. The Euclidean
distance is used minimizing the error between the input sample and the reconstructed sample from the sigmoid

layer. True labels are used for reconstruction target during training.

The entire encoding and decoding processes of CapsNet is shown in Figures 20 and 21,
respectively. We used a max-pooling layer in CNN often that can handle translation variance. Even

if a feature moves if it is still under a max pooling window it can be detected. As the capsule contains

674
675
676
677
678
679
680
681
682
683
684

685

686
687

688
689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

Electronics 2018, 7, x FOR PEER REVIEW 24 of 74

the weighted sum of features from the previous layer, therefore this approach is capable of detecting
overlapped features which is important for segmentation and detection tasks.

In the traditional CNN, a single cost function is used to evaluate the overall error which propagates
backward during training. However, in this case, if the weight between two neurons is zero, then the
activation of a neuron is not propagated from that neuron. The signal is routed with respect to the
feature parameters rather than a one size fits all cost function in iterative dynamic routing with the
agreement. For details about this architecture, please see [293]. This new CNN architecture provides
state-of-the-art accuracy for handwritten digit recognition on MNIST. However, from an application
point of view, this architecture is more suitable for segmentation and detection tasks compare to

classification tasks.

3.4. Comparison of different models

The comparison of recently proposed models based on error, network parameters, and a maximum

number of connections are given in Table 2.

3.5. Other DNN models

There are many other network architectures such as fast region based CNN [71] and Xception
[72] which are popular in the computer vision community. In 2015 a new model was proposed using
recurrent convolution layers named Recurrent Convolution Neural Network or RCNN [73]. The
improved version of this network is a combination of the two most popular architectures in the
Inception network and Recurrent Convolutional Network, Inception Convolutional Recurrent
Neural Networks (IRCNN) [74]. IRCNN provided better accuracy compared RCNN and inception
network with almost identical network parameters. Visual Phase Guided CNN (ViP CNN) is
proposed with phase guided message passing a structure (PMPS) to build connections between
relational components, which show better speed up and recognition accuracy [75]. Look up based
CNN [76] is a fast, compact, and accurate model enabling efficient inference. In 2016 the architecture
known as a fully convolutional network (FCN) was proposed for segmentation tasks where it is now
commonly used. Other recently proposed CNN models include a deep network with stochastic

depth, deeply-supervised networks, and ladder network [79, 80, and 81].

Table 2. The top-5% errors with computational parameters and macs for different deep CNN

models.

Methods LeNet-5] AlexNet OverFeat VGG-16[GoogLeNet ResNet-50(
48] [71 (fast)[8] 91 [10] v1)[11]

Top-5 errors n/a 16.4 14.2 7.4 6.7 53

Input size 28x28 227x227 231x231 224x224 224x224 224x224

Number of Conv Layers | 2 5 5 16 21 50

Filter Size 5 3,511 3,7 3 1,3,5,7 1,3,7

Number of Feature Maps | 1,6 3-256 3-1024 3-512 3-1024 3-1024

Stride 1 1,4 1,4 1 1,2 1,2

706
707

708
709

710
711

712
713
714
715
716
717
718
719
720
721
722
723
724

725

726
727
728

729

730
731
732
733
734
735

736
737

Electronics 2018, 7, x FOR PEER REVIEW 25 of 74

Number of Weights 26k 2.3M 16M 14.7M 6.0M 23.5M
Number of MACs 1.9M 666M 2.67G 15.3G 1.43G 3.86G
Number of FC layers 2 3 3 3 1 1
Number of Weights 406k 58.6M 130M 124M 1M 1M
Number of MACs 405k 58.6M 130M 124M 1M 1M
Total Weights 431k 61M 146M 138M M 25.5M
Total MACs 2.3M 724M 2.8G 15.5G 1.43G 3.9G

3.6. Applications of CNNs

a) CNNs for solving a graph problem
Learning graph data structures is a common problem with various applications in data mining

and machine learning tasks. DL techniques have made a bridge in between the machine learning and

data mining groups. An efficient CNN for arbitrary graph processing was proposed in 2016 [91].

b) Image processing and computer vision

Most of the models, we have discussed above are applied to different application domains
including image classification [7-11], detection, segmentation, localization, captioning, video
classification and many more. There is a good survey on DL approaches for image processing and
computer vision related tasks including image classification, segmentation, and detection [92]. For
examples, single image super-resolution using CNN method [93], image denoising using
block-matching CNN [94], photo aesthetic assessment using A-Lamp (Adaptive Layout-Aware
Multi-Patch Deep CNN) [95], DCNN for hyperspectral imaging segmentation [96], image
registration [97], fast artistic style transfer [98], image background segmentation using DCNN [99],
handwritten character recognition [291], optical image classification [296], crop mapping using
high-resolution satellite imagery [314], object recognition with cellular simultaneous recurrent
networks and CNN [297]. The DL approaches are massively applied for human activity recognition

tasks and achieved state-of-the-art performance compared to exiting approaches [308~313].

¢) Speech processing

CNN methods are also applied for speech processing such as speech enhancement using
multimodal deep CNN [100], and audio tagging using Convolutional Gated Recurrent Network
(CGRN) [101].

d) CNN for medical imaging

Litjens et al provided a good survey on DL for medical image processing including
classification, detection, and segmentation tasks [102]. Several popular DL methods were developed
for medical image analysis. For instance, MDNet was developed for medical diagnosis using images
and corresponding text description [103], cardiac Segmentation using short-Axis MRI [104],
segmentation of optic disc and retinal vasculature using CNN [105], brain tumor segmentation using

random forests with features learned with fully convolutional neural network (FCNN) [106].

http://arxiv.org/abs/1705.05084v1

738

739
740
741
742
743
744

745

746
747
748

749

750
751
752
753
754
755

56

57
758
759
760
761
762

763

764

765

766
767
768
769
770
771
772
773

Electronics 2018, 7, x FOR PEER REVIEW 26 of 74
4. Advanced Training Techniques

The advanced training techniques or components which need to be considered carefully for efficient
training of DL approach. There are different advanced techniques to apply for training a deep learning model
better. The techniques including input pre-processing, a better initialization method, batch normalization,
alternative convolutional approaches, advanced activation functions, alternative pooling techniques, network
regularization approaches, and better optimization method for training. The following sections are discussed

on individual advanced training techniques individually.

4.1. Preparing dataset

Presently different approaches have been applied before feeding the data to the network. The different
operations to prepare a dataset are as follows; sample rescaling, mean subtraction, random cropping, flipping

data with respect to the horizon or vertical axis, color jittering, PCA/ZCA whitening and many more.

4.2. Network initialization

The initialization of deep networks has a big impact on the overall recognition accuracy [53, 54].
Previously, most of the networks have been initialized with random weights. For complex tasks with high
dimensionality data training, a DNN becomes difficult because weights should not be symmetrical due to the
back-propagation process. Therefore, effective initialization techniques are important for training this type of
DNN. However, there are many effective techniques that have been proposed during the last few years. LeCun
[107] and Bengio [108] proposed a simple but effective approach. In their method, the weights are scaled by the
inverse of the square root of the number of input neurons of the layer, which can be stated 1/ \/ﬁ ,where N is
the number of input neurons of [* layer. The deep network initialization approach of Xavier has been
proposed based on the symmetric activation function with respect to the hypothesis of linearity. This approach
is known as “Xavier” initialization approach. Recently, Dmytro M. et al. [85] proposed Layer-sequential
unit-invariance (LSUV), which is a data-driven initialization approach and provides good recognition
accuracy on several benchmark datasets including ImageNet. One of the popular initialization approaches has

proposed by He et al. in 2015 [109]. The distribution of the weights of [* lathe yer will be normala distribution

. . 2 .
with mean zero and variance — which can be expressed as follows.
1

w~ (0,2) (18)

n

4.3. Batch Normalization

Batch normalization helps accelerate DL processes by reducing internal covariance by shifting input
samples. What that means is the inputs are linearly transformed to have zero mean and unit variance. For
whitened inputs, the network converges faster and shows better regularization during training, which has an
impact on the overall accuracy. Since the data whitening is performed outside of the network, there is no
impact of whitening during training of the model. In the case of deep recurrent neural networks, the inputs of
the n'" layer are the combination of n-1* layer, which is not raw feature inputs. As the training progresses the
effect of normalization or whitening reduces respectively, which causes the vanishing gradient problem. This

can slow down the entire training process and cause saturation. To better training process, batch normalization

774
775
776
777

778

779
780
781

782
783

784
785
786
787
788
789
790

791

792
793

794

795
796
797

798
799

800
801
802

Electronics 2018, 7, x FOR PEER REVIEW 27 of 74

is then applied to the internal layers of the deep neural network. This approach ensures faster convergence in
theory and during an experiment on benchmarks. In batch normalization, the features of a layer are
independently normalized with mean zero and variance one [110,111]. The algorithm of Batch normalization is

given in Algorithm I.

Algorithm I: Batch Normalization (BN)

Inputs: Values of x over a mini-batch: 8 = {x;1,3._m}
Outputs: {y; = BN, g(x;)}
b —— XM, x; //mini-batch mean

1 - .
0% « — X = up)? // mini-batch variance

£« ZCEB // normalize
od+€
yi=yX% +B =BNyg(x) // Scaling and shifting

The parameters y and B are used for the scale and shift factor for the normalization values, so
normalization does not only depend on layer values. If you use normalization techniques, the following

criterions are recommended to consider during implementation:

¢ Increase the learning rate

¢ Dropout (batch normalization does the same job)

o L[> weight regularization

e Accelerating the learning rate decay

¢ Remove Local Response Normalization (LRN) (if you used it)
¢ Shuffle training sample more thoroughly

e Useless distortion of images in the training set

4.4, Alternative Convolutional methods

Alternative and computationally efficient convolutional techniques that reduce the cost of multiplications by a

factor of 2.5 have been proposed [112].
4.5. Activation function

The traditional Sigmoid and Tanh activation functions have been used for implementing neural network

approaches in the past few decades. The graphical and mathematical representation is shown in Figure 22.

-1 -1

(a) (b)

Figure 22. Activation function: (a) sigmoid function, and (b) Hyperbolic transient.

Sigmoid:

803

804

805

806
807
808
809
810

811

812
813
814

815

816
817
818
819
820
821
822
823

824
825

826

827

828

829

Electronics 2018, 7, x FOR PEER REVIEW 28 of 74

Y= (19)
TanH:
eX—eg—X
y - eXye—X (20)

The popular activation function called Rectified Linear Unit (ReLU) proposed in 2010 solves the vanishing
gradient problem for training deep learning approaches. The basic concept is simple to keep all the values
above zero and sets all negative values to zero that is shown in Figure 23 [58]. The ReLU activation was first

used in AlexNet, which was a breakthrough deep CNN proposed in 2012 by Hinton [7].

-1) 1

Figure 23. Pictorial representation of Rectified Linear Unit (ReLU).

Mathematically we can express ReLU as follows:

y = max(0, x) (21)

As the activation function plays a crucial role in learning the weights for deep architectures. Many researchers
focus here because there is much that can be done in this area. Meanwhile, there are several improved
versions of ReLU that have been proposed, which provide even better accuracy compared to the ReLU
activation function. An efficient improved version of ReLU activation function is called the parametric ReLU
(PReLU) proposed by Kaiming He et al. in 2015. The Figure 25 shows the pictorial representation of Leaky
ReLU and ELU activation functions. This technique can automatically learn the parameters adaptively and

improve the accuracy at negligible extra computing cost [109].

1 1
0 0
-1 1
-1 0 1 -1 0 1
(@) (b)

Figure 24. Diagram for (a) Leaky ReLU, and (b) Exponential Linear Unit (ELU).

Leaky ReLU:

y = max(ax, x) (22)

830

831
832

33

834

835
836
837
838
839

840

841
842
843
844
845

846
847
848
849
850
851
852
853
854
855
856
857

Electronics 2018, 7, x FOR PEER REVIEW 29 of 74

Here a is a constant, the value is 0.1.

ELU:

x>0
x<0

X,
y= {a(e" -0,
(23)
The recent proposal of the Exponential Linear Unit activation function, which allowed for a faster and
more accurate version of the DCNN structure [113]. Furthermore, tuning the negative part of activation
function creates the leaky ReLU with Multiple Exponent Linear Unit (MELU) that are proposed recently [114]. S

shape Rectified Linear Activation units are proposed in 2015 [115]. A survey on modern activation functions

was conducted in 2015 [116].
4.6. Sub-sampling layer or pooling layer

At present, two different techniques have been used for the implementation of deep networks in the
sub-sampling or pooling layer: average and max-pooling. The concept of average pooling layer was used for the
first time in LeNet [49] and AlexNet used Max-pooling layers instead of in 2012[7]. The conceptual diagram for
max pooling and average pooling operation are shown in Figure 25. The concept of special pyramid pooling has

been proposed by He et al. in 2014 which is shown in Figure 26 [117].

4 4
6 4
-
Average
pooling 2x2

kernel with
stride 2

Max pooling 2x2 kernel
with stride 2 8 7

—e

Figure 25. Average and max-pooling operations.

The multi-scale pyramid pooling was proposed in 2015 [118]. In 2015, Benjamin G. proposed a new
architecture with Fractional max pooling, which provides state-of-the-art classification accuracy for CIFAR-10
and CIFAR-100 datasets. This structure generalizes the network by considering two important properties for a
sub-sampling layer or pooling layer. First, the non-overlapped max-pooling layer limits the generalize of the
deep structure of the network, this paper proposed a network with 3x3 overlapped max-pooling with 2-stride
instead of 2x2 as sub-sampling layer [119]. Another paper which has conducted research on different types of

pooling approaches including mixed, gated, and tree as a generalization of pooling functions [120].

858
859

860

861

862
863
864
865

866

867
868
869
870
871
872
873

874

875
876
877
878
879
880
881
882
883
884

Electronics 2018, 7, x FOR PEER REVIEW 30 of 74

concatenation

Max-pooling: 7x7 Max-pooling: 55 Max-pooling: 2x2 Max-pooling: 1x1

Previous layer

Figure 26. Spatial pyramid pooling.

4.7. Regularization approaches for DL

There are different regularization approaches that have been proposed in the past few years for deep
CNN. The simplest but efficient approach called “dropout” was proposed by Hinton in 2012 [121]. In Dropout,
a randomly selected subset of activations is set to zero within a layer [122]. The dropout concept is shown in

Figure 27.

Figure 27. Pictorial representation of the concept Dropout.

Another regularization approach is called Drop Connect. In this case, instead of dropping the activation, the
subset of weights within the network layers are set to zero. As a result, each layer receives the randomly
selected subset of units from the immediate previous layer [123]. Some other regularization approaches are

proposed as well, details in [124].
4.8. Optimization methods for DL

There are different optimization methods such as SGD, Adagrad, AdaDelta, RMSprop, and Adam [125].
Some activation functions have been improved upon such as in the case of SGD where it was proposed with an
added variable momentum, which improved training and testing accuracy. In the case of Adagrad, the main
contribution was to calculate adaptive learning rate during training. For this method, the summation of the
magnitude of the gradient is considered to calculate the adaptive learning rate. In the case with a large number
of epochs, the summation of the magnitude of the gradient becomes large. The result of this is the learning rate
decreases radically, which causes the gradient to approach zero quickly. The main drawback of this approach is
that it causes problems during training. Later, RMSprop was proposed considering only the magnitude of the
gradient of the immediately previous iteration, which prevents the problems with Adagrad and provides better

performance in some cases. The Adam optimization approach is proposed based on the momentum and the

885
886
887
888

889
890

891
892
893
894
895
896
897
898
899
900
901

902

903

904
905
906
907
908
909

010

011

912

013

Electronics 2018, 7, x FOR PEER REVIEW 31 of 74

magnitude of the gradient for calculating adaptive learning rate similar RMSprop. Adam has improved overall
accuracy and helps for efficient training with the better convergence of deep learning algorithms [126]. The
improved version of the Adam optimization approach has been proposed recently, which is called EVE. EVE

provides even better performance with fast and accurate convergence [127].

5. Recurrent Neural Network (RNN)
5.1. Introduction

Human thoughts have persistence; Human don’t throw a thing away and start their thinking
from scratch in a second. As you are reading this article, you understand each word or sentence
based on the understanding of previous words or sentences. The traditional neural network
approaches including DNNs and CNNs cannot deal with this type of problem. The standard Neural
Networks and CNN are incapable due to the following reasons. First, these approaches only handle
a fixed-size vector as input (e.g., an image or video frame) and produce a fixed-size vector as output
(e.g., probabilities of different classes). Second, those models operate with a fixed number of
computational steps (e.g. the number of layers in the model). The RNNs are unique as they allow
operation over a sequence of vectors over time. The Hopfield Newark introduced this concept in
1982 but the idea was described shortly in 1974 [128]. The pictorial representation is shown in Figure
28.

Figure 28. The structure of basic RNN with a loop.

Different versions of RNN have been proposed in Jordan and Elman [129, 130]. In the Elman,
architecture uses the output from hidden layers as inputs alongside the normal inputs of hidden
layers [129]. On the other hand, the outputs from the output unit are used as inputs with the inputs
of hidden layer in Jordan network [130]. Jordan, in contrast, uses inputs from the outputs of the
output unit with the inputs to the hidden layer. Mathematically expressed as:

Elman network [129]:

he = o (Wyx¢ + uphe_g + by) (24)
ye = oy(wyh, +by) (25)
Jordan network [130]

hy = op (WX + Upye-q + by) (26)

14

15
916
917
918
919

920

921

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

940
941

Electronics 2018, 7, x FOR PEER REVIEW 32 0f 74

yi = oy(wyh, +by) (27)

where x; is a vector of inputs, h; are hidden layer vectors, y; are the output vectors, w and u are
weight matrices and b is the bias vector.

A loop allows information to be passed from one step of the network to the next. A recurrent
neural network can be thought of as multiple copies of the same network, each network passing a

message to a successor. The diagram below shows what happens if we unroll the loop.

2 990
> o0 ©

Figure 29. An unrolled RNNs.

The main problem with RNN approaches is that there exists the vanishing gradient problem.
For the first time, this problem is solved by Hochreiter el at. in 1992 [131]. A deep RNN consisting of
1000 subsequent layers was implemented and evaluated to solve deep learning tasks in 1993 [132].
There are several solutions that have been proposed for solving the vanishing gradient problem of
RNN approaches in the past few decades. Two possible effective solutions to this problem are first to
clip the gradient and scale the gradient if the norm is too large, and secondly, create a better RNN
model. One of the better models was introduced by Felix A. el at. in 2000 named Long Short-Term
Memory (LSTM) [133,134]. From the LSTM there have been different advanced approaches
proposed in the last few years which are explained in the following sections.

The RNN approaches allowed sequences in the input, the output, or in the most general case
both. For example, DL for text mining, building deep learning models on textual data requires
representation of the basic text unit and word. Neural network structures that can hierarchically
capture the sequential nature of the text. In most of these cases, RNNs or Recursive Neural Networks
are used for language understanding [292]. In the language modeling, it tries to predict the next
word or set of words or some cases sentences based on the previous ones [135]. RNNs are networks
with loops in them, allowing information to persist. Another example: the RNNs are able to connect
previous information to the present task: using previous video frames, understanding the present

and trying to generate future frames as well [142].

Figure 30. Diagram for Long Short-Term Memory (LSTM).

942

943
044
045

046

047

048

049

950

051

952
953
954
955
956

957

958

959

960
961
962
963
964
965

Electronics 2018, 7, x FOR PEER REVIEW 33 of 74

5.2. Long Short-Term Memory (LSTM)

The key idea of LSTMs is the cell state, the horizontal line running through the top of the Figure
31. LSTMs remove or add information to the cell state called gates: an input gate(i,), forget gate (f;)

and output gate(o,) can be defined as:

fi = o(Wr. [he_y, x¢] + by) (28)
iy = o(Wi. [he_q,X¢] + by) (29)
C, = tanh(We. [heoq, X¢] + be) (30)
Co=f%Coy +i* C 31)
0, = o(Wg. [he_1, %] + bg) (32)
h, = O * tanh(C,) (33)

LSTM models are popular for temporal information processing. Most of the papers that include
LSTM models with some minor variance. Some of them are discussed in the following section. There
is a slightly modified version of the network with “peephole connections” by Gers and
Schimidhuber proposed in 2000 [133]. The concept of peepholes is included with almost all the gated

in this model.

Figure 31. Diagram for Gated Recurrent Unit (GRU).

5.3. Gated Recurrent Unit (GRU)

GRU also came from LSTMs with slightly more variation by Cho, et al. in 2014 [36]. GRUs are
now popular in the community who are working with recurrent networks. The main reason for the
popularity is computation cost and simplicity of the model, which is shown in Figure 31. GRUs are
lighter versions of RNN approaches than standard LSTM in term of topology, computation cost and
complexity [136]. This technique combines the forget and input gates into a single “update gate” and
merges the cell state and hidden state along with some other changes. The simpler model of the GRU

966
967

068

069

070

071

972
973
974
975
976
977
978
979
980

981

982
983
984
985
986
987
988

989

990

991
992
993

Electronics 2018, 7, x FOR PEER REVIEW 34 of 74

has been growing increasingly popular. Mathematically the GRU can be expressed with the

following equations:

ze = 6(W,. [he_y, %)) (34)
re = 0(We. [he_y, %)) (35)
hy = tanh(W. [ry * hy_q, X)) (36)
hy=(1-2z)*h_; +2z* h (37)

The question is which one is the best? According to the different empirical studies, there is no
clear evidence of a winner. However, the GRU requires fewer network parameters, which makes the
model faster. On the other hand, LSTM provides better performance, if you have enough data and
computational power [137]. There is a variant LSTM named Deep LSTM [138]. Another variant that
is a bit different approach called “A clockwork RNN” [139]. There is an important empirical
evaluation on a different version of RNN approaches including LSTM by Greff, et al. in 2015 [140]
and the final conclusion was all the LSTM variants were all about the same [140]. Another empirical
evaluation is conducted on thousands of RNN architecture including LSTM, GRU and so on finding

some that worked better than LSTMs on certain tasks [141]

5.4. Convolutional LSTM (ConvLSTM)

The problem with fully connected (FC) LSTM and short FC-LSTM model is handling
spatiotemporal data and its usage of full connections in the input-to-state and state-to-state
transactions, where no spatial information has been encoded. The internal gates of ConvLSTM are
3D tensors, where the last two dimensions are spatial dimensions (rows and columns). The
ConvLSTM determines the future state of a certain cell in the grid with respect to inputs and the past
states of its local neighbors which can be achieved using convolution operations in the state-to-state

or inputs-to-states transition shown in Figure 32.

Hepr, G

H, G

He q,Go1 1
>

Figure 32. Pictorial diagram for ConvLSTM [142].

ConvLSTM is providing good performance for temporal data analysis with video datasets [142].
Mathematically the ConvLSTM is expressed as follows where * represents the convolution operation

and o denotes for Hadamard product:

994

995

096

097
998

99

1000

1001

1002
1003
1004
1005
1006
1007
1008
1009
1010

1011
1012

1013
1014

1015
1016

Electronics 2018, 7, x FOR PEER REVIEW

it = o(Wyi - Xy + Wi * H_g + Wpj © Ce—q + b;)
fo = o(Wyr - X¢ + Wi * Hi_q + Wyeo C_q + by)
C, = tanh(Wy, . X, + Wi * Hy_q + be)

Ce = froCey +ip* G
(41)

0 = 0(Wyo - Xt + Who * Hi_q + Wy © G + by
h; = o; o tanh(C,)

5.5. A wvariant of architectures of RNN with respective to the applications

350f 74

(38)

(39)

(40)

(42)

(43)

To incorporate the attention mechanism with RNNs, Word2Vec is used in most of the cases for

a word or sentence encoding. Word2vec is a powerful word embedding technique with a 2-layer

predictive NN from raw text inputs. This approach is used in the different fields of applications

including unsupervised learning with words, relationship learning between the different words, the

ability to abstract higher meaning of the words based on the similarity, sentence modeling, language

understanding and many more. There are different other word embedding approaches that have

been proposed in the past few years which are used to solve difficult tasks and provide

state-of-the-art performance including machine translation and language modeling, Image and

video captioning and time series data analysis [143,144, and 288].

(a) (b) (©)

(d) (e)

Figure 33. The different structure of RNN with respect to the applications: (a) One to one (b) Many to

one (c) One to many (d) Many to many and (e) Many to many.

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

1045

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

Electronics 2018, 7, x FOR PEER REVIEW 36 of 74

From the application point of view, RNNs can solve different types of problems which need
different architectures of RNNs shown in Figure 33. In Figure 33, Input vectors are represented as
green, RNN states are represented with blue and orange represents the output vector. These
structures can be described as:

One to One: Standard mode for classification without RNN (e.g. image classification problem)
shown Figure 33 (a)

Many to One: Sequence of inputs and a single output (e.g. the sentiment analysis where inputs are a
set of sentences or words and output is a positive or negative expression) shown Figure 33 (b)

One to Many: Where a system takes an input and produces a sequence of outputs (Image
Captioning problem: input is a single image and output is a set of words with context) shown Figure
33 (c).

Many to Many: sequences of inputs and outputs (e.g. machine translation: machine takes a sequence
of words from English and translates to a sequence of words in French) shown Figure 33 (d).

Many to Many: sequence to sequence learning (e.g. video classification problem in which we take

video frames as input and wish to label each frame of the video shown Figure 33(e).

5.6. Attention-based models with RNN

Different attention based models have been proposed using RNN approaches. The first
initiative for RNNs with the attention that automatically learns to describe the content of images is
proposed by Xu, et al. in 2015 [145]. A dual state attention based RNN is proposed for effective time
series prediction [146]. Another difficult task is Visual Question Answering (VQA) using GRUs
where the inputs are an image and a natural language question about the image, the task is to
provide an accurate natural language answer. The output is to be conditional on both image and
textual inputs. A CNN is used to encode the image and an RNN is implemented to encode the
sentence [147]. Another outstanding concept is released from Google called Pixel Recurrent Neural
Networks (Pixel RNN). This approach provides state-of-the-art performance for image completion
tasks [148]. The new model called residual RNN is proposed, where the RNN is introduced with an

effective residual connection in a deep recurrent network [149].

5.7. RNN Applications

RNNs including LSTM and GRU are applied to Tensor processing [150]. Natural Language
Processing using RNN techniques including LSTMs and GRUs [151,152]. Convolutional RNNs
based on multi-language identification system has been proposed in 2017 [153]. Time series data
analysis using RNNs [154]. Recently, TimeNet was proposed based on pre-trained deep RNNs for
time series classification (TSC) [155]. Speech and audio processing including LSTMs for large-scale
acoustic modeling [156,157]. Sound event prediction using convolutional RNNs [158]. Audio
tagging using Convolutional GRUs [159]. Early heart failure detection is proposed using RNNs
[160].

RNNs are applied in tracking and monitoring: data-driven traffic forecasting systems are

proposed using Graph Convolutional RNN (GCRNN) [161]. An LSTM based network traffic

1056
1057
1058

1059
1060

1061

1062
1063
1064

1065

1066
1067
1068
1069
1070
1071
1072
1073

1074

1075
1076
1077

1L78

1079

—

080
081

—

1082

Electronics 2018, 7, x FOR PEER REVIEW 37 of 74

prediction system is proposed with a neural network-based model [162]. Bidirectional Deep RNN is
applied for driver action prediction [163]. Vehicle Trajectory prediction using an RNN [164]. Action
recognition using an RNN with a Bag-of-Words [165]. Collection anomaly detection using LSTMs
for cybersecurity [166].

6. Auto-Encoder (AE) and Restricted Boltzmann Machine (RBM)

This section will be discussing one of the unsupervised deep learning approaches the Auto Encoder [55]
(e.g. variational auto-encoder (VAE) [167], denoising AE [59], sparse AE [168], stacked denoising AE [169],
Split-Brain AE [170]). The applications of different AE are also discussed at the end of this chapter.

6.1. Review of Auto-Encoder (AE)

An AE is a deep neural network approach used for unsupervised feature learning with efficient data
encoding and decoding. The main objective of autoencoder is to learn and represent (encoding) of the input
data, typically for data dimensionality reduction, compression, fusion and many more. This autoencoder
technique consists of two parts: the encoder and the decoder. In the encoding phase, the input samples are
mapped usually in the lower dimensional features space with a constructive feature representation. This
approach can be repeated until the desired feature dimensional space is reached. Whereas in the decoding
phase, we regenerate actual features from lower dimensional features with reverse processing. The conceptual

diagram of auto-encoder with encoding and decoding phases is shown in Figure 34.

X1 w wr fl
1N
Xo fz
? Zy €
X3 23
' } 2
Xa £4
: +1 é
+1
Encoding Decoding

Figure 34. Diagram for Auto encoder.

The encoder and decoder transition can be represented with @ and ¢, @: X - F and ¢ : F — X, then

@,¢ = argming, [|X — (8, p)X||?
(44)

If we consider a simple autoencoder with one hidden layer, where the input is x € R* = X, which is mapped

onto € RP = F, it can be then expressed as follows:

z=0,(Wx +b) (45)

1083
1084
1085

1086

1087

1oss
1089

1090
1091
1092
1093
1094
1095
1096

1097

1098
1099
1100
1101
1102
1103
1104
1105

1106

1107
1108
1109
1110
1111
1112
1113
1114

Electronics 2018, 7, x FOR PEER REVIEW 38 of 74

where W is the weight matrix and b is bias. o; represents an element wise activation function such as a
sigmoid or a rectified linear unit (RLU). Let us consider z is again mapped or reconstructed onto x’ which

is the same dimension of x. The reconstruction can be expressed as

x'=a,(W'z+b") (46)

This model is trained with minimizing the reconstruction errors, which is defined as loss function as follows

L(x,x") = [lx —x'||? = ||x = o(W'(o,(Wx + b)) + b’)”2
(47)

Usually, the feature space of F has lower dimensions than the input feature space X, which can be
considered as the compressed representation of the input sample. In the case of multilayer auto encoder, the
same operation will be repeated as required with in the encoding and decoding phases. A deep Auto encoder is
constructed by extending the encoder and decoder of athe uto encoder with multiple hidden layers. The Gradient
vanishing problem is still a big issue with the deeper model of AE: the gradient becomes too small as it passes
back through many layers of a AE model. Different advanced AE models are discussed in the following

sections.

6.2. Variational autoencoders (VAEs)

There are some limitations of using simple Generative Adversarial Networks (GAN) which are discussed
in Section 7. At first, images are generated using GAN from input noise. If someone wants to generate a specific
image, then it is difficult to select the specific features (noise) randomly to produce desired images. It requires
searching the entire distribution. Second, GANs differentiate between ‘real’ and ‘fake’ objects. For example, if
you want to generate a dog, there is no constraint that the dog must look like a dog. Therefore, it produces same
style images which the style looks like a dog but if we closely observed then it is not exactly. However, VAE is
proposed to overcome those limitations of basic GANs, where the latent vector space is used to represent the

images which follow a unit Gaussian distribution. [167,174].

R » z Jel— 4

T

Figure 35. Variational Auto-Encoder.

In this model, there are two losses, one is a mean squared error that determines, how good the network is
doing for reconstructing the image, and loss (the Kullback-Leibler (KL) divergence) of latent, which determines
how closely the latent variable match is with unit Gaussian distribution. For example, suppose x is an input
and the hidden representation is z . The parameters (weights and biases) are 6 . For reconstructing the
phase the input is z and the desired output is x. The parameters (weights and biases) are ¢. So, we can
represent the encoder as qg(z|x) and decoder p4(x|z) respectively. The loss function of both networks and

latent space can be represented as

1115
1116

1117
1118
1119
1120

1121

1122
1123
1124

1125
1126
1127
1128
1129

1130

1131
1132
1133
1134
1135
1136
1137
1138

1139

Electronics 2018, 7, x FOR PEER REVIEW 39 of 74

1;(6,¢) = _Ez~q9(z|xi)[logp¢(xi|Z)] + KL(qe(z|x)| p(2)) (48)
6.3. Split-Brain Autoencoder

Recently Split-Brain AE was proposed from Berkeley Al Research (BAIR) lab, which is the architectural
modification of traditional autoencoders for unsupervised representation learning. In this architecture, the
network is split into disjoint sub-networks, where two networks try to predict the feature representation of an

entire image [170].

X2
Xq

X2 ~
X1 Predicted data

Raw data

Figure 36. Split-Brain Autoencoder.

6.4. Applications of AE

AE is applied in Bio-informatics [102,171] and cybersecurity [172]. We can apply AE for unsupervised feature
extraction and then apply Winner Take All (WTA) for clustering those samples for generating labels [173]. AE
has been used as an encoding and decoding technique with or for other deep learning approaches including
CNN, DNN, RNN, and RL in the last decade. However, here are some other approaches recently published
[174,175]

6.5. Review of RBM

Restricted Boltzmann Machine (RBM) is another unsupervised deep learning approach. The training phase
can be modeled using a two-layer network called a “Restricted Boltzmann Machine” [176] in which stochastic
binary pixels are connected to stochastic binary feature detectors using symmetrically weighted connections.
RBM is an energy-based undirected generative model that uses a layer of hidden variables to model distribution
over visible variables. The undirected model for the interactions between the hidden and visible variables is
used to ensure that the contribution of the likelihood term to the posterior over the hidden variables is

approximately factorial which greatly facilitates inference [177]. The conceptual diagram of RBM is shown in

Figure 37.
| J hs
RBM

Y .

| J h,
4
é kA 4 .

|) hy
4
é Y

1140

1141
1142
1143
1144
1145
1146
1147

1148

1{149
1150
1151

1152

1153
1154

1155
1156

1157

1158
1159
1160
1161

11162

1163
1164
1165

1]166

—

167
168

—

1169

1170

Electronics 2018, 7, x FOR PEER REVIEW 40 of 74

Figure 37. Block diagram for RBM.

Energy-based models mean that the probability distribution over the variables of interest is defined
through an energy function. The energy function is composed from a set of observable variabless V = {v;} and
a set of hidden variables = {h;} , where i is a node in the visible layer, j is a node in the hidden layer. It is
restricted in the sense that there are no visible-visible or hidden-hidden connections. The values corresponding
to “visible” units of the RBM because their states are observed; the feature detectors correspond to “hidden”

units. A joint configuration, (v,h) of the visible and hidden units has an energy (Hopfield, 1982) given by:

E(w,h) =—=Y;aq;v; —Xjbihj —%; Xjviw;h; (49)

where v; h; are the binary states of visible unit { and hidden unit j, a;, b; are their biases and w;; is
the weight between them. The network assigns a probability to a possible pair of a visible and a hidden vector

via this energy function:

p(v,h) =~ e EM) (50)

where the “partition function”, Z , is given by summing over all possible pairs of visible and hidden vectors:
Z=Y,pe F0N (51)

The probability that the network assigns to a visible vector, v, is given by summing over all possible hidden

vectors:

p(v) =~ Ype TN (52)

The probability that the network assigns to a training sample can be raised by adjusting the weights and
biases to lower the energy of that sample and to raise the energy of other samples, especially those have low
energies and therefore make a big contribution to the partition function. The derivative of the log probability of
a training vector with respect to a weight is surprisingly simple.

logr®) _ 1, . — (v:h;
owy; <vlh])data <vlh]>

(53)

model

where the angle brackets are used to denote expectations under the distribution specified by the subscript that
follows. This leads to a simple learning rule for performing stochastic steepest ascent in the log probability of

the training data:

WU=€0W%Lma—WWﬁ (54)

model)

where ¢ is a learning rate. Given a randomly selected training image, v, the binary state, h;, of each hidden

unit, j is setto 1 with probability

where o(x) is the logistic sigmoid function 1/ (1 + e(_x)), v;h; is then an unbiased sample. Because there

1171
1172

1173

1174
1175
1176
1177
1178
1179
1{180
1181

1182

1183
1184
1185
1186
1187
1188

1189

1190
1191

1192

1193
1194
1195
1196

Electronics 2018, 7, x FOR PEER REVIEW 41 of 74

are no direct connections between visible units in an RBM, it is also easy to get an unbiased sample of the

state of a visible unit, given a hidden vector

p(v; = 1|h) = o(a; + X hj w;;) (56)

Getting an unbiased sample of (vihj) is much more difficult. It can be done by starting at any

model
random state of the visible units and performing alternating Gibbs sampling for a long time. Single iteration of
alternating Gibbs sampling consists of updating all the hidden units in parallel using Eq. (55) followed by
updating all the visible units in parallel using following Eq. (56). A much faster learning procedure was
proposed in Hinton (2002). This starts by setting the states of the visible units to a training vector. Then the
binary states of the hidden units are all computed in parallel using Eq. (55). Once binary states have been chosen

for the hidden units, a “reconstruction” is produced by setting each v; to 1 with a probability given by Eq. (56).

The change in a weight is then given by

Aw;; =€ (<vihj>data - <vihj>recon) >

A simplified version of the same learning rule that uses the states of individual units instead of a pairwise
product is used for the biases [178]. This approach is mainly used for pre-training a neural network in an
unsupervised manner to generate initial weights. One of the most popular deep learning approaches called Deep
Belief Network (DBN) is proposed based on this approach. Some of the examples of the applications with RBM
and DBN for data encoding, news clustering, image segmentation, and cybersecurity are shown, for detail see

[51, 179, 289, 315].
7. Generative Adversarial Networks (GAN)

At the beginning of this chapter, we started with a quote from Yann LeCun, “GAN is the best concept

proposed in the last ten years in the field of deep learning (Neural networks)”.

7.1. Review on GAN

The concept of generative models in machine learning started a long time before which is used for data
modeling with conditional probability density function. Generally, this type of model is considered a
probabilistic model with a joint probability distribution over observation and target (label) values. However, we

did not see the big success of this generative model before. Recently deep learning based generative models

—»
Actual samples sample
Discriminator ® o O
£ &
i: (0) ®
=
5 4
E |
! Generator (G) Sample i
g
o i
[= !
2 |
3

Figure 38. Conceptual diagram for Generative Adversarial Networks (GAN)

Electronics 2018, 7, x FOR PEER REVIEW 42 of 74

have become popular and shown enormous success in different application domains.

Deep learning is a data-driven technique that performs better as the number of input samples increased.
Due to this reason, learning with reusable feature representations from a huge number of the un-labels dataset
has become an active research area. We mentioned in the introduction that Computer vision has different
tasks, segmentation, classification, and detection, which requires large amounts of labeled data. This problem
has been attempted to be solved be generating similar samples with a generative model.

Generative Adversarial Network (GAN) is a deep learning approach recently invented by Goodfellow in
2014. GANs offer an alternative approach to maximum likelihood estimation techniques. GAN is an
unsupervised deep learning approach where two neural networks compete against each other in a zero-sum
game. In the case of the image generation problem, the generator starts with Gaussian noise to generate images
and the discriminator determines how good the generated images are. This process continues until the outputs of
the generator become close to actual input samples. According to Figure 38, it can be considered that
Discriminator (D) and Generator (G) two players playing the min-max game with the function of V (D, G)

which can be expressed as follows according to this paper [180,181].

mingmaxy V(D,6) = Exp o009 D]+ Ezpyyionllogl — D(G()))] (58)

In practice, this equation may not provide sufficient gradient for learning G (which started from random
Gaussian noise) at the early stages. In the early stages, D can reject samples because they are clearly different
compared to training samples. In this case, log(1 — D(G(z))) will be saturated. Instead of training G to
minimize log(1 — D(G(z))) we can train G to maximize log(G(z)) objective function which provides
much better gradients in early stages during learning. However, there were some limitations of convergence
procethe ss during training with the first version. In the beginning state a GAN has some limitations regarding

the following issues:
= The lack of a heuristic cost function (as pixel-wise approximate means square errors (MSE))

= Unstable to train (sometimes that can because of producing nonsensical outputs)

Research in the area of GANs has been ongoing with many improved versions being proposed [181].
GAN:Ss are able to produce photorealistic images for applications such as visualization of interior or industrial
design, shoes, bags, and clothing items. GAN is also extensively used in the field of game development and
artificial video generation [182]. GANs have two different areas of DL that they fall into semi-supervised and
unsupervised. Some research in these areas focuses on the topology of the GAN architecture to improve
functionality and the training approach. Deep convolution GAN (DCGAN) is a convolution-based GAN
approach proposed in 2015 [183]. This semi-supervised approach has shown promised results compared to its
unsupervised counterpart. The regenerated results from DCGAN have shown in the following figures [183].
Figure 39 shows the output for generated bedroom images after one training pass through the dataset. Most of
the figures included in this section are generated through experiments. Theoretically, the model could learn to
memorize training examples, but this is experimentally unlikely as we train with a small learning rate and mini
batches with SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a

small learning rate [183].

1234

1235

1236
1237
1238

1239

1240

1241
1242
1243
1244
1245
1246
1247

Electronics 2018, 7, x FOR PEER REVIEW 43 of 74

Figure 39. Experimental outputs of bedroom images.

Figure 40 represents generated bedroom images after five epochs of training. There appears to be evidence of
visual under-fitting via repeated noise textures across multiple samples such as the baseboards of some of the

beds.

Figure 40. Reconstructed bedroom images using DCGAN[183]

In Figure 40, the top rows interpolation between a series of 9 random points in Z and show that the space
learned has smooth transitions. In every image, space plausibly looks like a bedroom. In the 6th row, you see a
room without a window slowly transforming into a room with a giant window. In the 10th row, you see what
appears to be a TV slowly being transformed into a window. The following Figure 41 shows the effective
application of latent space vectors. Latent space vectors can be turned into meaning output by first performing
addition and subtraction operations followed by a decode. Figure 41 shows that a man with glasses minus a man

and add a woman which results in a woman with glasses.

1248

1249

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Electronics 2018, 7, x FOR PEER REVIEW 44 of 74

M-8+

smiling neutral neutral

smiling man
woman St Pl 9

b
e man woman)
with glasses without glasses without glasses woman with glasses

Figure 41. Example of smile arithmetic and arithmetic for wearing glass using GAN[183].

Figure 42 shows a “turn” vector was created from four averaged samples of faces looking left versus
looking right. By adding interpolations along this axis of random samples the pose can be reliably transformed.
There are some interesting applications that have been proposed for GANs. For example, natural indoor scenes
are generated with improved GAN structures. These GANs learn surface normal and are combined with a Style
GAN by Wang and Gupta [184]. In this implementation, authors considered the style and structure of GAN
named (S2-GAN), which generates a surface normal map. This is an improved version of GAN. In 2016, an
information-theoretic extension to the GAN called “InfoGAN” was proposed. An infoGAN can learn with
better representations in a completely unsupervised manner. The experimental results show that the
unsupervised InfoGAN is competitive with representation learning with the fully supervised learning approach
[185].

In 2016, another new architecture was proposed by Im et al. [186] where the recurrent concept is included
with the adversarial network during training. Chen et. al. [187] proposed Info GAN (iGAN) which allowed
image manipulation interactively on a natural image manifold. Image to image translation with conditional
adversarial networks is proposed in 2017. Another improved version of GANs named Coupled Generative
Adversarial Network (CoGAN) is a learned joint distribution of multi-domain images. The existing approach
does not need tuples of corresponding images in different domains in the training set [188]. Bidirectional
Generative Adversarial Networks (BiGANs are learned with inverse feature mapping and shown that the
resulting learned feature representation is useful for auxiliary supervised discrimination tasks, competitive with

contemporary approaches to un-supervised and self-supervised feature learning [189].

1269

1270

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

Electronics 2018, 7, x FOR PEER REVIEW 45 of 74

Figure 42. Face generation in different angle using GAN[183].

Recently, Google proposed extended versions of GANs called Boundary Equilibrium Generative
Adversarial Networks (BEGAN) with a simple but robust architecture [190]. BEGAN has a better training
procedure with fast and stable convergence. The concept of equilibrium helps to balance the power of the
discriminator against the generator. In addition, it can balance the trade-off between image diversity and visual
quality [190]. Another similar work is called Wasserstein GAN (WGAN) algorithm that shows significant
benefits over traditional GAN [191]. WGANSs had two major benefits over traditional GANSs. First, a WGAN
meaningfully correlates the loss metric with the generator’s convergence and sample quality. Secondly,
WGANSs have improved stability of the optimization process.

The improved version of WGAN is proposed with a new clipping technique, which penalizes the normal
of the gradient of the critic with respect to its inputs [192]. There is a promising architecture that has been
proposed based on generative models where the images are represented with untrained DNN that give an
opportunity for better understanding and visualization of DNNs [193]. Adversarial examples for generative
models have also been introduced [194]. Energy-based GAN was proposed by Yann LeCun from Facebook in
2016 [195]. The training process is difficult for GANs, Manifold Matching GAN (MMGAN) proposed with
better training process which is experimented on three different datasets and the experimental results clearly
demonstrate the efficacy of MMGAN against other models [196]. GAN for geo-statistical simulation and
inversion with efficient training approach [197].

Probabilistic GAN (PGAN) which is a new kind of GAN with a modified objective function. The main
idea behind this method is to integrate a probabilistic model (A Gaussian Mixture Model) into the GAN
framework that supports likelihood rather than classification [198]. A GAN with Bayesian Network model
[199]. Variational Auto encode is a popular deep learning approach, which is trained with Adversarial
Variational Bayes (AVB) which helps to establish a principle connection between VAE and GAN [200]. The
f-GAN which is proposed based on the general feed-forward neural network [201]. Markov model based GAN
for texture synthesis [202]. Another generative model based on the doubly stochastic MCMC method [203].
GAN with multi-Generator [204]

Is an unsupervised GAN capable of learning on a pixel level domain adaptation that transforms in the pixel
space from one domain to another domain? This approach provides state-of-the-art performance against several
unsupervised domain adaptation techniques with a large margin [205]. A new network is proposed called
Schema Network, which is an object-oriented generative physics simulator able to disentangle multiple causes
of events reasoning through causes to achieve a goal that is learned from dynamics of an environment from data

[206]. There is interesting research that has been conducted with a GAN that is to Generate Adversarial Text to

http://arxiv.org/abs/1702.06832v1
http://arxiv.org/abs/1702.06832v1

1302
1303
1304
1305
1306

1307

1308
1309

1310

1311
1312
1313
1314
1315
1316
1317

1318

1319
1320
1321
1322

1323

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335

1336
1337

1338
1339

Electronics 2018, 7, x FOR PEER REVIEW 46 of 74

Image Synthesis. In this paper, the new deep architecture is proposed for GAN formulation which can take the
text description of an image and produce realistic images with respect to the inputs. This is an effective
technique for text-based image synthesis using a character level text encoder and class conditional GAN. GAN
is evaluated on bird and flower dataset first then general text to the image which is evaluated on MS COCO

dataset [36].
7.2. Applications of GAN

This learning algorithm has been applied in the different domain of applications that are discussed in the

following sections:

a) GAN for image processing

GANSs used for generating a photo-realistic image using a super-resolution approach [207]. GAN for
semantic segmentation with semi and weakly supervised approach [208]. Text Conditioned Auxiliary Classifier
GAN (TAC-GAN) which is used for generating or synthesizing images from a text description [209].
Multi-style Generative network (MSG-Net) which retains the functionality of optimization based approaches
with fast speed. This network matches image styles at multiple scales and puts the computational burden into
training [210]. Most of the time, vision systems struggle with rain, snow, and fog. A single image de-raining

system is proposed using a GAN recently [211].

b) GAN for speech and audio processing

An End-to-End Dialogue system using Generative Hierarchical Neural Network models [212]. In addition,
GANSs have been used in the field of speech analysis. Recently, GANSs are used for speech enhancement which
is called SEGAN that incorporates further speech-centric design to improve performance progressively [213].

GAN for symbolic-domain and music generation which performs comparably against Melody RNN [214].

¢) GAN for medical information processing

GANs for Medical Imagining and medical information processing [102], GANs for medical image
de-noising with Wasserstein distance and perceptual loss [215]. GANs can also be used for segmentation of
Brain Tumors with conditional GANs (¢cGAN) [216]. A General medical image segmentation approach is
proposed using a GAN called SegAN [217]. Before the deep learning revolution, compressive sensing is one of
the hottest topics. However, Deep GAN is used for compressed sensing that automates MRI [218]. In addition,
GAN:Ss can also be used in health record processing, due to the privacy issue the electronic health record (EHR)
is limited to or is not publicly available like other datasets. GANs are applied for synthetic EHR data which
could mitigate risk [219]. Time series data generation with Recurrent GAN (RGAN) and Recurrent Conditional
GAN (RCGAN) has been introduced [220]. LOGAN consists of the combination of a generative and
discriminative model for detecting the overfitting and recognition inputs. This technique has been compared
against state-of-the-art GAN technique including GAN, DCGAN, BEGAN and a combination of DCGAN with
a VAE [221].

d) Other applications
A new approach called Bayesian Conditional GAN (BC-GAN) which can generate samples from

deterministic inputs. This is simply a GAN with a Bayesian framework that can handle supervised,

semi-supervised and unsupervised learning problems [222,223]. In machine learning and deep learning

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356

1357

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1368

1369
1370
1371

Electronics 2018, 7, x FOR PEER REVIEW 47 of 74

community, online learning is an important approach. GANs are used for online learning in which it is being
trained for finding a mixed strategy in a zero-sum game which is named Checkov GAN 1[224]. Generative
moment matching networks based on statistical hypothesis testing called maximum mean discrepancy (MMD)
[225]. One of the interesting ideas to replace the discriminator of GAN with two-sample based kernel MMD is
called MMD-GAN. This approach significantly outperforms Generative moment matching network (GMMN)
technique which is an alternative approach for the generative model [226].

Some other applications of GAN include pose estimation [227], photo editing network [228], and anomaly
detection [229]. DiscoGAN for learning cross-domain relation with GAN [230], single shot learning with GAN
[231], response generation and question answering system [232,233]. Last but not least, WaveNet as a

generative model has been developed for generating audio waveform [286].

8. Deep Reinforcement Learning (DRL)

In the previous sections, we have focused on supervised and unsupervised deep learning approaches
including DNN, CNN, RNN including LSTM and GRU, AE, RBM, GAN etc. These types of deep learning
approaches are used for prediction, classification, encoding, decoding, data generation, and many more
application domains. However, this section demonstrates a survey on Deep Reinforcement Learning (DRL)

based on the recently developed methods in this field of RL.

8.1. Review on DRL

DRL is a learning approach which learns to act with general sense from the unknown real environment
(For details please read the following article [234]). RL can be applied in a different scope of field including
fundamental Sciences for decision making, Machine learning from a computer science point of view, in the
field of engineering and mathematics, optimal control, robotics control, power station control, wind turbines,
and Neuroscience the reward strategy is widely studied in the last couple of decades. It is also applied in
economic utility or game theory for making better decisions and for investment choices. The psychological
concept of classical conditioning is how animals learn. Reinforcement learning is a technique for what to do and
how to match a situation to an action. Reinforcement learning is different from supervised learning technique
and other kinds of learning approaches studies recently including traditional machine learning, statistical

pattern recognition, and ANN.

Intelligent Agent

Observation Reward

Action

Environment

Figure 43. Conceptual diagram for RL system.

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389

1390

1391
1392
1393

1394
1395
1396
1397
1398
1399

1400
1401
1402

1403
1404

405
406
A07
408

409

S O S U w—y

—

Electronics 2018, 7, x FOR PEER REVIEW 48 of 74

Unlike the general supervised and unsupervised machine learning, RL is defined not by characterizing
learning methods, but by characterizing a learning problem. However, the recent success of DL has had a huge
impact on the success of DRL which is known as DRL. According to the learning strategy, the RL technique is
learned through observation. For observing the environment, the promising DL techniques include CNN, RNN,
LSTM, and GRU are used depending upon the observation space. As DL techniques encode data efficiently,
therefore, the following step of action is performed more accurately. According to the action, the agent receives
an appropriate reward respectively. As a result, the entire RL approach becomes more efficient to learn and
interact in the environment with better performance.

However, the history of the modern DRL revolution began from Google Deep Mind in 2013 with Atari
games with DRL. In which the DRL based approaches perform better against the human expert in almost all of
the games. In this case, the environment is observed on video frames which are processed using a CNN
[235,236]. The success of DRL approaches depends on the level of difficulty of the task attempt to be solved.
After a huge success of Alpha-Go and Atari from Google Deep mind, they proposed a reinforcement learning
environment based on StarCraft II in 2017, which is called SC2LE (StarCraft II Learning Environment) [237].
The SC2LE is a game with multi-agent with multiple players’ interactions. This proposed approach has a large
action space involving the selection and control of hundreds of units. It contains many states to observe from
raw feature space and it uses strategies over thousands of steps. The open source Python-based StarCraft II

game engine has been provided free in online.

8.2. Q- Learning

There are some fundamental strategies which are essential to know for working with DRL. First, the RL
learning approach has a function that calculates the Quality of state-action combination which is called

Q-Learning (Q-function). Algorithm II describes basic computational flow of Q-learning.

Q-learning is defined as a model-free reinforcement learning approach which is used to find an optimal
action-selection policy for any given (finite) Markov Decision Process (MDP). MDP is a mathematical
framework for modeling decision using state, action and rewards. Q-learning only needs to know about the
states available and what are the possible actions in each state. Another improved version of Q-Learning known
as Bi-directional Q-Learning. In this article, the Q-Learning is discussed, for details on bi-directional

Q-Learning please see [238].

At each step s, choose the action which maximizes the following function Q (s, a)
— Q@ is an estimated utility function — it tells us how good an action is given in a certain state
— 1 (s,a) immediate reward for making an action best utility (Q) for the resulting state

This can be formulated with the recursive definition as follows:
Q(s,a) =r(s,a) +y maxy (Q(s',a")) (59)

This equation is called Bellman’s equation, which is the core equation for RL. Here r(s,a) is the immediate
reward, y is the relative value of delay vs. immediate rewards [0, 1] s’ is the new state after action a. The
a and a' are an action in sate s and s’ respectively. The action is selected based on the following

equation:

n(s) = argmax,Q(s,a) (60)

1410
1411
1412
1413
1414

1415

1416

1417
1418
1419
1420
1421
1422
1423

1424

1425
1426
1427
1428
1429
1430
1431
1432
1433

Electronics 2018, 7, x FOR PEER REVIEW 49 of 74

In each state, a value is assigned called a Q-value. When we visit a state and we receive a reward
accordingly. We use the reward to update the estimated value for that state. As the reward is stochastic, as a
result, we need to visit the states many times. In addition, it is not guaranteed that we will get the same reward
(R¢) in another episode. The summation of the future rewards in episodic tasks and environments are

unpredictable, further in the future, we go further with the reward diversely as expressed.

t=Re1 + Ruo+ Rz + ool o + Rt (61)

The sum of discounted future rewards in both cases are some factor as scalar.

(=YRu1+ 72 Rt PRz + ool oo + 7Ry (62)

Here v is a constant. The more we are in the future, the less we take the reward into account

Properties of Q-learning:

e Convergence of Q-function: approximation will be converged to the true Q-function, but it must visit
possible state-action pair infinitely many times.
o The state table size can be vary depending on the observation space and complexity.

e Unseen values are not considered during observation.

The way to fix these problems is to use a neural network (particularly DNN) as an approximation instead
of the state table. The inputs of DNN are the state and action and the outputs are numbers between 0 and 1 that
represent the utility encoding the states and actions properly. That is the place where the deep learning
approaches contribute for making better decisions with respect to the state information. Most of the cases for
observing the environment, we use several acquisition devices including a camera or other sensing devices for
observing the learning environment. For example: if you observed the setup for the challenge of Alpha-Go
then it can be seen that the environment, action, and reward are learned based on the pixel values (pixel in

action). For details see [235,236].

Algorithm II: Q-Learning

Initialization:

For each state-action pair (s, a)

initialize the table entry Q(s,a) to zero

Steps:

1.0bserved the current state s

2. REPEAT:
- Select an action a and execute it
- Received immediate reward

- Observe the new state s’

- Update the table entry for Q(s,a) as follows:

Q(s,a) =r+y maxy(Q(s',a"))

- s=5s'

1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

1448

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

Electronics 2018, 7, x FOR PEER REVIEW 50 of 74

However, it is difficult to develop an agent which can interact or perform well in any observation
environment. Therefore, most of the researchers in the field select their action space or environment before
training the agent for that environment. The benchmark concept, in this case, is a little bit different compared to
supervised or unsupervised deep learning approach. Due to the variety of environments, the benchmark depends
on what level of difficulty the environment has been considered compared to the previous or exiting researches?
The difficulties depend on the different parameters, number of agents, a way of interaction between the agents,
the number of players and so on.

Recently, another good learning approach has been proposed for DRL [234]. There are many papers
published with different networks of DRL including Deep Q-Networks (DQN), Double DQN, Asynchronous
methods, policy optimization strategy (including deterministic policy gradient, deep deterministic policy
gradient, guided policy search, trust region policy optimization, combining policy gradient and Q-learning) are
proposed [234]. Policy Gradient (DAGGER) Superhuman GO using supervised learning with policy gradient
and Monte Carlo tree search with value function [239]. Robotics manipulation using guided policy search [240].

DRL for 3D games using policy gradients [241].

8.3. Recent trends of DRL with applications

There is a survey published recently, where basic RL, DRL DQN, trust region policy optimization, and
asynchronous advantage actor-critic are proposed. This paper also discusses the advantages of deep learning
and focuses on visual understanding via RL and the current trend of research [243]. A network cohesion
constrained based on online RL techniques is proposed for health care on mobile devices called mHealth. This
system helps similar users to share information efficiently to improve and convert the limited user information
into better-learned policies [244]. Similar work with the group-driven RL is proposed for health care on a
mobile device for personalized mHealth Intervention. In this work, K-means clustering is applied for grouping
the people and finally shared with RL policy for each group [245]. Optimal policy learning is a challenging task
with RL for an agent. Option-Observation Initiation sets (OOIs) allow agents to learn optimal policies in the
challenging task of POMDPs which are learned faster than RNN [246]. 3D Bin Packing Problem (BPP) is
proposed with DRL. The main objective is to place the number of the cuboid-shaped items that can minimize
the surface area of the bin [247].

The import component of DRL is the reward which is determined based on the observation and the action
of the agent. The real-world reward function is not perfect at all times. Due to the sensor error, the agent may get
maximum reward whereas the actual reward should be smaller. This paper proposed a formulation based on
generalized Markov Decision Problem (MDP) called Corrupt Reward MDP [248]. The trust region
optimization based deep RL is proposed using recently developed Kronecker-factored approximation to the
curvature (K-FAC) [249]. In addition, there is some research that has been conducted in the evaluation of
physics experiments using the deep learning approach. This experiment focuses agent to learn basic properties
such as mass and cohesion of the objects in the interactive simulation environment [250].

Recently Fuzzy RL policies have been proposed that is suitable for continuous state and action space
[251]. The important investigation and discussion are made for hyper-parameters in policy gradient for
continuous control, the general variance of the algorithm. This paper also provides a guideline for reporting
results and comparison against baseline methods [252]. Deep RL is also applied for high precision assembly
tasks [253]. The Bellman equation is one of the main function of RL technique, a function approximation is

proposed which ensures that the Bellman Optimality Equation always holds. Then the function is estimated to

1475
1476
1477
1478

1479

1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

1494
1495

1496

1497
1498
1499
1500

Electronics 2018, 7, x FOR PEER REVIEW 51 of 74

maximize the likelihood of the observed motion [254]. DRL based hierarchical system is used for could
resource allocation and power management in could computing system [255]. A novel Attention-aware Face
Hallucination (Attention-FC) is proposed where Deep RL is used for enhancing the quality of the image on a

single patch for images which are applied on face images [256].

9. Bayesian Deep Learning (BDL)

The DL approaches have been providing the state-of-the-art accuracy for different applications. However, DL
approaches are unable to deal with uncertainty of a given task due to model uncertainty. These learning
approaches take input and assume the class probability without justification [299,300]. In 2015, two African
American humans recognized as “gorilla” with an image classification system [301]. There are several
application domains where the uncertainty can be raised including self-driven car, bio-medical applications.
However, the BDN, which is an intersection between DL and Bayesian probability approaches show better
results in different applications and understand the uncertainty of problems including multi-task problems
[299,300]. The uncertainty is estimated with applying probability distribution over the model weights or
mapping on the outputs probability [299,300].

The BDL is becoming very popular among the DL research community. In addition, the BDL approaches have
been proposed with CNN techniques where probability distribution is applied on weight. These techniques help
to deal with model overfitting problem and lack of training samples which are the two commons challenges for
DL approaches [302,303]. Finally, there are some other research papers have published recently where some

advanced techniques have been proposed on BDL [304-307].

KA Source labels

Large > t of
Frmsmmmem o "« amount o
amount of Source i Transfer learned ™~ Target data/labels

data/labels model : knowledge B o model

Y =
SN
oo~ Target data

Source data E.g. PASCAL
E.g. ImageNet
~

Pre-trained Network

Figure 44. Conceptual diagram for transfer learning: pretrained on ImageNet and transfer

learning is used for retraining on PASAL dataset.

10. Transfer Learning

10.1. Transfer learning

A good way to explain transfer learning is to look at the student-teacher relationship. A teacher offers a
course after gathering details knowledge regarding that subject. The information will be conveyed through a
series of lectures over time. This can be considered that the teacher (expert) is transferring information

(knowledge) to the students (learner). The same thing happens in case of deep learning, a network is trained

1501
1502
1503

1504

1505
1506
1507
1508
1509
1510

1511
1512
1513

1514
1515

1516
1517
1518
1519
1520

1521
1522

1523

1524
1525
1526

Electronics 2018, 7, x FOR PEER REVIEW 52 of 74

with a big amount data and during the training, the model learns the weights and bias. These weights can be
transferred to other networks for testing or retraining a similar new model. The network can start with

pre-trained weights instead of training from scratch.

Table 3. Criterions need to be considered for transfer learning.

New dataset but small New dataset but large

Pre-trained model on | Freeze weights and train | Fine-tune all the layers (pre-train for
similar but new dataset | linear classifier from top | faster convergence and better
level features generalization)

Pre-trained model on | Freeze weights and train | Fine-tune all the layers (pre-train for

different but new | linear classifier from | enhanced convergence speed)

dataset non-top-level features

10.2. What is a pre-trained model?

A pre-trained model is a model which is already trained in the same domains as the intended domain. For
example, for an image recognition task, an Inception model already trained on ImageNet can be downloaded.
The Inception model can then be used for a different recognition task, and instead of training it from scratch the
weights can be left as is with some learned features. This method of training is useful when there is a lack of
sample data. There are a lot of pre-trained models available (including VGG, ResNet, and Inception Net on

different datasets) in model-zoo from the following link: https://github.com/BVLC/caffe/wiki/Model-Zoo.
10.3. Why will you use pre-trained models?

There are a lot of reasons for using pre-trained models. Firstly, it requires a lot of expensive computation
power to train big models on big datasets. Secondly, it can take up to multiple weeks to train big models.

Training new models with pre-trained weights can speed up convergence as well as help the network

generalization.
10.4. How will you use pre-trained models?
We need to consider the following criterions with respective application domains and size of the dataset
when using the pre-trained weights which is shown in Table 3.
10.5. Working with inference
Research groups working specifically on inference applications look into optimization approaches that

include model compression. Model compression is important in the realm of mobile devices or special purpose

hardware because it makes models more energy efficient as well as faster.
10.6. The myth about Deep Learning

There is a myth; do you need a million labeled samples for training a deep learning model? The answer is
yes but, in most cases,, the transfer learning approach is used to train deep learning approaches without having

large amounts of label data. For example, the following Figure 44 demonstrates the strategy for the transfer

1527
1528

1529
1530

1531
1532
1533
1534
1535
1536
1537
1538
1539

1540

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553

1554
1555

1556
1557
1558
1559
1560
1561
1562
1563
1564

1565
1566

Electronics 2018, 7, x FOR PEER REVIEW 53 of 74

learning approach in details. Here the primary model has been trained with a large amount of labeled data which

is ImageNet and then the weights are used to train with the PASCAL dataset. The actual reality is:

= Possible to learn useful representations from unlabeled data.

= Transfer learning can help learned representation from the related task [257].

We can take a trained network for a different domain which can be adapted for any other domain for the
target task [258, 589]. First training a network with a close domain for which it is easy to get labeled data using
standard backpropagation, for example, ImageNet classification, pseudo classes from augmented data. Then cut
off the top layers of network and replace with the supervised objective for the target domain. Finally, tune the
network using backpropagation with labels for the target domain until validation loss starts to increase [258,
589]. There are some survey papers and books that are published on transfer learning [260,261]. Self-taught

learning with transfer learning [262]. Boosting approach for transfer learning [263].

11. Energy efficient approaches and hardware for DL

11.1. Overview

DNN s have been successfully applied and achieved better recognition accuracies in different application
domains such as Computer vision, speech processing, natural language processing, big data problem and many
more. However, most of the cases the training is being executed on Graphics Processing Units (GPU) for
dealing with big volumes of data which is expensive in terms of power.

Recently researchers have been training and testing with deeper and wider networks to achieve even
better classification accuracy to achieve human or beyond human level recognition accuracy in some cases.
While the size of the neural network is increasing, it becomes more powerful and provides better classification
accuracy. However, the storage consumption, memory bandwidth and computational cost are increasing
exponentially. On the other hand, these types of massive scale implementation with large numbers of network
parameters are not suitable for low power implementation, unmanned aerial vehicle (UAV), different medical
devices, a low memory system such as mobile devices, Field Programmable Gate Array (FPGA) and so on.

There is much research going on to develop better network structures or networks with lower
computation cost, fewer numbers of parameters for low-power and low-memory systems without lowering

classification accuracy. There are two ways to design an efficient deep network structure:
= The first approach is to optimize the internal operational cost with an efficient network structure,

= Second design a network with low precision operations or a hardware efficient network.
The internal operations and parameters of a network structure can be reduced by using low dimensional
convolution filters for convolution layers. [260].

There is a lot of benefit of this approach. Firstly, the convolutional with rectification operations makes
the decision more discriminative. Secondly, the main benefit of this approach is to reduce the number of
computation parameters drastically. For example: if one layer has 5x5 dimensional filters which can be replaced
with two 3x3 dimensional filters (without pooling layer in between then) for better feature learning; three 3x3
dimensional filters can be used as a replacement of 7x7 dimensional filters and so on. Benefits of using a
lower-dimensional filter are that assuming both the present convolutional layer has C channels, for three layers
for 3x3 filter the total number of parameters are weights: 3x(3x3xCxC) =27C ?weights, whereas in cthe ase of

7x7 filters, the total number of parameters are (7x7xCxC) =49C? | which is almost double compared to the

1567
1568
1569

1570
1571
1572

1573

1%74
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

1590

1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602

1603
1604

1605

Electronics 2018, 7, x FOR PEER REVIEW 54 of 74

three 3x3 filter parameters. Moreover, placement of layers such as convolutional, pooling, drop-out in the
network in different intervals has an impact on overall classification accuracy. There are some strategies that are

mentioned to optimize the network architecture recently to design efficient deep learning models [89, 264].

Strategy 1: Replace the 3x3 filter with 1x1 filters. The main reason to use a lower dimension filter to
reduce the overall number of parameter. By replacing 3x3 filters with 1x1 can be reduced 9x number

of parameters.

Strategy 2: Decrease the number of input channels to 3x3 filters. For a layer, the size of the output

feature maps are calculated which is related to the network parameters using g + 1, where N is

input map’s size, F is filter size, S is for strides. To reduce the number of parameters, it is not only
enough to reduce the size of the filters but also it requires to control numa ber of input channels or

feature dimension.

Strategy 3: Down-sample late in the network so that convolution layers have activation maps: The outputs of
present convolution layers can be at least 1x1 or often larger than 1x1. The output width and height can be
controlled by some criterions: (1) the size of the input sample (e.g. 256x256) and (2) Choosing the post down
sample layer. Most commonly pooling layers are such as average or max pooling layer is used, there is an
alternative sub-sampling layer with convolution (3x3 filters) and stride with 2. If most of the earlier layers have
larger stride, then most of the layers will have small numbers of activation maps. On the other hand, if most of
the layers have a stride of 1, and the stride larger than one applied at the end of the network, then many layers of
the network will have large activation maps. One intuition is the larger activation maps (due to delayed
down-sampling) can lead to higher classification accuracy [89]. This intuition has been investigated by K. He
and H. Sun applied delayed down-sampling onto four different architectures of CNNs, and it is observed that

each case delayed down-sampling led to higher classification accuracy [265].

11.2. Binary or ternary connect Neural Networks

The computation cost can be reduced drastically with the low precision of multiplication and few
multiplications with drop connection [266, 267]. These papers also introduced on Binary Connect Neural
Networks (BNN) Ternary Connect Neural Networks (TNN). Generally, multiplication of a real-valued weight
by a real-valued activation (in the forward propagations) and gradient calculation (in the backward
propagations) are the main operations of deep neural networks. Binary connect or BNN is a technique that
eliminates the multiplication operations by converting the weights used in the forward propagation to be binary,
i.e. constrained to only two values (0 and 1 or -1 and 1). As a result, the multiplication operations can be
performed by simple additions (and subtractions) and makes the training process faster. There are two ways to
convert real values to its corresponding binary values such as deterministic and stochastic. In case of
deterministic technique, straightforward thresholding technique is applied to weights. An alternative way to do
that is a stochastic approach where a matrix is converted to binary based on probability where the “hard
sigmoid” function is used because it is computationally inexpensive. The experimental result shows

significantly good recognition accuracy [268,269,270]. There are several advantages of BNN as follows:
=]t is observed that the binary multiplication on GPU is almost seven times faster than traditional matrix

multiplication on GPU

1606
1607
1608
1609
1610
1611

1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624

1625
1626
1627
1628
1629
1630
1631
1632

1633
1634
1635
1636

1637

1638
1639

1640
1641

1642
1643

Electronics 2018, 7, x FOR PEER REVIEW 55 of 74

= In forward pass, BNNs drastically reduce memory size and accesses, and replace most arithmetic
operation with bit-wise operations, which lead great increase of power efficiency

= Binarized kernels can be used in CNNs which can reduce around 60% complexity of dedicated hardware.

= [t is also observed that memory accesses typically consume more energy compared to the arithmetic
operation and memory access cost increases with memory size. BNNs are beneficial with respect to both

aspects.

There are some other techniques that have been proposed in the last few years [271,272,273]. Another
power efficient and hardware friendly network structure has been proposed for a CNN with XNOR operations.
In XNOR based CNN implementations, both the filters and input to the convolution layer is binary. This result
about 58x faster convolutional operations and 32x memory saving. In the same paper, Binary-Weight-Networks
was proposed which saved around 32x memory saving. That makes it possible to implement state-of-the-art
networks on CPU for real-time use instead of GPU. These networks are tested on the ImageNet dataset and
provide only 2.9% less classification accuracy than full-precision AlexNet (in top-1% measure). This network
requires less power and computation time. This could make it possible to accelerate the training process of deep
neural network dramatically for specialized hardware implementation [274]. For the first time, Energy Efficient
Deep Neural Network (EEDN) architecture was proposed for the neuromorphic system in 2016. In addition,
they released a deep learning framework called EEDN, which provides close accuracy to the state-of-the-art

accuracy almost all the popular benchmarks except ImageNet dataset [275,276].

12. Hardware for DL

Along with the algorithmic development of DL approaches, there are many hardware architectures have
been proposed in the past few years. The details about present trends of hardware for deep learning have been
published recently [277]. MIT proposed “Eyeriss” as a hardware for deep convolutional neural networks
(DCNN) [278]. There is another architecture for machine learning called “Dadiannao” [279]. In 2016, an
efficient hardware that works for inference was released and proposed by Stanford University called Efficient
Inference Engine (EIE) [281]. Google developed a hardware named Tensor Processing Unit (TPU) for deep
learning and was released in 2017[280]. IBM released a neuromorphic system called “TrueNorth” in 2015
[275].

Deep learning approaches are not limited to the HPC platform, there is a lot of application already
developed which run on mobile devices. Mobile platforms provide data that is relevant to everyday activities
of the user, which can make a mobile system more efficient and robust by retraining the system with collected

data. There is some research ongoing to develop hardware friendly algorithms for DL [282,283,284].

13. Other topics

There are several important topics including frameworks, SDK, benchmark datasets, related Journals and

Conferences are included in Appendix I.
14. Conclusion and Future Works
In this paper, we have provided an in-depth review of deep learning and its applications over the past few

years. We have reviewed different state-of-the-art deep learning models in different categories of learning

including supervised, unsupervised, and Reinforcement Learning (RL), as well as their applications in different

1644
1645
1646
1647
1648
1649
1650
1651
1652

1653

1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684

Electronics 2018, 7, x FOR PEER REVIEW 56 of 74

domains. In addition, we have explained in detail the different supervised deep learning techniques including
DNN, CNN, and RNN. We have also reviewed un-supervised deep learning techniques including AE, RBM,
and GAN. In the same section, we have considered and explained unsupervised learning techniques which are
proposed based on LSTM and RL. In Section 8, we presented a survey on Deep Reinforcement Learning (DRL)
with the fundamental learning technique called Q-Learning. Furthermore, we have conducted a survey on
energy efficient deep learning approaches, transfer learning with DL, and hardware development trends of DL.
Moreover, we have discussed some DL frameworks and benchmark datasets, which are often used for the
implementation and evaluation of deep learning approaches. Finally, we have included relevant journals and

conferences, where the DL community has been publishing their valuable research articles.

References

[1] Jump, Schmidhuber, J. "Deep Learning in Neural Networks: An Overview". Neural Networks. 61: 85—
117, 2015.

[2] Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey (2015). "Deep Learning". Nature.521: 436-
444. doi:10.1038/nature14539, 2015.

[3] Bengio, Y.; Courville, A.; Vincent, P. "Representation Learning: A Review and New Perspectives". IEEE
Transactions on Pattern Analysis and Machine Intelligence. 35 (8): 1798-1828, 2013.

[4] Bengio, Yoshua. "Learning deep architectures for Al.” Foundations and trends® in Machine Learning 2.1, 1-127,
2009.

[5] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning.” Nature 518.7540, 529-533,
2015.

[6] Mnih, Volodymyr, et al. "Playing Atari with deep reinforcement learning.” arXiv preprint arXiv:1312.5602, 2013.

[7] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional neural networks. In
NIPS, pp. 1106-1114, 2012.

[8] Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013.
Published in Proc. ECCV, 2014.

[9] Simonyan, Karen, and Andrew Zisserman, "deep convolutional networks for large-scale image recognition.” arXiv
preprint arXiv:1409.1556, 2014.

[10] Szegedy, Christian, et al. "Going deeper with convolutions.” Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015.

[11] He, Kaiming, et al. "Deep residual learning for image recognition.” Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016.

[12] Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for
practical applications.” arXiv preprint arXiv:1605.07678, 2016.

[13] G. Zweig, “Classification and recognition with direct segment models,” in Proc. ICASSP. IEEE, pp. 4161-
4164, 2012.

[14] Y. He and E. Fosler-Lussier, “Efficient segmental conditional random fields for phone recognition,” in
Proc. INTERSPEECH, pp. 1898-1901, 2012.

[15] O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, “Deep segmental neural networks for speech recognition.”
in Proc. INTERSPEECH, pp. 1849-1853, , 2013,

[16] H. Tang, W. Wang, K. Gimpel, and K. Livescu, “Discriminative segmental cascades for feature-rich phone

recognition,” in Proc. ASRU, 2015.

https://en.wikipedia.org/wiki/Digital_object_identifier

1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726

Electronics 2018, 7, x FOR PEER REVIEW 57 of 74

[17] Song, William, and Jim Cai. "End-to-end deep neural network for automatic speech recognition.”, 1.
(Errors: 21.1), 2015.

[18] Deng, Li, Ossama Abdel-Hamid, and Dong Yu. "A deep convolutional neural network using
heterogeneous pooling for trading acoustic invariance with phonetic confusion." Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013.

[19] Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in
Proc. ICASSP. IEEE, pp. 66456649, 2013.

[20] Zhang, Ying, et al. "Towards end-to-end speech recognition with deep convolutional neural
networks." arXiv preprint arXiv:1701.02720 (2017).

[21] Deng, Li, and John Platt. "Ensemble deep learning for speech recognition."” 2014.

[22] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models for speech
recognition,” in Advances in Neural Information Processing Systems, pp. 577-585, 2015,

[23] Lu, Liang, et al. "Segmental recurrent neural networks for end-to-end speech recognition." arXiv preprint
arXiv:1603.00223, 2016.

[24] Van Essen, Brian, et al. "LBANN: Livermore big artificial neural network HPC toolkit." Proceedings of the
Workshop on Machine Learning in High-Performance Computing Environments. ACM, 2015.

[25] Chen, Xue-Wen, and Xiaotong Lin . “Big Data Deep Learning: Challenges and Perspectives” IEEE Access in
date of publication May 16, 2014.

[26] Zhou, Zhi-Hua, et al. "Big data opportunities and challenges: Discussions from data analytics perspectives
[discussion forum]." IEEE Computational Intelligence Magazine 9.4, 62-74, 2014.

[27] Najafabadi, Maryam M., et al. "Deep learning applications and challenges in big data analytics." Journal of
Big Data 2.1 (2015): 1.

[28] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

[29] Kaiser, Lukasz, et al. "One Model To Learn Them All." arXiv preprint arXiv:1706.05137, 2017.

[30] Collobert, Ronan, and Jason Weston. "A unified architecture for natural language processing: Deep neural
networks with multitask learning." Proceedings of the 25th international conference on Machine learning. ACM,
2008.

[31] Johnson, Melvin, et al. "Google's multilingual neural machine translation system: enabling zero-shot
translation." arXiv preprint arXiv:1611.04558, 2016.

[32] Argyriou, Andreas, Theodoros Evgeniou, and Massimiliano Pontil. "Multi-task feature learning." Advances
in neural information processing systems. 2007.

[33] Singh, Karamjit, et al. "Deep Convolutional Neural Networks for Pairwise Causality." arXiv preprint
arXiv:1701.00597 (2017).

[34] Yu, Haonan, et al. "Video paragraph captioning using hierarchical recurrent neural networks." Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016.

[35] Kim, Taeksoo, et al. "Learning to discover cross-domain relations with generative adversarial
networks." arXiv preprint arXiv:1703.05192 (2017).

[36] Reed, Scott, et al. "Generative adversarial text to image synthesis." arXiv preprint arXiv:1605.05396 (2016).

[37] Deng, Li, and Dong Yu. "Deep learning: methods and applications.” Foundations and Trends® in Signal
Processing 7.3-4 (2014): 197-387.

[38] Gu, Jiuxiang, et al. "Recent advances in convolutional mneural networks." arXiv preprint

arXiv:1512.07108 (2015).

1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

Electronics 2018, 7, x FOR PEER REVIEW 58 of 74

[39] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A tutorial and survey." arXiv preprint
arXiv:1703.09039 (2017).

[40] Li, Yuxi. "Deep reinforcement learning: An overview." arXiv preprint arXiv:1701.07274 (2017).

[41] Kober, Jens, J. Andrew Bagnell, and Jan Peters. "Reinforcement learning in robotics: A survey." The
International Journal of Robotics Research 32.11 (2013): 1238-1274.

[42] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data
engineering22.10 (2010): 1345-1359.

[43] Schuman, Catherine D., et al. "A Survey of Neuromorphic Computing and Neural Networks in
Hardware." arXiv preprint arXiv:1705.06963 (2017).

[44] McCulloch, Warren S., and Walter Pitts. "A logical calculus of the ideas immanent in nervous activity." The
bulletin of mathematical biophysics 5.4 (1943): 115-133.

[45] Rosenblatt, Frank. "The perceptron: A probabilistic model for information storage and organization in the
brain." Psychological review 65.6 (1958): 386.

[46] Minsky, Marvin, and Seymour Papert. "Perceptrons.” (1969).

[47] Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski. "A learning algorithm for Boltzmann
machines." Cognitive science 9.1 (1985): 147-169.

[48] Fukushima, Kunihiko. "Neocognitron: A hierarchical neural network capable of visual pattern
recognition." Neural networks 1.2 (1988): 119-130.

[49] LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the
IEEE 86.11 (1998): 2278-2324.

[50] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief
nets." Neural computation 18.7 (2006): 1527-1554.

[561] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural
networks." science 313.5786 (2006): 504-507.

[52] Bottou, Léon. "Stochastic gradient descent tricks." Neural networks: Tricks of the trade. Springer Berlin
Heidelberg, 2012. 421-436.

[53] Rumelhart, David E., Geoffrey E. Hinton, and Ronald]J. Williams. "Learning representations by
back-propagating errors." Cognitive modeling 5.3 (1988): 1.

[54] Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning." International
conference on machine learning. 2013.

[55] Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle, Greedy Layer-Wise Training of Deep
Network, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems 19 (NIPS 2006), pp.
153-160, MIT Press, 2007

[56] Erhan, Dumitru, et al. "The difficulty of training deep architectures and the effect of unsupervised
pre-training." Artificial Intelligence and Statistics. 2009.

[57] Mohamed, Abdel-rahman, George E. Dahl, and Geoffrey Hinton. “Acoustic modeling using deep belief
networks,” Audio, Speech, and Language Processing, IEEE Transactions on 20.1 (2012): 14-22

[58] V. Nair and G. Hinton, Rectified linear units improve restricted boltzmann machines. Proceedings of the
27th International Conference on Machine Learning (ICML-10). 2010.

[59] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with
denoising autoencoders,” Proceedings of the Twenty-fifth International Conference on Machine Learning,
pp- 1096-1103, 2008.

[60] Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).

1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812

Electronics 2018, 7, x FOR PEER REVIEW 59 of 74

[61] Springenberg, Jost Tobias, et al. "Striving for simplicity: The all convolutional net." arXiv preprint
arXiv:1412.6806 (2014).

[62] Huang, Gao, et al. "Densely connected convolutional networks." arXiv preprint arXiv:1608.06993 (2016).

[63] Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich. "FractalNet: Ultra-Deep Neural Networks
without Residuals." arXiv preprint arXiv:1605.07648 (2016).

[64] Szegedy, Christian, Sergey Ioffe, and Vincent Vanhoucke. "Inception-v4, inception-resnet and the impact of
residual connections on learning." arXiv preprint arXiv:1602.07261 (2016).

[65] Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." arXiv preprint
arXiv:1512.00567 (2015).

[66] Zagoruyko, Sergey, and Nikos Komodakis. "Wide Residual Networks." arXiv preprint arXiv:1605.07146
(2016).

[67] Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2016). Aggregated residual transformations for deep neural
networks. arXiv preprint arXiv:1611.05431

[68] Veit, Andreas, Michael J. Wilber, and Serge Belongie. "Residual networks behave like ensembles of
relatively shallow networks." Advances in Neural Information Processing Systems. 2016.

[69] Abdi, Masoud, and Saeid Nahavandi. "Multi-Residual Networks: Improving the Speed and Accuracy of
Residual Networks." arXiv preprint arXiv:1609.05672 (2016).

[70] Zhang, Xingcheng, et al. "Polynet: A pursuit of structural diversity in deep networks." arXiv preprint
arXiv:1611.05725 (2016).

[71] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal
networks." Advances in neural information processing systems. 2015.

[72] Chollet, Frangois. "Xception: Deep Learning with Depthwise Separable Convolutions." arXiv preprint
arXiv:1610.02357 (2016).

[73] Liang, Ming, and Xiaolin Hu. "Recurrent convolutional neural network for object recognition." Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

[74] Alom, Md Zahangir, et al. "Inception Recurrent Convolutional Neural Network for Object
Recognition." arXiv preprint arXiv:1704.07709 (2017).

[75] Li, Yikang, et al. "ViP-CNN: Visual Phrase Guided Convolutional Neural Network."

[76] Bagherinezhad, Hessam, Mohammad Rastegari, and Ali Farhadi. "LCNN: Lookup-based Convolutional
Neural Network." arXiv preprint arXiv:1611.06473 (2016).

[77] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic
segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

[78] Bansal, Aayush, et al. "Pixelnet: Representation of the pixels, by the pixels, and for the pixels." arXiv preprint
arXiv:1702.06506(2017).

[79] Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint arXiv:1603.09382 (2016).

[80] Lee, Chen-Yu, et al. "Deeply-Supervised Nets." AISTATS. Vol. 2. No. 3. 2015.

[81] Pezeshki, Mohammad, et al. "Deconstructing the ladder network architecture." arXiv preprint
arXiv:1511.06430 (2015).

[82] Ba, Jimmy, and Rich Caruana. "Do deep nets really need to be deep?." Advances in neural information
processing systems. 2014.

[83] Urban, Gregor, et al. "Do deep convolutional nets really need to be deep and convolutional?." stat 1050
(2016): 4.

[84] Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." arXiv preprint arXiv:1412.6550 (2014).

1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855

Electronics 2018, 7, x FOR PEER REVIEW 60 of 74

[85] Mishkin, Dmytro, and Jiri Matas. "All you need is a good init." arXiv preprint arXiv:1511.06422 (2015).

[86] Pandey, Gaurav, and Ambedkar Dukkipati. "To go deep or wide in learning?." AISTATS. 2014.

[87] Ratner, Alexander, et al. "Data Programming: Creating Large Training Sets, Quickly." arXiv preprint
arXiv:1605.07723 (2016).

[88] Aberger, Christopher R., et al. "Empty-Headed: A Relational Engine for Graph Processing." arXiv preprint
arXiv:1503.02368 (2015).

[89] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model
size." arXiv preprint arXiv:1602.07360 (2016).

[90] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with
pruning, trained quantization and huffman coding." CoRR, abs/1510.00149 2 (2015).

[91] Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov. "Learning Convolutional Neural Networks
for Graphs." arXiv preprint arXiv:1605.05273 (2016).

[92] https://github.com/kjw0612/awesome-deep-vision

[93] Jia, Xiaoyi, et al. "Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network." arXiv
preprint arXiv:1705.05084 (2017).

[94] Ahn, Byeongyong, and Nam Ik Cho. "Block-Matching Convolutional Neural Network for Image
Denoising." arXiv preprint arXiv:1704.00524 (2017).

[95] Ma, Shuang, Jing Liu, and Chang Wen Chen. "A-Lamp: Adaptive Layout-Aware Multi-Patch Deep
Convolutional Neural Network for Photo Aesthetic Assessment." arXiv preprint arXiv:1704.00248(2017).

[96] Cao, Xiangyong, et al. "Hyperspectral Image Segmentation with Markov Random Fields and a
Convolutional Neural Network." arXiv preprint arXiv:1705.00727 (2017).

[97] de Vos, Bob D., et al. "End-to-End Unsupervised Deformable Image Registration with a Convolutional
Neural Network." arXiv preprint arXiv:1704.06065 (2017).

[98] Wang, Xin, et al. "Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast
Artistic Style Transfer." arXiv preprint arXiv:1612.01895 (2016).

[99] Babaee, Mohammadreza, Duc Tung Dinh, and Gerhard Rigoll. "A deep convolutional neural network for
background subtraction." arXiv preprint arXiv:1702.01731 (2017).

[100] Hou, Jen-Cheng, et al. "Audio-Visual Speech Enhancement based on Multimodal Deep Convolutional
Neural Network." arXiv preprint arXiv:1703.10893 (2017).

[101] Xu, Yong, et al. "Convolutional gated recurrent neural network incorporating spatial features for audio
tagging." arXiv preprint arXiv:1702.07787 (2017).

[102] Litjiens, Geert, et al. "A survey on deep learning in medical image analysis." arXiv preprint
arXiv:1702.05747 (2017).

[103] Zhang, Zizhao, et al. "MDNet: a semantically and visually interpretable medical image diagnosis
network." arXiv preprint arXiv:1707.02485 (2017).

[104] Tran, Phi Vu. "A fully convolutional neural network for cardiac segmentation in short-axis MRL." arXiv
preprint arXiv:1604.00494(2016).

[105] Tan, Jen Hong, et al. "Segmentation of optic disc, fovea and retinal vasculature using a single
convolutional neural network." Journal of Computational Science 20 (2017): 70-79.

[106] Moeskops, Pim, et al. "Automatic segmentation of MR brain images with a convolutional neural
network." IEEE transactions on medical imaging 35.5 (2016): 1252-1261.

[107] LeCun, Y., L. Bottou, and G. Orr. "Efficient BackProp in Neural Networks: Tricks of the Trade (Orr, G. and
Miiller, K., eds.)." Lecture Notes in Computer Science 1524.

1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898

Electronics 2018, 7, x FOR PEER REVIEW 61 of 74

[108] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." International conference on artificial intelligence and statistics. 2010.

[109] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification." Proceedings of the IEEE international conference on computer vision. 2015.

[110]Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by
reducing internal covariate shift." International Conference on Machine Learning. 2015.

[111] Laurent, César, et al. "Batch normalized recurrent neural networks." Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016.

[112] Lavin, Andrew. "Fast algorithms for convolutional neural networks." arXiv preprint arXiv, ICLR 2016

[113] Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning
by exponential linear units (elus)." arXiv preprint arXiv:1511.07289 (2015).

[114]Li, Yang, et al. "Improving Deep Neural Network with Multiple Parametric Exponential Linear Units."
arXiv preprint arXiv:1606.00305 (2016).

[115]Jin, Xiaojie, et al. "Deep Learning with S-shaped Rectified Linear Activation Units." arXiv preprint
arXiv:1512.07030 (2015).

[116] Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint
arXiv:1505.00853 (2015)

[117]He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual
recognition." European Conference on Computer Vision. Springer, Cham, 2014.

[118] Yoo, Donggeun, et al. "Multi-scale pyramid pooling for deep convolutional representation." Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2015.

[119] Graham, Benjamin. "Fractional max-pooling." arXiv preprint arXiv:1412.6071 (2014).

[120] Lee, Chen-Yu, Patrick W. Gallagher, and Zhuowen Tu. "Generalizing pooling functions in convolutional
neural networks: Mixed, gated, and tree." International Conference on Artificial Intelligence and Statistics. 2016.

[121]Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature
detectors." arXiv preprint arXiv:1207.0580 (2012).

[122] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of
Machine Learning Research 15.1 (2014): 1929-1958.

[123] Wan, Li, et al. "Regularization of neural networks using dropconnect.” Proceedings of the 30th International
Conference on Machine Learning (ICML-13). 2013.

[124] Bulo, Samuel Rota, Lorenzo Porzi, and Peter Kontschieder. "Dropout distillation." Proceedings of The 33rd
International Conference on Machine Learning. 2016.

[125] Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint
arXiv:1609.04747 (2016).

[126] Ngiam, Jiquan, et al. "On optimization methods for deep learning." Proceedings of the 28th International
Conference on Machine Learning (ICML-11). 2011.

[127] Koushik, Jayanth, and Hiroaki Hayashi. "Improving Stochastic Gradient Descent with Feedback." arXiv
preprint arXiv:1611.01505 (2016). (ICLR-2017)

[128] Sathasivam, Saratha, and Wan Ahmad Tajuddin Wan Abdullah. "Logic learning in Hopfield
networks." arXiv preprint arXiv:0804.4075 (2008).

[129] Elman, Jeffrey L. "Finding structure in time." Cognitive science14.2 (1990): 179-211.

[130]Jordan, Michael I. "Serial order: A parallel distributed processing approach." Advances in psychology 121
(1997): 471-495.

1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940

Electronics 2018, 7, x FOR PEER REVIEW 62 of 74

[131]S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press, 2001.

[132] Schmidhuber, Jiirgen . Habilitation thesis: System modeling and optimization in 1993. Page 150 ff
demonstrates credit assignment across the equivalent of 1,200 layers in an unfolded RNN

[133] Gers, Felix A., and Jiirgen Schmidhuber. "Recurrent nets that time and count." Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on. Vol. 3. IEEE, 2000.

[134] Gers, Felix A., Nicol N. Schraudolph, and Jiirgen Schmidhuber. "Learning precise timing with LSTM
recurrent networks." Journal of machine learning research 3.Aug (2002): 115-143.

[135] Mikolov, Tomas, et al. "Recurrent neural network based language model." Interspeech. Vol. 2. 2010.

[136] Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence
modeling." arXiv preprint arXiv:1412.3555 (2014).

[137]Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. "An empirical exploration of recurrent network
architectures." Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015.

[138] Yao, Kaisheng, et al. "Depth-gated LSTM." arXiv preprint arXiv:1508.03790(2015).

[139] Koutnik, Jan, et al. "A clockwork rnn." International Conference on Machine Learning. 2014.

[140] Greff, Klaus, et al. "LSTM: A search space odyssey." IEEE transactions on neural networks and learning
systems (2016).

[141] Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image
descriptions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

[142] Xingjian, S. H. I, et al. "Convolutional LSTM network: A machine learning approach for precipitation
nowcasting." Advances in neural information processing systems. 2015.

[143] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint
arXiv:1301.3781 (2013).

[144] Goldberg, Yoav, and Omer Levy. "word2vec Explained: deriving Mikolov et al.'s negative-sampling
word-embedding method." arXiv preprint arXiv:1402.3722 (2014).

[145]Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual a
attention." International Conference on Machine Learning. 2015.

[146] Qin, Yao, et al. "A Dual-Stage Attention-Based Recurrent Neural Network for Time Series
Prediction." arXiv preprint arXiv:1704.02971 (2017).

[147] Xiong, Caiming, Stephen Merity, and Richard Socher. "Dynamic memory networks for visual and textual
question answering." International Conference on Machine Learning. 2016.

[148] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural
networks." arXiv preprint arXiv:1601.06759(2016).

[149] Xue, Wufeng, et al. "Direct Estimation of Regional Wall Thicknesses via Residual Recurrent Neural
Network." International Conference on Information Processing in Medical Imaging. Springer, Cham, 2017.

[150] Tjandra, Andros, et al. "Gated Recurrent Neural Tensor Network." Neural Networks (IJCNN), 2016
International Joint Conference on. IEEE, 2016.

[151] Wang, Shuohang, and Jing Jiang. "Learning natural language inference with LSTM." arXiv preprint
arXiv:1512.08849 (2015).

[152] Sutskever, Ilya, Oriol Vinyals, and Quoc VV Le. “Sequence to sequence learning with neural networks.”

Advances in Neural Information Processing Systems. 2014.

1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983

Electronics 2018, 7, x FOR PEER REVIEW 63 of 74

[153] Lakhani, Vrishabh Ajay, and Rohan Mahadev. "Multi-Language Identification Using Convolutional
Recurrent Neural Network." arXiv preprint arXiv:1611.04010 (2016).

[154] Langkvist, Martin, Lars Karlsson, and Amy Loutfi. "A review of unsupervised feature learning and deep
learning for time-series modeling." Pattern Recognition Letters 42 (2014): 11-24.

[155] Malhotra, Pankaj, et al. "TimeNet: Pre-trained deep recurrent neural network for time series
classification." arXiv preprint arXiv:1706.08838 (2017).

[156] Soltau, Hagen, Hank Liao, and Hasim Sak. "Neural speech recognizer: Acoustic-to-word LSTM model for
large vocabulary speech recognition." arXiv preprint arXiv:1610.09975 (2016).

[157] Sak, Hasim, Andrew Senior, and Francoise Beaufays. "Long short-term memory recurrent neural network
architectures for large scale acoustic modeling." Fifteenth Annual Conference of the International Speech
Communication Association. 2014.

[158] Adavanne, Sharath, Pasi Pertild, and Tuomas Virtanen. "Sound event detection using spatial features and
convolutional recurrent neural network." arXiv preprint arXiv:1706.02291 (2017).

[159] Chien, Jen-Tzung, and Alim Misbullah. "Deep long short-term memory networks for speech
recognition." Chinese Spoken Language Processing (ISCSLP), 2016 10th International Symposium on. IEEE, 2016.

[160] Choi, Edward, et al. "Using recurrent neural network models for early detection of heart failure
onset." Journal of the American Medical Informatics Association 24.2 (2016): 361-370.

[161]Li, Yaguang, et al. "Graph Convolutional Recurrent Neural Network: Data-Driven Traffic
Forecasting." arXiv preprint arXiv:1707.01926 (2017).

[162] Azzouni, Abdelhadi, and Guy Pujolle. "A Long Short-Term Memory Recurrent Neural Network
Framework for Network Traffic Matrix Prediction." arXiv preprint arXiv:1705.05690 (2017).

[163] Olabiyi, Oluwatobi, et al. "Driver Action Prediction Using Deep (Bidirectional) Recurrent Neural
Network." arXiv preprint arXiv:1706.02257 (2017).

[164] Kim, ByeoungDo, et al. "Probabilistic Vehicle Trajectory Prediction over Occupancy Grid Map via
Recurrent Neural Network." arXiv preprint arXiv:1704.07049 (2017).

[165] Richard, Alexander, and Juergen Gall. "A bag-of-words equivalent recurrent neural network for action
recognition." Computer Vision and Image Understanding 156 (2017): 79-91.

[166] Bontemps, Loic, James McDermott, and Nhien-An Le-Khac. "Collective Anomaly Detection Based on
Long Short-Term Memory Recurrent Neural Networks." International Conference on Future Data and Security
Engineering. Springer International Publishing, 2016.

[167] Kingma, Diederik P., and Max Welling. "Stochastic gradient VB and the variational auto-encoder." Second
International Conference on Learning Representations, ICLR. 2014.

[168] Ng, Andrew. "Sparse autoencoder." C5294A Lecture notes72.2011 (2011): 1-19.

[169] Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion." Journal of Machine Learning Research 11.Dec (2010): 3371-3408.

[170] Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Split-brain autoencoders: Unsupervised learning by
cross-channel prediction." arXiv preprint arXiv:1611.09842 (2016).

[171] Chicco, Davide; Sadowski, Peter; Baldi, Pierre (1 January 2014). "Deep Autoencoder Neural Networks for Gene
Ontology Annotation Predictions". Proceedings of the 5th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics - BCB '14. ACM: 533-540.

[172] Alom, Md Zahangir and Tarek M. Taha. " Network Intrusion Detection for Cyber Security using
Unsupervised Deep Learning Approaches " Aerospace and Electronics Conference (NAECON), National. IEEE,
2017.

1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

Electronics 2018, 7, x FOR PEER REVIEW 64 of 74

[173] Song, Chunfeng, et al. "Auto-encoder based data clustering." Iberoamerican Congress on Pattern Recognition.
Springer Berlin Heidelberg, 2013.

[174]Lu, Jiajun, Aditya Deshpande, and David Forsyth. "CDVAE: Co-embedding Deep Variational Auto
Encoder for Conditional Variational Generation." arXiv preprint arXiv:1612.00132 (2016).

[175] Ahmad, Muhammad, Stanislav Protasov, and Adil Mehmood Khan. "Hyperspectral Band Selection Using
Unsupervised Non-Linear Deep Auto Encoder to Train External Classifiers." arXiv preprint
arXiv:1705.06920 (2017).

[176] Freund, Yoav, and David Haussler. "Unsupervised learning of distributions of binary vectors using two
layer networks." (1994).

[177] Larochelle, Hugo, and Yoshua Bengio. "Classification using discriminative restricted Boltzmann
machines." Proceedings of the 25th international conference on Machine learning. ACM, 2008.

[178]R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In AISTATS, volume 1, page 3, 2009.

[179] Alom, Md Zahangir, VenkataRamesh Bontupalli, and Tarek M. Taha. "Intrusion detection using deep
belief networks." Aerospace and Electronics Conference (NAECON), 2015 National. IEEE, 2015.

[180] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

[181] T. Salimans, I. Goodfellow, W. Zaremba, V. Che- ung, A. Radford, and X. Chen. Improved techniques for
training gans. arXiv preprint arXiv:1606.03498, 2016.

[182] Vondrick, Carl, Hamed Pirsiavash, and Antonio Torralba. "Generating videos with scene
dynamics." Advances In Neural Information Processing Systems. 2016.

[183] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep
convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

[184] X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. In
Proc. ECCV, 2016.

[185] Chen, Xi, et al. "InfoGAN: Interpretable representation learning by information maximizing generative
adversarial nets." Advances in Neural Information Processing Systems. 2016.

[186]D.]. Im, C. D. Kim, H. Jiang, and R. Memisevic. Generating images with recurrent adversarial net- works.
http:/larxiv.org/abs/ 1602.05110, 2016.

[187]Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arXiv
preprint (2017).

[188] Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." Advances in neural information
processing systems. 2016.

[189] Donahue, Jeff, Philipp Krahenbiihl, and Trevor Darrell. "Adversarial feature learning." arXiv preprint
arXiv:1605.09782 (2016).

[190] Berthelot, David, Tom Schumm, and Luke Metz. "Began: Boundary equilibrium generative adversarial
networks." arXiv preprint arXiv:1703.10717(2017).

[191] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

[192] Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." arXiv preprint arXiv:1704.00028 (2017).

[193] He, Kun, Yan Wang, and John Hopcroft. "A powerful generative model using random weights for the
deep image representation." Advances in Neural Information Processing Systems. 2016.

[194] Kos, Jernej, Ian Fischer, and Dawn Song. "Adversarial examples for generative models." arXiv preprint

arXiv:1702.06832 (2017).

2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068

Electronics 2018, 7, x FOR PEER REVIEW 65 of 74

[195] Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based generative adversarial network." arXiv
preprint arXiv:1609.03126 (2016).

[196] Park, Noseong, et al. "MMGAN: Manifold Matching Generative Adversarial Network for Generating
Images." arXiv preprint arXiv:1707.08273 (2017).

[197] Laloy, Eric, et al. "Efficient training-image based geostatistical simulation and inversion using a spatial
generative adversarial neural network." arXiv preprint arXiv:1708.04975 (2017).

[198] Eghbal-zadeh, Hamid, and Gerhard Widmer. "Probabilistic Generative Adversarial Networks." arXiv
preprint arXiv:1708.01886 (2017).

[199] Fowkes, Jaroslav, and Charles Sutton. "A Bayesian Network Model for Interesting Itemsets." Joint European
Conference on Machine Learning and Knowledge Disco in Databases. Springer International Publishing, 2016.

[200] Mescheder, Lars, Sebastian Nowozin, and Andreas Geiger. "Adversarial variational bayes: Unifying
variational autoencoders and generative adversarial networks." arXiv preprint arXiv:1701.04722 (2017).

[201] Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. "f-gan: Training generative neural samplers using
variational divergence minimization." Advances in Neural Information Processing Systems. 2016.

[202]Li, Chuan, and Michael Wand. "Precomputed real-time texture synthesis with markovian generative
adversarial networks." European Conference on Computer Vision. Springer International Publishing, 2016.
[203] Du, Chao, Jun Zhu, and Bo Zhang. "Learning Deep Generative Models with Doubly Stochastic Gradient

MCMC." IEEE Transactions on Neural Networks and Learning Systems (2017).

[204]Hoang, Quan, et al. "Multi-Generator Gernerative Adversarial Nets." arXiv preprint
arXiv:1708.02556 (2017).

[205] Bousmalis, Konstantinos, et al. "Unsupervised pixel-level domain adaptation with generative adversarial
networks." arXiv preprint arXiv:1612.05424 (2016).

[206] Kansky, Ken, et al. "Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive
Physics." arXiv preprint arXiv:1706.04317 (2017).

[207] Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial
network." arXiv preprint arXiv:1609.04802 (2016).

[208] Souly, Nasim, Concetto Spampinato, and Mubarak Shah. "Semi and Weakly Supervised Semantic
Segmentation Using Generative Adversarial Network." arXiv preprint arXiv:1703.09695 (2017).

[209] Dash, Ayushman, et al. "TAC-GAN-Text Conditioned Auxiliary Classifier Generative Adversarial
Network." arXiv preprint arXiv:1703.06412 (2017).

[210] Zhang, Hang, and Kristin Dana. "Multi-style Generative Network for Real-time Transfer." arXiv preprint
arXiv:1703.06953 (2017).

[211] Zhang, He, Vishwanath Sindagi, and Vishal M. Patel. "Image De-raining Using a Conditional Generative
Adversarial Network." arXiv preprint arXiv:1701.05957 (2017).

[212] Serban, Iulian Vlad, et al. "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural
Network Models." AAAI 2016.

[213] Pascual, Santiago, Antonio Bonafonte, and Joan Serra. "SEGAN: Speech Enhancement Generative
Adversarial Network." arXiv preprint arXiv:1703.09452 (2017).

[214] Yang, Li-Chia, Szu-Yu Chou, and Yi-Hsuan Yang. "MidiNet: A convolutional generative adversarial
network for symbolic-domain music generation." Proceedings of the 18th International Society for Music
Information Retrieval Conference (ISMIR2017), Suzhou, China. 2017.

[215] Yang, Qingsong, et al. "Low Dose CT Image Denoising Using a Generative Adversarial Network with
Wasserstein Distance and Perceptual Loss." arXiv preprint arXiv:1708.00961 (2017).

2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111

Electronics 2018, 7, x FOR PEER REVIEW 66 of 74

[216] Rezaei, Mina, et al. "Conditional Adversarial Network for Semantic Segmentation of Brain Tumor." arXiv
preprint arXiv:1708.05227(2017)

[217] Xue, Yuan, et al. "SegAN: Adversarial Network with Multi-scale $ L_1 $ Loss for Medical Image
Segmentation." arXiv preprint arXiv:1706.01805 (2017).

[218] Mardani, Morteza, et al. "Deep Generative Adversarial Networks for Compressed Sensing Automates
MRL." arXiv preprint arXiv:1706.00051 (2017).

[219] Choi, Edward, et al. "Generating Multi-label Discrete Electronic Health Records using Generative
Adversarial Networks." arXiv preprint arXiv:1703.06490 (2017).

[220] Esteban, Cristobal, Stephanie L. Hyland, and Gunnar Rétsch. "Real-valued (Medical) Time Series
Generation with Recurrent Conditional GANSs." arXiv preprint arXiv:1706.02633 (2017).

[221] Hayes, Jamie, et al. "LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative
Adversarial Networks." arXiv preprint arXiv:1705.07663 (2017).

[222] Gordon, Jonathan, and José Miguel Hernandez-Lobato. "Bayesian Semisupervised Learning with Deep
Generative Models." arXiv preprint arXiv:1706.09751 (2017).

[223] Abbasnejad, M. Ehsan, et al. "Bayesian Conditional Generative Adverserial Networks." arXiv preprint
arXiv:1706.05477 (2017).

[224] Grnarova, Paulina, et al. "An Online Learning Approach to Generative Adversarial Networks." arXiv
preprint arXiv:1706.03269 (2017).

[225]Li, Yujia, Kevin Swersky, and Rich Zemel. "Generative moment matching networks." Proceedings of the
32nd International Conference on Machine Learning (ICML-15). 2015.

[226]Li, Chun-Liang, et al. "MMD GAN: Towards Deeper Understanding of Moment Matching
Network." arXiv preprint arXiv:1705.08584(2017).

[227] Nie, Xuecheng, et al. "Generative Partition Networks for Multi-Person Pose Estimation." arXiv preprint
arXiv:1705.07422 (2017).

[228] Saeedi, Ardavan, et al. "Multimodal Prediction and Personalization of Photo Edits with Deep Generative
Models." arXiv preprint arXiv:1704.04997 (2017).

[229] Schlegl, Thomas, et al. "Unsupervised Anomaly Detection with Generative Adversarial Networks to
Guide Marker Disco ." International Conference on Information Processing in Medical Imaging. Springer, Cham,
2017.

[230] Kim, Taeksoo, et al. "Learning to discover cross-domain relations with generative adversarial
networks." arXiv preprint arXiv:1703.05192 (2017).

[231] Mehrotra, Akshay, and Ambedkar Dukkipati. "Generative Adversarial Residual Pairwise Networks for
One Shot Learning." arXiv preprint arXiv:1703.08033 (2017).

[232] Sordoni, Alessandro, et al. "A neural network approach to context-sensitive generation of conversational
responses." arXiv preprint arXiv:1506.06714(2015).

[233] Yin, Jun, et al. "Neural generative question answering." arXiv preprint arXiv:1512.01337 (2015).

[234] Li, Yuxi. "Deep reinforcement learning: An overview." arXiv preprint arXiv:1701.07274 (2017).

[235] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[236] David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc- tot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

[237] Vinyals, Oriol, et al. "StarCraft II: A New Challenge for Reinforcement Learning."arXiv preprint
arXiv:1708.04782 (2017).

2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153

Electronics 2018, 7, x FOR PEER REVIEW 67 of 74

[238] Koenig, Sven, and Reid G. Simmons. Complexity analysis of real-time reinforcement learning applied to finding
shortest paths in deterministic domains. No. CMU-CS-93-106. CARNEGIE-MELLON UNIV PITTSBURGH PA
SCHOOL OF COMPUTER SCIENCE, 1992.

[239] Schulman, John, et al. "Trust region policy optimization." Proceedings of the 32nd International
Conference on Machine Learning (ICML-15). 2015.

[240] Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." Journal of Machine Learning
Research 17.39 (2016): 1-40.

[241] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International Conference
on Machine Learning. 2016.

[242] Kober, Jens, J. Andrew Bagnell, and Jan Peters. "Reinforcement learning in robotics: A survey." The
International Journal of Robotics Research 32.11 (2013): 1238-1274.

[243] Arulkumaran, Kai, et al. "A brief survey of deep reinforcement learning."arXiv preprint
arXiv:1708.05866 (2017).

[244] Zhu, Feiyun, et al. "Cohesion-based Online Actor-Critic Reinforcement Learning for mHealth
Intervention." arXiv preprint arXiv:1703.10039 (2017).

[245] Zhu, Feiyun, et al. "Group-driven Reinforcement Learning for Personalized mHealth Intervention." arXiv
preprint arXiv:1708.04001 (2017).

[246] Steckelmacher, Denis, et al. "Reinforcement Learning in POMDPs with Memoryless Options and
Option-Observation Initiation Sets." arXiv preprint arXiv:1708.06551 (2017).

[247]Hu, Haoyuan, et al. "Solving a new 3d bin packing problem with deep reinforcement learning
method." arXiv preprint arXiv:1708.05930 (2017).

[248] Everitt, Tom, et al. "Reinforcement Learning with a Corrupted Reward Channel." arXiv preprint
arXiv:1705.08417 (2017).

[249]Wu, Yuhuai, et al. "Scalable trust-region method for deep reinforcement learning using
Kronecker-factored approximation." arXiv preprint arXiv:1708.05144 (2017).

[250] Denil, Misha, et al. "Learning to perform physics experiments via deep reinforcement learning." arXiv
preprint arXiv:1611.01843(2016).

[251] Hein, Daniel, et al. "Particle swarm optimization for generating interpretable fuzzy reinforcement learning
policies." Engineering Applications of Artificial Intelligence 65 (2017): 87-98.

[252]Islam, Riashat, et al. "Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for
Continuous Control." arXiv preprint arXiv:1708.04133 (2017).

[253] Inoue, Tadanobu, et al. "Deep reinforcement learning for high precision assembly tasks." arXiv preprint
arXiv:1708.04033(2017).

[254]Li, Kun, and Joel W. Burdick. "Inverse Reinforcement Learning in Large State Spaces via Function
Approximation." arXiv preprint arXiv:1707.09394 (2017).

[255] Liu, Ning, et al. "A Hierarchical Framework of Cloud Resource Allocation and Power Management Using
Deep Reinforcement Learning." Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017.

[256] Cao, Qingxing, et al. "Attention-aware face hallucination via deep reinforcement learning." arXiv preprint
arXiv:1708.03132 (2017).

[257] Chen, Tianqgi, lan Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge
transfer." arXiv preprint arXiv:1511.05641 (2015).

2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195

Electronics 2018, 7, x FOR PEER REVIEW 68 of 74

[258] Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." arXiv
preprint arXiv:1409.7495 (2014).

[259] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." Journal of Machine Learning
Research 17.59 (2016): 1-35.

[260] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data
engineering22.10 (2010): 1345-1359.

[261] McKeough, Anne. Teaching for transfer: Fostering generalization in learning. Routledge, 2013.

[262] Raina, Rajat, et al. "Self-taught learning: transfer learning from unlabeled data." Proceedings of the 24th
international conference on Machine learning. ACM, 2007

[263] Dai, Wenyuan, et al. "Boosting for transfer learning." Proceedings of the 24th international conference on
Machine learning. ACM, 2007.

[264] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding." arXiv preprint arXiv:1510.00149 (2015).

[265] Qiu, Jiantao, et al. "Going deeper with embedded FPGA platform for convolutional neural network."
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 2016.

[266] He, Kaiming, and Jian Sun. "Convolutional neural networks at constrained time cost." Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2015.

[267]13. Lin, Zhouhan, et al. "Neural networks with few multiplications." arXiv preprint arXiv:1510.03009
(2015).

[268]14. Courbariaux, Matthieu, Jean-Pierre David, and Yoshua Bengio. "Training deep neural networks with
low precision multiplications." arXiv preprint arXiv:1412.7024 (2014).

[269] Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural
networks with binary weights during propagations.” Advances in Neural Information Processing Systems.
2015.

[270] Hubara, Itay, Daniel Soudry, and Ran El Yaniv. "Binarized Neural Networks." arXiv preprint
arXiv:1602.02505 (2016).

[271] Kim, Minje, and Paris Smaragdis. "Bitwise neural networks." arXiv preprint arXiv:1601.06071 (2016).

[272] Dettmers, Tim. "8-Bit Approximations for Parallelism in Deep Learning." arXiv preprint arXiv:1511.04561
(2015).

[273] Gupta, Suyog, et al. "Deep learning with limited numerical precision." CoRR, abs/1502.02551 392 (2015).

[274] Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks." arXiv preprint arXiv:1603.05279(2016).

[275] Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with a scalable communication
network and interface." Science345.6197 (2014): 668-673.

[276] Esser, Steven K., et al. "Convolutional networks for fast, energy-efficient neuromorphic computing
“Proceedings of the National Academy of Science (2016): 201604850.

[277] Schuman, Catherine D., et al. "A Survey of Neuromorphic Computing and Neural Networks in
Hardware." arXiv preprint arXiv:1705.06963 (2017).

[278] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional
neural networks." IEEE Journal of Solid-State Circuits 52.1 (2017): 127-138.

[279] Chen, Yunji, et al. "Dadiannao: A machine-learning supercomputer." Proceedings of the 47th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 2014.

2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238

Electronics 2018, 7, x FOR PEER REVIEW 69 of 74

[280] Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor processing unit." arXiv preprint
arXiv:1704.04760 (2017).

[281] Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network." Proceedings of the
43rd International Symposium on Computer Architecture. IEEE Press, 2016.

[282] Zhang, Xiangyu, et al. "Efficient and accurate approximations of nonlinear convolutional
networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

[283] Novikov, Alexander, et al. "Tensorizing neural networks." Advances in Neural Information Processing
Systems. 2015.

[284] Zhu, Chenzhuo, et al. "Trained ternary quantization." arXiv preprint arXiv:1612.01064 (2016).

[285] Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of
Computer Vision 115.3 (2015): 211-252.

[286] Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint
arXiv:1609.03499 (2016).

[287] Zhang, Xingcheng, et al. "Polynet: A pursuit of structural diversity in deep networks." 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

[288] Kunihiko Fukushima, "Neural network model for selective attention in visual pattern recognition and
associative recall," Appl. Opt. 26, 4985-4992 (1987)

[289] Alom, Md Zahangir, et al. "Handwritten Bangla Digit Recognition Using Deep Learning." arXiv preprint
arXiv:1705.02680 (2017)

[290] Alom, Md Zahangir, et al. "Improved Inception-Residual Convolutional Neural Network for Object
Recognition." arXiv preprint arXiv:1712.09888 (2017).

[291] Alom, Md Zahangir, et al. "Handwritten Bangla Character Recognition Using The State-of-Art Deep
Convolutional Neural Networks." arXiv preprint arXiv:1712.09872 (2017).

[292] Socher, Richard, et al. "Parsing natural scenes and natural language with recursive neural
networks." Proceedings of the 28th international conference on machine learning (ICML-11). 2011.

[293] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in
Neural Information Processing Systems. 2017.

[294] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A tutorial and survey." Proceedings of the
IEEE105.12 (2017): 2295-2329.

[295] Rawat, Waseem, and Zenghui Wang. "Deep convolutional neural networks for image classification: A
comprehensive review." Neural computation 29.9 (2017): 2352-2449.

[296] Alom, Md Zahangir, et al. "Optical beam classification using deep learning: a comparison with rule-and
feature-based classification." Optics and Photonics for Information Processing XI. Vol. 10395. International
Society for Optics and Photonics, 2017.

[297] Alom, Md Zahangir, et al. "Object recognition using cellular simultaneous recurrent networks and
convolutional neural network." Neural Networks (I]CNN), 2017 International Joint Conference on. IEEE, 2017.

[298] Khalid, Samina, Tehmina Khalil, and Shamila Nasreen. "A survey of feature selection and feature
extraction techniques in machine learning." In Science and Information Conference (SAI), 2014, pp. 372-378.
IEEE, 2014.

[299] Kendall, Alex, and Yarin Gal. "What uncertainties do we need in bayesian deep learning for computer
vision?." Advances in neural information processing systems. 2017.

[300] Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." arXiv preprint arXiv:1705.07115 3 (2017).

2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274

2277
2278
2279

2280

Electronics 2018, 7, x FOR PEER REVIEW 70 of 74

[301] https://www.usatoday.com/story/tech/2015/07/01/google-apologizes-after-photos-identify-black-people-a
s-gorillas/29567465/

[302] Gal, Yarin, and Zoubin Ghahramani. "Bayesian convolutional neural networks with Bernoulli
approximate variational inference." arXiv preprint arXiv:1506.02158 (2015).

[303] Kumar Shridhar, Felix Laumann, Adrian Llopart Maurin, Martin Olsen, Marcus Liwicki "Bayesian
Convolutional Neural Networks with Variational Inference" arXiv preprint arXiv:1704.02798 (2018).

[304] Vladimirova, Mariia, Julyan Arbel, and Pablo Mesejo. "Bayesian neural networks become heavier-tailed
with depth." Bayesian Deep Learning Workshop during the thirty-second Conference on Neural
Information Processing Systems (NIPS 2018). 2018.

[305] Hu, Shell Xu, et al. "B-BNN: A Rate-Distortion Perspective on Bayesian Neural Networks." Bayesian Deep
Learning Workshop during the thirty-second Conference on Neural Information Processing Systems (NIPS
2018). 2018.

[306] Salvator Lombardo, Jun Han, Christopher Schroers and Stephan Mandt “Video Compression through
Deep Bayesian Learning” Bayesian Deep Learning Workshop during the thirty-second Conference on
Neural Information Processing Systems (NIPS 2018). 2018.

[307] Krishnan, Ranganath, Mahesh Subedar, and Omesh Tickoo. "BAR: Bayesian Activity Recognition using
variational inference." arXiv preprint arXiv:1811.03305 (2018).

[308] Ronao, Charissa Ann, and Sung-Bae Cho. "Human activity recognition with smartphone sensors using
deep learning neural networks." Expert Systems with Applications 59 (2016): 235-244.

[309] Yang, Jianbo, et al. "Deep Convolutional Neural Networks on Multichannel Time Series for Human
Activity Recognition." Jjcai. Vol. 15. 2015.

[310] Deep, convolutional, and recurrent models for human activity recognition using wearables

[311] Ordofiez, Francisco Javier, and Daniel Roggen. "Deep convolutional and Istm recurrent neural networks
for multimodal wearable activity recognition." Sensors 16.1 (2016): 115.

[312]Rad, Nastaran Mohammadian, et al. "Deep learning for automatic stereotypical motor movement
detection using wearable sensors in autism spectrum disorders." Signal Processing 144 (2018): 180-191.
[313] Ravi, Daniele, et al. "Deep learning for human activity recognition: A resource efficient implementation on
low-power devices." Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International

Conference on. IEEE, 2016.

[314] Sidike, Paheding, Sagan, Vasit, Maimaitijiang, Maitiniyazi., et al., dPEN: deep Progressively Expanded
Network for mapping of heterogeneous agricultural landscape using WorldView-3 imagery. Remote
Sensing of Environment, 221 (2019): 756-772.

[315] Albalooshi, Fatema, Sidike, Paheding, Sagan, Vasit, Albastaki , Yousif and Asari, Vijayan. “Deep Belief
Active Contours (DBAC) with Its Application to Oil Spill Segmentation from Remotely Sensed Aerial
Imagery," Photogrammetric Engineering & Remote Sensing. 84, (2018): 451-458.

@ @75 © 2018 by the authors. Submitted for possible open access publication under the terms
and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

2281

2282
2283

2284

2285

2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304

2305

2306
2307
2308
2309
2310
2311

2312

2313
2314

2315
2316

2317
2318

Electronics 2018, 7, x FOR PEER REVIEW 71 of 74

Appendix I

Most of the time people use different deep learning frameworks and Standard Development Kits (SDKs) for

implementing deep learning approaches which are listed below:

1. Frameworks

= Tensorflow: https://www.tensorflow.org/

= (Caffe: http://caffe.berkeleyvision.org/

= KERAS: https://keras.io/

* Theano: http://deeplearning.net/software/theano/
= Torch: http://torch.ch/

= PyTorch: http://pytorch.org/

= Lasagne: https://lasagne.readthedocs.io/en/latest/

= DLA4J (DeepLearning4l): https://deeplearning4;j.org/

» Chainer: http:/chainer.org/

= DIGITS: https://developer.nvidia.com/digits

= CNTK (Microsoft): https:/github.com/Microsoft/CNTK
= MatConvNet: http://www.vlfeat.org/matconvnet/

= MINERVA: https://github.com/dmlc/minerva

= MXNET: https://github.com/dmlc/mxnet

= OpenDeep: http://www.opendeep.org/

= PuRine: https://github.com/purine/purine2

= PyLerarn2: http://deeplearning.net/software/pylearn2/

= TensorLayer: https://github.com/zsdonghao/tensorlayer
= LBANN: https://github.com/LLNL/lbann

2. SDKs

= cuDNN: https://developer.nvidia.com/cudnn

= TensorRT: https://developer.nvidia.com/tensorrt

* DeepStreamSDK: https://developer.nvidia.com/deepstream-sdk

= cuBLAS: https://developer.nvidia.com/cublas

= cuSPARSE: http://docs.nvidia.com/cuda/cusparse/

= NCCL : https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/

3. Benchmark Datasets

Here is the list of benchmark datasets that are used often to evaluate deep learning approaches in different

domains of application:

3.1. Image classification or detection or segmentation

List of datasets are used in the field of image processing and computer vision:

= MNIST: http://yann.lecun.com/exdb/mnist/
= CIFAR 10/100: https://www.cs.toronto.edu/~kriz/cifar.html

https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://keras.io/
http://deeplearning.net/software/theano/
http://torch.ch/
https://lasagne.readthedocs.io/en/latest/
https://deeplearning4j.org/
http://chainer.org/
https://developer.nvidia.com/digits
https://github.com/Microsoft/CNTK
http://www.vlfeat.org/matconvnet/
https://github.com/dmlc/minerva
https://github.com/dmlc/mxnet
http://www.opendeep.org/
https://github.com/purine/purine2
http://deeplearning.net/software/pylearn2/
https://github.com/zsdonghao/tensorlayer
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cusparse/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338

2339
2340

2341
2342

2343
2344
2345

2346
2347
2348
2349
2350

2351
2352
2353
2354
2355

2356

2357
2358

Electronics 2018, 7, x FOR PEER REVIEW 72 of 74

SVHN/ SVHN2: http://ufldl.stanford.edu/housenumbers/

CalTech 101/256: http://www.vision.caltech.edu/Image Datasets/Caltech101/
STL-10: https://cs.stanford.edu/~acoates/stl10/

NORB: http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/

SUN-dataset: http://groups.csail.mit.edu/vision/SUN/

ImageNet: http://www.image-net.org/

National Data Science Bowl Competition: http://www.datasciencebowl.com/

COIL 20/100: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

MS COCO DATASET: http://mscoco.org/

MIT-67 scene dataset: http://web.mit.edu/torralba/www/indoor.html

Caltech-UCSD Birds-200 dataset: http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Pascal VOC 2007 dataset: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

H3D Human Attributes

dataset: https://www?2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/

Face recognition dataset: http://vis-www.cs.umass.edu/Ifw/

For more data-set visit: https://www.kaggle.com/

http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
Recently Introduced Datasets in Sept. 2016:

Google Open Images (~9M images) — https://github.com/openimages/dataset
Youtube-8M (8M videos: https://research.google.com/youtube8m/

3.2. Text classification

Reuters-21578 Text Categorization Collection:

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
Sentiment analysis from Stanford : http://ai.stanford.edu/~amaas/data/sentiment/

Movie sentiment analysis from Cornel:

http://www.cs.cornell.edu/people/pabo/movie-review-data/

3..3. Language modeling

free eBooks: https://www.gutenberg.org/

Brown and stanford corpus on present americal english:
o https://en.wikipedia.org/wiki/Brown_Corpus
Google 1Billion word corpus:

https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark

3.4. Image Captioning

Flickr-8k: http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
Flickr-30k

Common Objects in Context (COCO) : http://cocodataset.org/#overview

http://sidgan.me/technical/2016/01/09/Exploring-Datasets

3.4. Machine translation

Pairs of sentences in English and French: https://www.isi.edu/natural-language/download/hansard/

European Parliament Proceedings parallel Corpus 196-2011 : http://www.statmt.org/europarl/

http://ufldl.stanford.edu/housenumbers/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://cs.stanford.edu/~acoates/stl10/
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
http://groups.csail.mit.edu/vision/SUN/
http://www.image-net.org/
http://www.datasciencebowl.com/
http://mscoco.org/
http://web.mit.edu/torralba/www/indoor.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
http://vis-www.cs.umass.edu/lfw/
https://www.kaggle.com/
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
https://github.com/openimages/dataset
https://research.google.com/youtube8m/
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://ai.stanford.edu/~amaas/data/sentiment/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.gutenberg.org/
https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
http://cocodataset.org/#overview
http://sidgan.me/technical/2016/01/09/Exploring-Datasets
https://www.isi.edu/natural-language/download/hansard/
http://www.statmt.org/europarl/

2359

2360

2361
2362
2363
2364
2365
2366
2367

2368
2369
2370
2371

2372
2373
2374
2375

2376
2377

2378

2379
2380
2381

2382
2383
2384

2385
2386

2387
2388
2389

2390

2391
2392
2393
2394

Electronics 2018, 7, x FOR PEER REVIEW 73 of 74

= The statistics for machine translation: http://www.statmt.org/

3.5. Question Answering

= Stanford Question Answering Dataset (SQuAD): https://rajpurkar.github.io/SQuAD-explorer/

= Dataset from DeepMind: https://github.com/deepmind/rc-data

= Amazon dataset: http://jmcauley.ucsd.edu/data/amazon/qa/

= http://trec.nist.gov/data/gamain...

= http://www.ark.cs.cmu.edu/QA-data/

= http://webscope.sandbox.yahoo.co...

= http://blog.stackoverflow.com/20..

3.6. Speech Recognition
= TIMIT : https://catalog.ldc.upenn.edu/LDC93S1

= Voxforge: http://voxforge.org/

= Open Speech and Language Resources: http://www.openslr.org/12/

3.7. Document summarization

= https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports

= http://www-nlpir.nist.gov/related projects/tipster summac/cmp lg.html
= https://catalog.ldc.upenn.edu/LDC2002T3 1

3.8. Sentiment analysis:

= [MDB dataset: http://www.imdb.com/

3.9. Hyperspectral image analysis

= http://www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes

= https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

= http://www?2.isprs.org/commissions/comm3/wg4/HyRANK html

In addition, there is another alternative solution in data programming that labels subsets of data using weak
supervision strategies or domain heuristics as labeling functions even if they are noisy and may conflict samples

[87].

4. Journals and Conferences

In general, researchers publish their primary version of research on the ArXiv (https://arxiv.org/). Most of
the conferences have been accepting papers on Deep learning and its related field. Popular conferences are

listed below:

4.1. Conferences

= Neural Information Processing System (NIPS)
= International Conference on Learning Representation (ICLR): What are you doing for Deep Learning?
* International Conference on Machine Learning(ICML)

* Computer Vision and Pattern Recognition (CVPR): What are you doing with Deep Learning?

http://www.statmt.org/
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/deepmind/rc-data
http://jmcauley.ucsd.edu/data/amazon/qa/
http://trec.nist.gov/data/qamain.html
http://www.ark.cs.cmu.edu/QA-data/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/
https://catalog.ldc.upenn.edu/LDC93S1
http://voxforge.org/
http://www.openslr.org/12/
https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html
https://catalog.ldc.upenn.edu/LDC2002T31
http://www.imdb.com/
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www2.isprs.org/commissions/comm3/wg4/HyRANK.html
https://arxiv.org/

Electronics 2018, 7, x FOR PEER REVIEW 74 of 74

2395 * International Conference on Computer Vision (ICCV)
2396 * European Conference on Computer Vision (ECCV)
2397 * British Machine Vision Conference (BMVC)

2398 4.2. Journal

2399 * Journal of Machine Learning Research (JMLR)

2400 * [EEE Transaction of Neural Network and Learning System (
2401 » IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
2402 * Computer Vision and Image Understanding (CVIU)

2403 » Pattern Recognition Letter

2404 * Neural Computing and Application

2405 * International Journal of Computer Vision

2406 » IEEE Transactions on Image Processing

2407 » IEEE Computational Intelligence Magazine

2408 * Proceedings of IEEE

2409 » IEEE Signal Processing Magazine

2410 * Neural Processing Letter

2411 * Pattern Recognition

2412 * Neural Networks

2413 » ISPPRS Journal of Photogrammetry and Remote Sensing

2414 4.3. Tutorials on deep learning

2415 * http://deeplearning.net/tutorial/

2416 * http://deeplearning.stanford.edu/tutorial/

2417 » http://deeplearning.net/tutorial/deeplearning.pdf

2418 * Courses on Reinforcement Learning: http://rll.berkeley.edu/deeprlcourse/

2419 4.4. Books on deep learning

2420 » https://github.com/HF Trader/DeepLearningBookhtips://github.com/janishar/mit-deep-learning-book
2421 -pdf

2422 = http://www.deeplearningbook.org/

https://www.computer.org/web/tpami
http://deeplearning.net/tutorial/
http://deeplearning.stanford.edu/tutorial/
http://deeplearning.net/tutorial/deeplearning.pdf

