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Abstract: In recent years, deep learning has garnered tremendous success in a variety of 12 

application domains. This new field of machine learning has been growing rapidly and has been 13 
applied to most traditional application domains, as well as some new areas that present more 14 
opportunities. Different methods have been proposed based on different categories of learning, 15 
including supervised, semi-supervised, and un-supervised learning. Experimental results show 16 
state-of-the-art performance using deep learning when compared to traditional machine learning 17 
approaches in the fields of image processing, computer vision, speech recognition, machine 18 
translation, art, medical imaging, medical information processing, robotics and control, 19 
bio-informatics, natural language processing (NLP), cybersecurity, and many others. This survey 20 
presents a brief survey on the advances that have occurred in the area of DL, starting with the Deep 21 
Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), 22 
Recurrent Neural Network (RNN) including Long Short-Term Memory (LSTM) and Gated 23 
Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial 24 
Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent 25 
developments such as advanced variant DL techniques based on these DL approaches. This work 26 
considers most of the papers published after 2012 from when the history of deep learning began. 27 
Furthermore, DL approaches that have been explored and evaluated in different application 28 
domains are also included in this survey. We also included recently developed frameworks, SDKs, 29 
and benchmark datasets that are used for implementing and evaluating deep learning approaches. 30 
There are some surveys that have been published on Deep Learning using Neural Networks [1, 38] 31 
and a survey on RL [234]. However, those papers have not discussed individual advanced 32 
techniques for training large-scale deep learning models and the recently developed method of 33 
generative models [1]. 34 

Keywords: Deep Learning; Convolutional Neural Network (CNN); Recurrent Neural Network 35 

(RNN); Auto-Encoder (AE); Restricted Boltzmann Machine (RBM); Deep Belief Network (DBN); 36 
Generative Adversarial Network (GAN); Deep Reinforcement Learning (DRL); Transfer Learning.    37 
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 39 

1. Introduction 40 

Since the 1950s, a small subset of Artificial Intelligence (AI), often called Machine Learning (ML), has 41 

revolutionized several fields in the last few decades. Neural Networks (NN) is a subfield of ML, and it was 42 

this subfield that spawned Deep Learning (DL). Since its inception DL has been creating ever larger 43 
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disruptions, showing outstanding success in almost every application domain. Figure 1 shows the taxonomy 44 

of AI. DL which uses either deep architectures of learning or hierarchical learning approaches), is a class of 45 

ML developed largely from 2006 onward. Learning is a procedure consisting of estimating the model 46 

parameters so that the learned model (algorithm) can perform a specific task. For example, in Artificial Neural 47 

Networks (ANN), the parameters are the weight matrices. DL, on the other hand, consists of several layers in 48 

between the input and output layer which allows for many stages of non-linear information processing units 49 

with hierarchical architectures to be present that are exploited for feature learning and pattern classification [1, 50 

2]. Learning methods based on representations of data can also be defined as representation learning [3]. 51 

Recent literature states that DL based representation learning involves a hierarchy of features or concepts, 52 

where the high-level concepts can be defined from the low-level ones and low-level concepts can be defined 53 

from high-level ones. In some articles, DL has been described as a universal learning approach that is able to 54 

solve almost all kinds of problems in different application domains. In other words, DL is not task specific 55 

[4]. 56 

1.1. Type of Deep Learning Approaches 57 

Deep learning approaches can be categorized as follows:  supervised, semi-supervised or 58 
partially supervised, and unsupervised. In addition, there is another category of learning approach 59 
called Reinforcement Learning (RL) or Deep RL (DRL) which are often discussed under the scope of 60 
semi-supervised or sometimes under unsupervised learning approaches. 61 

 62 

 63 
Figure 1. The taxonomy of AI. AI: Artificial Intelligence, ML, NN, DL, and Spiking Neural Networks (SNN) 64 

according to [294]. 65 
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1) Deep Supervised Learning  66 

Supervised learning is a learning technique that uses labeled data. In the case of supervised DL 67 

approaches, the environment has a set of inputs and corresponding outputs (𝑥𝑡 , 𝑦𝑡)~𝜌. For example, 68 

if for input xt, the intelligent agent predicts 𝑦̂𝑡 = 𝑓(𝑥𝑡), the agent will receive a loss value 𝑙(𝑦𝑡 , 𝑦̂𝑡). 69 

The agent will then iteratively modify the network parameters for better approximation of the 70 

desired outputs. After successful training, the agent will be able to get the correct answers to 71 

questions from the environment. There are different supervised learning approaches for deep 72 

leaning including Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), 73 

Recurrent Neural Networks (RNN) including Long Short Term Memory (LSTM), and Gated 74 

Recurrent Units (GRU). These networks are described in Sections 2, 3, 4, and 5, respectively.  75 

2) Deep Semi-supervised Learning  76 

Semi-supervised learning is learning that occurs based on partially labeled datasets. In some 77 

cases, DRL and Generative Adversarial Networks (GAN) are used as semi-supervised learning 78 

techniques. GAN is discussed in Section VII.  Section VIII surveys DRL approaches. Additionally, 79 

RNN including LSTM and GRU are used for semi-supervised learning as well.  80 

3) Deep Unsupervised Learning  81 

Unsupervised learning systems are ones that can without the presence of data labels. In this 82 

case, the agent learns the internal representation or important features to discover unknown 83 

relationships or structure within the input data. Often clustering, dimensionality reduction, and 84 

generative techniques are considered as unsupervised learning approaches. There are several 85 

members of the deep learning family that are good at clustering and non-linear dimensionality 86 

reduction, including Auto-Encoders (AE), Restricted Boltzmann Machines (RBM), and the recently 87 

developed GAN. In addition, RNNs, such as LSTM and RL, are also used for unsupervised learning 88 

in many application domains [243]. Sections 6 and 7 discuss RNNs and LSTMs in detail. 89 

4) Deep Reinforcement Learning (RL)  90 

Deep Reinforcement Learning is a learning technique for use in unknown environments. DRL 91 

began in 2013 with Google Deep Mind [5, 6]. From then on, several advanced methods have been 92 

proposed based on RL.  Here is an example of RL: if environment samples inputs: 𝑥𝑡~𝜌 , agent 93 

predict: 𝑦̂𝑡 = 𝑓(𝑥𝑡) , agent receive cost: 𝑐𝑡~𝑃(𝑐𝑡|𝑥𝑡 , 𝑦̂𝑡)  where P is an unknown probability 94 

distribution, the environment asks an agent a question, and gives a noisy score as the answer. 95 

Sometimes this approach is called semi-supervised learning as well. There are many 96 

semi-supervised and un-supervised techniques that have been implemented based on this concept 97 

(in Section 8). In RL, we do not have a straight forward loss function, thus making learning harder 98 

compared to traditional supervised approaches. The fundamental differences between RL and 99 

supervised learning are: first, you do not have full access to the function you are trying to optimize; 100 

you must query them through interaction, and second, you are interacting with a state-based 101 

environment: input 𝑥𝑡 depends on previous actions. 102 

Depending upon the problem scope or space, one can decide which type of RL needs to be 103 

applied for solving a task. If the problem has a lot of parameters to be optimized, DRL is the best 104 
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way to go. If the problem has fewer parameters for optimization, a derivation free RL approach is 105 

good. An example of this is annealing, cross entropy methods, and SPSA.  106 

 107 

 108 
 109 

Figure 2. Category of Deep Leaning approaches.  110 

1.2. Feature Learning 111 

A key difference between traditional ML and DL is in how features are extracted. Traditional 112 

ML approaches use handcrafted engineering features by applying several feature extraction 113 

algorithms such as Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), 114 

GIST, RANSAC, Histogram Oriented Gradient (HOG), Local Binary Pattern (LBP), Empirical Mode 115 

Decomposition (EMD) for speech analysis, and many more. Finally, the learning algorithms 116 

including support vector machine (SVM), Random Forest (RF), Principle Component Analysis 117 

(PCA), Kernel PCA (KPCA), Linear Decrement Analysis (LDA), Fisher Decrement Analysis (FDA), 118 

and many more are applied for classification on the extracted features [298]. Additionally, other 119 

boosting approaches are often used where several learning algorithms are applied on the features of 120 

a single task or dataset and a decision is made according to the multiple outcomes from the different 121 

algorithms.   122 

On the other hand, in the case of DL, the features are learned automatically and are represented 123 

hierarchically in multiple levels. This is the strong point of DL against traditional machine learning 124 

approaches. The following table shows the different feature-based learning approaches with 125 

different learning steps.   126 

Table 1.  Different feature learning approaches. 127 

Approaches Learning steps 

Rule-based  Input Hand-design 

features 

Output   

Traditional 

Machine Learning 

Input Hand-design 

features  

Mapping from 

features 

Output  

Representation 

Learning 

Input Features Mapping from 

features 

Output  

Deep Learning Input Simple 

features 

Complex 

features 

Mapping from 

features 

Output 

 128 
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Figure 3. Applications of DL approaches [161]. 131 

1.3. Why and When to apply DL 132 

DL is employed in several situations where machine intelligence would be useful (see Figure 3): 133 

 Absence of a human expert (navigation on Mars) 134 

 Humans are unable to explain their expertise (speech recognition, vision, and language 135 

understanding) 136 

 The solution to the problem changes over time (tracking, weather prediction, preference, stock, 137 

price prediction) 138 

 Solutions need to be adapted to the particular cases (biometrics, personalization). 139 

 The problem size is too vast for our limited reasoning capabilities (calculation webpage ranks, 140 

matching ads to Facebook, sentiment analysis). 141 

At present, DL is being applied in almost all areas. As a result, this approach is often called a 142 

universal learning approach. Some example applications are shown in Figure 4.  143 

 144 

   

Object localization [71] Object detection [71] Image or video Segmentation [77] 

   

Security and Defense [172] Autonomous Car [71] Medicine and biology[102] 

   

Brian Cancer Detection [102] Skin cancer recognition [102] Speech recognition [24] 

Figure 4. Example images where DL is applied successfully and achieved state-of-the-art performance. 
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1.4. The state-of-the-art performance of DL 145 

There are some outstanding successes in the fields of computer vision and speech recognition 146 

as discussed below: 147 

a) Image classification on ImageNet dataset. One of the large-scale problems is named Large Scale 148 

Visual Recognition Challenge (LSVRC). CNN and its variants as one of the DL branches showed 149 

state-of-the-art accuracy on the ImageNet task [11, 285]. The following graph shows the success 150 

story of DL techniques overtime on ImageNet-2012 challenge. In detail, ResNet-152 showed 151 

3.57% error rate which outperformed human accuracy. 152 

b) Automatic speech recognition. The initial success in the field of speech recognition on the 153 

popular TIMIT dataset (common data set are generally used for evaluation) was with small-scale 154 

recognition tasks [24]. The TIMIT Acoustic-Phonetic continuous speech Corpus contains 630 155 

speakers from eight major dialects of American English, where each speaker reads 10 sentences. 156 

Figure 6 summarizes the error rates including these early results and is measured as percent phone 157 

error rate (PER) over the last 20 years. The bar graph clearly shows that the recently developed DL 158 

approaches (top of the graph) perform better compared to any other previous machine learning 159 

approaches on the TIMIT dataset. 160 

 161 

1.5. Why DL? 162 

a) Universal learning approach 163 

The DL approach is sometimes called universal learning because it can be applied to almost any 164 

application domain. 165 

b) Robust 166 

 

Figure 5. Accuracy for ImageNet classification challenge with different DL models. 
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16.4

11.2

7.4 6.7

3.57
5

0

2

4

6

8

10

12

14

16

18

2012 2013 2014 2014 2015

AlexNet[7] Clarifia[8] VGG-16 [9] GoogLeNet-

19 [10]

ResNet-

152[11]

Human

E
rr

o
s 

(%
)

Model & Year

The experimental results on ImageNet-2012



Electronics 2018, 7, x FOR PEER REVIEW  7 of 74 

 

Deep learning approaches do not require the precisely designed feature. Instead, optimal 167 

features are automatically learned for the task at hand. As a result, the robustness to natural 168 

variations of the input data is achieved. 169 

c) Generalization 170 

The same DL approach can be used in different applications or with different data types. This 171 

approach is often called transfer learning. In addition, this approach is helpful where the problem 172 

does not have sufficient available data. There are a number of literatures that have discussed this 173 

concept (See Section 4). 174 

d) Scalability 175 

The DL approach is highly scalable. Microsoft invented a deep network known as ResNet [11]. 176 

This network contains 1202 layers and is often implemented at a supercomputing scale. There is a 177 

big initiative at Lawrence Livermore National Laboratory (LLNL) in developing frameworks for 178 

networks like this, which can implement thousands of nodes [24]. 179 

 180 

Figure 6. Phone error rate (PER) for TIMIT dataset. 181 

1.6. Challenges of DL 182 

There are several challenges for DL:  183 

 Big data analytics using DL  184 

0 10 20 30 40

First-pass SCRF [13]

Boundary-factored…

Deep Segmental NN[15]

Discriminative segmetal…

End-to-end DL [17]

DSC with 2nd pass[16]

CDNN w. Hater.s…

CTC[19]

DCNN [20]

Ensemble…

RNN transducer[19]

Attention-based RNN[22]

Segmental RNN[23]

Phone error rate (PER) in percentage(%)
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 Scalability of DL approaches  185 

 Ability to generate data which is important where data is not available for learning the system 186 

(especially for computer vision task such as inverse graphics). 187 

 Energy efficient techniques for special purpose devices including mobile intelligence, FPGAs, 188 

and so on. 189 

 Multi-task and transfer learning or multi-module learning. This means learning from different 190 

domains or with different models together. 191 

 Dealing with causality in learning.  192 

Most of the above-mentioned challenges have already been considered by the DL community. 193 

Firstly, for the big data analytics challenge, there is a good survey that was conducted in 2014 [25]. In 194 

this paper, the authors explained details on how DL can deal with different criteria including 195 

volume, velocity, variety, and veracity of the big data problem. The authors also showed different 196 

advantages of DL approaches when dealing with big data problems [25, 26, and 27]. Figure 7 clearly 197 

demonstrates that the performance of traditional ML approaches shows better performance for 198 

lesser amounts of input data. As the amount of data increases beyond a certain number, the 199 

performance of traditional machine learning approaches becomes steady, whereas DL approaches increase 200 

with respect to the increment of the amount of data. 201 

 202 

 203 
Figure 7. The performance of deep learning with respect to the amount of data. 204 

 205 

Secondly, in most of the cases for solving large-scale problems, the solution is being implemented on 206 

High-Performance Computing (HPC) system (super-computing, cluster, sometimes considered cloud 207 

computing) which offers immense potential for data-intensive business computing. As data explodes in 208 

velocity, variety, veracity, and volume, it is getting increasingly difficult to scale compute performance using 209 

enterprise-class servers and storage in step with the increase. Most of the articles considered all the demands 210 

and suggested efficient HPC with heterogeneous computing systems. In one example, Lawrence Livermore 211 

National Laboratory (LLNL) has developed a framework which is called Livermore Big Artificial Neural 212 

Networks (LBANN) for large-scale implementation (in super-computing scale) for DL which clearly supplants 213 

the issue of scalability of DL [24].  214 

Thirdly, generative models are another challenge for deep learning. One example is the GAN, 215 

which is an outstanding approach for data generation for any task which can generate data with the 216 

same distribution [28]. Fourthly, multi-task and transfer learning which we have discussed in 217 

Section 7. Fourthly, there is a lot of research that has been conducted on energy efficient deep 218 
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learning approaches with respect to network architectures and hardwires. Section 10 discusses this 219 

issue. 220 

Can we make any uniform model that can solve multiple tasks in different application 221 

domains? As far as the multi-model system is concerned, one article from Google titled “One Model 222 

To Learn Them All” [29] is a good example. This approach can learn from different application 223 

domains including ImageNet, multiple translation tasks, Image captioning (MS-COCO dataset), 224 

speech recognition corpus and English parsing task. We will be discussing most of the challenges 225 

and respective solutions through this survey. There are some other multi-task techniques that have 226 

been proposed in the last few years [30- 32]. 227 

Finally, a learning system with causality has been presented, which is a graphical model that 228 

defines how one may infer a causal model from data. Recently a DL based approach has been 229 

proposed for solving this type of problem [33]. However, there are other many challenging issues 230 

have been solved in the last few years which were not possible to solve efficiently before this 231 

revolution. For example, image or video captioning [34], style transferring from one domain to 232 

another domain using GAN [35], text to image synthesis [36], and many more [37].  233 

There are some surveys that have been conducted recently in the DL field [294, 295]. These 234 

papers survey on DL and its revolution, but they did not address the recently developed generative 235 

model called GAN [28]. In addition, they discuss little RL and did not cover recent trends of DRL 236 

approaches [1, 39]. In most of the cases, the surveys that have been conducted are on different DL 237 

approaches individually. There is a good survey which is based on Reinforcement Learning 238 

approaches [40, 41]. Another survey exists on transfer learning [42]. One survey has been conducted 239 

on neural network hardware [43]. However, the main objective of this work is to provide an overall 240 

idea on deep learning and its related fields including deep supervised (e.g. DNN, CNN, and RNN), 241 

unsupervised (e.g.  AE, RBM, GAN) (sometimes GAN also used for semi-supervised learning tasks) 242 

and DRL. In some cases, DRL is considered to be a semi-supervised or an unsupervised approach. In 243 

addition, we have considered the recently developing trends in this field and applications which are 244 

developed based on these techniques. Furthermore, we have included the framework and 245 

benchmark datasets which are often used for evaluating deep learning techniques. Moreover, the 246 

name of the conferences and journals are also included which are considered by this community for 247 

publishing their research articles.  248 

The rest of the paper has been organized in the following ways: the detailed surveys of DNNs 249 

are discussed in Section II, Section III discusses on CNN. Section IV describes different advanced 250 

techniques for efficient training of DL approaches. Section V. discusses on RNNs. AEs and RBMs are 251 

discussed in Section VI. GANs with applications are discussed in Section VII. RL is presented in 252 

Section VIII. Section IX explains transfer learning. Section X. presents energy efficient approaches 253 

and hardwires for DL. Section XI discusses deep learning frameworks and standard development 254 

kits (SDK). The benchmarks for different application domains with web links are given in Section 255 

XII. The conclusions are made in Section XIII. 256 

 257 

2. Deep Neural Network  258 

2.1. The history of DNN 259 
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A brief history of neural networks highlighting key events is as shown in Figure 8. 260 

Computational neurobiology has conducted significant research on constructing computational 261 

models of artificial neurons. Artificial neurons, which try to mimic the behavior of the human brain, 262 

are the fundamental component for building ANNs. The basic computational element (neuron) is 263 

called a node (or unit) which receives inputs from external sources and has some internal parameters 264 

(including weights and biases that are learned during training) which produce outputs. This unit is 265 

called a perceptron. The fundamental of ANN is discussed in [1, 3].                                266 

 267 

Figure 8.  The history of deep learning development. 268 

ANNs or general NNs consist of Multilayer Perceptron’s (MLP) which contain one or more hidden layers with 269 

multiple hidden units (neurons) in them. For details on MLP, please see in [1,3,47] 270 

2.2. Gradient Descent  271 

The gradient descent approach is a first-order optimization algorithm which is used for finding 272 

the local minima of an objective function. This has been used for training ANNs in the last couple of 273 

decades successfully [1,47].  274 

2.3. Stochastic Gradient Descent (SGD) 275 

Since a long training time is the main drawback for the traditional gradient descent approach, the 276 

SGD approach is used for training Deep Neural Networks (DNN) [1,52].  277 

2.4.Back-Propagation (BP) 278 

DNN is trained with the popular Back-Propagation (BP) algorithm with SGD [47,53]. In the case 279 

of MLPs, we can easily represent NN models using computation graphs which are directive acyclic 280 

graphs. For that representation of DL, we can use the chain-rule to efficiently calculate the gradient 281 

from the top to the bottom layers with BP as shown in [47, 53].  282 

2.5.  Momentum 283 

Momentum is a method which helps to accelerate the training process with the SGD approach. 284 

The main idea behind it is to use the moving average of the gradient instead of using only the 285 

current real value of the gradient. We can express this with the following equation mathematically: 286 

•1943: McCulloch & Pitts show that neurons can be combined to construct a Turing 
machine (using ANDs, ORs, & NOTs) [44].

•1958: Rosenblatt shows that perceptron’s will converge if what they are trying to 
learn can be represented [45].

•1969: Minsky & Papert show the limitations of perceptron’s, killing research in 
neural networks for a decade [46].

•1985: The backpropagation algorithm by Geoffrey Hinton et al. [47] revitalizes the 
field.

•1988: Neocognitron: a hierarchical neural network capable of visual pattern 
recognition [48].

•1998: CNNs with Backpropagation for document analysis by Yan LeCun [49].

•2006: The Hinton lab solves the training problem for DNNs [50,51].

•2012 - pressent: A variety of deep learning algorithms are increasingly emerging. 

1943 - present
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                          𝑣𝑡 = γ 𝑣𝑡−1 − 𝜂 ∇ ℱ(𝜃𝑡−1)                                              287 

(1) 288 

                          𝜃𝑡 = 𝜃𝑡−1 +  𝑣𝑡                                                        289 

(2) 290 

Here γ is the momentum and 𝜂 is the learning rate for the tth round of training. Other popular 291 

approaches have been introduced during the last few years which are explained in section IX under 292 

the scope of optimization approaches. The main advantage of using momentum during training is to 293 

prevent the network from getting stuck in la ocal minimum. The values of momentum are γ ∈ (0,1]. 294 

It is noted that a higher momentum value overshoots its minimum, possibly making the network 295 

unstable. In general, γ is set to 0.5 until the initial learning stabilizes and is then increased to 0.9 or 296 

higher [54]. 297 

                                                298 

2.6. Learning rate (𝜼) 299 

The learning rate is an important component for training DNN. The learning rate is the step size 300 

considered during training which makes the training process faster. However, selecting the value of 301 

the learning rate is sensitive. For example: if you choose a larger value for  𝜂, the network may start 302 

diverging instead of converging. On the other hand, if you choose a smaller value for  𝜂, it will take 303 

more time for the network to converge. In addition, it may easily get stuck in local minima. The 304 

typical solution for this problem is to reduce the learning rate during training [52].  305 

There are three common approaches used for reducing the learning rate during training: 306 

constant, factored, and exponential decay. First, we can define a constant 𝜁 which is applied to 307 

reduce the learning rate manually with a defined step function. Second, the learning rate can be 308 

adjusted during training with the following equation: 309 

                                      𝜂𝑡 = 𝜂0𝛽
𝑡

𝜖⁄                                              (3) 310 

where 𝜂𝑡 is the tth round learning rate, 𝜂0 is the initial learning rate, and 𝛽 is the decay factor with 311 

a value between the range of (0,1).   312 

The step function format for exponential decay is:  313 

                                       𝜂𝑡 = 𝜂0𝛽⌊𝑡
𝜖⁄ ⌋                                             (4) 314 

The common practice is to use a learning rate decay of 𝛽 = 0.1 to reduce the learning rate by a factor 315 

of 10 at each stage.  316 

2.7. Weight decay 317 

Weight decay is used for training deep learning models as a L2 regularization approach, which 318 

helps to prevent overfitting the network and model generalization. L2 regularization for ℱ(𝜃, 𝑥) can 319 

be define as 320 

                                 Ω = ‖𝜃‖2                                                    (5) 321 

                                  𝜀̂(ℱ(𝜃, 𝑥), 𝑦) = 𝜀(ℱ(𝜃, 𝑥), 𝑦) + 
1

2
𝜆 Ω                          (6) 322 

The gradient for the weight 𝜃 is:  323 



Electronics 2018, 7, x FOR PEER REVIEW  12 of 74 

 

                                 
𝜕

1

2
𝜆Ω

𝜕𝜃
=  𝜆 ∙ 𝜃                                                  (7) 324 

General practice is to use the value  𝜆 = 0.0004. A smaller 𝜆 will accelerate training. 325 

Other necessary components for efficient training including data preprocessing and 326 

augmentation, network initialization approaches, batch normalization, activation functions, 327 

regularization with dropout, and different optimization approaches (as discussed in Section 4).  328 

In the last few decades, many efficient approaches have been proposed for better training of 329 

deep neural networks. Before 2006, attempts taken at training deep architectures failed: training a 330 

deep supervised feed-forward neural network tended to yield worse results (both in training and in 331 

test error) than shallow ones (with 1 or 2 hidden layers). Hinton’s revolutionary work on DBNs 332 

spearheaded a change in this in 2006 [50, 53].  333 

Due to their composition, many layers of DNNs are more capable of representing highly varying nonlinear 334 

functions compared to shallow learning approaches [56-58]. Moreover, DNNs are more efficient for learning 335 

because of the combination of feature extraction and classification layers. The following sections discuss in 336 

detail about different DL approaches with necessary components. 337 

3. Convolutional Neural Network (CNN) 338 

3.1. CNN overview  339 

This network structure was first proposed by Fukushima in 1988 [48]. It was not widely used, 340 

however, due to limits of computation hardware for training the network. In the 1990s, LeCun et al. 341 

[49] applied a gradient-based learning algorithm to CNNs and obtained successful results for the 342 

handwritten digit classification problem. After that, researchers further improved CNNs and 343 

reported state-of-the-art results in many recognition tasks. CNNs have several advantages over 344 

DNNs, including being more like the human visual processing system, being highly optimized in 345 

the structure for processing 2D and 3D images, and being effective at learning and extracting 346 

abstractions of 2D features. The max pooling layer of CNNs is effective in absorbing shape 347 

variations. Moreover, composed of sparse connections with tied weights, CNNs have significantly 348 

fewer parameters than a fully connected network of similar size. Most of all, CNNs are trained with 349 

the gradient-based learning algorithm and suffer less from the diminishing gradient problem. Given 350 

that the gradient-based algorithm trains the whole network to minimize an error criterion directly, 351 

CNNs can produce highly optimized weights.  352 
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 353 

Figure 9 shows the overall architecture of CNNs consists of two main parts: feature extractors 354 

and a classifier. In the feature extraction layers, each layer of the network receives the output from its 355 

immediate previous layer as its input and passes its output as the input to the next layer. The CNN 356 

architecture consists of a combination of three types of layers: convolution, max-pooling, and 357 

classification. There are two types of layers in the low and middle-level of the network: 358 

convolutional layers and max-pooling layers. The even numbered layers are for convolutions and 359 

the odd-numbered layers are for max-pooling operations. The output nodes of the convolution and 360 

max-pooling layers are grouped into a 2D plane called feature mapping. Each plane of a layer is 361 

usually derived of the combination of one or more planes of previous layers. The nodes of a plane 362 

are connected to a small region of each connected planes of the previous layer. Each node of the 363 

convolution layer extracts the features from the input images by convolution operations on the input 364 

nodes.  365 

Higher-level features are derived from features propagated from lower level layers. As the 366 

features propagate to the highest layer or level, the dimensions of features are reduced depending 367 

on the size of the kernel for the convolutional and max-pooling operations respectively. However, 368 

the number of feature maps usually increased for representing better features of the input images for 369 

ensuring classification accuracy. The output of the last layer of the CNN is used as the input to a 370 

fully connected network which is called classification layer. Feed-forward neural networks have 371 

been used as the classification layer as they have better performance [50, 58]. In the classification 372 

layer, the extracted features are taken as inputs with respect to the dimension of the weight matrix of 373 

the final neural network. However, the fully connected layers are expensive in terms of network or 374 

learning parameters. Nowadays, there are several new techniques including average pooling and 375 

global average pooling that is used as an alternative of fully-connected networks. The score of the 376 

respective class is calculated in the top classification layer using a soft-max layer.  Based on the 377 

highest score, the classifier gives output for the corresponding classes.  Mathematical details on 378 

different layers of CNNs are discussed in the following section. 379 

a) Convolutional layer 380 

 

Figure 9. The overall architecture of the CNN includes an input layer, multiple alternating convolution and max-pooling layers, one 

fully-connected layer and one classification layer. 
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In this layer, feature maps from previous layers are convolved with learnable kernels. The output of 381 

the kernels goes through a linear or non-linear activation function such as a(sigmoid, hyperbolic 382 

tangent, Softmax, rectified linear, and identity functions) to form the output feature maps. Each of 383 

the output feature maps can be combined with more than one input feature map. In general, we 384 

have that 385 

                                𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1
𝑖𝜖𝑀𝑗

∗  𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙)                                    386 

(8) 387 

where 𝑥𝑗
𝑙 is the output of the current layer,  𝑥𝑖

𝑙−1 is the previous layer output, 𝑘𝑖𝑗
𝑙  is the kernel for 388 

the present layer, and  𝑏𝑗
𝑙 are the biases for the current layer. 𝑀𝑗 represents a selection of input 389 

maps. For each output map, an additive bias  𝑏  is given. However, the input maps will be 390 

convolved with distinct kernels to generate the corresponding output maps.  The output maps 391 

finally go through a linear or non-linear activation function (such as sigmoid, hyperbolic tangent, 392 

Softmax, rectified linear, or identity functions).  393 

b) Sub-sampling layer 394 

The subsampling layer performs the downsampled operation on the input maps. This is commonly 395 

known as the pooling layer. In this layer, the number of input and output feature maps does not 396 

change. For example, if there are 𝑁 input maps, then there will be exactly 𝑁 output maps. Due to 397 

the down sampling operation, the size of each dimension of the output maps will be reduced, 398 

depending on the size of the down sampling mask. For example: if a 2×2 down sampling kernel is 399 

used, then each output dimension will be the half of the corresponding input dimension for all the 400 

images. This operation can be formulated as 401 

                                     xj
l = down(xj

l−1)                                           (9) 402 

where down( . )  represents a sub-sampling function. Two types of operations are mostly 403 

performed in this layer: average pooling or max-pooling. In the case of the average pooling 404 

approach, the function usually sums up over N×N patches of the feature maps from the previous 405 

layer and selects the average value. On the other hand, in the case of max-pooling, the highest value 406 

is selected from the N×N patches of the feature maps. Therefore, the output map dimensions are 407 

reduced by n times. In some special cases, each output map is multiplied with a scalar. Some 408 

alternative sub-sampling layers have been proposed, such as fractional max-pooling layer and 409 

sub-sampling with convolution. These are explained in Section 4.6. 410 

c) Classification layer 411 

This is the fully connected layer which computes the score of each class from the extracted 412 

features from a convolutional layer in the preceding steps. The final layer feature maps are 413 

represented as vectors with scalar values which are passed to the fully connected layers. The fully 414 

connected feed-forward neural layers are used as a soft-max classification layer. There are no strict 415 

rules on the number of layers which are incorporated in the network model. However, in most cases, 416 

two to four layers have been observed in different architectures including LeNet [49], AlexNet [7], 417 
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and VGG Net [9]. As the fully connected layers are expensive in terms of computation, alternative 418 

approaches have been proposed during the last few years. These include the global average pooling 419 

layer and the average pooling layer which help to reduce the number of parameters in the network 420 

significantly. 421 

In the backward propagation through the CNNs, the fully connected layer updates following the 422 

general approach of fully connected neural networks (FCNN). The filters of the convolutional layers 423 

are updated by performing the full convolutional operation on the feature maps between the 424 

convolutional layer and its immediate previous layer. Figure 10 shows the basic operations in the 425 

convolution and sub-sampling of an input image. 426 

 427 

Figure 10. Feature maps after performing convolution and pooling operations. 428 

 429 

d)  Network parameters and required memory for CNN 430 

The number of computational parameters is an important metric to measure the complexity of a 431 

deep learning model. The size of the output feature maps can be formulated as follows: 432 

                        𝑀 =
(𝑁−𝐹)

𝑆
 + 1                                                   (10) 433 

where 𝑁 refers to the dimensions of the input feature maps, 𝐹 refers to the dimensions of the filters 434 

or the receptive field,  𝑀 refers to the dimensions of output feature maps, and 𝑆 stands for the 435 

stride length. Padding is typically applied during the convolution operations to ensure the input and 436 

output feature map have the same dimensions. The amount of padding depends on the size of the 437 

kernel. Equation 17 is used for determining the number of rows and columns for padding.   438 

                           𝑃 = (𝐹 − 1)/2                                                (11) 439 

Here 𝑃 is the amount of padding and 𝐹 refers to the dimension of the kernels.  Several criteria are 440 

considered for comparing the models. However, in most of the cases, the number of network 441 

parameters and the total amount of memory are considered. The number of parameters (𝑃𝑎𝑟𝑚𝑙) of  442 

𝑙𝑡ℎ layer is the calculated based on the following equation: 443 

                    𝑃𝑎𝑟𝑚𝑙 = (𝐹 × 𝐹 × 𝐹𝑀𝑙−1) × 𝐹𝑀𝑙                                     (12) 444 
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If bias is added with the weights, then the above equation can be written as follows: 445 

                    𝑃𝑎𝑟𝑚𝑙 = (𝐹 × (𝐹 + 1) × 𝐹𝑀𝑙−1) × 𝐹𝑀𝑙                               (13) 446 

Here the total number of parameters of 𝑙𝑡ℎ lathe yer can be represented with  𝑃𝑙  , 𝐹𝑀𝑙 is for the 447 

total number of output feature maps, and  𝐹𝑀𝑙−1 is the total number of input feature maps or 448 

channels. For example, let’s assume the 𝑙𝑡ℎ layer has 𝐹𝑀𝑙−1 = 32 input features maps, 𝐹𝑀𝑙 = 64 449 

output feature maps, and the filter size is 𝐹 = 5. In this case, the total number of parameters with 450 

bias for this layera a  is 𝑃𝑎𝑟𝑚𝑙 = (5 × 5 × 33) × 64 = 528,000. Thus, the amount of memory (𝑀𝑒𝑚𝑙) 451 

needs for the operations of the 𝑙𝑡ℎ layer can be expressed as  452 

                    𝑀𝑒𝑚𝑙 = (𝑁𝑙 × 𝑁𝑙 × 𝐹𝑀𝑙  )                                              (14) 453 

3.2. Popular CNN architectures 454 

In this section, several popular state-of-the-art CNN architectures will be examined. In general, 455 

most deep convolutional neural networks are made of a key set of basic layers, including the 456 

convolution layer, the sub-sampling layer, dense layers, and the soft-max layer. The architectures 457 

typically consist of stacks of several convolutional layers and max-pooling layers followed by a fully 458 

connected and SoftMax layers at the end. Some examples of such models are LeNet [49], AlexNet [7], 459 

VGG Net [9], NiN [60] and all convolutional (All Conv) [61]. Other alternatives and more efficient 460 

advanced architectures have been proposed including GoogLeNet with Inception units [10, 64], 461 

Residual Networks [11], DenseNet [62], and FractalNet [63]. The basic building components 462 

(convolution and pooling) are almost the same across these architectures. However, some 463 

topological differences are observed in the modern deep learning architectures. Of the many DCNN 464 

architectures, AlexNet [7], VGG [9], GoogLeNet [10, 64], Dense CNN [62] and FractalNet [63] are 465 

generally considered the most popular architectures because of their state-of-the-art performance on 466 

different benchmarks for object recognition tasks. Among all of these structures, some of the 467 

architectures are designed especially for large-scale data analysis (such as GoogLeNet and ResNet), 468 

whereas the VGG network is considered a general architecture. Some of the architectures are dense 469 

in terms of connectivity, such as DenseNet [62]. Fractal Network is an alternative of ResNet.  470 

  471 

a)  LeNet (1998) 472 

Although LeNet was proposed in the 1990s, limited computation capability and memory 473 

capacity made the algorithm difficult to implement until about 2010 [49]. LeCun et al. [49], however, 474 

proposed CNNs with the back-propagation algorithm and experimented on handwritten digit 475 

dataset to achieve state-of-the-art accuracy. The proposed CNN architecture is well-known as 476 

LeNet-5 [49]. The basic configuration of LeNet-5 is as follows (see Figure 11): 2 convolutions (conv) 477 

layers, 2 sub-sampling layers, 2 fully connected layers, and an output layer with the Gaussian 478 

connection. The total number of weights and Multiply and Accumulates (MACs) are 431k and 2.3M, 479 

respectively.  480 

As computational hardware started improving in capability, CNNs stated becoming popular as an 481 

effective learning approach in the computer vision and machine learning communities. 482 
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 483 

Figure 11. The architecture of LeNet.  484 

 485 

b)  AlexNet (2012) 486 

In 2012, Alex Krizhevesky and others proposed a deeper and wider CNN model compared to 487 

LeNet and won the most difficult ImageNet challenge for visual object recognition called the 488 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [7]. AlexNet achieved 489 

state-of-the-art recognition accuracy against all the traditional machine learning and computer 490 

vision approaches. It was a significant breakthrough in the field of machine learning and computer 491 

vision for visual recognition and classification tasks and is the point in history where interest in deep 492 

learning increased rapidly. 493 

The architecture of AlexNet is shown in Figure 12. The first convolutional layer performs 494 

convolution and max-pooling with Local Response Normalization (LRN) where 96 different 495 

receptive filters are used that are 11×11 in size. The max pooling operations are performed with 3×3 496 

filters with a stride size of 2.  The same operations are performed in the second layer with 5×5 497 

filters. 3×3 filters are used in the third, fourth, and fifth convolutional layers with 384, 384, and 296 498 

feature maps respectively. Two fully connected (FC) layers are used with dropout followed by a 499 

Softmax layer at the end. Two networks with similar structure and the same number of feature maps 500 

are trained in parallel for this model.  Two new concepts, Local Response Normalization (LRN) and 501 

dropout, are introduced in this network. LRN can be applied in two different ways: first applying on 502 

single channel or feature maps, where an N×N patch is selected from the same feature map and 503 

normalized based on the neighborhood values. Second, LRN can be applied across the channels or 504 

feature maps (neighborhood along the third dimension but a single pixel or location).  505 

 506 

Figure 12. The architecture of AlexNet: Convolution, max-pooling, LRN and fully connected (FC) layer.  507 

 508 
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AlexNet has 3 convolution layers and 2 fully connected layers. When processing the ImageNet 509 

dataset, the total number of parameters for AlexNet can be calculated as follows for the first layer: 510 

input samples are 224×224×3, filters (kernels or masks) or a receptive field that has a size 11, the 511 

stride is 4, and the output of the first convolution layer is 55×55×96.  According to the equations in 512 

section 3.1.4, we can calculate that this first layer has 290400 (55×55×96) neurons and 364 (11 ×11×3 = 513 

363 + 1 bias) weights. The parameters for the first convolution layer are 290400×364 = 105,705,600.  514 

Table II shows the number of parameters for each layer in millions. The total number of weights and 515 

MACs for the whole network are 61M and 724M, respectively.    516 

 517 

c)  ZFNet / Clarifai (2013) 518 

In 2013, Matthew Zeiler and Rob Fergue won the 2013 ILSVRC with a CNN architecture which 519 

was an extension of AlexNet. The network was called ZFNet [8], after the authors’ names. As CNNs 520 

are expensive computationally, an optimum use of parameters is needed from a model complexity 521 

point of view. The ZFNet architecture is an improvement of AlexNet, designed by tweaking the 522 

network parameters of the latter. ZFNet uses 7x7 kernels instead of 11x11 kernels to significantly 523 

reduce the number of weights. This reduces the number of network parameters dramatically and 524 

improves overall recognition accuracy. 525 

d)  Network in Network (NiN) 526 

This model is slightly different from the previous models where a couple of new concepts are 527 

introduced [60]. The first concept is to use multilayer perception convolution, where convolutions 528 

are performed with 1×1 filters that help to add more nonlinearity in the models. This helps to 529 

increase the depth of the network, which can then be regularized with dropout. This concept is used 530 

often in the bottleneck layer of a deep learning model.  531 

 532 

The second concept is to use Global Average Pooling (GAP) as an alternative of fully connected 533 

layers. This helps to reduce the number of network parameters significantly. GAP changes the 534 

network structure significantly. By applying GAP on a large feature map, we can generate a final 535 

low dimensional feature vector without reducing the dimension of the feature maps.   536 

 537 

e)  VGGNET (2014)  538 

The Visual Geometry Group (VGG), was the runner-up of the 2014 ILSVRC [9]. The main 539 

contribution of this work is that it shows that the depth of a network is a critical component to 540 

achieve better recognition or classification accuracy in CNNs. The VGG architecture consists of two 541 

convolutional layers both of which use the ReLU activation function. Following the activation 542 

function is a single max pooling layer and several fully connected layers also using a ReLU 543 

activation function. The final layer of the model is a Softmax layer for classification.  In VGG-E [9] 544 

the convolution filter size is changed to a 3x3 filter with a stride of 2.  Three VGG-E [9] models, 545 

VGG-11, VGG-16, and VGG-19; were proposed the models had 11,16, and 19 layers respectively. 546 
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 547 

Figure 13. The basic building block of VGG network: Convolution (Conv) and FC for fully connected layers 548 

 549 

  All versions of the VGG-E models ended the same with three fully connected layers. However, the 550 

number of convolution layers varied VGG-11 contained 8 convolution layers, VGG-16 had 13 551 

convolution layers, and VGG-19 had 16 convolution layers. VGG-19, the most computational 552 

expensive model, contained 138Mweights and had 15.5M MACs.  553 

 554 

f)  GoogLeNet (2014)  555 

GoogLeNet, the winner of ILSVRC 2014[10], was a model proposed by Christian Szegedy of 556 

Google with the objective of reducing computation complexity compared to the traditional CNN. 557 

The proposed method was to incorporate “Inception Layers” that had variable receptive fields, 558 

which were created by different kernel sizes. These receptive fields created operations that captured 559 

sparse correlation patterns in the new feature map stack.  560 

  561 

 562 

Figure 14. Inception layer: naive version 563 

 564 

The initial concept of the Inception layer can be seen in Figure 14. GoogLeNet improved the 565 

state of the art recognition accuracy using a stack of Inception layers seen in Figure 15. The 566 

difference between the naïve inception layer and final Inception Layer was the addition of 1x1 567 

convolution kernels. These kernels allowed for dimensionality reduction before computationally 568 

expensive layers. GoogLeNet consisted of 22 layers in total, which was far greater than any network 569 

before it. However, the number of network parameters GoogLeNet used was much lower than its 570 

predecessor AlexNet or VGG. GoogLeNet had 7M network parameters when AlexNet had 60M and 571 

VGG-19 138M.  The computations for GoogLeNet also were 1.53G MACs far lower than that of 572 

AlexNet or VGG. 573 

 574 
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 575 

Figure 15. Inception layer with dimension reduction 576 

 577 

g)  Residual Network (ResNet in 2015)  578 

The winner of ILSVRC 2015 was the Residual Network architecture, ResNet [11]. Resnet was 579 

developed by Kaiming He with the intent of designing ultra-deep networks that did not suffer from 580 

the vanishing gradient problem that predecessors had. ResNet is developed with many different 581 

numbers of layers; 34, 50,101, 152, and even 1202. The popular ResNet50 contained 49 convolution 582 

layers and 1 fully connected layer at the end of the network. The total number of weights and MACs 583 

for the whole network are 25.5M and 3.9M respectively.    584 

 585 

Figure 16. Basic diagram of the Residual block.  586 

The basic block diagram of the ResNet architecture is shown in Figure 16. ResNet is a 587 

traditional feedforward network with a residual connection.  The output of a residual layer can be 588 

defined based on the outputs of  (𝑙 − 1)𝑡ℎ which comes from the previous layer defined as  𝑥𝑙−1 . 589 

ℱ( 𝑥𝑙−1) is the output after performing various operations (e.g. convolution with different size of 590 

filters, Batch Normalization (BN) followed by an activation function such as a ReLU on 𝑥𝑙−1). The 591 

final output of residualthe  unit is 𝑥𝑙   which can be defined with the following equation: 592 

                             𝑥𝑙 = ℱ( 𝑥𝑙−1) + 𝑥𝑙−1                                     (15) 593 

The residual network consists of several basic residual blocks. However, the operations in the 594 

residual block can be varied depending on the different architecture of residual networks [11]. The 595 

wider version of the residual network was proposed by Zagoruvko el at. In 2016 [66], another 596 

improved residual network approach known as aggregated residual transformation [67]. Recently, 597 

some other variants of residual models have been introduced based on the Residual Network 598 
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architecture [68, 69, and 70]. Furthermore, there are several advanced architectures that are 599 

combined with Inception and Residual units. The basic conceptual diagram of Inception-Residual 600 

unit is shown in the following Figure 17.  601 

 602 

 603 

Figure 17. The basic block diagram for Inception Residual unit 604 

 605 

Mathematically, this concept can be represented as  606 

                          𝑥𝑙 = ℱ( 𝑥𝑙−1
3×3 ⨀ 𝑥𝑙−1

5×5 ) +  𝑥𝑙−1                                 (16) 607 

where the symbol ⨀ refers the concentration operations between two outputs from the 3×3 and 5×5 608 

filters.  After that, the convolution operation is performed with 1×1 filters. Finally, the outputs are 609 

added with the inputs of this block of 𝑥𝑙−1. The concept of Inception block with residual connections 610 

is introduced in the Inception-v4 architecture [65]. The improved version of the Inception-Residual 611 

network known as PolyNet was recently proposed [70, 290]. 612 

 613 

h)  Densely Connected Network (DenseNet)    614 

DenseNet developed by Gao Huang and others in 2017[62], which consists of densely 615 

connected CNN layers, the outputs of each layer are connected with all successor layers in a dense 616 

block [62]. Therefore, it is formed with dense connectivity between the layers rewarding it the name 617 

“DenseNet”. This concept is efficient for feature reuse, which dramatically reduces network 618 

parameters. DenseNet consists of several dense blocks and transition blocks, which are placed 619 

between two adjacent dense blocks. The conceptual diagram of a dense block is shown in Figure 18.   620 

 621 

Figure 18. A 4-layer Dense block with a growth rate of   𝑘 = 3. 622 

 623 
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Each layer takes all the preceding feature maps as input. When deconstructing Figure 19, the 𝑙𝑡ℎ  624 

layer received all the feature maps from previous layers of 𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1 as input:    625 

                          𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1])                                   (17) 626 

where [𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1]  are the concatenated features for layers 0, ⋯ ⋯ , 𝑙 − 1  and 𝐻𝑙(∙)  is 627 

considered as a single tensor. It performs three different consecutive operations: 628 

Batch-Normalization (BN) [110], followed by a ReLU [58] and a 3 × 3 convolution operation. In the 629 

transaction block, 1 × 1  convolutional operations are performed with BN followed by a 2 × 2  630 

average pooling layer.  This new model shows state-of-the-art accuracy with a reasonable number 631 

of network parameters for object recognitions tasks. 632 

 633 

i)  FractalNet (2016)   634 

This architecture is an advanced and alternative architecture of ResNet model, which is efficient 635 

for designing large models with nominal depth, but shorter paths for the propagation of gradient 636 

during training [63]. This concept is based on drop-path which is another regularization approach 637 

for making large networks. As a result, this concept helps to enforce speed versus accuracy tradeoffs. 638 

The basic block diagram of FractalNet is shown in Figure 19.  639 

 640 

Figure 19.  The detailed FractalNet module on the left and FractalNet on the right. 641 

 642 

3.3. CapsuleNet 643 

CNNs are an effective methodology for detecting features of an object and achieving good 644 

recognition performance compared to state of the art handcrafted feature detectors. There are limits 645 

to CNNs, which are that it does not take into account special relationships, perspective, size, and 646 

orientation, of features. For example: if you have a face image, it does not matter the placement of 647 

different components (nose, eye, mouth etc.) of the faces neurons of a CNN will wrongly active and 648 

recognition as a face without considering special relationships (orientation, size). Now, imagine a 649 

neuron which contains the likelihood with properties of features (perspective, orientation, size etc.). 650 
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This special type of neurons, capsules, can detect face efficiently with distinct information. The 651 

capsule network consists of several layers of capsule nodes. The first version of capsule network 652 

(CapsNet) consisted of three layers of capsule nodes in an encoding unit. 653 

 654 

Figure 20. A CapsNet encoding unit with 3 layers. The instance of each class is represented with a vector of a 655 

capsule in DigitCaps layer that is used for calculating classification loss. The weights between the primary 656 

capsule layer and DigitCaps layer are represented with  𝑊𝑖𝑗 . 657 

 658 

This architecture for MNIST (28×28) images, the 256 9×9 kernels are applied with a stride 1, so 659 

the output is (28 − 9 + 1 = 20) with 256 feature maps. Then the outputs are fed to the primary 660 

capsule layer which is a modified convolution layer that generates an 8-D vector instead of a scalar. 661 

In the first convolutional layer, 9×9 kernels are applied with stride 2, the output dimension is 662 

((20 − 9)/2 + 1 = 6). The primary capsules are used 8×32 kernels which generates 32×8×6×6 (32 663 

groups for 8 neurons with 6×6 size).  664 

 665 

 666 

Figure 21. The decoding unit where a digit is reconstructed from DigitCaps layer representation. The Euclidean 667 

distance is used minimizing the error between the input sample and the reconstructed sample from the sigmoid 668 

layer. True labels are used for reconstruction target during training. 669 

 670 

The entire encoding and decoding processes of CapsNet is shown in Figures 20 and 21, 671 

respectively. We used a max-pooling layer in CNN often that can handle translation variance. Even 672 

if a feature moves if it is still under a max pooling window it can be detected. As the capsule contains 673 
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the weighted sum of features from the previous layer, therefore this approach is capable of detecting 674 

overlapped features which is important for segmentation and detection tasks. 675 

In the traditional CNN, a single cost function is used to evaluate the overall error which propagates 676 

backward during training. However, in this case, if the weight between two neurons is zero, then the 677 

activation of a neuron is not propagated from that neuron. The signal is routed with respect to the 678 

feature parameters rather than a one size fits all cost function in iterative dynamic routing with the 679 

agreement. For details about this architecture, please see [293]. This new CNN architecture provides 680 

state-of-the-art accuracy for handwritten digit recognition on MNIST. However, from an application 681 

point of view, this architecture is more suitable for segmentation and detection tasks compare to 682 

classification tasks.  683 

 684 

3.4. Comparison of different models 685 

The comparison of recently proposed models based on error, network parameters, and a maximum 686 

number of connections are given in Table 2.  687 

 688 

3.5. Other DNN models 689 

There are many other network architectures such as fast region based CNN [71] and Xception 690 

[72] which are popular in the computer vision community. In 2015 a new model was proposed using 691 

recurrent convolution layers named Recurrent Convolution Neural Network or RCNN [73]. The 692 

improved version of this network is a combination of the two most popular architectures in the 693 

Inception network and Recurrent Convolutional Network, Inception Convolutional Recurrent 694 

Neural Networks (IRCNN) [74]. IRCNN provided better accuracy compared RCNN and inception 695 

network with almost identical network parameters. Visual Phase Guided CNN (ViP CNN) is 696 

proposed with phase guided message passing a structure (PMPS) to build connections between 697 

relational components, which show better speed up and recognition accuracy [75]. Look up based 698 

CNN [76] is a fast, compact, and accurate model enabling efficient inference. In 2016 the architecture 699 

known as a fully convolutional network (FCN) was proposed for segmentation tasks where it is now 700 

commonly used. Other recently proposed CNN models include a deep network with stochastic 701 

depth, deeply-supervised networks, and ladder network [79, 80, and 81].   702 

 703 

Table 2. The top-5% errors with computational parameters and macs for different deep CNN 704 

models. 705 

Methods LeNet-5[

48] 

AlexNet 

[7] 

OverFeat 

(fast)[8] 

VGG-16[

9] 

GoogLeNet 

[10] 

ResNet-50(

v1)[11] 

Top-5 errors n/a 16.4 14.2 7.4 6.7 5.3 

Input size 28x28 227x227 231x231 224x224 224x224 224x224 

Number of Conv Layers 2 5 5 16 21 50 

Filter Size 5 3,5,11 3,7 3 1,3,5,7 1,3,7 

Number of Feature Maps 1,6 3-256 3-1024 3-512 3-1024 3-1024 

Stride 1 1,4 1,4 1 1,2 1,2 
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Number of Weights 26k 2.3M 16M 14.7M 6.0M 23.5M 

Number of MACs 1.9M 666M 2.67G 15.3G 1.43G 3.86G 

Number of FC layers 2 3 3 3 1 1 

Number of Weights 406k 58.6M 130M 124M 1M 1M 

Number of MACs 405k 58.6M 130M 124M 1M 1M 

Total Weights 431k 61M 146M 138M 7M 25.5M 

Total MACs 2.3M 724M 2.8G 15.5G 1.43G 3.9G 

 706 

3.6. Applications of CNNs 707 

a)  CNNs for solving a graph problem 708 

Learning graph data structures is a common problem with various applications in data mining 709 

and machine learning tasks. DL techniques have made a bridge in between the machine learning and 710 

data mining groups. An efficient CNN for arbitrary graph processing was proposed in 2016 [91]. 711 

b)  Image processing and computer vision 712 

Most of the models, we have discussed above are applied to different application domains 713 

including image classification [7-11], detection, segmentation, localization, captioning, video 714 

classification and many more. There is a good survey on DL approaches for image processing and 715 

computer vision related tasks including image classification, segmentation, and detection [92]. For 716 

examples, single image super-resolution using CNN method [93], image denoising using 717 

block-matching CNN [94], photo aesthetic assessment using A-Lamp (Adaptive Layout-Aware 718 

Multi-Patch Deep CNN) [95],  DCNN for hyperspectral imaging segmentation [96], image 719 

registration [97], fast artistic style transfer [98],  image background segmentation using DCNN [99], 720 

handwritten character recognition [291], optical image classification [296], crop mapping using 721 

high-resolution satellite imagery [314], object recognition with cellular simultaneous recurrent 722 

networks and CNN [297]. The DL approaches are massively applied for human activity recognition 723 

tasks and achieved state-of-the-art performance compared to exiting approaches [308~313]. 724 

c)  Speech processing 725 

CNN methods are also applied for speech processing such as speech enhancement using 726 

multimodal deep CNN [100], and audio tagging using Convolutional Gated Recurrent Network 727 

(CGRN) [101]. 728 

d)  CNN for medical imaging 729 

Litjens et al provided a good survey on DL for medical image processing including 730 

classification, detection, and segmentation tasks [102]. Several popular DL methods were developed 731 

for medical image analysis. For instance, MDNet was developed for medical diagnosis using images 732 

and corresponding text description [103], cardiac Segmentation using short-Axis MRI [104], 733 

segmentation of optic disc and retinal vasculature using CNN [105], brain tumor segmentation using 734 

random forests with features learned with fully convolutional neural network (FCNN) [106].  735 

 736 

 737 

http://arxiv.org/abs/1705.05084v1
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4. Advanced Training Techniques  738 

The advanced training techniques or components which need to be considered carefully for efficient 739 

training of DL approach. There are different advanced techniques to apply for training a deep learning model 740 

better. The techniques including input pre-processing, a better initialization method, batch normalization, 741 

alternative convolutional approaches, advanced activation functions, alternative pooling techniques, network 742 

regularization approaches, and better optimization method for training. The following sections are discussed 743 

on individual advanced training techniques individually.  744 

4.1.  Preparing dataset 745 

Presently different approaches have been applied before feeding the data to the network. The different 746 

operations to prepare a dataset are as follows; sample rescaling, mean subtraction, random cropping, flipping 747 

data with respect to the horizon or vertical axis, color jittering, PCA/ZCA whitening and many more.  748 

4.2.  Network initialization 749 

The initialization of deep networks has a big impact on the overall recognition accuracy [53, 54]. 750 

Previously, most of the networks have been initialized with random weights.  For complex tasks with high 751 

dimensionality data training, a DNN becomes difficult because weights should not be symmetrical due to the 752 

back-propagation process. Therefore, effective initialization techniques are important for training this type of 753 

DNN. However, there are many effective techniques that have been proposed during the last few years. LeCun 754 

[107] and Bengio [108] proposed a simple but effective approach. In their method, the weights are scaled by the 755 

inverse of the square root of the number of input neurons of the layer, which can be stated 1 √𝑁𝑙⁄ , where  𝑁𝑙 is 756 

the number of input neurons of  𝑙𝑡ℎ layer. The deep network initialization approach of Xavier has been 757 

proposed based on the symmetric activation function with respect to the hypothesis of linearity. This approach 758 

is known as “Xavier” initialization approach. Recently, Dmytro M. et al. [85] proposed Layer-sequential 759 

unit-invariance (LSUV), which is a data-driven initialization approach and provides   good recognition 760 

accuracy on several benchmark datasets including ImageNet. One of the popular initialization approaches has 761 

proposed by He et al. in 2015 [109]. The distribution of the weights of lth lathe yer will be normala  distribution 762 

with mean zero and variance 
2

𝑛𝑙
  which can be expressed as follows. 763 

                            𝑤𝑙~𝒩 (0,
2

𝑛𝑙
)                                                    (18) 764 

4.3.  Batch Normalization 765 

Batch normalization helps accelerate DL processes by reducing internal covariance by shifting input 766 

samples. What that means is the inputs are linearly transformed to have zero mean and unit variance. For 767 

whitened inputs, the network converges faster and shows better regularization during training, which has an 768 

impact on the overall accuracy.  Since the data whitening is performed outside of the network, there is no 769 

impact of whitening during training of the model. In the case of deep recurrent neural networks, the inputs of 770 

the nth layer are the combination of n-1th layer, which is not raw feature inputs. As the training progresses the 771 

effect of normalization or whitening reduces respectively, which causes the vanishing gradient problem. This 772 

can slow down the entire training process and cause saturation. To better training process, batch normalization 773 
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is then applied to the internal layers of the deep neural network. This approach ensures faster convergence in 774 

theory and during an experiment on benchmarks. In batch normalization, the features of a layer are 775 

independently normalized with mean zero and variance one [110,111]. The algorithm of Batch normalization is 776 

given in Algorithm I.  777 

 778 

Algorithm I: Batch Normalization (BN) 

Inputs: Values of x over a mini-batch: 𝔅 = {𝑥1,2,3……,𝑚} 

Outputs:    {yi = BNγ,β(xi)} 

μ𝔅 ←
1

m
∑ xi

m
i=1     // mini-batch mean 

𝜎𝔅
2  ←

1

𝑚
∑ (𝑥𝑖 − 𝜇𝔅)2𝑚

𝑖=1     // mini-batch variance 

𝑥̂𝑖 ←  
𝑥𝑖−𝜇𝔅

√𝜎𝔅
2+∈

                  // normalize  

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽 ≡ BNγ,β(xi)          // Scaling and shifting 

 779 

The parameters 𝛾  and 𝛽  are used for the scale and shift factor for the normalization values, so 780 

normalization does not only depend on layer values. If you use normalization techniques, the following 781 

criterions are recommended to consider during implementation: 782 

 Increase the learning rate 783 

 Dropout (batch normalization does the same job) 784 

 L2 weight regularization 785 

 Accelerating the learning rate decay 786 

 Remove Local Response Normalization (LRN) (if you used it) 787 

 Shuffle training sample more thoroughly 788 

 Useless distortion of images in the training set 789 

 790 

4.4.  Alternative Convolutional methods 791 

Alternative and computationally efficient convolutional techniques that reduce the cost of multiplications by a 792 

factor of 2.5 have been proposed [112]. 793 

4.5.  Activation function 794 

The traditional Sigmoid and Tanh activation functions have been used for implementing neural network 795 

approaches in the past few decades. The graphical and mathematical representation is shown in Figure 22.  796 

 797 

                                           798 

                        (a)                                            (b) 799 

Figure 22. Activation function: (a) sigmoid function, and (b) Hyperbolic transient. 800 

 801 

Sigmoid:  802 
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                                          𝑦 =
1

1+𝑒𝑥
                                                  (19) 803 

TanH: 804 

                                      𝑦 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
                                                (20) 805 

The popular activation function called Rectified Linear Unit (ReLU) proposed in 2010 solves the vanishing 806 

gradient problem for training deep learning approaches. The basic concept is simple to keep all the values 807 

above zero and sets all negative values to zero that is shown in Figure 23 [58]. The ReLU activation was first 808 

used in AlexNet, which was a breakthrough deep CNN proposed in 2012 by Hinton [7].  809 

 810 

 811 

Figure 23. Pictorial representation of Rectified Linear Unit (ReLU).  812 

 813 

Mathematically we can express ReLU as follows: 814 

                               𝑦 = max (0, 𝑥)                                                (21) 815 

As the activation function plays a crucial role in learning the weights for deep architectures. Many researchers 816 

focus here because there is much that can be done in this area.  Meanwhile, there are several improved 817 

versions of ReLU that have been proposed, which provide even better accuracy compared to the ReLU 818 

activation function.  An efficient improved version of ReLU activation function is called the parametric ReLU 819 

(PReLU) proposed by Kaiming He et al. in 2015. The Figure 25 shows the pictorial representation of Leaky 820 

ReLU and ELU activation functions.  This technique can automatically learn the parameters adaptively and 821 

improve the accuracy at negligible extra computing cost [109]. 822 

 823 

                                     824 

                      (a)                                       (b) 825 

Figure 24. Diagram for (a) Leaky ReLU, and (b) Exponential Linear Unit (ELU). 826 

 827 

Leaky ReLU: 828 

                                     𝑦 = max (𝑎𝑥, 𝑥)                                            (22) 829 
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Here 𝑎 is a constant, the value is 0.1. 830 

 831 

ELU: 832 

                                   𝑦 = {
𝑥,               𝑥 ≥ 0
𝑎(𝑒𝑥 − 1),         𝑥 < 0

                                     833 

(23) 834 

The recent proposal of the Exponential Linear Unit activation function, which allowed for a faster and 835 

more accurate version of the DCNN structure [113]. Furthermore, tuning the negative part of activation 836 

function creates the leaky ReLU with Multiple Exponent Linear Unit (MELU) that are proposed recently [114]. S 837 

shape Rectified Linear Activation units are proposed in 2015 [115]. A survey on modern activation functions 838 

was conducted in 2015 [116].  839 

4.6.  Sub-sampling layer or pooling layer 840 

At present, two different techniques have been used for the implementation of deep networks in the 841 

sub-sampling or pooling layer: average and max-pooling. The concept of average pooling layer was used for the 842 

first time in LeNet [49] and AlexNet used Max-pooling layers instead of in 2012[7]. The conceptual diagram for 843 

max pooling and average pooling operation are shown in Figure 25. The concept of special pyramid pooling has 844 

been proposed by He et al. in 2014 which is shown in Figure 26 [117].  845 

 846 

 847 

Figure 25. Average and max-pooling operations. 848 

 849 

The multi-scale pyramid pooling was proposed in 2015 [118]. In 2015, Benjamin G. proposed a new 850 

architecture with Fractional max pooling, which provides state-of-the-art classification accuracy for CIFAR-10 851 

and CIFAR-100 datasets. This structure generalizes the network by considering two important properties for a 852 

sub-sampling layer or pooling layer. First, the non-overlapped max-pooling layer limits the generalize of the 853 

deep structure of the network, this paper proposed a network with 3x3 overlapped max-pooling with 2-stride 854 

instead of 22 as sub-sampling layer [119]. Another paper which has conducted research on different types of 855 

pooling approaches including mixed, gated, and tree as a generalization of pooling functions [120].  856 

 857 
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 858 

 859 

Figure 26. Spatial pyramid pooling. 860 

4.7.  Regularization approaches for DL 861 

There are different regularization approaches that have been proposed in the past few years for deep 862 

CNN. The simplest but efficient approach called “dropout” was proposed by Hinton in 2012 [121]. In Dropout, 863 

a randomly selected subset of activations is set to zero within a layer [122]. The dropout concept is shown in 864 

Figure 27. 865 

 866 

 867 

Figure 27. Pictorial representation of the concept Dropout. 868 

 869 

Another regularization approach is called Drop Connect. In this case, instead of dropping the activation, the 870 

subset of weights within the network layers are set to zero. As a result, each layer receives the randomly 871 

selected subset of units from the immediate previous layer [123]. Some other regularization approaches are 872 

proposed as well, details in [124]. 873 

4.8.  Optimization methods for DL 874 

There are different optimization methods such as SGD, Adagrad, AdaDelta, RMSprop, and Adam [125]. 875 

Some activation functions have been improved upon such as in the case of SGD where it was proposed with an 876 

added variable momentum, which improved training and testing accuracy. In the case of Adagrad, the main 877 

contribution was to calculate adaptive learning rate during training. For this method, the summation of the 878 

magnitude of the gradient is considered to calculate the adaptive learning rate. In the case with a large number 879 

of epochs, the summation of the magnitude of the gradient becomes large. The result of this is the learning rate 880 

decreases radically, which causes the gradient to approach zero quickly. The main drawback of this approach is 881 

that it causes problems during training. Later, RMSprop was proposed considering only the magnitude of the 882 

gradient of the immediately previous iteration, which prevents the problems with Adagrad and provides better 883 

performance in some cases. The Adam optimization approach is proposed based on the momentum and the 884 



Electronics 2018, 7, x FOR PEER REVIEW  31 of 74 

 

magnitude of the gradient for calculating adaptive learning rate similar RMSprop. Adam has improved overall 885 

accuracy and helps for efficient training with the better convergence of deep learning algorithms [126]. The 886 

improved version of the Adam optimization approach has been proposed recently, which is called EVE. EVE 887 

provides even better performance with fast and accurate convergence [127]. 888 

5. Recurrent Neural Network (RNN)  889 

5.1.  Introduction 890 

Human thoughts have persistence; Human don’t throw a thing away and start their thinking 891 

from scratch in a second. As you are reading this article, you understand each word or sentence 892 

based on the understanding of previous words or sentences. The traditional neural network 893 

approaches including DNNs and CNNs cannot deal with this type of problem. The standard Neural 894 

Networks and CNN are incapable due to the following reasons. First, these approaches only handle 895 

a fixed-size vector as input (e.g., an image or video frame) and produce a fixed-size vector as output 896 

(e.g., probabilities of different classes). Second, those models operate with a fixed number of 897 

computational steps (e.g. the number of layers in the model). The RNNs are unique as they allow 898 

operation over a sequence of vectors over time. The Hopfield Newark introduced this concept in 899 

1982 but the idea was described shortly in 1974 [128]. The pictorial representation is shown in Figure 900 

28. 901 

 902 

Figure 28. The structure of basic RNN with a loop. 903 

Different versions of RNN have been proposed in Jordan and Elman [129, 130]. In the Elman, 904 

architecture uses the output from hidden layers as inputs alongside the normal inputs of hidden 905 

layers [129]. On the other hand, the outputs from the output unit are used as inputs with the inputs 906 

of hidden layer in Jordan network [130]. Jordan, in contrast, uses inputs from the outputs of the 907 

output unit with the inputs to the hidden layer. Mathematically expressed as:  908 

Elman network [129]: 909 

                               ht = σh(whxt + uhht−1 + bh)                                (24) 910 

                            yt = σy(wyht + by)                                        (25) 911 

Jordan network [130] 912 

                              ht = σh(whxt + uhyt−1 + bh)                                 (26) 913 
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                            yt = σy(wyht + by)                                        (27) 914 

where xt is a vector of inputs, ht are hidden layer vectors, yt are the output vectors, w and u are 915 

weight matrices and b is the bias vector.  916 

A loop allows information to be passed from one step of the network to the next. A recurrent 917 

neural network can be thought of as multiple copies of the same network, each network passing a 918 

message to a successor. The diagram below shows what happens if we unroll the loop. 919 

 920 

                           Figure 29. An unrolled RNNs. 921 

The main problem with RNN approaches is that there exists the vanishing gradient problem. 922 

For the first time, this problem is solved by Hochreiter el at. in 1992 [131]. A deep RNN consisting of 923 

1000 subsequent layers was implemented and evaluated to solve deep learning tasks in 1993 [132].  924 

There are several solutions that have been proposed for solving the vanishing gradient problem of 925 

RNN approaches in the past few decades. Two possible effective solutions to this problem are first to 926 

clip the gradient and scale the gradient if the norm is too large, and secondly, create a better RNN 927 

model. One of the better models was introduced by Felix A. el at. in 2000 named Long Short-Term 928 

Memory (LSTM) [133,134]. From the LSTM there have been different advanced approaches 929 

proposed in the last few years which are explained in the following sections. 930 

The RNN approaches allowed sequences in the input, the output, or in the most general case 931 

both. For example, DL for text mining, building deep learning models on textual data requires 932 

representation of the basic text unit and word. Neural network structures that can hierarchically 933 

capture the sequential nature of the text. In most of these cases, RNNs or Recursive Neural Networks 934 

are used for language understanding [292]. In the language modeling, it tries to predict the next 935 

word or set of words or some cases sentences based on the previous ones [135]. RNNs are networks 936 

with loops in them, allowing information to persist. Another example: the RNNs are able to connect 937 

previous information to the present task: using previous video frames, understanding the present 938 

and trying to generate future frames as well [142].  939 

 940 

Figure 30. Diagram for Long Short-Term Memory (LSTM). 941 
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5.2.  Long Short-Term Memory (LSTM) 942 

The key idea of LSTMs is the cell state, the horizontal line running through the top of the Figure 943 

31. LSTMs remove or add information to the cell state called gates: an input gate(it), forget gate (ft) 944 

and output gate(ot) can be defined as: 945 

                                ft =  σ(Wf. [ht−1, xt] + bf)                                   (28) 946 

                            it =  σ(Wi. [ht−1, xt] + bi)                                   (29) 947 

                            C̃t =  tanh(WC. [hC−1, xt] + bC)                               (30) 948 

                            Ct = ft ∗ Ct−1 + it ∗  C̃t                                     (31) 949 

                            Ot =  σ(WO. [ht−1, xt] + bO)                                 (32) 950 

                             ht = Ot ∗ tanh(Ct)                                        (33) 951 

LSTM models are popular for temporal information processing. Most of the papers that include 952 

LSTM models with some minor variance. Some of them are discussed in the following section. There 953 

is a slightly modified version of the network with “peephole connections” by Gers and 954 

Schimidhuber proposed in 2000 [133]. The concept of peepholes is included with almost all the gated 955 

in this model.  956 

 957 

Figure 31. Diagram for Gated Recurrent Unit (GRU). 958 

5.3.  Gated Recurrent Unit (GRU) 959 

GRU also came from LSTMs with slightly more variation by Cho, et al. in 2014 [36]. GRUs are 960 

now popular in the community who are working with recurrent networks. The main reason for the 961 

popularity is computation cost and simplicity of the model, which is shown in Figure 31. GRUs are 962 

lighter versions of RNN approaches than standard LSTM in term of topology, computation cost and 963 

complexity [136]. This technique combines the forget and input gates into a single “update gate” and 964 

merges the cell state and hidden state along with some other changes. The simpler model of the GRU 965 
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has been growing increasingly popular. Mathematically the GRU can be expressed with the 966 

following equations:  967 

                             zt =  σ(Wz. [ht−1, xt])                                        (34) 968 

                           rt =  σ(Wr. [ht−1, xt])                                        (35) 969 

                           h̃t =  tanh(W. [rt ∗ ht−1, xt])                                  (36) 970 

                           ht = (1 − zt) ∗ ht−1 + zt ∗  h̃t                                (37) 971 

The question is which one is the best? According to the different empirical studies, there is no 972 

clear evidence of a winner. However, the GRU requires fewer network parameters, which makes the 973 

model faster. On the other hand, LSTM provides better performance, if you have enough data and 974 

computational power [137]. There is a variant LSTM named Deep LSTM [138]. Another variant that 975 

is a bit different approach called “A clockwork RNN” [139]. There is an important empirical 976 

evaluation on a different version of RNN approaches including LSTM by Greff, et al. in 2015 [140] 977 

and the final conclusion was all the LSTM variants were all about the same [140]. Another empirical 978 

evaluation is conducted on thousands of RNN architecture including LSTM, GRU and so on finding 979 

some that worked better than LSTMs on certain tasks [141]   980 

5.4.  Convolutional LSTM (ConvLSTM) 981 

The problem with fully connected (FC) LSTM and short FC-LSTM model is handling 982 

spatiotemporal data and its usage of full connections in the input-to-state and state-to-state 983 

transactions, where no spatial information has been encoded. The internal gates of ConvLSTM are 984 

3D tensors, where the last two dimensions are spatial dimensions (rows and columns).  The 985 

ConvLSTM determines the future state of a certain cell in the grid with respect to inputs and the past 986 

states of its local neighbors which can be achieved using convolution operations in the state-to-state 987 

or inputs-to-states transition shown in Figure 32.  988 

 989 

Figure 32. Pictorial diagram for ConvLSTM [142]. 990 

ConvLSTM is providing good performance for temporal data analysis with video datasets [142]. 991 

Mathematically the ConvLSTM is expressed as follows where * represents the convolution operation 992 

and ∘ denotes for Hadamard product: 993 
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                         it = σ(wxi . 𝒳t + whi ∗ ℋt−1 + whi ∘ 𝒞t−1 + bi)                    (38) 994 

                         ft = σ(wxf . 𝒳t + whf ∗ ℋt−1 + whf ∘ 𝒞t−1 + bf)                    (39) 995 

                         Ct̃ = tanh(wxc . 𝒳t + whc ∗ ℋt−1 + bC)                            (40) 996 

                         Ct = ft ∘ Ct−1 + it ∗ Ct̃                                          997 

(41) 998 

                         ot = σ(wxo . 𝒳t + who ∗ ℋt−1 + who ∘ 𝒞t + bo                     (42) 999 

                         ht = ot ∘ tanh (Ct)                                             (43) 1000 

5.5.  A variant of architectures of RNN with respective to the applications 1001 

To incorporate the attention mechanism with RNNs, Word2Vec is used in most of the cases for 1002 

a word or sentence encoding. Word2vec is a powerful word embedding technique with a 2-layer 1003 

predictive NN from raw text inputs. This approach is used in the different fields of applications 1004 

including unsupervised learning with words, relationship learning between the different words, the 1005 

ability to abstract higher meaning of the words based on the similarity, sentence modeling, language 1006 

understanding and many more. There are different other word embedding approaches that have 1007 

been proposed in the past few years which are used to solve difficult tasks and provide 1008 

state-of-the-art performance including machine translation and language modeling, Image and 1009 

video captioning and time series data analysis [143,144, and 288].  1010 

             1011 

                      (a)                (b)                  (c) 1012 

        1013 

                             (d)                             (e)  1014 

Figure 33. The different structure of RNN with respect to the applications: (a) One to one (b) Many to 1015 

one (c) One to many (d) Many to many and (e) Many to many. 1016 
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From the application point of view, RNNs can solve different types of problems which need 1017 

different architectures of RNNs shown in Figure 33. In Figure 33, Input vectors are represented as 1018 

green, RNN states are represented with blue and orange represents the output vector. These 1019 

structures can be described as: 1020 

One to One: Standard mode for classification without RNN (e.g. image classification problem) 1021 

shown Figure 33 (a) 1022 

Many to One: Sequence of inputs and a single output (e.g. the sentiment analysis where inputs are a 1023 

set of sentences or words and output is a positive or negative expression) shown Figure 33 (b) 1024 

One to Many: Where a system takes an input and produces a sequence of outputs (Image 1025 

Captioning problem: input is a single image and output is a set of words with context) shown Figure 1026 

33 (c). 1027 

Many to Many: sequences of inputs and outputs (e.g. machine translation: machine takes a sequence 1028 

of words from English and translates to a sequence of words in French) shown Figure 33 (d). 1029 

Many to Many:  sequence to sequence learning (e.g. video classification problem in which we take 1030 

video frames as input and wish to label each frame of the video shown Figure 33(e). 1031 

 1032 

5.6.  Attention-based models with RNN  1033 

Different attention based models have been proposed using RNN approaches. The first 1034 

initiative for RNNs with the attention that automatically learns to describe the content of images is 1035 

proposed by Xu, et al. in 2015 [145]. A dual state attention based RNN is proposed for effective time 1036 

series prediction [146]. Another difficult task is Visual Question Answering (VQA) using GRUs 1037 

where the inputs are an image and a natural language question about the image, the task is to 1038 

provide an accurate natural language answer. The output is to be conditional on both image and 1039 

textual inputs. A CNN is used to encode the image and an RNN is implemented to encode the 1040 

sentence [147].  Another outstanding concept is released from Google called Pixel Recurrent Neural 1041 

Networks (Pixel RNN). This approach provides state-of-the-art performance for image completion 1042 

tasks [148]. The new model called residual RNN is proposed, where the RNN is introduced with an 1043 

effective residual connection in a deep recurrent network [149].     1044 

5.7.  RNN Applications 1045 

RNNs including LSTM and GRU are applied to Tensor processing [150]. Natural Language 1046 

Processing using RNN techniques including LSTMs and GRUs [151,152]. Convolutional RNNs 1047 

based on multi-language identification system has been proposed in 2017 [153]. Time series data 1048 

analysis using RNNs [154]. Recently, TimeNet was proposed based on pre-trained deep RNNs for 1049 

time series classification (TSC) [155]. Speech and audio processing including LSTMs for large-scale 1050 

acoustic modeling [156,157]. Sound event prediction using convolutional RNNs [158]. Audio 1051 

tagging using Convolutional GRUs [159].  Early heart failure detection is proposed using RNNs 1052 

[160]. 1053 

RNNs are applied in tracking and monitoring: data-driven traffic forecasting systems are 1054 

proposed using Graph Convolutional RNN (GCRNN) [161]. An LSTM based network traffic 1055 
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prediction system is proposed with a neural network-based model [162]. Bidirectional Deep RNN is 1056 

applied for driver action prediction [163]. Vehicle Trajectory prediction using an RNN [164]. Action 1057 

recognition using an RNN with a Bag-of-Words [165]. Collection anomaly detection using LSTMs 1058 

for cybersecurity [166]. 1059 

 1060 

6. Auto-Encoder (AE) and Restricted Boltzmann Machine (RBM) 1061 

This section will be discussing one of the unsupervised deep learning approaches the Auto Encoder [55] 1062 

(e.g. variational auto-encoder (VAE) [167], denoising AE [59], sparse AE [168], stacked denoising AE [169], 1063 

Split-Brain AE [170]). The applications of different AE are also discussed at the end of this chapter.   1064 

6.1.  Review of Auto-Encoder (AE) 1065 

An AE is a deep neural network approach used for unsupervised feature learning with efficient data 1066 

encoding and decoding. The main objective of autoencoder is to learn and represent (encoding) of the input 1067 

data, typically for data dimensionality reduction, compression, fusion and many more. This autoencoder 1068 

technique consists of two parts: the encoder and the decoder. In the encoding phase, the input samples are 1069 

mapped usually in the lower dimensional features space with a constructive feature representation. This 1070 

approach can be repeated until the desired feature dimensional space is reached.  Whereas in the decoding 1071 

phase, we regenerate actual features from lower dimensional features with reverse processing. The conceptual 1072 

diagram of auto-encoder with encoding and decoding phases is shown in Figure 34.  1073 

 1074 

Figure 34. Diagram for Auto encoder.  1075 

 1076 

The encoder and decoder transition can be represented with ∅ and 𝜑, ∅ ∶  𝒳 → ℱ and 𝜑 ∶  ℱ → 𝒳, then    1077 

                                 ∅, 𝜑 = 𝑎𝑟𝑔𝑚𝑖𝑛∅,𝜑 ‖𝑋 − (∅, 𝜑)𝑋‖2                       1078 

(44) 1079 

If we consider a simple autoencoder with one hidden layer, where the input is 𝑥 ∈ ℝ𝑑 = 𝒳, which is mapped 1080 

onto ∈ ℝ𝑝 = ℱ, it can be then expressed as follows: 1081 

                                   𝑧 = 𝜎1(𝑊𝑥 + 𝑏)                                    (45) 1082 
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where W is the weight matrix and b is bias. 𝜎1 represents an element wise activation function such as a 1083 

sigmoid or a rectified linear unit (RLU). Let us consider 𝑧 is again mapped or reconstructed onto 𝑥′ which 1084 

is the same dimension of  𝑥.  The reconstruction can be expressed as  1085 

                                  𝑥′ = 𝜎2(𝑊′𝑧 + 𝑏′)                                  (46) 1086 

This model is trained with minimizing the reconstruction errors, which is defined as loss function as follows 1087 

                 ℒ(𝑥, 𝑥′) = ‖𝑥 − 𝑥′‖2 = ‖𝑥 − 𝜎2(𝑊′(𝜎1(𝑊𝑥 + 𝑏)) +  𝑏′)‖
2
                      1088 

(47)                                                   1089 

Usually, the feature space of ℱ has lower dimensions than the input feature space 𝒳, which can be 1090 

considered as the compressed representation of the input sample. In the case of multilayer auto encoder, the 1091 

same operation will be repeated as required with in the encoding and decoding phases. A deep Auto encoder is 1092 

constructed by extending the encoder and decoder of athe uto encoder with multiple hidden layers. The Gradient 1093 

vanishing problem is still a big issue with the deeper model of AE: the gradient becomes too small as it passes 1094 

back through many layers of a AE model. Different advanced AE models are discussed in the following 1095 

sections. 1096 

6.2. Variational autoencoders (VAEs)  1097 

There are some limitations of using simple Generative Adversarial Networks (GAN) which are discussed 1098 

in Section 7. At first, images are generated using GAN from input noise. If someone wants to generate a specific 1099 

image, then it is difficult to select the specific features (noise) randomly to produce desired images. It requires 1100 

searching the entire distribution. Second, GANs differentiate between ‘real’ and ‘fake’ objects. For example, if 1101 

you want to generate a dog, there is no constraint that the dog must look like a dog. Therefore, it produces same 1102 

style images which the style looks like a dog but if we closely observed then it is not exactly. However, VAE is 1103 

proposed to overcome those limitations of basic GANs, where the latent vector space is used to represent the 1104 

images which follow a unit Gaussian distribution.  [167,174].  1105 

 1106 

Figure 35. Variational Auto-Encoder.  1107 

In this model, there are two losses, one is a mean squared error that determines, how good the network is 1108 

doing for reconstructing the image, and loss (the Kullback-Leibler (KL) divergence) of latent, which determines 1109 

how closely the latent variable match is with unit Gaussian distribution. For example, suppose 𝑥 is an input 1110 

and the hidden representation is z . The parameters (weights and biases) are  𝜃 . For reconstructing the  1111 

phase the input is 𝑧 and the desired output is 𝑥.   The parameters (weights and biases) are 𝜙. So, we can 1112 

represent the encoder as 𝑞𝜃(𝑧|𝑥) and decoder 𝑝𝜙(𝑥|𝑧) respectively. The loss function of both networks and 1113 

latent space can be represented as  1114 
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            𝑙𝑖(𝜃, 𝜙) = −𝐸𝑧~𝑞𝜃(𝑧|𝑥𝑖)[𝑙𝑜𝑔𝑝𝜙(𝑥𝑖|𝑧)] + 𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)| 𝑝(𝑧))                   (48) 1115 

6.3. Split-Brain Autoencoder 1116 

Recently Split-Brain AE was proposed from Berkeley AI Research (BAIR) lab, which is the architectural 1117 

modification of traditional autoencoders for unsupervised representation learning. In this architecture, the 1118 

network is split into disjoint sub-networks, where two networks try to predict the feature representation of an 1119 

entire image [170].  1120 

 1121 

 1122 

Figure 36. Split-Brain Autoencoder. 1123 

6.4.  Applications of AE  1124 

AE is applied in Bio-informatics [102,171] and cybersecurity [172]. We can apply AE for unsupervised feature 1125 

extraction and then apply Winner Take All (WTA) for clustering those samples for generating labels [173]. AE 1126 

has been used as an encoding and decoding technique with or for other deep learning approaches including 1127 

CNN, DNN, RNN, and RL in the last decade. However, here are some other approaches recently published 1128 

[174,175] 1129 

6.5.  Review of RBM 1130 

Restricted Boltzmann Machine (RBM) is another unsupervised deep learning approach.  The training phase 1131 

can be modeled using a two-layer network called a “Restricted Boltzmann Machine” [176] in which stochastic 1132 

binary pixels are connected to stochastic binary feature detectors using symmetrically weighted connections. 1133 

RBM is an energy-based undirected generative model that uses a layer of hidden variables to model distribution 1134 

over visible variables. The undirected model for the interactions between the hidden and visible variables is 1135 

used to ensure that the contribution of the likelihood term to the posterior over the hidden variables is 1136 

approximately factorial which greatly facilitates inference [177]. The conceptual diagram of RBM is shown in 1137 

Figure 37. 1138 

 1139 
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Figure 37. Block diagram for RBM. 1140 

 1141 

Energy-based models mean that the probability distribution over the variables of interest is defined 1142 

through an energy function. The energy function is composed from a set of observable variables s 𝑉 = {𝑣𝑖} and 1143 

a set of hidden variables = {ℎ𝑖} , where i is a node in the visible layer, j is a node in the hidden layer. It is 1144 

restricted in the sense that there are no visible-visible or hidden-hidden connections. The values corresponding 1145 

to “visible” units of the RBM because their states are observed; the feature detectors correspond to “hidden” 1146 

units. A joint configuration, (v,h)  of the visible and hidden units has an energy (Hopfield, 1982) given by: 1147 

                      𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖𝑖 𝑣𝑖 − ∑ 𝑏𝑗𝑗 ℎ𝑗 − ∑  ∑ 𝑣𝑖𝑗 𝑤𝑖,𝑗𝑖 ℎ𝑗                       (49)                                               1148 

where 𝑣𝑖   ℎ𝑗 are the binary states of visible unit  𝑖   and hidden unit 𝑗,  𝑎𝑖, 𝑏𝑗 are their biases and 𝑤𝑖𝑗 is 1149 

the weight between them. The network assigns a probability to a possible pair of a visible and a hidden vector 1150 

via this energy function:   1151 

                      𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ)                                               (50) 1152 

where the “partition function”, 𝑍 , is given by summing over all possible pairs of visible and hidden vectors:                                                         1153 

                            𝑍 = ∑ 𝑒−𝐸(𝑣,ℎ)
𝑣,ℎ                                                 (51) 1154 

The probability that the network assigns to a visible vector, v, is given by summing over all possible hidden 1155 

vectors: 1156 

                     𝑝(𝑣) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ                                                (52) 1157 

The probability that the network assigns to a training sample can be raised by adjusting the weights and 1158 

biases to lower the energy of that sample and to raise the energy of other samples, especially those have low 1159 

energies and therefore make a big contribution to the partition function. The derivative of the log probability of 1160 

a training vector with respect to a weight is surprisingly simple. 1161 

                
𝜕𝑙𝑜𝑔𝑝(𝑣)

𝜕𝑤𝑖𝑗
= ⟨𝑣𝑖ℎ𝑗⟩

𝑑𝑎𝑡𝑎
− ⟨𝑣𝑖ℎ𝑗⟩

𝑚𝑜𝑑𝑒𝑙
                                      (53) 1162 

where the angle brackets are used to denote expectations under the distribution specified by the subscript that 1163 

follows. This leads to a simple learning rule for performing stochastic steepest ascent in the log probability of 1164 

the training data: 1165 

             𝑤𝑖𝑗 = 𝜀 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑚𝑜𝑑𝑒𝑙

)                                          (54) 1166 

where 𝜀 is a learning rate. Given a randomly selected training image,𝑣, the binary state,  ℎ𝑗, of each hidden 1167 

unit,  j  is set to 1 with probability 1168 

                𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + ∑ 𝑣𝑖𝑖 𝑤𝑖𝑗)                                          (55) 1169 

where 𝜎(𝑥) is the logistic sigmoid function 1 (1 + 𝑒(−𝑥))⁄ , 𝑣𝑖ℎ𝑗 is then an unbiased sample. Because there 1170 
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are no direct connections between visible units in an RBM, it is also   easy to get an unbiased sample of the 1171 

state of a visible unit, given a hidden vector 1172 

              𝑝(𝑣𝑖 = 1|ℎ) = 𝜎(𝑎𝑖 + ∑ ℎ𝑗𝑗 𝑤𝑖𝑗)                                           (56) 1173 

Getting an unbiased sample of ⟨𝑣𝑖ℎ𝑗⟩
𝑚𝑜𝑑𝑒𝑙

 is much more difficult. It can be done by starting at any 1174 

random state of the visible units and performing alternating Gibbs sampling for a long time. Single iteration of 1175 

alternating Gibbs sampling consists of updating all the hidden units in parallel using Eq. (55) followed by 1176 

updating all the visible units in parallel using following Eq. (56). A much faster learning procedure was 1177 

proposed in Hinton (2002). This starts by setting the states of the visible units to a training vector. Then the 1178 

binary states of the hidden units are all computed in parallel using Eq. (55). Once binary states have been chosen 1179 

for the hidden units, a “reconstruction” is produced by setting each 𝑣𝑖  to 1 with a probability given by Eq. (56). 1180 

The change in a weight is then given by 1181 

                        ∆𝑤𝑖𝑗 = 𝜀 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑟𝑒𝑐𝑜𝑛

)                                 (57) 1182 

A simplified version of the same learning rule that uses the states of individual units instead of a pairwise 1183 

product is used for the biases [178].  This approach is mainly used for pre-training a neural network in an 1184 

unsupervised manner to generate initial weights. One of the most popular deep learning approaches called Deep 1185 

Belief Network (DBN) is proposed based on this approach. Some of the examples of the applications with RBM 1186 

and DBN for data encoding, news clustering, image segmentation, and cybersecurity are shown, for detail see 1187 

[51, 179, 289, 315]. 1188 

7. Generative Adversarial Networks (GAN) 1189 

At the beginning of this chapter, we started with a quote from Yann LeCun, “GAN is the best concept 1190 

proposed in the last ten years in the field of deep learning (Neural networks)”.  1191 

7.1.  Review on GAN 1192 

The concept of generative models in machine learning started a long time before which is used for data 1193 

modeling with conditional probability density function. Generally, this type of model is considered a 1194 

probabilistic model with a joint probability distribution over observation and target (label) values. However, we 1195 

did not see the big success of this generative model before. Recently deep learning based generative models 1196 

 

Figure 38. Conceptual diagram for Generative Adversarial Networks (GAN) 



Electronics 2018, 7, x FOR PEER REVIEW  42 of 74 

 

have become popular and shown enormous success in different application domains.  1197 

Deep learning is a data-driven technique that performs better as the number of input samples increased. 1198 

Due to this reason, learning with reusable feature representations from a huge number of the un-labels dataset 1199 

has become an active research area.  We mentioned in the introduction that Computer vision has different 1200 

tasks, segmentation, classification, and detection, which requires large amounts of labeled data. This problem 1201 

has been attempted to be solved be generating similar samples with a generative model. 1202 

Generative Adversarial Network (GAN) is a deep learning approach recently invented by Goodfellow in 1203 

2014. GANs offer an alternative approach to maximum likelihood estimation techniques. GAN is an 1204 

unsupervised deep learning approach where two neural networks compete against each other in a zero-sum 1205 

game. In the case of the image generation problem, the generator starts with Gaussian noise to generate images 1206 

and the discriminator determines how good the generated images are. This process continues until the outputs of 1207 

the generator become close to actual input samples. According to Figure 38, it can be considered that 1208 

Discriminator (D) and Generator (G) two players playing the min-max game with the function of V (D, G) 1209 

which can be expressed as follows according to this paper [180,181]. 1210 

       𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷  𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔(𝐷(𝑥))] +  𝔼𝑧~𝑃𝑑𝑎𝑡𝑎(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]        (58)                            1211 

In practice, this equation may not provide sufficient gradient for learning G (which started from random 1212 

Gaussian noise) at the early stages. In the early stages, D can reject samples because they are clearly different 1213 

compared to training samples. In this case, 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) will be saturated. Instead of training G to 1214 

minimize 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) we can train G to maximize 𝑙𝑜𝑔(𝐺(𝑧)) objective function which provides 1215 

much better gradients in early stages during learning. However, there were some limitations of convergence 1216 

procethe ss during training with the first version. In the beginning state a GAN has some limitations regarding 1217 

the following issues: 1218 

 The lack of a heuristic cost function (as pixel-wise approximate means square errors (MSE)) 1219 

 Unstable to train (sometimes that can because of producing nonsensical outputs) 1220 

Research in the area of GANs has been ongoing with many improved versions being proposed [181]. 1221 

GANs are able to produce photorealistic images for applications such as visualization of interior or industrial 1222 

design, shoes, bags, and clothing items. GAN is also extensively used in the field of game development and 1223 

artificial video generation [182]. GANs have two different areas of DL that they fall into semi-supervised and 1224 

unsupervised. Some research in these areas focuses on the topology of the GAN architecture to improve 1225 

functionality and the training approach. Deep convolution GAN (DCGAN) is a convolution-based GAN 1226 

approach proposed in 2015 [183]. This semi-supervised approach has shown promised results compared to its 1227 

unsupervised counterpart. The regenerated results from DCGAN have shown in the following figures [183]. 1228 

Figure 39 shows the output for generated bedroom images after one training pass through the dataset. Most of 1229 

the figures included in this section are generated through experiments. Theoretically, the model could learn to 1230 

memorize training examples, but this is experimentally unlikely as we train with a small learning rate and mini 1231 

batches with SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a 1232 

small learning rate [183].  1233 
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 1234 

Figure 39. Experimental outputs of bedroom images. 1235 

Figure 40 represents generated bedroom images after five epochs of training. There appears to be evidence of 1236 

visual under-fitting via repeated noise textures across multiple samples such as the baseboards of some of the 1237 

beds. 1238 

 1239 

Figure 40. Reconstructed bedroom images using DCGAN[183] 1240 

In Figure 40, the top rows interpolation between a series of 9 random points in Z and show that the space 1241 

learned has smooth transitions. In every image, space plausibly looks like a bedroom. In the 6th row, you see a 1242 

room without a window slowly transforming into a room with a giant window. In the 10th row, you see what 1243 

appears to be a TV slowly being transformed into a window. The following Figure 41 shows the effective 1244 

application of latent space vectors. Latent space vectors can be turned into meaning output by first performing 1245 

addition and subtraction operations followed by a decode. Figure 41 shows that a man with glasses minus a man 1246 

and add a woman which results in a woman with glasses. 1247 
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 1248 

Figure 41. Example of smile arithmetic and arithmetic for wearing glass using GAN[183]. 1249 

Figure 42 shows a “turn” vector was created from four averaged samples of faces looking left versus 1250 

looking right. By adding interpolations along this axis of random samples the pose can be reliably transformed. 1251 

There are some interesting applications that have been proposed for GANs. For example, natural indoor scenes 1252 

are generated with improved GAN structures. These GANs learn surface normal and are combined with a Style 1253 

GAN by Wang and Gupta [184]. In this implementation, authors considered the style and structure of GAN 1254 

named (S2-GAN), which generates a surface normal map. This is an improved version of GAN. In 2016, an 1255 

information-theoretic extension to the GAN called “InfoGAN” was proposed. An infoGAN can learn with 1256 

better representations in a completely unsupervised manner. The experimental results show that the 1257 

unsupervised InfoGAN is competitive with representation learning with the fully supervised learning approach 1258 

[185].  1259 

In 2016, another new architecture was proposed by Im et al. [186] where the recurrent concept is included 1260 

with the adversarial network during training. Chen et. al. [187] proposed Info GAN (iGAN) which allowed 1261 

image manipulation interactively on a natural image manifold. Image to image translation with conditional 1262 

adversarial networks is proposed in 2017. Another improved version of GANs named Coupled Generative 1263 

Adversarial Network (CoGAN) is a learned joint distribution of multi-domain images.  The existing approach 1264 

does not need tuples of corresponding images in different domains in the training set [188]. Bidirectional 1265 

Generative Adversarial Networks (BiGANs are learned with inverse feature mapping and shown that the 1266 

resulting learned feature representation is useful for auxiliary supervised discrimination tasks, competitive with 1267 

contemporary approaches to un-supervised and self-supervised feature learning [189]. 1268 
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 1269 

Figure 42. Face generation in different angle using GAN[183].  1270 

Recently, Google proposed extended versions of GANs called Boundary Equilibrium Generative 1271 

Adversarial Networks (BEGAN) with a simple but robust architecture [190]. BEGAN has a better training 1272 

procedure with fast and stable convergence. The concept of equilibrium helps to balance the power of the 1273 

discriminator against the generator. In addition, it can balance the trade-off between image diversity and visual 1274 

quality [190]. Another similar work is called Wasserstein GAN (WGAN) algorithm that shows significant 1275 

benefits over traditional GAN [191]. WGANs had two major benefits over traditional GANs. First, a WGAN 1276 

meaningfully correlates the loss metric with the generator’s convergence and sample quality. Secondly, 1277 

WGANs have improved stability of the optimization process. 1278 

The improved version of WGAN is proposed with a new clipping technique, which penalizes the normal 1279 

of the gradient of the critic with respect to its inputs [192]. There is a promising architecture that has been 1280 

proposed based on generative models where the images are represented with untrained DNN that give an 1281 

opportunity for better understanding and visualization of DNNs [193]. Adversarial examples for generative 1282 

models have also been introduced [194]. Energy-based GAN was proposed by Yann LeCun from Facebook in 1283 

2016 [195]. The training process is difficult for GANs, Manifold Matching GAN (MMGAN) proposed with 1284 

better training process which is experimented on three different datasets and the experimental results clearly 1285 

demonstrate the efficacy of MMGAN against other models [196]. GAN for geo-statistical simulation and 1286 

inversion with efficient training approach [197]. 1287 

Probabilistic GAN (PGAN) which is a new kind of GAN with a modified objective function. The main 1288 

idea behind this method is to integrate a probabilistic model (A Gaussian Mixture Model) into the GAN 1289 

framework that supports likelihood rather than classification [198]. A GAN with Bayesian Network model 1290 

[199]. Variational Auto encode is a   popular deep learning approach, which is trained with Adversarial 1291 

Variational Bayes (AVB) which helps to establish a principle connection between VAE and GAN [200]. The 1292 

f-GAN which is proposed based on the general feed-forward neural network [201]. Markov model based GAN 1293 

for texture synthesis [202]. Another generative model based on the doubly stochastic MCMC method [203]. 1294 

GAN with multi-Generator [204] 1295 

Is an unsupervised GAN capable of learning on a pixel level domain adaptation that transforms in the pixel 1296 

space from one domain to another domain? This approach provides state-of-the-art performance against several 1297 

unsupervised domain adaptation techniques with a large margin [205]. A new network is proposed called 1298 

Schema Network, which is an object-oriented generative physics simulator able to disentangle multiple causes 1299 

of events reasoning through causes to achieve a goal that is learned from dynamics of an environment from data 1300 

[206]. There is interesting research that has been conducted with a GAN that is to Generate Adversarial Text to 1301 

http://arxiv.org/abs/1702.06832v1
http://arxiv.org/abs/1702.06832v1
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Image Synthesis. In this paper, the new deep architecture is proposed for GAN formulation which can take the 1302 

text description of an image and produce realistic images with respect to the inputs. This is an effective 1303 

technique for text-based image synthesis using a character level text encoder and class conditional GAN. GAN 1304 

is evaluated on bird and flower dataset first then general text to the image which is evaluated on MS COCO 1305 

dataset [36]. 1306 

7.2.  Applications of GAN 1307 

This learning algorithm has been applied in the different domain of applications that are discussed in the 1308 

following sections: 1309 

a)  GAN for image processing 1310 

GANs used for generating a photo-realistic image using a super-resolution approach [207]. GAN for 1311 

semantic segmentation with semi and weakly supervised approach [208]. Text Conditioned Auxiliary Classifier 1312 

GAN (TAC-GAN) which is used for generating or synthesizing images from a text description [209]. 1313 

Multi-style Generative network (MSG-Net) which retains the functionality of optimization based approaches 1314 

with fast speed. This network matches image styles at multiple scales and puts the computational burden into 1315 

training [210]. Most of the time, vision systems struggle with rain, snow, and fog. A single image de-raining 1316 

system is proposed using a GAN recently [211].  1317 

b)  GAN for speech and audio processing 1318 

An End-to-End Dialogue system using Generative Hierarchical Neural Network models [212]. In addition, 1319 

GANs have been used in the field of speech analysis. Recently, GANs are used for speech enhancement which 1320 

is called SEGAN that incorporates further speech-centric design to improve performance progressively [213]. 1321 

GAN for symbolic-domain and music generation which performs comparably against Melody RNN [214].  1322 

c)  GAN for medical information processing 1323 

GANs for Medical Imagining and medical information processing [102], GANs for medical image 1324 

de-noising with Wasserstein distance and perceptual loss [215]. GANs can also be used for segmentation of 1325 

Brain Tumors with conditional GANs (cGAN) [216]. A General medical image segmentation approach is 1326 

proposed using a GAN called SegAN [217]. Before the deep learning revolution, compressive sensing is one of 1327 

the hottest topics. However, Deep GAN is used for compressed sensing that automates MRI [218]. In addition, 1328 

GANs can also be used in health record processing, due to the privacy issue the electronic health record (EHR) 1329 

is limited to or is not publicly available like other datasets. GANs are applied for synthetic EHR data which 1330 

could mitigate risk [219]. Time series data generation with Recurrent GAN (RGAN) and Recurrent Conditional 1331 

GAN (RCGAN) has been introduced [220]. LOGAN consists of the combination of a generative and 1332 

discriminative model for detecting the overfitting and recognition inputs. This technique has been compared 1333 

against state-of-the-art GAN technique including GAN, DCGAN, BEGAN and a combination of DCGAN with 1334 

a VAE [221].  1335 

d)  Other applications 1336 

A new approach called Bayesian Conditional GAN (BC-GAN) which can generate samples from 1337 

deterministic inputs. This is simply a GAN with a Bayesian framework that can handle supervised, 1338 

semi-supervised and unsupervised learning problems [222,223]. In machine learning and deep learning 1339 
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community, online learning is an important approach. GANs are used for online learning in which it is being 1340 

trained for finding a mixed strategy in a zero-sum game which is named Checkov GAN 1[224]. Generative 1341 

moment matching networks based on statistical hypothesis testing called maximum mean discrepancy (MMD) 1342 

[225]. One of the interesting ideas to replace the discriminator of GAN with two-sample based kernel MMD is 1343 

called MMD-GAN. This approach significantly outperforms Generative moment matching network (GMMN) 1344 

technique which is an alternative approach for the generative model [226].  1345 

Some other applications of GAN include pose estimation [227], photo editing network [228], and anomaly 1346 

detection [229]. DiscoGAN for learning cross-domain relation with GAN [230], single shot learning with GAN 1347 

[231], response generation and question answering system [232,233]. Last but not least, WaveNet as a 1348 

generative model has been developed for generating audio waveform [286]. 1349 

  1350 
8. Deep Reinforcement Learning (DRL) 1351 

In the previous sections, we have focused on supervised and unsupervised deep learning approaches 1352 

including DNN, CNN, RNN including LSTM and GRU, AE, RBM, GAN etc. These types of deep learning 1353 

approaches are used for prediction, classification, encoding, decoding, data generation, and many more 1354 

application domains. However, this section demonstrates a survey on Deep Reinforcement Learning (DRL) 1355 

based on the recently developed methods in this field of RL.  1356 

8.1. Review on DRL 1357 

DRL is a learning approach which learns to act with general sense from the unknown real environment 1358 

(For details please read the following article [234]). RL can be applied in a different scope of field including 1359 

fundamental Sciences for decision making, Machine learning from a computer science point of view, in the 1360 

field of engineering and mathematics, optimal control, robotics control, power station control, wind turbines, 1361 

and Neuroscience the reward strategy is widely studied in the last couple of decades. It is also applied in 1362 

economic utility or game theory for making better decisions and for investment choices. The psychological 1363 

concept of classical conditioning is how animals learn. Reinforcement learning is a technique for what to do and 1364 

how to match a situation to an action. Reinforcement learning is different from supervised learning technique 1365 

and other kinds of learning approaches studies recently including traditional machine learning, statistical 1366 

pattern recognition, and ANN.  1367 

 1368 

 1369 

Figure 43. Conceptual diagram for RL system. 1370 

 1371 
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Unlike the general supervised and unsupervised machine learning, RL is defined not by characterizing 1372 

learning methods, but by characterizing a learning problem. However, the recent success of DL has had a huge 1373 

impact on the success of DRL which is known as DRL. According to the learning strategy, the RL technique is 1374 

learned through observation. For observing the environment, the promising DL techniques include CNN, RNN, 1375 

LSTM, and GRU are used depending upon the observation space. As DL techniques encode data efficiently, 1376 

therefore, the following step of action is performed more accurately. According to the action, the agent receives 1377 

an appropriate reward respectively.  As a result, the entire RL approach becomes more efficient to learn and 1378 

interact in the environment with better performance.  1379 

However, the history of the modern DRL revolution began from Google Deep Mind in 2013 with Atari 1380 

games with DRL. In which the DRL based approaches perform better against the human expert in almost all of 1381 

the games. In this case, the environment is observed on video frames which are processed using a CNN 1382 

[235,236]. The success of DRL approaches depends on the level of difficulty of the task attempt to be solved. 1383 

After a huge success of Alpha-Go and Atari from Google Deep mind, they proposed a reinforcement learning 1384 

environment based on StarCraft II in 2017, which is called SC2LE (StarCraft II Learning Environment) [237]. 1385 

The SC2LE is a game with multi-agent with multiple players’ interactions. This proposed approach has a large 1386 

action space involving the selection and control of hundreds of units. It contains many states to observe from 1387 

raw feature space and it uses strategies over thousands of steps. The open source Python-based StarCraft II 1388 

game engine has been provided free in online.   1389 

8.2. Q- Learning 1390 

There are some fundamental strategies which are essential to know for working with DRL. First, the RL 1391 

learning approach has a function that calculates the Quality of state-action combination which is called 1392 

Q-Learning (Q-function). Algorithm II describes basic computational flow of Q-learning. 1393 

Q-learning is defined as a model-free reinforcement learning approach which is used to find an optimal 1394 

action-selection policy for any given (finite) Markov Decision Process (MDP). MDP is a mathematical 1395 

framework for modeling decision using state, action and rewards. Q-learning only needs to know about the 1396 

states available and what are the possible actions in each state. Another improved version of Q-Learning known 1397 

as Bi-directional Q-Learning. In this article, the Q-Learning is discussed, for details on bi-directional 1398 

Q-Learning please see [238].  1399 

At each step 𝑠, choose the action which maximizes the following function 𝑄 (𝑠, 𝑎) 1400 

 𝑄 is an estimated utility function – it tells us how good an action is given in a certain state 1401 

 𝑟 (𝑠, 𝑎) immediate reward for making an action best utility (Q) for the resulting state 1402 

This can be formulated with the recursive definition as follows: 1403 

                              𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′))                    (59) 1404 

This equation is called Bellman’s equation, which is the core equation for RL. Here 𝑟(𝑠, 𝑎) is the immediate 1405 

reward, 𝛾 is the relative value of delay vs. immediate rewards [0, 1] 𝑠′ is the new state after action 𝑎. The 1406 

𝑎 and  𝑎′  are an action in sate 𝑠 and 𝑠′  respectively. The action is selected based on the following 1407 

equation:  1408 

                               𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)                               (60) 1409 
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In each state, a value is assigned called a Q-value. When we visit a state and we receive a reward 1410 

accordingly. We use the reward to update the estimated value for that state. As the reward is stochastic, as a 1411 

result, we need to visit the states many times. In addition, it is not guaranteed that we will get the same reward 1412 

(Rt) in another episode. The summation of the future rewards in episodic tasks and environments are 1413 

unpredictable, further in the future, we go further with the reward diversely as expressed. 1414 

                       Gt = Rt+1 + Rt+2+ Rt+3 + ……. …. + RT                               (61) 1415 

The sum of discounted future rewards in both cases are some factor as scalar. 1416 

                       Gt =  Rt+1 + 2 Rt+2+ 3 Rt+3 + ……. …. + TRT                          (62) 1417 

Here  is a constant. The more we are in the future, the less we take the reward into account 1418 

 1419 

Properties of Q-learning: 1420 

 Convergence of Q-function: approximation will be converged to the true Q-function, but it must visit 1421 

possible state-action pair infinitely many times. 1422 

 The state table size can be vary depending on the observation space and complexity. 1423 

 Unseen values are not considered during observation. 1424 

The way to fix these problems is to use a neural network (particularly DNN) as an approximation instead 1425 

of the state table. The inputs of DNN are the state and action and the outputs are numbers between 0 and 1 that 1426 

represent the utility encoding the states and actions properly. That is the place where the deep learning 1427 

approaches contribute for making better decisions with respect to the state information. Most of the cases for 1428 

observing the environment, we use several acquisition devices including a camera or other sensing devices for 1429 

observing the learning environment.  For example: if you observed the setup for the challenge of Alpha-Go 1430 

then it can be seen that the environment, action, and reward are learned based on the pixel values (pixel in 1431 

action). For details see [235,236]. 1432 

 1433 

Algorithm II: Q-Learning 

Initialization: 

For each state-action pair (𝑠, 𝑎) 

initialize the table entry 𝑄̂(𝑠, 𝑎) to zero 

Steps: 

1.Observed the current state s 

2. REPEAT: 

- Select an action a and execute it 

- Received immediate reward r 

- Observe the new state 𝑠′ 

- Update the table entry for 𝑄̂(𝑠, 𝑎) as follows: 

𝑄̂(𝑠, 𝑎)  = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′)) 

- 𝑠 = 𝑠′ 
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However, it is difficult to develop an agent which can interact or perform well in any observation 1434 

environment. Therefore, most of the researchers in the field select their action space or environment before 1435 

training the agent for that environment. The benchmark concept, in this case, is a little bit different compared to 1436 

supervised or unsupervised deep learning approach. Due to the variety of environments, the benchmark depends 1437 

on what level of difficulty the environment has been considered compared to the previous or exiting researches? 1438 

The difficulties depend on the different parameters, number of agents, a way of interaction between the agents, 1439 

the number of players and so on. 1440 

Recently, another good learning approach has been proposed for DRL [234]. There are many papers 1441 

published with different networks of DRL including Deep Q-Networks (DQN), Double DQN, Asynchronous 1442 

methods, policy optimization strategy (including deterministic policy gradient, deep deterministic policy 1443 

gradient, guided policy search, trust region policy optimization, combining policy gradient and Q-learning) are 1444 

proposed [234]. Policy Gradient (DAGGER) Superhuman GO using supervised learning with policy gradient 1445 

and Monte Carlo tree search with value function [239]. Robotics manipulation using guided policy search [240]. 1446 

DRL for 3D games using policy gradients [241].  1447 

8.3. Recent trends of DRL with applications 1448 

There is a survey published recently, where basic RL, DRL DQN, trust region policy optimization, and 1449 

asynchronous advantage actor-critic are proposed. This paper also discusses the advantages of deep learning 1450 

and focuses on visual understanding via RL and the current trend of research [243]. A network cohesion 1451 

constrained based on online RL techniques is proposed for health care on mobile devices called mHealth. This 1452 

system helps similar users to share information efficiently to improve and convert the limited user information 1453 

into better-learned policies [244].   Similar work with the group-driven RL is proposed for health care on a 1454 

mobile device for personalized mHealth Intervention. In this work, K-means clustering is applied for grouping 1455 

the people and finally shared with RL policy for each group [245]. Optimal policy learning is a challenging task 1456 

with RL for an agent. Option-Observation Initiation sets (OOIs) allow agents to learn optimal policies in the 1457 

challenging task of POMDPs which are learned faster than RNN [246]. 3D Bin Packing Problem (BPP) is 1458 

proposed with DRL. The main objective is to place the number of the cuboid-shaped items that can minimize 1459 

the surface area of the bin [247]. 1460 

The import component of DRL is the reward which is determined based on the observation and the action 1461 

of the agent. The real-world reward function is not perfect at all times. Due to the sensor error, the agent may get 1462 

maximum reward whereas the actual reward should be smaller. This paper proposed a formulation based on 1463 

generalized Markov Decision Problem (MDP) called Corrupt Reward MDP [248]. The trust region 1464 

optimization based deep RL is proposed using recently developed Kronecker-factored approximation to the 1465 

curvature (K-FAC) [249]. In addition, there is some research that has been conducted in the evaluation of 1466 

physics experiments using the deep learning approach. This experiment focuses agent to learn basic properties 1467 

such as mass and cohesion of the objects in the interactive simulation environment [250]. 1468 

Recently Fuzzy RL policies have been proposed that is suitable for continuous state and action space 1469 

[251]. The important investigation and discussion are made for hyper-parameters in policy gradient for 1470 

continuous control, the general variance of the algorithm. This paper also provides a guideline for reporting 1471 

results and comparison against baseline methods [252]. Deep RL is also applied for high precision assembly 1472 

tasks [253]. The Bellman equation is one of the main function of RL technique, a function approximation is 1473 

proposed which ensures that the Bellman Optimality Equation always holds. Then the function is estimated to 1474 
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maximize the likelihood of the observed motion [254]. DRL based hierarchical system is used for could 1475 

resource allocation and power management in could computing system [255]. A novel Attention-aware Face 1476 

Hallucination (Attention-FC) is proposed where Deep RL is used for enhancing the quality of the image on a 1477 

single patch for images which are applied on face images [256]. 1478 

9. Bayesian Deep Learning (BDL) 1479 

The DL approaches have been providing the state-of-the-art accuracy for different applications. However, DL 1480 

approaches are unable to deal with uncertainty of a given task due to model uncertainty. These learning 1481 

approaches take input and assume the class probability without justification [299,300]. In 2015, two African 1482 

American humans recognized as “gorilla” with an image classification system [301]. There are several 1483 

application domains where the uncertainty can be raised including self-driven car, bio-medical applications. 1484 

However, the BDN, which is an intersection between DL and Bayesian probability approaches show better 1485 

results in different applications and understand the uncertainty of problems including multi-task problems 1486 

[299,300].  The uncertainty is estimated with applying probability distribution over the model weights or 1487 

mapping on the outputs probability [299,300].  1488 

The BDL is becoming very popular among the DL research community. In addition, the BDL approaches have 1489 

been proposed with CNN techniques where probability distribution is applied on weight. These techniques help 1490 

to deal with model overfitting problem and lack of training samples which are the two commons challenges for 1491 

DL approaches [302,303]. Finally, there are some other research papers have published recently where some 1492 

advanced techniques have been proposed on BDL [304-307]. 1493 

 1494 

 10. Transfer Learning 1495 

10.1.  Transfer learning 1496 

A good way to explain transfer learning is to look at the student-teacher relationship. A teacher offers a 1497 

course after gathering details knowledge regarding that subject. The information will be conveyed through a 1498 

series of lectures over time. This can be considered that the teacher (expert) is transferring information 1499 

(knowledge) to the students (learner). The same thing happens in case of deep learning, a network is trained 1500 

 

Figure 44. Conceptual diagram for transfer learning: pretrained on ImageNet and transfer 

learning is used for retraining on PASAL dataset. 
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with a big amount data and during the training, the model learns the weights and bias. These weights can be 1501 

transferred to other networks for testing or retraining a similar new model. The network can start with 1502 

pre-trained weights instead of training from scratch. 1503 

10.2.  What is a pre-trained model? 1504 

A pre-trained model is a model which is already trained in the same domains as the intended domain. For 1505 

example, for an image recognition task, an Inception model already trained on ImageNet can be downloaded. 1506 

The Inception model can then be used for a different recognition task, and instead of training it from scratch the 1507 

weights can be left as is with some learned features. This method of training is useful when there is a lack of 1508 

sample data. There are a lot of pre-trained models available (including VGG, ResNet, and Inception Net on 1509 

different datasets) in model-zoo from the following link: https://github.com/BVLC/caffe/wiki/Model-Zoo.  1510 

10.3.  Why will you use pre-trained models? 1511 

There are a lot of reasons for using pre-trained models.  Firstly, it requires a lot of expensive computation 1512 

power to train big models on big datasets. Secondly, it can take up to multiple weeks to train big models. 1513 

Training new models with pre-trained weights can speed up convergence as well as help the network 1514 

generalization.  1515 

10.4. How will you use pre-trained models? 1516 

We need to consider the following criterions with respective application domains and size of the dataset 1517 

when using the pre-trained weights which is shown in Table 3. 1518 

10.5. Working with inference 1519 

Research groups working specifically on inference applications look into optimization approaches that 1520 

include model compression. Model compression is important in the realm of mobile devices or special purpose 1521 

hardware because it makes models more energy efficient as well as faster. 1522 

10.6. The myth about Deep Learning 1523 

There is a myth; do you need a million labeled samples for training a deep learning model? The answer is 1524 

yes but, in most cases,, the transfer learning approach is used to train deep learning approaches without having 1525 

large amounts of label data. For example, the following Figure 44 demonstrates the strategy for the transfer 1526 

Table 3. Criterions need to be considered for transfer learning. 

 

 New dataset but small New dataset but large 

Pre-trained model on 

similar but new dataset 

Freeze weights and train 

linear classifier from top 

level features 

Fine-tune all the layers (pre-train for 

faster convergence and better 

generalization) 

Pre-trained model on 

different but new 

dataset 

Freeze weights and train 

linear classifier from 

non-top-level features 

Fine-tune all the layers (pre-train for 

enhanced convergence speed) 
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learning approach in details. Here the primary model has been trained with a large amount of labeled data which 1527 

is ImageNet and then the weights are used to train with the PASCAL dataset. The actual reality is:  1528 

 Possible to learn useful representations from unlabeled data. 1529 

 Transfer learning can help learned representation from the related task [257]. 1530 

We can take a trained network for a different domain which can be adapted for any other domain for the 1531 

target task [258, 589]. First training a network with a close domain for which it is easy to get labeled data using 1532 

standard backpropagation, for example, ImageNet classification, pseudo classes from augmented data. Then cut 1533 

off the top layers of network and replace with the supervised objective for the target domain. Finally, tune the 1534 

network using backpropagation with labels for the target domain until validation loss starts to increase [258, 1535 

589]. There are some survey papers and books that are published on transfer learning [260,261]. Self-taught 1536 

learning with transfer learning [262]. Boosting approach for transfer learning [263]. 1537 

 1538 
11. Energy efficient approaches and hardware for DL 1539 

11.1.  Overview  1540 

DNNs have been successfully applied and achieved better recognition accuracies in different application 1541 

domains such as Computer vision, speech processing, natural language processing, big data problem and many 1542 

more. However, most of the cases the training is being executed on Graphics Processing Units (GPU) for 1543 

dealing with big volumes of data which is expensive in terms of power.  1544 

Recently researchers have been training and testing with deeper and wider networks to achieve even 1545 

better classification accuracy to achieve human or beyond human level recognition accuracy in some cases. 1546 

While the size of the neural network is increasing, it becomes more powerful and provides better classification 1547 

accuracy. However, the storage consumption, memory bandwidth and computational cost are increasing 1548 

exponentially. On the other hand, these types of massive scale implementation with large numbers of network 1549 

parameters are not suitable for low power implementation, unmanned aerial vehicle (UAV), different medical 1550 

devices, a low memory system such as mobile devices, Field Programmable Gate Array (FPGA) and so on. 1551 

There is much research going on to develop better network structures or networks with lower 1552 

computation cost, fewer numbers of parameters for low-power and low-memory systems without lowering 1553 

classification accuracy. There are two ways to design an efficient deep network structure: 1554 

 The first approach is to optimize the internal operational cost with an efficient network structure,  1555 

 Second design a network with low precision operations or a hardware efficient network.  1556 

The internal operations and parameters of a network structure can be reduced by using low dimensional 1557 

convolution filters for convolution layers. [260].  1558 

There is a lot of benefit of this approach. Firstly, the convolutional with rectification operations makes 1559 

the decision more discriminative. Secondly, the main benefit of this approach is to reduce the number of 1560 

computation parameters drastically. For example: if one layer has 5×5 dimensional filters which can be replaced 1561 

with two 3x3 dimensional filters (without pooling layer in between then) for better feature learning; three 3×3 1562 

dimensional filters can be used as a replacement of 7×7 dimensional filters and so on. Benefits of using a 1563 

lower-dimensional filter are that assuming both the present convolutional layer has C channels, for three layers 1564 

for 3x3 filter the total number of parameters are weights: 3×(3×3×C×C) =27𝐶2weights, whereas in cthe ase of 1565 

7×7 filters, the total number of parameters are (7×7×C×C) =49𝐶2 , which is almost double compared to the 1566 
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three 3x3 filter parameters. Moreover, placement of layers such as convolutional, pooling, drop-out in the 1567 

network in different intervals has an impact on overall classification accuracy. There are some strategies that are 1568 

mentioned to optimize the network architecture recently to design efficient deep learning models [89, 264].  1569 

Strategy 1: Replace the 3×3 filter with 1×1 filters. The main reason to use a lower dimension filter to 1570 

reduce the overall number of parameter. By replacing 3×3 filters with 1×1 can be reduced 9x number 1571 

of parameters.  1572 

Strategy 2: Decrease the number of input channels to 3×3 filters. For a layer, the size of the output 1573 

feature maps are calculated which is related to the network parameters using  
𝑁−𝐹

𝑆
+ 1, where N is 1574 

input map’s size, F is filter size, S is for strides. To reduce the number of parameters, it is not only 1575 

enough to reduce the size of the filters but also it requires to control numa ber of input channels or 1576 

feature dimension.  1577 

 1578 

Strategy 3: Down-sample late in the network so that convolution layers have activation maps: The outputs of 1579 

present convolution layers can be at least 1x1 or often larger than 11. The output width and height can be 1580 

controlled by some criterions: (1) the size of the input sample (e.g. 256256) and (2) Choosing the post down 1581 

sample layer. Most commonly pooling layers are such as average or max pooling layer is used, there is an 1582 

alternative sub-sampling layer with convolution (33 filters) and stride with 2. If most of the earlier layers have 1583 

larger stride, then most of the layers will have small numbers of activation maps. On the other hand, if most of 1584 

the layers have a stride of 1, and the stride larger than one applied at the end of the network, then many layers of 1585 

the network will have large activation maps. One intuition is the larger activation maps (due to delayed 1586 

down-sampling) can lead to higher classification accuracy [89]. This intuition has been investigated by K. He 1587 

and H. Sun applied delayed down-sampling onto four different architectures of CNNs, and it is observed that 1588 

each case delayed down-sampling led to higher classification accuracy [265].   1589 

11.2.  Binary or ternary connect Neural Networks  1590 

The computation cost can be reduced drastically with the low precision of multiplication and few 1591 

multiplications with drop connection [266, 267]. These papers also introduced on Binary Connect Neural 1592 

Networks (BNN) Ternary Connect Neural Networks (TNN). Generally, multiplication of a real-valued weight 1593 

by a real-valued activation (in the forward propagations) and gradient calculation (in the backward 1594 

propagations) are the main operations of deep neural networks. Binary connect or BNN is a technique that 1595 

eliminates the multiplication operations by converting the weights used in the forward propagation to be binary, 1596 

i.e. constrained to only two values (0 and 1 or -1 and 1).  As a result, the multiplication operations can be 1597 

performed by simple additions (and subtractions) and makes the training process faster. There are two ways to 1598 

convert real values to its corresponding binary values such as deterministic and stochastic. In case of 1599 

deterministic technique, straightforward thresholding technique is applied to weights. An alternative way to do 1600 

that is a stochastic approach where a matrix is converted to binary based on probability where the “hard 1601 

sigmoid” function is used because it is computationally inexpensive. The experimental result shows 1602 

significantly good recognition accuracy [268,269,270]. There are several advantages of BNN as follows: 1603 

 It is observed that the binary multiplication on GPU is almost seven times faster than traditional matrix 1604 

multiplication on GPU 1605 
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 In forward pass, BNNs drastically reduce memory size and accesses, and replace most arithmetic 1606 

operation with bit-wise operations, which lead great increase of power efficiency 1607 

 Binarized kernels can be used in CNNs which can reduce around 60% complexity of dedicated hardware. 1608 

 It is also observed that memory accesses typically consume more energy compared to the arithmetic 1609 

operation and memory access cost increases with memory size. BNNs are beneficial with respect to both 1610 

aspects.  1611 

There are some other techniques that have been proposed in the last few years [271,272,273]. Another 1612 

power efficient and hardware friendly network structure has been proposed for a CNN with XNOR operations. 1613 

In XNOR based CNN implementations, both the filters and input to the convolution layer is binary. This result 1614 

about 58x faster convolutional operations and 32x memory saving. In the same paper, Binary-Weight-Networks 1615 

was proposed which saved around 32x memory saving. That makes it possible to implement state-of-the-art 1616 

networks on CPU for real-time use instead of GPU. These networks are tested on the ImageNet dataset and 1617 

provide only 2.9% less classification accuracy than full-precision AlexNet (in top-1% measure). This network 1618 

requires less power and computation time. This could make it possible to accelerate the training process of deep 1619 

neural network dramatically for specialized hardware implementation [274]. For the first time, Energy Efficient 1620 

Deep Neural Network (EEDN) architecture was proposed for the neuromorphic system in 2016. In addition, 1621 

they released a deep learning framework called EEDN, which provides close accuracy to the state-of-the-art 1622 

accuracy almost all the popular benchmarks except ImageNet dataset [275,276]. 1623 

12. Hardware for DL 1624 

Along with the algorithmic development of DL approaches, there are many hardware architectures have 1625 

been proposed in the past few years. The details about present trends of hardware for deep learning have been 1626 

published recently [277]. MIT proposed “Eyeriss” as a hardware for deep convolutional neural networks 1627 

(DCNN) [278]. There is another architecture for machine learning called “Dadiannao” [279]. In 2016, an 1628 

efficient hardware that works for inference was released and proposed by Stanford University called Efficient 1629 

Inference Engine (EIE) [281]. Google developed a hardware named Tensor Processing Unit (TPU) for deep 1630 

learning and was released in 2017[280]. IBM released a neuromorphic system called “TrueNorth” in 2015 1631 

[275]. 1632 

Deep learning approaches are not limited to the HPC platform, there is a lot of application already 1633 

developed which run on mobile devices.  Mobile platforms provide data that is relevant to everyday activities 1634 

of the user, which can make a mobile system more efficient and robust by retraining the system with collected 1635 

data. There is some research ongoing to develop hardware friendly algorithms for DL [282,283,284]. 1636 

13. Other topics 1637 

There are several important topics including frameworks, SDK, benchmark datasets, related Journals and 1638 

Conferences are included in Appendix I.   1639 

14. Conclusion and Future Works 1640 

In this paper, we have provided an in-depth review of deep learning and its applications over the past few 1641 

years. We have reviewed different state-of-the-art deep learning models in different categories of learning 1642 

including supervised, unsupervised, and Reinforcement Learning (RL), as well as their applications in different 1643 
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domains. In addition, we have explained in detail the different supervised deep learning techniques including 1644 

DNN, CNN, and RNN. We have also reviewed un-supervised deep learning techniques including AE, RBM, 1645 

and GAN. In the same section, we have considered and explained unsupervised learning techniques which are 1646 

proposed based on LSTM and RL. In Section 8, we presented a survey on Deep Reinforcement Learning (DRL) 1647 

with the fundamental learning technique called Q-Learning. Furthermore, we have conducted a survey on 1648 

energy efficient deep learning approaches, transfer learning with DL, and hardware development trends of DL. 1649 

Moreover, we have discussed some DL frameworks and benchmark datasets, which are often used for the 1650 

implementation and evaluation of deep learning approaches. Finally, we have included relevant journals and 1651 

conferences, where the DL community has been publishing their valuable research articles. 1652 
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Appendix I 2281 

 2282 

Most of the time people use different deep learning frameworks and Standard Development Kits (SDKs) for 2283 

implementing deep learning approaches which are listed below: 2284 

1.  Frameworks 2285 

 Tensorflow: https://www.tensorflow.org/ 2286 

 Caffe: http://caffe.berkeleyvision.org/ 2287 

 KERAS: https://keras.io/ 2288 

 Theano: http://deeplearning.net/software/theano/ 2289 

 Torch: http://torch.ch/ 2290 

 PyTorch: http://pytorch.org/ 2291 

 Lasagne: https://lasagne.readthedocs.io/en/latest/ 2292 

 DL4J ( DeepLearning4J): https://deeplearning4j.org/ 2293 

 Chainer:  http://chainer.org/ 2294 

 DIGITS: https://developer.nvidia.com/digits 2295 

 CNTK (Microsoft): https://github.com/Microsoft/CNTK 2296 

 MatConvNet: http://www.vlfeat.org/matconvnet/ 2297 

 MINERVA: https://github.com/dmlc/minerva 2298 

 MXNET: https://github.com/dmlc/mxnet 2299 

 OpenDeep: http://www.opendeep.org/ 2300 

 PuRine: https://github.com/purine/purine2 2301 

 PyLerarn2: http://deeplearning.net/software/pylearn2/ 2302 

 TensorLayer: https://github.com/zsdonghao/tensorlayer 2303 

 LBANN:  https://github.com/LLNL/lbann 2304 

2.  SDKs 2305 

 cuDNN: https://developer.nvidia.com/cudnn 2306 

 TensorRT: https://developer.nvidia.com/tensorrt 2307 

 DeepStreamSDK: https://developer.nvidia.com/deepstream-sdk 2308 

 cuBLAS:  https://developer.nvidia.com/cublas 2309 

 cuSPARSE: http://docs.nvidia.com/cuda/cusparse/ 2310 

 NCCL : https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/ 2311 

3. Benchmark Datasets 2312 

Here is the list of benchmark datasets that are used often to evaluate deep learning approaches in different 2313 

domains of application: 2314 

3.1.  Image classification or detection or segmentation 2315 

List of datasets are used in the field of image processing and computer vision: 2316 

 MNIST: http://yann.lecun.com/exdb/mnist/  2317 

 CIFAR 10/100: https://www.cs.toronto.edu/~kriz/cifar.html  2318 
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 SVHN/ SVHN2: http://ufldl.stanford.edu/housenumbers/  2319 

 CalTech 101/256: http://www.vision.caltech.edu/Image_Datasets/Caltech101/  2320 

 STL-10: https://cs.stanford.edu/~acoates/stl10/  2321 

 NORB: http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/  2322 

 SUN-dataset: http://groups.csail.mit.edu/vision/SUN/  2323 

 ImageNet: http://www.image-net.org/  2324 

 National Data Science Bowl Competition: http://www.datasciencebowl.com/  2325 

 COIL 20/100: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php   2326 

 MS COCO DATASET: http://mscoco.org/  2327 

 MIT-67 scene dataset: http://web.mit.edu/torralba/www/indoor.html  2328 

 Caltech-UCSD Birds-200 dataset: http://www.vision.caltech.edu/visipedia/CUB-200-2011.html 2329 

 Pascal VOC 2007 dataset: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/  2330 

 H3D Human Attributes 2331 

dataset: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/  2332 

 Face recognition dataset: http://vis-www.cs.umass.edu/lfw/  2333 

 For more data-set visit: https://www.kaggle.com/  2334 

 http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm  2335 

 Recently Introduced Datasets in Sept. 2016:  2336 

  Google Open Images (~9M images) – https://github.com/openimages/dataset    2337 

  Youtube-8M (8M videos:   https://research.google.com/youtube8m/   2338 

3.2.  Text classification 2339 

 Reuters-21578 Text Categorization Collection:  2340 

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html  2341 

 Sentiment analysis from Stanford : http://ai.stanford.edu/~amaas/data/sentiment/  2342 

 Movie sentiment analysis from Cornel:             2343 

http://www.cs.cornell.edu/people/pabo/movie-review-data/  2344 

3..3.  Language modeling 2345 

 free eBooks: https://www.gutenberg.org/ 2346 

 Brown and stanford corpus on present americal english:  2347 

o https://en.wikipedia.org/wiki/Brown_Corpus 2348 

 Google 1Billion word corpus: 2349 

https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark  2350 

3.4.  Image Captioning 2351 

 Flickr-8k: http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html 2352 

 Flickr-30k 2353 

 Common Objects in Context (COCO) : http://cocodataset.org/#overview 2354 

 http://sidgan.me/technical/2016/01/09/Exploring-Datasets 2355 

3.4.  Machine translation 2356 

 Pairs of sentences in English and French: https://www.isi.edu/natural-language/download/hansard/  2357 

 European Parliament Proceedings parallel Corpus 196-2011 : http://www.statmt.org/europarl/  2358 
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 The statistics for machine translation: http://www.statmt.org/  2359 

3.5.  Question Answering 2360 

 Stanford Question Answering Dataset (SQuAD): https://rajpurkar.github.io/SQuAD-explorer/ 2361 

 Dataset from DeepMind: https://github.com/deepmind/rc-data 2362 

 Amazon dataset: http://jmcauley.ucsd.edu/data/amazon/qa/  2363 

 http://trec.nist.gov/data/qamain... 2364 

 http://www.ark.cs.cmu.edu/QA-data/ 2365 

 http://webscope.sandbox.yahoo.co... 2366 

 http://blog.stackoverflow.com/20.. 2367 

3.6.  Speech Recognition 2368 

 TIMIT : https://catalog.ldc.upenn.edu/LDC93S1 2369 

 Voxforge: http://voxforge.org/  2370 

 Open Speech and Language Resources: http://www.openslr.org/12/  2371 

3.7.  Document summarization 2372 

 https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports  2373 

 http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html 2374 

 https://catalog.ldc.upenn.edu/LDC2002T31 2375 

3.8.   Sentiment analysis: 2376 

 IMDB dataset: http://www.imdb.com/  2377 

3.9.  Hyperspectral image analysis 2378 

 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes 2379 

 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html 2380 

 http://www2.isprs.org/commissions/comm3/wg4/HyRANK.html 2381 

In addition, there is another alternative solution in data programming that labels subsets of data using weak 2382 

supervision strategies or domain heuristics as labeling functions even if they are noisy and may conflict samples 2383 

[87].  2384 

 2385 
4. Journals and Conferences 2386 

In general, researchers publish their primary version of research on the ArXiv ( https://arxiv.org/ ). Most of 2387 

the conferences have been accepting papers on Deep learning and its related field.  Popular conferences are 2388 

listed below: 2389 

4.1.  Conferences 2390 

 Neural Information Processing System (NIPS) 2391 

 International Conference on Learning Representation (ICLR): What are you doing for Deep Learning?  2392 

 International Conference on Machine Learning(ICML) 2393 

 Computer Vision and Pattern Recognition (CVPR): What are you doing with Deep Learning? 2394 
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 International Conference on Computer Vision (ICCV) 2395 

 European Conference on Computer Vision (ECCV) 2396 

 British Machine Vision Conference (BMVC) 2397 

4.2.  Journal 2398 

 Journal of Machine Learning Research (JMLR) 2399 

 IEEE Transaction of Neural Network and Learning System ( 2400 

 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2401 

 Computer Vision and Image Understanding (CVIU) 2402 

 Pattern Recognition Letter 2403 

 Neural Computing and Application 2404 

 International Journal of Computer Vision 2405 

 IEEE Transactions on Image Processing 2406 

 IEEE Computational Intelligence Magazine 2407 

 Proceedings of IEEE 2408 

 IEEE Signal Processing Magazine 2409 

 Neural Processing Letter 2410 

 Pattern Recognition 2411 

 Neural Networks 2412 

 ISPPRS Journal of Photogrammetry and Remote Sensing  2413 

4.3.  Tutorials on deep learning  2414 

 http://deeplearning.net/tutorial/ 2415 

 http://deeplearning.stanford.edu/tutorial/ 2416 

 http://deeplearning.net/tutorial/deeplearning.pdf 2417 

 Courses on Reinforcement Learning: http://rll.berkeley.edu/deeprlcourse/ 2418 

4.4.  Books on deep learning 2419 

 https://github.com/HFTrader/DeepLearningBookhttps://github.com/janishar/mit-deep-learning-book2420 

-pdf 2421 

 http://www.deeplearningbook.org/ 2422 
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