

Electronics 2018, 7, x; doi: FOR PEER REVIEW www.mdpi.com/journal/electronics

Type of the Paper (Review.) 1

The State of the Art Survey on Deep Learning Theory 2

and Architectures 3

Md Zahangir Alom1*, Tarek M. Taha1, Chris Yakopcic1, Stefan Westberg1, Paheding Sidike2, Mst 4

Shamima Nasrin1, Brian C Van Essen3, Abdul A S. Awwal3, and Vijayan K. Asari1 5

 6

1 Dept. of Electrical and Computer Engineering, University of Dayton, OH 45469, USA 7
2 Dept. Earth and Atmospheric Sciences, Saint Louis University, MO 63108, USA 8
3 Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA 9
* Correspondence: alomm1@udayton.edu 10

Received: date; Accepted: date; Published: date 11

Abstract: In recent years, deep learning has garnered tremendous success in a variety of 12

application domains. This new field of machine learning has been growing rapidly and has been 13
applied to most traditional application domains, as well as some new areas that present more 14
opportunities. Different methods have been proposed based on different categories of learning, 15
including supervised, semi-supervised, and un-supervised learning. Experimental results show 16
state-of-the-art performance using deep learning when compared to traditional machine learning 17
approaches in the fields of image processing, computer vision, speech recognition, machine 18
translation, art, medical imaging, medical information processing, robotics and control, 19
bio-informatics, natural language processing (NLP), cybersecurity, and many others. This survey 20
presents a brief survey on the advances that have occurred in the area of DL, starting with the Deep 21
Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), 22
Recurrent Neural Network (RNN) including Long Short-Term Memory (LSTM) and Gated 23
Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial 24
Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent 25
developments such as advanced variant DL techniques based on these DL approaches. This work 26
considers most of the papers published after 2012 from when the history of deep learning began. 27
Furthermore, DL approaches that have been explored and evaluated in different application 28
domains are also included in this survey. We also included recently developed frameworks, SDKs, 29
and benchmark datasets that are used for implementing and evaluating deep learning approaches. 30
There are some surveys that have been published on Deep Learning using Neural Networks [1, 38] 31
and a survey on RL [234]. However, those papers have not discussed individual advanced 32
techniques for training large-scale deep learning models and the recently developed method of 33
generative models [1]. 34

Keywords: Deep Learning; Convolutional Neural Network (CNN); Recurrent Neural Network 35

(RNN); Auto-Encoder (AE); Restricted Boltzmann Machine (RBM); Deep Belief Network (DBN); 36
Generative Adversarial Network (GAN); Deep Reinforcement Learning (DRL); Transfer Learning. 37

 38

 39

1. Introduction 40

Since the 1950s, a small subset of Artificial Intelligence (AI), often called Machine Learning (ML), has 41

revolutionized several fields in the last few decades. Neural Networks (NN) is a subfield of ML, and it was 42

this subfield that spawned Deep Learning (DL). Since its inception DL has been creating ever larger 43

mailto:alomm1@udayton.edu

Electronics 2018, 7, x FOR PEER REVIEW 2 of 74

disruptions, showing outstanding success in almost every application domain. Figure 1 shows the taxonomy 44

of AI. DL which uses either deep architectures of learning or hierarchical learning approaches), is a class of 45

ML developed largely from 2006 onward. Learning is a procedure consisting of estimating the model 46

parameters so that the learned model (algorithm) can perform a specific task. For example, in Artificial Neural 47

Networks (ANN), the parameters are the weight matrices. DL, on the other hand, consists of several layers in 48

between the input and output layer which allows for many stages of non-linear information processing units 49

with hierarchical architectures to be present that are exploited for feature learning and pattern classification [1, 50

2]. Learning methods based on representations of data can also be defined as representation learning [3]. 51

Recent literature states that DL based representation learning involves a hierarchy of features or concepts, 52

where the high-level concepts can be defined from the low-level ones and low-level concepts can be defined 53

from high-level ones. In some articles, DL has been described as a universal learning approach that is able to 54

solve almost all kinds of problems in different application domains. In other words, DL is not task specific 55

[4]. 56

1.1. Type of Deep Learning Approaches 57

Deep learning approaches can be categorized as follows: supervised, semi-supervised or 58
partially supervised, and unsupervised. In addition, there is another category of learning approach 59
called Reinforcement Learning (RL) or Deep RL (DRL) which are often discussed under the scope of 60
semi-supervised or sometimes under unsupervised learning approaches. 61

 62

 63
Figure 1. The taxonomy of AI. AI: Artificial Intelligence, ML, NN, DL, and Spiking Neural Networks (SNN) 64

according to [294]. 65

Electronics 2018, 7, x FOR PEER REVIEW 3 of 74

1) Deep Supervised Learning 66

Supervised learning is a learning technique that uses labeled data. In the case of supervised DL 67

approaches, the environment has a set of inputs and corresponding outputs (𝑥𝑡 , 𝑦𝑡)~𝜌. For example, 68

if for input xt, the intelligent agent predicts 𝑦̂𝑡 = 𝑓(𝑥𝑡), the agent will receive a loss value 𝑙(𝑦𝑡 , 𝑦̂𝑡). 69

The agent will then iteratively modify the network parameters for better approximation of the 70

desired outputs. After successful training, the agent will be able to get the correct answers to 71

questions from the environment. There are different supervised learning approaches for deep 72

leaning including Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), 73

Recurrent Neural Networks (RNN) including Long Short Term Memory (LSTM), and Gated 74

Recurrent Units (GRU). These networks are described in Sections 2, 3, 4, and 5, respectively. 75

2) Deep Semi-supervised Learning 76

Semi-supervised learning is learning that occurs based on partially labeled datasets. In some 77

cases, DRL and Generative Adversarial Networks (GAN) are used as semi-supervised learning 78

techniques. GAN is discussed in Section VII. Section VIII surveys DRL approaches. Additionally, 79

RNN including LSTM and GRU are used for semi-supervised learning as well. 80

3) Deep Unsupervised Learning 81

Unsupervised learning systems are ones that can without the presence of data labels. In this 82

case, the agent learns the internal representation or important features to discover unknown 83

relationships or structure within the input data. Often clustering, dimensionality reduction, and 84

generative techniques are considered as unsupervised learning approaches. There are several 85

members of the deep learning family that are good at clustering and non-linear dimensionality 86

reduction, including Auto-Encoders (AE), Restricted Boltzmann Machines (RBM), and the recently 87

developed GAN. In addition, RNNs, such as LSTM and RL, are also used for unsupervised learning 88

in many application domains [243]. Sections 6 and 7 discuss RNNs and LSTMs in detail. 89

4) Deep Reinforcement Learning (RL) 90

Deep Reinforcement Learning is a learning technique for use in unknown environments. DRL 91

began in 2013 with Google Deep Mind [5, 6]. From then on, several advanced methods have been 92

proposed based on RL. Here is an example of RL: if environment samples inputs: 𝑥𝑡~𝜌 , agent 93

predict: 𝑦̂𝑡 = 𝑓(𝑥𝑡) , agent receive cost: 𝑐𝑡~𝑃(𝑐𝑡|𝑥𝑡 , 𝑦̂𝑡) where P is an unknown probability 94

distribution, the environment asks an agent a question, and gives a noisy score as the answer. 95

Sometimes this approach is called semi-supervised learning as well. There are many 96

semi-supervised and un-supervised techniques that have been implemented based on this concept 97

(in Section 8). In RL, we do not have a straight forward loss function, thus making learning harder 98

compared to traditional supervised approaches. The fundamental differences between RL and 99

supervised learning are: first, you do not have full access to the function you are trying to optimize; 100

you must query them through interaction, and second, you are interacting with a state-based 101

environment: input 𝑥𝑡 depends on previous actions. 102

Depending upon the problem scope or space, one can decide which type of RL needs to be 103

applied for solving a task. If the problem has a lot of parameters to be optimized, DRL is the best 104

Electronics 2018, 7, x FOR PEER REVIEW 4 of 74

way to go. If the problem has fewer parameters for optimization, a derivation free RL approach is 105

good. An example of this is annealing, cross entropy methods, and SPSA. 106

 107

 108
 109

Figure 2. Category of Deep Leaning approaches. 110

1.2. Feature Learning 111

A key difference between traditional ML and DL is in how features are extracted. Traditional 112

ML approaches use handcrafted engineering features by applying several feature extraction 113

algorithms such as Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), 114

GIST, RANSAC, Histogram Oriented Gradient (HOG), Local Binary Pattern (LBP), Empirical Mode 115

Decomposition (EMD) for speech analysis, and many more. Finally, the learning algorithms 116

including support vector machine (SVM), Random Forest (RF), Principle Component Analysis 117

(PCA), Kernel PCA (KPCA), Linear Decrement Analysis (LDA), Fisher Decrement Analysis (FDA), 118

and many more are applied for classification on the extracted features [298]. Additionally, other 119

boosting approaches are often used where several learning algorithms are applied on the features of 120

a single task or dataset and a decision is made according to the multiple outcomes from the different 121

algorithms. 122

On the other hand, in the case of DL, the features are learned automatically and are represented 123

hierarchically in multiple levels. This is the strong point of DL against traditional machine learning 124

approaches. The following table shows the different feature-based learning approaches with 125

different learning steps. 126

Table 1. Different feature learning approaches. 127

Approaches Learning steps

Rule-based Input Hand-design

features

Output

Traditional

Machine Learning

Input Hand-design

features

Mapping from

features

Output

Representation

Learning

Input Features Mapping from

features

Output

Deep Learning Input Simple

features

Complex

features

Mapping from

features

Output

 128

Electronics 2018, 7, x FOR PEER REVIEW 5 of 74

 129

 130

Figure 3. Applications of DL approaches [161]. 131

1.3. Why and When to apply DL 132

DL is employed in several situations where machine intelligence would be useful (see Figure 3): 133

 Absence of a human expert (navigation on Mars) 134

 Humans are unable to explain their expertise (speech recognition, vision, and language 135

understanding) 136

 The solution to the problem changes over time (tracking, weather prediction, preference, stock, 137

price prediction) 138

 Solutions need to be adapted to the particular cases (biometrics, personalization). 139

 The problem size is too vast for our limited reasoning capabilities (calculation webpage ranks, 140

matching ads to Facebook, sentiment analysis). 141

At present, DL is being applied in almost all areas. As a result, this approach is often called a 142

universal learning approach. Some example applications are shown in Figure 4. 143

 144

Object localization [71] Object detection [71] Image or video Segmentation [77]

Security and Defense [172] Autonomous Car [71] Medicine and biology[102]

Brian Cancer Detection [102] Skin cancer recognition [102] Speech recognition [24]

Figure 4. Example images where DL is applied successfully and achieved state-of-the-art performance.

Electronics 2018, 7, x FOR PEER REVIEW 6 of 74

1.4. The state-of-the-art performance of DL 145

There are some outstanding successes in the fields of computer vision and speech recognition 146

as discussed below: 147

a) Image classification on ImageNet dataset. One of the large-scale problems is named Large Scale 148

Visual Recognition Challenge (LSVRC). CNN and its variants as one of the DL branches showed 149

state-of-the-art accuracy on the ImageNet task [11, 285]. The following graph shows the success 150

story of DL techniques overtime on ImageNet-2012 challenge. In detail, ResNet-152 showed 151

3.57% error rate which outperformed human accuracy. 152

b) Automatic speech recognition. The initial success in the field of speech recognition on the 153

popular TIMIT dataset (common data set are generally used for evaluation) was with small-scale 154

recognition tasks [24]. The TIMIT Acoustic-Phonetic continuous speech Corpus contains 630 155

speakers from eight major dialects of American English, where each speaker reads 10 sentences. 156

Figure 6 summarizes the error rates including these early results and is measured as percent phone 157

error rate (PER) over the last 20 years. The bar graph clearly shows that the recently developed DL 158

approaches (top of the graph) perform better compared to any other previous machine learning 159

approaches on the TIMIT dataset. 160

 161

1.5. Why DL? 162

a) Universal learning approach 163

The DL approach is sometimes called universal learning because it can be applied to almost any 164

application domain. 165

b) Robust 166

Figure 5. Accuracy for ImageNet classification challenge with different DL models.

Fig. 5. Accuracy for ImageNet challenge with different DL models.

16.4

11.2

7.4 6.7

3.57
5

0

2

4

6

8

10

12

14

16

18

2012 2013 2014 2014 2015

AlexNet[7] Clarifia[8] VGG-16 [9] GoogLeNet-

19 [10]

ResNet-

152[11]

Human

E
rr

o
s

(%
)

Model & Year

The experimental results on ImageNet-2012

Electronics 2018, 7, x FOR PEER REVIEW 7 of 74

Deep learning approaches do not require the precisely designed feature. Instead, optimal 167

features are automatically learned for the task at hand. As a result, the robustness to natural 168

variations of the input data is achieved. 169

c) Generalization 170

The same DL approach can be used in different applications or with different data types. This 171

approach is often called transfer learning. In addition, this approach is helpful where the problem 172

does not have sufficient available data. There are a number of literatures that have discussed this 173

concept (See Section 4). 174

d) Scalability 175

The DL approach is highly scalable. Microsoft invented a deep network known as ResNet [11]. 176

This network contains 1202 layers and is often implemented at a supercomputing scale. There is a 177

big initiative at Lawrence Livermore National Laboratory (LLNL) in developing frameworks for 178

networks like this, which can implement thousands of nodes [24]. 179

 180

Figure 6. Phone error rate (PER) for TIMIT dataset. 181

1.6. Challenges of DL 182

There are several challenges for DL: 183

 Big data analytics using DL 184

0 10 20 30 40

First-pass SCRF [13]

Boundary-factored…

Deep Segmental NN[15]

Discriminative segmetal…

End-to-end DL [17]

DSC with 2nd pass[16]

CDNN w. Hater.s…

CTC[19]

DCNN [20]

Ensemble…

RNN transducer[19]

Attention-based RNN[22]

Segmental RNN[23]

Phone error rate (PER) in percentage(%)

Electronics 2018, 7, x FOR PEER REVIEW 8 of 74

 Scalability of DL approaches 185

 Ability to generate data which is important where data is not available for learning the system 186

(especially for computer vision task such as inverse graphics). 187

 Energy efficient techniques for special purpose devices including mobile intelligence, FPGAs, 188

and so on. 189

 Multi-task and transfer learning or multi-module learning. This means learning from different 190

domains or with different models together. 191

 Dealing with causality in learning. 192

Most of the above-mentioned challenges have already been considered by the DL community. 193

Firstly, for the big data analytics challenge, there is a good survey that was conducted in 2014 [25]. In 194

this paper, the authors explained details on how DL can deal with different criteria including 195

volume, velocity, variety, and veracity of the big data problem. The authors also showed different 196

advantages of DL approaches when dealing with big data problems [25, 26, and 27]. Figure 7 clearly 197

demonstrates that the performance of traditional ML approaches shows better performance for 198

lesser amounts of input data. As the amount of data increases beyond a certain number, the 199

performance of traditional machine learning approaches becomes steady, whereas DL approaches increase 200

with respect to the increment of the amount of data. 201

 202

 203
Figure 7. The performance of deep learning with respect to the amount of data. 204

 205

Secondly, in most of the cases for solving large-scale problems, the solution is being implemented on 206

High-Performance Computing (HPC) system (super-computing, cluster, sometimes considered cloud 207

computing) which offers immense potential for data-intensive business computing. As data explodes in 208

velocity, variety, veracity, and volume, it is getting increasingly difficult to scale compute performance using 209

enterprise-class servers and storage in step with the increase. Most of the articles considered all the demands 210

and suggested efficient HPC with heterogeneous computing systems. In one example, Lawrence Livermore 211

National Laboratory (LLNL) has developed a framework which is called Livermore Big Artificial Neural 212

Networks (LBANN) for large-scale implementation (in super-computing scale) for DL which clearly supplants 213

the issue of scalability of DL [24]. 214

Thirdly, generative models are another challenge for deep learning. One example is the GAN, 215

which is an outstanding approach for data generation for any task which can generate data with the 216

same distribution [28]. Fourthly, multi-task and transfer learning which we have discussed in 217

Section 7. Fourthly, there is a lot of research that has been conducted on energy efficient deep 218

Electronics 2018, 7, x FOR PEER REVIEW 9 of 74

learning approaches with respect to network architectures and hardwires. Section 10 discusses this 219

issue. 220

Can we make any uniform model that can solve multiple tasks in different application 221

domains? As far as the multi-model system is concerned, one article from Google titled “One Model 222

To Learn Them All” [29] is a good example. This approach can learn from different application 223

domains including ImageNet, multiple translation tasks, Image captioning (MS-COCO dataset), 224

speech recognition corpus and English parsing task. We will be discussing most of the challenges 225

and respective solutions through this survey. There are some other multi-task techniques that have 226

been proposed in the last few years [30- 32]. 227

Finally, a learning system with causality has been presented, which is a graphical model that 228

defines how one may infer a causal model from data. Recently a DL based approach has been 229

proposed for solving this type of problem [33]. However, there are other many challenging issues 230

have been solved in the last few years which were not possible to solve efficiently before this 231

revolution. For example, image or video captioning [34], style transferring from one domain to 232

another domain using GAN [35], text to image synthesis [36], and many more [37]. 233

There are some surveys that have been conducted recently in the DL field [294, 295]. These 234

papers survey on DL and its revolution, but they did not address the recently developed generative 235

model called GAN [28]. In addition, they discuss little RL and did not cover recent trends of DRL 236

approaches [1, 39]. In most of the cases, the surveys that have been conducted are on different DL 237

approaches individually. There is a good survey which is based on Reinforcement Learning 238

approaches [40, 41]. Another survey exists on transfer learning [42]. One survey has been conducted 239

on neural network hardware [43]. However, the main objective of this work is to provide an overall 240

idea on deep learning and its related fields including deep supervised (e.g. DNN, CNN, and RNN), 241

unsupervised (e.g. AE, RBM, GAN) (sometimes GAN also used for semi-supervised learning tasks) 242

and DRL. In some cases, DRL is considered to be a semi-supervised or an unsupervised approach. In 243

addition, we have considered the recently developing trends in this field and applications which are 244

developed based on these techniques. Furthermore, we have included the framework and 245

benchmark datasets which are often used for evaluating deep learning techniques. Moreover, the 246

name of the conferences and journals are also included which are considered by this community for 247

publishing their research articles. 248

The rest of the paper has been organized in the following ways: the detailed surveys of DNNs 249

are discussed in Section II, Section III discusses on CNN. Section IV describes different advanced 250

techniques for efficient training of DL approaches. Section V. discusses on RNNs. AEs and RBMs are 251

discussed in Section VI. GANs with applications are discussed in Section VII. RL is presented in 252

Section VIII. Section IX explains transfer learning. Section X. presents energy efficient approaches 253

and hardwires for DL. Section XI discusses deep learning frameworks and standard development 254

kits (SDK). The benchmarks for different application domains with web links are given in Section 255

XII. The conclusions are made in Section XIII. 256

 257

2. Deep Neural Network 258

2.1. The history of DNN 259

Electronics 2018, 7, x FOR PEER REVIEW 10 of 74

A brief history of neural networks highlighting key events is as shown in Figure 8. 260

Computational neurobiology has conducted significant research on constructing computational 261

models of artificial neurons. Artificial neurons, which try to mimic the behavior of the human brain, 262

are the fundamental component for building ANNs. The basic computational element (neuron) is 263

called a node (or unit) which receives inputs from external sources and has some internal parameters 264

(including weights and biases that are learned during training) which produce outputs. This unit is 265

called a perceptron. The fundamental of ANN is discussed in [1, 3]. 266

 267

Figure 8. The history of deep learning development. 268

ANNs or general NNs consist of Multilayer Perceptron’s (MLP) which contain one or more hidden layers with 269

multiple hidden units (neurons) in them. For details on MLP, please see in [1,3,47] 270

2.2. Gradient Descent 271

The gradient descent approach is a first-order optimization algorithm which is used for finding 272

the local minima of an objective function. This has been used for training ANNs in the last couple of 273

decades successfully [1,47]. 274

2.3. Stochastic Gradient Descent (SGD) 275

Since a long training time is the main drawback for the traditional gradient descent approach, the 276

SGD approach is used for training Deep Neural Networks (DNN) [1,52]. 277

2.4.Back-Propagation (BP) 278

DNN is trained with the popular Back-Propagation (BP) algorithm with SGD [47,53]. In the case 279

of MLPs, we can easily represent NN models using computation graphs which are directive acyclic 280

graphs. For that representation of DL, we can use the chain-rule to efficiently calculate the gradient 281

from the top to the bottom layers with BP as shown in [47, 53]. 282

2.5. Momentum 283

Momentum is a method which helps to accelerate the training process with the SGD approach. 284

The main idea behind it is to use the moving average of the gradient instead of using only the 285

current real value of the gradient. We can express this with the following equation mathematically: 286

•1943: McCulloch & Pitts show that neurons can be combined to construct a Turing
machine (using ANDs, ORs, & NOTs) [44].

•1958: Rosenblatt shows that perceptron’s will converge if what they are trying to
learn can be represented [45].

•1969: Minsky & Papert show the limitations of perceptron’s, killing research in
neural networks for a decade [46].

•1985: The backpropagation algorithm by Geoffrey Hinton et al. [47] revitalizes the
field.

•1988: Neocognitron: a hierarchical neural network capable of visual pattern
recognition [48].

•1998: CNNs with Backpropagation for document analysis by Yan LeCun [49].

•2006: The Hinton lab solves the training problem for DNNs [50,51].

•2012 - pressent: A variety of deep learning algorithms are increasingly emerging.

1943 - present

Electronics 2018, 7, x FOR PEER REVIEW 11 of 74

 𝑣𝑡 = γ 𝑣𝑡−1 − 𝜂 ∇ ℱ(𝜃𝑡−1) 287

(1) 288

 𝜃𝑡 = 𝜃𝑡−1 + 𝑣𝑡 289

(2) 290

Here γ is the momentum and 𝜂 is the learning rate for the tth round of training. Other popular 291

approaches have been introduced during the last few years which are explained in section IX under 292

the scope of optimization approaches. The main advantage of using momentum during training is to 293

prevent the network from getting stuck in la ocal minimum. The values of momentum are γ ∈ (0,1]. 294

It is noted that a higher momentum value overshoots its minimum, possibly making the network 295

unstable. In general, γ is set to 0.5 until the initial learning stabilizes and is then increased to 0.9 or 296

higher [54]. 297

 298

2.6. Learning rate (𝜼) 299

The learning rate is an important component for training DNN. The learning rate is the step size 300

considered during training which makes the training process faster. However, selecting the value of 301

the learning rate is sensitive. For example: if you choose a larger value for 𝜂, the network may start 302

diverging instead of converging. On the other hand, if you choose a smaller value for 𝜂, it will take 303

more time for the network to converge. In addition, it may easily get stuck in local minima. The 304

typical solution for this problem is to reduce the learning rate during training [52]. 305

There are three common approaches used for reducing the learning rate during training: 306

constant, factored, and exponential decay. First, we can define a constant 𝜁 which is applied to 307

reduce the learning rate manually with a defined step function. Second, the learning rate can be 308

adjusted during training with the following equation: 309

 𝜂𝑡 = 𝜂0𝛽
𝑡

𝜖⁄ (3) 310

where 𝜂𝑡 is the tth round learning rate, 𝜂0 is the initial learning rate, and 𝛽 is the decay factor with 311

a value between the range of (0,1). 312

The step function format for exponential decay is: 313

 𝜂𝑡 = 𝜂0𝛽⌊𝑡
𝜖⁄ ⌋ (4) 314

The common practice is to use a learning rate decay of 𝛽 = 0.1 to reduce the learning rate by a factor 315

of 10 at each stage. 316

2.7. Weight decay 317

Weight decay is used for training deep learning models as a L2 regularization approach, which 318

helps to prevent overfitting the network and model generalization. L2 regularization for ℱ(𝜃, 𝑥) can 319

be define as 320

 Ω = ‖𝜃‖2 (5) 321

 𝜀̂(ℱ(𝜃, 𝑥), 𝑦) = 𝜀(ℱ(𝜃, 𝑥), 𝑦) +
1

2
𝜆 Ω (6) 322

The gradient for the weight 𝜃 is: 323

Electronics 2018, 7, x FOR PEER REVIEW 12 of 74

𝜕

1

2
𝜆Ω

𝜕𝜃
= 𝜆 ∙ 𝜃 (7) 324

General practice is to use the value 𝜆 = 0.0004. A smaller 𝜆 will accelerate training. 325

Other necessary components for efficient training including data preprocessing and 326

augmentation, network initialization approaches, batch normalization, activation functions, 327

regularization with dropout, and different optimization approaches (as discussed in Section 4). 328

In the last few decades, many efficient approaches have been proposed for better training of 329

deep neural networks. Before 2006, attempts taken at training deep architectures failed: training a 330

deep supervised feed-forward neural network tended to yield worse results (both in training and in 331

test error) than shallow ones (with 1 or 2 hidden layers). Hinton’s revolutionary work on DBNs 332

spearheaded a change in this in 2006 [50, 53]. 333

Due to their composition, many layers of DNNs are more capable of representing highly varying nonlinear 334

functions compared to shallow learning approaches [56-58]. Moreover, DNNs are more efficient for learning 335

because of the combination of feature extraction and classification layers. The following sections discuss in 336

detail about different DL approaches with necessary components. 337

3. Convolutional Neural Network (CNN) 338

3.1. CNN overview 339

This network structure was first proposed by Fukushima in 1988 [48]. It was not widely used, 340

however, due to limits of computation hardware for training the network. In the 1990s, LeCun et al. 341

[49] applied a gradient-based learning algorithm to CNNs and obtained successful results for the 342

handwritten digit classification problem. After that, researchers further improved CNNs and 343

reported state-of-the-art results in many recognition tasks. CNNs have several advantages over 344

DNNs, including being more like the human visual processing system, being highly optimized in 345

the structure for processing 2D and 3D images, and being effective at learning and extracting 346

abstractions of 2D features. The max pooling layer of CNNs is effective in absorbing shape 347

variations. Moreover, composed of sparse connections with tied weights, CNNs have significantly 348

fewer parameters than a fully connected network of similar size. Most of all, CNNs are trained with 349

the gradient-based learning algorithm and suffer less from the diminishing gradient problem. Given 350

that the gradient-based algorithm trains the whole network to minimize an error criterion directly, 351

CNNs can produce highly optimized weights. 352

Electronics 2018, 7, x FOR PEER REVIEW 13 of 74

 353

Figure 9 shows the overall architecture of CNNs consists of two main parts: feature extractors 354

and a classifier. In the feature extraction layers, each layer of the network receives the output from its 355

immediate previous layer as its input and passes its output as the input to the next layer. The CNN 356

architecture consists of a combination of three types of layers: convolution, max-pooling, and 357

classification. There are two types of layers in the low and middle-level of the network: 358

convolutional layers and max-pooling layers. The even numbered layers are for convolutions and 359

the odd-numbered layers are for max-pooling operations. The output nodes of the convolution and 360

max-pooling layers are grouped into a 2D plane called feature mapping. Each plane of a layer is 361

usually derived of the combination of one or more planes of previous layers. The nodes of a plane 362

are connected to a small region of each connected planes of the previous layer. Each node of the 363

convolution layer extracts the features from the input images by convolution operations on the input 364

nodes. 365

Higher-level features are derived from features propagated from lower level layers. As the 366

features propagate to the highest layer or level, the dimensions of features are reduced depending 367

on the size of the kernel for the convolutional and max-pooling operations respectively. However, 368

the number of feature maps usually increased for representing better features of the input images for 369

ensuring classification accuracy. The output of the last layer of the CNN is used as the input to a 370

fully connected network which is called classification layer. Feed-forward neural networks have 371

been used as the classification layer as they have better performance [50, 58]. In the classification 372

layer, the extracted features are taken as inputs with respect to the dimension of the weight matrix of 373

the final neural network. However, the fully connected layers are expensive in terms of network or 374

learning parameters. Nowadays, there are several new techniques including average pooling and 375

global average pooling that is used as an alternative of fully-connected networks. The score of the 376

respective class is calculated in the top classification layer using a soft-max layer. Based on the 377

highest score, the classifier gives output for the corresponding classes. Mathematical details on 378

different layers of CNNs are discussed in the following section. 379

a) Convolutional layer 380

Figure 9. The overall architecture of the CNN includes an input layer, multiple alternating convolution and max-pooling layers, one

fully-connected layer and one classification layer.

Electronics 2018, 7, x FOR PEER REVIEW 14 of 74

In this layer, feature maps from previous layers are convolved with learnable kernels. The output of 381

the kernels goes through a linear or non-linear activation function such as a(sigmoid, hyperbolic 382

tangent, Softmax, rectified linear, and identity functions) to form the output feature maps. Each of 383

the output feature maps can be combined with more than one input feature map. In general, we 384

have that 385

 𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1
𝑖𝜖𝑀𝑗

∗ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙) 386

(8) 387

where 𝑥𝑗
𝑙 is the output of the current layer, 𝑥𝑖

𝑙−1 is the previous layer output, 𝑘𝑖𝑗
𝑙 is the kernel for 388

the present layer, and 𝑏𝑗
𝑙 are the biases for the current layer. 𝑀𝑗 represents a selection of input 389

maps. For each output map, an additive bias 𝑏 is given. However, the input maps will be 390

convolved with distinct kernels to generate the corresponding output maps. The output maps 391

finally go through a linear or non-linear activation function (such as sigmoid, hyperbolic tangent, 392

Softmax, rectified linear, or identity functions). 393

b) Sub-sampling layer 394

The subsampling layer performs the downsampled operation on the input maps. This is commonly 395

known as the pooling layer. In this layer, the number of input and output feature maps does not 396

change. For example, if there are 𝑁 input maps, then there will be exactly 𝑁 output maps. Due to 397

the down sampling operation, the size of each dimension of the output maps will be reduced, 398

depending on the size of the down sampling mask. For example: if a 2×2 down sampling kernel is 399

used, then each output dimension will be the half of the corresponding input dimension for all the 400

images. This operation can be formulated as 401

 xj
l = down(xj

l−1) (9) 402

where down(.) represents a sub-sampling function. Two types of operations are mostly 403

performed in this layer: average pooling or max-pooling. In the case of the average pooling 404

approach, the function usually sums up over N×N patches of the feature maps from the previous 405

layer and selects the average value. On the other hand, in the case of max-pooling, the highest value 406

is selected from the N×N patches of the feature maps. Therefore, the output map dimensions are 407

reduced by n times. In some special cases, each output map is multiplied with a scalar. Some 408

alternative sub-sampling layers have been proposed, such as fractional max-pooling layer and 409

sub-sampling with convolution. These are explained in Section 4.6. 410

c) Classification layer 411

This is the fully connected layer which computes the score of each class from the extracted 412

features from a convolutional layer in the preceding steps. The final layer feature maps are 413

represented as vectors with scalar values which are passed to the fully connected layers. The fully 414

connected feed-forward neural layers are used as a soft-max classification layer. There are no strict 415

rules on the number of layers which are incorporated in the network model. However, in most cases, 416

two to four layers have been observed in different architectures including LeNet [49], AlexNet [7], 417

Electronics 2018, 7, x FOR PEER REVIEW 15 of 74

and VGG Net [9]. As the fully connected layers are expensive in terms of computation, alternative 418

approaches have been proposed during the last few years. These include the global average pooling 419

layer and the average pooling layer which help to reduce the number of parameters in the network 420

significantly. 421

In the backward propagation through the CNNs, the fully connected layer updates following the 422

general approach of fully connected neural networks (FCNN). The filters of the convolutional layers 423

are updated by performing the full convolutional operation on the feature maps between the 424

convolutional layer and its immediate previous layer. Figure 10 shows the basic operations in the 425

convolution and sub-sampling of an input image. 426

 427

Figure 10. Feature maps after performing convolution and pooling operations. 428

 429

d) Network parameters and required memory for CNN 430

The number of computational parameters is an important metric to measure the complexity of a 431

deep learning model. The size of the output feature maps can be formulated as follows: 432

 𝑀 =
(𝑁−𝐹)

𝑆
 + 1 (10) 433

where 𝑁 refers to the dimensions of the input feature maps, 𝐹 refers to the dimensions of the filters 434

or the receptive field, 𝑀 refers to the dimensions of output feature maps, and 𝑆 stands for the 435

stride length. Padding is typically applied during the convolution operations to ensure the input and 436

output feature map have the same dimensions. The amount of padding depends on the size of the 437

kernel. Equation 17 is used for determining the number of rows and columns for padding. 438

 𝑃 = (𝐹 − 1)/2 (11) 439

Here 𝑃 is the amount of padding and 𝐹 refers to the dimension of the kernels. Several criteria are 440

considered for comparing the models. However, in most of the cases, the number of network 441

parameters and the total amount of memory are considered. The number of parameters (𝑃𝑎𝑟𝑚𝑙) of 442

𝑙𝑡ℎ layer is the calculated based on the following equation: 443

 𝑃𝑎𝑟𝑚𝑙 = (𝐹 × 𝐹 × 𝐹𝑀𝑙−1) × 𝐹𝑀𝑙 (12) 444

Electronics 2018, 7, x FOR PEER REVIEW 16 of 74

If bias is added with the weights, then the above equation can be written as follows: 445

 𝑃𝑎𝑟𝑚𝑙 = (𝐹 × (𝐹 + 1) × 𝐹𝑀𝑙−1) × 𝐹𝑀𝑙 (13) 446

Here the total number of parameters of 𝑙𝑡ℎ lathe yer can be represented with 𝑃𝑙 , 𝐹𝑀𝑙 is for the 447

total number of output feature maps, and 𝐹𝑀𝑙−1 is the total number of input feature maps or 448

channels. For example, let’s assume the 𝑙𝑡ℎ layer has 𝐹𝑀𝑙−1 = 32 input features maps, 𝐹𝑀𝑙 = 64 449

output feature maps, and the filter size is 𝐹 = 5. In this case, the total number of parameters with 450

bias for this layera a is 𝑃𝑎𝑟𝑚𝑙 = (5 × 5 × 33) × 64 = 528,000. Thus, the amount of memory (𝑀𝑒𝑚𝑙) 451

needs for the operations of the 𝑙𝑡ℎ layer can be expressed as 452

 𝑀𝑒𝑚𝑙 = (𝑁𝑙 × 𝑁𝑙 × 𝐹𝑀𝑙) (14) 453

3.2. Popular CNN architectures 454

In this section, several popular state-of-the-art CNN architectures will be examined. In general, 455

most deep convolutional neural networks are made of a key set of basic layers, including the 456

convolution layer, the sub-sampling layer, dense layers, and the soft-max layer. The architectures 457

typically consist of stacks of several convolutional layers and max-pooling layers followed by a fully 458

connected and SoftMax layers at the end. Some examples of such models are LeNet [49], AlexNet [7], 459

VGG Net [9], NiN [60] and all convolutional (All Conv) [61]. Other alternatives and more efficient 460

advanced architectures have been proposed including GoogLeNet with Inception units [10, 64], 461

Residual Networks [11], DenseNet [62], and FractalNet [63]. The basic building components 462

(convolution and pooling) are almost the same across these architectures. However, some 463

topological differences are observed in the modern deep learning architectures. Of the many DCNN 464

architectures, AlexNet [7], VGG [9], GoogLeNet [10, 64], Dense CNN [62] and FractalNet [63] are 465

generally considered the most popular architectures because of their state-of-the-art performance on 466

different benchmarks for object recognition tasks. Among all of these structures, some of the 467

architectures are designed especially for large-scale data analysis (such as GoogLeNet and ResNet), 468

whereas the VGG network is considered a general architecture. Some of the architectures are dense 469

in terms of connectivity, such as DenseNet [62]. Fractal Network is an alternative of ResNet. 470

 471

a) LeNet (1998) 472

Although LeNet was proposed in the 1990s, limited computation capability and memory 473

capacity made the algorithm difficult to implement until about 2010 [49]. LeCun et al. [49], however, 474

proposed CNNs with the back-propagation algorithm and experimented on handwritten digit 475

dataset to achieve state-of-the-art accuracy. The proposed CNN architecture is well-known as 476

LeNet-5 [49]. The basic configuration of LeNet-5 is as follows (see Figure 11): 2 convolutions (conv) 477

layers, 2 sub-sampling layers, 2 fully connected layers, and an output layer with the Gaussian 478

connection. The total number of weights and Multiply and Accumulates (MACs) are 431k and 2.3M, 479

respectively. 480

As computational hardware started improving in capability, CNNs stated becoming popular as an 481

effective learning approach in the computer vision and machine learning communities. 482

Electronics 2018, 7, x FOR PEER REVIEW 17 of 74

 483

Figure 11. The architecture of LeNet. 484

 485

b) AlexNet (2012) 486

In 2012, Alex Krizhevesky and others proposed a deeper and wider CNN model compared to 487

LeNet and won the most difficult ImageNet challenge for visual object recognition called the 488

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [7]. AlexNet achieved 489

state-of-the-art recognition accuracy against all the traditional machine learning and computer 490

vision approaches. It was a significant breakthrough in the field of machine learning and computer 491

vision for visual recognition and classification tasks and is the point in history where interest in deep 492

learning increased rapidly. 493

The architecture of AlexNet is shown in Figure 12. The first convolutional layer performs 494

convolution and max-pooling with Local Response Normalization (LRN) where 96 different 495

receptive filters are used that are 11×11 in size. The max pooling operations are performed with 3×3 496

filters with a stride size of 2. The same operations are performed in the second layer with 5×5 497

filters. 3×3 filters are used in the third, fourth, and fifth convolutional layers with 384, 384, and 296 498

feature maps respectively. Two fully connected (FC) layers are used with dropout followed by a 499

Softmax layer at the end. Two networks with similar structure and the same number of feature maps 500

are trained in parallel for this model. Two new concepts, Local Response Normalization (LRN) and 501

dropout, are introduced in this network. LRN can be applied in two different ways: first applying on 502

single channel or feature maps, where an N×N patch is selected from the same feature map and 503

normalized based on the neighborhood values. Second, LRN can be applied across the channels or 504

feature maps (neighborhood along the third dimension but a single pixel or location). 505

 506

Figure 12. The architecture of AlexNet: Convolution, max-pooling, LRN and fully connected (FC) layer. 507

 508

Electronics 2018, 7, x FOR PEER REVIEW 18 of 74

AlexNet has 3 convolution layers and 2 fully connected layers. When processing the ImageNet 509

dataset, the total number of parameters for AlexNet can be calculated as follows for the first layer: 510

input samples are 224×224×3, filters (kernels or masks) or a receptive field that has a size 11, the 511

stride is 4, and the output of the first convolution layer is 55×55×96. According to the equations in 512

section 3.1.4, we can calculate that this first layer has 290400 (55×55×96) neurons and 364 (11 ×11×3 = 513

363 + 1 bias) weights. The parameters for the first convolution layer are 290400×364 = 105,705,600. 514

Table II shows the number of parameters for each layer in millions. The total number of weights and 515

MACs for the whole network are 61M and 724M, respectively. 516

 517

c) ZFNet / Clarifai (2013) 518

In 2013, Matthew Zeiler and Rob Fergue won the 2013 ILSVRC with a CNN architecture which 519

was an extension of AlexNet. The network was called ZFNet [8], after the authors’ names. As CNNs 520

are expensive computationally, an optimum use of parameters is needed from a model complexity 521

point of view. The ZFNet architecture is an improvement of AlexNet, designed by tweaking the 522

network parameters of the latter. ZFNet uses 7x7 kernels instead of 11x11 kernels to significantly 523

reduce the number of weights. This reduces the number of network parameters dramatically and 524

improves overall recognition accuracy. 525

d) Network in Network (NiN) 526

This model is slightly different from the previous models where a couple of new concepts are 527

introduced [60]. The first concept is to use multilayer perception convolution, where convolutions 528

are performed with 1×1 filters that help to add more nonlinearity in the models. This helps to 529

increase the depth of the network, which can then be regularized with dropout. This concept is used 530

often in the bottleneck layer of a deep learning model. 531

 532

The second concept is to use Global Average Pooling (GAP) as an alternative of fully connected 533

layers. This helps to reduce the number of network parameters significantly. GAP changes the 534

network structure significantly. By applying GAP on a large feature map, we can generate a final 535

low dimensional feature vector without reducing the dimension of the feature maps. 536

 537

e) VGGNET (2014) 538

The Visual Geometry Group (VGG), was the runner-up of the 2014 ILSVRC [9]. The main 539

contribution of this work is that it shows that the depth of a network is a critical component to 540

achieve better recognition or classification accuracy in CNNs. The VGG architecture consists of two 541

convolutional layers both of which use the ReLU activation function. Following the activation 542

function is a single max pooling layer and several fully connected layers also using a ReLU 543

activation function. The final layer of the model is a Softmax layer for classification. In VGG-E [9] 544

the convolution filter size is changed to a 3x3 filter with a stride of 2. Three VGG-E [9] models, 545

VGG-11, VGG-16, and VGG-19; were proposed the models had 11,16, and 19 layers respectively. 546

Electronics 2018, 7, x FOR PEER REVIEW 19 of 74

 547

Figure 13. The basic building block of VGG network: Convolution (Conv) and FC for fully connected layers 548

 549

 All versions of the VGG-E models ended the same with three fully connected layers. However, the 550

number of convolution layers varied VGG-11 contained 8 convolution layers, VGG-16 had 13 551

convolution layers, and VGG-19 had 16 convolution layers. VGG-19, the most computational 552

expensive model, contained 138Mweights and had 15.5M MACs. 553

 554

f) GoogLeNet (2014) 555

GoogLeNet, the winner of ILSVRC 2014[10], was a model proposed by Christian Szegedy of 556

Google with the objective of reducing computation complexity compared to the traditional CNN. 557

The proposed method was to incorporate “Inception Layers” that had variable receptive fields, 558

which were created by different kernel sizes. These receptive fields created operations that captured 559

sparse correlation patterns in the new feature map stack. 560

 561

 562

Figure 14. Inception layer: naive version 563

 564

The initial concept of the Inception layer can be seen in Figure 14. GoogLeNet improved the 565

state of the art recognition accuracy using a stack of Inception layers seen in Figure 15. The 566

difference between the naïve inception layer and final Inception Layer was the addition of 1x1 567

convolution kernels. These kernels allowed for dimensionality reduction before computationally 568

expensive layers. GoogLeNet consisted of 22 layers in total, which was far greater than any network 569

before it. However, the number of network parameters GoogLeNet used was much lower than its 570

predecessor AlexNet or VGG. GoogLeNet had 7M network parameters when AlexNet had 60M and 571

VGG-19 138M. The computations for GoogLeNet also were 1.53G MACs far lower than that of 572

AlexNet or VGG. 573

 574

Electronics 2018, 7, x FOR PEER REVIEW 20 of 74

 575

Figure 15. Inception layer with dimension reduction 576

 577

g) Residual Network (ResNet in 2015) 578

The winner of ILSVRC 2015 was the Residual Network architecture, ResNet [11]. Resnet was 579

developed by Kaiming He with the intent of designing ultra-deep networks that did not suffer from 580

the vanishing gradient problem that predecessors had. ResNet is developed with many different 581

numbers of layers; 34, 50,101, 152, and even 1202. The popular ResNet50 contained 49 convolution 582

layers and 1 fully connected layer at the end of the network. The total number of weights and MACs 583

for the whole network are 25.5M and 3.9M respectively. 584

 585

Figure 16. Basic diagram of the Residual block. 586

The basic block diagram of the ResNet architecture is shown in Figure 16. ResNet is a 587

traditional feedforward network with a residual connection. The output of a residual layer can be 588

defined based on the outputs of (𝑙 − 1)𝑡ℎ which comes from the previous layer defined as 𝑥𝑙−1 . 589

ℱ(𝑥𝑙−1) is the output after performing various operations (e.g. convolution with different size of 590

filters, Batch Normalization (BN) followed by an activation function such as a ReLU on 𝑥𝑙−1). The 591

final output of residualthe unit is 𝑥𝑙 which can be defined with the following equation: 592

 𝑥𝑙 = ℱ(𝑥𝑙−1) + 𝑥𝑙−1 (15) 593

The residual network consists of several basic residual blocks. However, the operations in the 594

residual block can be varied depending on the different architecture of residual networks [11]. The 595

wider version of the residual network was proposed by Zagoruvko el at. In 2016 [66], another 596

improved residual network approach known as aggregated residual transformation [67]. Recently, 597

some other variants of residual models have been introduced based on the Residual Network 598

Electronics 2018, 7, x FOR PEER REVIEW 21 of 74

architecture [68, 69, and 70]. Furthermore, there are several advanced architectures that are 599

combined with Inception and Residual units. The basic conceptual diagram of Inception-Residual 600

unit is shown in the following Figure 17. 601

 602

 603

Figure 17. The basic block diagram for Inception Residual unit 604

 605

Mathematically, this concept can be represented as 606

 𝑥𝑙 = ℱ(𝑥𝑙−1
3×3 ⨀ 𝑥𝑙−1

5×5) + 𝑥𝑙−1 (16) 607

where the symbol ⨀ refers the concentration operations between two outputs from the 3×3 and 5×5 608

filters. After that, the convolution operation is performed with 1×1 filters. Finally, the outputs are 609

added with the inputs of this block of 𝑥𝑙−1. The concept of Inception block with residual connections 610

is introduced in the Inception-v4 architecture [65]. The improved version of the Inception-Residual 611

network known as PolyNet was recently proposed [70, 290]. 612

 613

h) Densely Connected Network (DenseNet) 614

DenseNet developed by Gao Huang and others in 2017[62], which consists of densely 615

connected CNN layers, the outputs of each layer are connected with all successor layers in a dense 616

block [62]. Therefore, it is formed with dense connectivity between the layers rewarding it the name 617

“DenseNet”. This concept is efficient for feature reuse, which dramatically reduces network 618

parameters. DenseNet consists of several dense blocks and transition blocks, which are placed 619

between two adjacent dense blocks. The conceptual diagram of a dense block is shown in Figure 18. 620

 621

Figure 18. A 4-layer Dense block with a growth rate of 𝑘 = 3. 622

 623

Electronics 2018, 7, x FOR PEER REVIEW 22 of 74

Each layer takes all the preceding feature maps as input. When deconstructing Figure 19, the 𝑙𝑡ℎ 624

layer received all the feature maps from previous layers of 𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1 as input: 625

 𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1]) (17) 626

where [𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1] are the concatenated features for layers 0, ⋯ ⋯ , 𝑙 − 1 and 𝐻𝑙(∙) is 627

considered as a single tensor. It performs three different consecutive operations: 628

Batch-Normalization (BN) [110], followed by a ReLU [58] and a 3 × 3 convolution operation. In the 629

transaction block, 1 × 1 convolutional operations are performed with BN followed by a 2 × 2 630

average pooling layer. This new model shows state-of-the-art accuracy with a reasonable number 631

of network parameters for object recognitions tasks. 632

 633

i) FractalNet (2016) 634

This architecture is an advanced and alternative architecture of ResNet model, which is efficient 635

for designing large models with nominal depth, but shorter paths for the propagation of gradient 636

during training [63]. This concept is based on drop-path which is another regularization approach 637

for making large networks. As a result, this concept helps to enforce speed versus accuracy tradeoffs. 638

The basic block diagram of FractalNet is shown in Figure 19. 639

 640

Figure 19. The detailed FractalNet module on the left and FractalNet on the right. 641

 642

3.3. CapsuleNet 643

CNNs are an effective methodology for detecting features of an object and achieving good 644

recognition performance compared to state of the art handcrafted feature detectors. There are limits 645

to CNNs, which are that it does not take into account special relationships, perspective, size, and 646

orientation, of features. For example: if you have a face image, it does not matter the placement of 647

different components (nose, eye, mouth etc.) of the faces neurons of a CNN will wrongly active and 648

recognition as a face without considering special relationships (orientation, size). Now, imagine a 649

neuron which contains the likelihood with properties of features (perspective, orientation, size etc.). 650

Electronics 2018, 7, x FOR PEER REVIEW 23 of 74

This special type of neurons, capsules, can detect face efficiently with distinct information. The 651

capsule network consists of several layers of capsule nodes. The first version of capsule network 652

(CapsNet) consisted of three layers of capsule nodes in an encoding unit. 653

 654

Figure 20. A CapsNet encoding unit with 3 layers. The instance of each class is represented with a vector of a 655

capsule in DigitCaps layer that is used for calculating classification loss. The weights between the primary 656

capsule layer and DigitCaps layer are represented with 𝑊𝑖𝑗 . 657

 658

This architecture for MNIST (28×28) images, the 256 9×9 kernels are applied with a stride 1, so 659

the output is (28 − 9 + 1 = 20) with 256 feature maps. Then the outputs are fed to the primary 660

capsule layer which is a modified convolution layer that generates an 8-D vector instead of a scalar. 661

In the first convolutional layer, 9×9 kernels are applied with stride 2, the output dimension is 662

((20 − 9)/2 + 1 = 6). The primary capsules are used 8×32 kernels which generates 32×8×6×6 (32 663

groups for 8 neurons with 6×6 size). 664

 665

 666

Figure 21. The decoding unit where a digit is reconstructed from DigitCaps layer representation. The Euclidean 667

distance is used minimizing the error between the input sample and the reconstructed sample from the sigmoid 668

layer. True labels are used for reconstruction target during training. 669

 670

The entire encoding and decoding processes of CapsNet is shown in Figures 20 and 21, 671

respectively. We used a max-pooling layer in CNN often that can handle translation variance. Even 672

if a feature moves if it is still under a max pooling window it can be detected. As the capsule contains 673

Electronics 2018, 7, x FOR PEER REVIEW 24 of 74

the weighted sum of features from the previous layer, therefore this approach is capable of detecting 674

overlapped features which is important for segmentation and detection tasks. 675

In the traditional CNN, a single cost function is used to evaluate the overall error which propagates 676

backward during training. However, in this case, if the weight between two neurons is zero, then the 677

activation of a neuron is not propagated from that neuron. The signal is routed with respect to the 678

feature parameters rather than a one size fits all cost function in iterative dynamic routing with the 679

agreement. For details about this architecture, please see [293]. This new CNN architecture provides 680

state-of-the-art accuracy for handwritten digit recognition on MNIST. However, from an application 681

point of view, this architecture is more suitable for segmentation and detection tasks compare to 682

classification tasks. 683

 684

3.4. Comparison of different models 685

The comparison of recently proposed models based on error, network parameters, and a maximum 686

number of connections are given in Table 2. 687

 688

3.5. Other DNN models 689

There are many other network architectures such as fast region based CNN [71] and Xception 690

[72] which are popular in the computer vision community. In 2015 a new model was proposed using 691

recurrent convolution layers named Recurrent Convolution Neural Network or RCNN [73]. The 692

improved version of this network is a combination of the two most popular architectures in the 693

Inception network and Recurrent Convolutional Network, Inception Convolutional Recurrent 694

Neural Networks (IRCNN) [74]. IRCNN provided better accuracy compared RCNN and inception 695

network with almost identical network parameters. Visual Phase Guided CNN (ViP CNN) is 696

proposed with phase guided message passing a structure (PMPS) to build connections between 697

relational components, which show better speed up and recognition accuracy [75]. Look up based 698

CNN [76] is a fast, compact, and accurate model enabling efficient inference. In 2016 the architecture 699

known as a fully convolutional network (FCN) was proposed for segmentation tasks where it is now 700

commonly used. Other recently proposed CNN models include a deep network with stochastic 701

depth, deeply-supervised networks, and ladder network [79, 80, and 81]. 702

 703

Table 2. The top-5% errors with computational parameters and macs for different deep CNN 704

models. 705

Methods LeNet-5[

48]

AlexNet

[7]

OverFeat

(fast)[8]

VGG-16[

9]

GoogLeNet

[10]

ResNet-50(

v1)[11]

Top-5 errors n/a 16.4 14.2 7.4 6.7 5.3

Input size 28x28 227x227 231x231 224x224 224x224 224x224

Number of Conv Layers 2 5 5 16 21 50

Filter Size 5 3,5,11 3,7 3 1,3,5,7 1,3,7

Number of Feature Maps 1,6 3-256 3-1024 3-512 3-1024 3-1024

Stride 1 1,4 1,4 1 1,2 1,2

Electronics 2018, 7, x FOR PEER REVIEW 25 of 74

Number of Weights 26k 2.3M 16M 14.7M 6.0M 23.5M

Number of MACs 1.9M 666M 2.67G 15.3G 1.43G 3.86G

Number of FC layers 2 3 3 3 1 1

Number of Weights 406k 58.6M 130M 124M 1M 1M

Number of MACs 405k 58.6M 130M 124M 1M 1M

Total Weights 431k 61M 146M 138M 7M 25.5M

Total MACs 2.3M 724M 2.8G 15.5G 1.43G 3.9G

 706

3.6. Applications of CNNs 707

a) CNNs for solving a graph problem 708

Learning graph data structures is a common problem with various applications in data mining 709

and machine learning tasks. DL techniques have made a bridge in between the machine learning and 710

data mining groups. An efficient CNN for arbitrary graph processing was proposed in 2016 [91]. 711

b) Image processing and computer vision 712

Most of the models, we have discussed above are applied to different application domains 713

including image classification [7-11], detection, segmentation, localization, captioning, video 714

classification and many more. There is a good survey on DL approaches for image processing and 715

computer vision related tasks including image classification, segmentation, and detection [92]. For 716

examples, single image super-resolution using CNN method [93], image denoising using 717

block-matching CNN [94], photo aesthetic assessment using A-Lamp (Adaptive Layout-Aware 718

Multi-Patch Deep CNN) [95], DCNN for hyperspectral imaging segmentation [96], image 719

registration [97], fast artistic style transfer [98], image background segmentation using DCNN [99], 720

handwritten character recognition [291], optical image classification [296], crop mapping using 721

high-resolution satellite imagery [314], object recognition with cellular simultaneous recurrent 722

networks and CNN [297]. The DL approaches are massively applied for human activity recognition 723

tasks and achieved state-of-the-art performance compared to exiting approaches [308~313]. 724

c) Speech processing 725

CNN methods are also applied for speech processing such as speech enhancement using 726

multimodal deep CNN [100], and audio tagging using Convolutional Gated Recurrent Network 727

(CGRN) [101]. 728

d) CNN for medical imaging 729

Litjens et al provided a good survey on DL for medical image processing including 730

classification, detection, and segmentation tasks [102]. Several popular DL methods were developed 731

for medical image analysis. For instance, MDNet was developed for medical diagnosis using images 732

and corresponding text description [103], cardiac Segmentation using short-Axis MRI [104], 733

segmentation of optic disc and retinal vasculature using CNN [105], brain tumor segmentation using 734

random forests with features learned with fully convolutional neural network (FCNN) [106]. 735

 736

 737

http://arxiv.org/abs/1705.05084v1

Electronics 2018, 7, x FOR PEER REVIEW 26 of 74

4. Advanced Training Techniques 738

The advanced training techniques or components which need to be considered carefully for efficient 739

training of DL approach. There are different advanced techniques to apply for training a deep learning model 740

better. The techniques including input pre-processing, a better initialization method, batch normalization, 741

alternative convolutional approaches, advanced activation functions, alternative pooling techniques, network 742

regularization approaches, and better optimization method for training. The following sections are discussed 743

on individual advanced training techniques individually. 744

4.1. Preparing dataset 745

Presently different approaches have been applied before feeding the data to the network. The different 746

operations to prepare a dataset are as follows; sample rescaling, mean subtraction, random cropping, flipping 747

data with respect to the horizon or vertical axis, color jittering, PCA/ZCA whitening and many more. 748

4.2. Network initialization 749

The initialization of deep networks has a big impact on the overall recognition accuracy [53, 54]. 750

Previously, most of the networks have been initialized with random weights. For complex tasks with high 751

dimensionality data training, a DNN becomes difficult because weights should not be symmetrical due to the 752

back-propagation process. Therefore, effective initialization techniques are important for training this type of 753

DNN. However, there are many effective techniques that have been proposed during the last few years. LeCun 754

[107] and Bengio [108] proposed a simple but effective approach. In their method, the weights are scaled by the 755

inverse of the square root of the number of input neurons of the layer, which can be stated 1 √𝑁𝑙⁄ , where 𝑁𝑙 is 756

the number of input neurons of 𝑙𝑡ℎ layer. The deep network initialization approach of Xavier has been 757

proposed based on the symmetric activation function with respect to the hypothesis of linearity. This approach 758

is known as “Xavier” initialization approach. Recently, Dmytro M. et al. [85] proposed Layer-sequential 759

unit-invariance (LSUV), which is a data-driven initialization approach and provides good recognition 760

accuracy on several benchmark datasets including ImageNet. One of the popular initialization approaches has 761

proposed by He et al. in 2015 [109]. The distribution of the weights of lth lathe yer will be normala distribution 762

with mean zero and variance
2

𝑛𝑙
 which can be expressed as follows. 763

 𝑤𝑙~𝒩 (0,
2

𝑛𝑙
) (18) 764

4.3. Batch Normalization 765

Batch normalization helps accelerate DL processes by reducing internal covariance by shifting input 766

samples. What that means is the inputs are linearly transformed to have zero mean and unit variance. For 767

whitened inputs, the network converges faster and shows better regularization during training, which has an 768

impact on the overall accuracy. Since the data whitening is performed outside of the network, there is no 769

impact of whitening during training of the model. In the case of deep recurrent neural networks, the inputs of 770

the nth layer are the combination of n-1th layer, which is not raw feature inputs. As the training progresses the 771

effect of normalization or whitening reduces respectively, which causes the vanishing gradient problem. This 772

can slow down the entire training process and cause saturation. To better training process, batch normalization 773

Electronics 2018, 7, x FOR PEER REVIEW 27 of 74

is then applied to the internal layers of the deep neural network. This approach ensures faster convergence in 774

theory and during an experiment on benchmarks. In batch normalization, the features of a layer are 775

independently normalized with mean zero and variance one [110,111]. The algorithm of Batch normalization is 776

given in Algorithm I. 777

 778

Algorithm I: Batch Normalization (BN)

Inputs: Values of x over a mini-batch: 𝔅 = {𝑥1,2,3……,𝑚}

Outputs: {yi = BNγ,β(xi)}

μ𝔅 ←
1

m
∑ xi

m
i=1 // mini-batch mean

𝜎𝔅
2 ←

1

𝑚
∑ (𝑥𝑖 − 𝜇𝔅)2𝑚

𝑖=1 // mini-batch variance

𝑥̂𝑖 ←
𝑥𝑖−𝜇𝔅

√𝜎𝔅
2+∈

 // normalize

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽 ≡ BNγ,β(xi) // Scaling and shifting

 779

The parameters 𝛾 and 𝛽 are used for the scale and shift factor for the normalization values, so 780

normalization does not only depend on layer values. If you use normalization techniques, the following 781

criterions are recommended to consider during implementation: 782

 Increase the learning rate 783

 Dropout (batch normalization does the same job) 784

 L2 weight regularization 785

 Accelerating the learning rate decay 786

 Remove Local Response Normalization (LRN) (if you used it) 787

 Shuffle training sample more thoroughly 788

 Useless distortion of images in the training set 789

 790

4.4. Alternative Convolutional methods 791

Alternative and computationally efficient convolutional techniques that reduce the cost of multiplications by a 792

factor of 2.5 have been proposed [112]. 793

4.5. Activation function 794

The traditional Sigmoid and Tanh activation functions have been used for implementing neural network 795

approaches in the past few decades. The graphical and mathematical representation is shown in Figure 22. 796

 797

 798

 (a) (b) 799

Figure 22. Activation function: (a) sigmoid function, and (b) Hyperbolic transient. 800

 801

Sigmoid: 802

Electronics 2018, 7, x FOR PEER REVIEW 28 of 74

 𝑦 =
1

1+𝑒𝑥
 (19) 803

TanH: 804

 𝑦 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 (20) 805

The popular activation function called Rectified Linear Unit (ReLU) proposed in 2010 solves the vanishing 806

gradient problem for training deep learning approaches. The basic concept is simple to keep all the values 807

above zero and sets all negative values to zero that is shown in Figure 23 [58]. The ReLU activation was first 808

used in AlexNet, which was a breakthrough deep CNN proposed in 2012 by Hinton [7]. 809

 810

 811

Figure 23. Pictorial representation of Rectified Linear Unit (ReLU). 812

 813

Mathematically we can express ReLU as follows: 814

 𝑦 = max (0, 𝑥) (21) 815

As the activation function plays a crucial role in learning the weights for deep architectures. Many researchers 816

focus here because there is much that can be done in this area. Meanwhile, there are several improved 817

versions of ReLU that have been proposed, which provide even better accuracy compared to the ReLU 818

activation function. An efficient improved version of ReLU activation function is called the parametric ReLU 819

(PReLU) proposed by Kaiming He et al. in 2015. The Figure 25 shows the pictorial representation of Leaky 820

ReLU and ELU activation functions. This technique can automatically learn the parameters adaptively and 821

improve the accuracy at negligible extra computing cost [109]. 822

 823

 824

 (a) (b) 825

Figure 24. Diagram for (a) Leaky ReLU, and (b) Exponential Linear Unit (ELU). 826

 827

Leaky ReLU: 828

 𝑦 = max (𝑎𝑥, 𝑥) (22) 829

Electronics 2018, 7, x FOR PEER REVIEW 29 of 74

Here 𝑎 is a constant, the value is 0.1. 830

 831

ELU: 832

 𝑦 = {
𝑥, 𝑥 ≥ 0
𝑎(𝑒𝑥 − 1), 𝑥 < 0

 833

(23) 834

The recent proposal of the Exponential Linear Unit activation function, which allowed for a faster and 835

more accurate version of the DCNN structure [113]. Furthermore, tuning the negative part of activation 836

function creates the leaky ReLU with Multiple Exponent Linear Unit (MELU) that are proposed recently [114]. S 837

shape Rectified Linear Activation units are proposed in 2015 [115]. A survey on modern activation functions 838

was conducted in 2015 [116]. 839

4.6. Sub-sampling layer or pooling layer 840

At present, two different techniques have been used for the implementation of deep networks in the 841

sub-sampling or pooling layer: average and max-pooling. The concept of average pooling layer was used for the 842

first time in LeNet [49] and AlexNet used Max-pooling layers instead of in 2012[7]. The conceptual diagram for 843

max pooling and average pooling operation are shown in Figure 25. The concept of special pyramid pooling has 844

been proposed by He et al. in 2014 which is shown in Figure 26 [117]. 845

 846

 847

Figure 25. Average and max-pooling operations. 848

 849

The multi-scale pyramid pooling was proposed in 2015 [118]. In 2015, Benjamin G. proposed a new 850

architecture with Fractional max pooling, which provides state-of-the-art classification accuracy for CIFAR-10 851

and CIFAR-100 datasets. This structure generalizes the network by considering two important properties for a 852

sub-sampling layer or pooling layer. First, the non-overlapped max-pooling layer limits the generalize of the 853

deep structure of the network, this paper proposed a network with 3x3 overlapped max-pooling with 2-stride 854

instead of 22 as sub-sampling layer [119]. Another paper which has conducted research on different types of 855

pooling approaches including mixed, gated, and tree as a generalization of pooling functions [120]. 856

 857

Electronics 2018, 7, x FOR PEER REVIEW 30 of 74

 858

 859

Figure 26. Spatial pyramid pooling. 860

4.7. Regularization approaches for DL 861

There are different regularization approaches that have been proposed in the past few years for deep 862

CNN. The simplest but efficient approach called “dropout” was proposed by Hinton in 2012 [121]. In Dropout, 863

a randomly selected subset of activations is set to zero within a layer [122]. The dropout concept is shown in 864

Figure 27. 865

 866

 867

Figure 27. Pictorial representation of the concept Dropout. 868

 869

Another regularization approach is called Drop Connect. In this case, instead of dropping the activation, the 870

subset of weights within the network layers are set to zero. As a result, each layer receives the randomly 871

selected subset of units from the immediate previous layer [123]. Some other regularization approaches are 872

proposed as well, details in [124]. 873

4.8. Optimization methods for DL 874

There are different optimization methods such as SGD, Adagrad, AdaDelta, RMSprop, and Adam [125]. 875

Some activation functions have been improved upon such as in the case of SGD where it was proposed with an 876

added variable momentum, which improved training and testing accuracy. In the case of Adagrad, the main 877

contribution was to calculate adaptive learning rate during training. For this method, the summation of the 878

magnitude of the gradient is considered to calculate the adaptive learning rate. In the case with a large number 879

of epochs, the summation of the magnitude of the gradient becomes large. The result of this is the learning rate 880

decreases radically, which causes the gradient to approach zero quickly. The main drawback of this approach is 881

that it causes problems during training. Later, RMSprop was proposed considering only the magnitude of the 882

gradient of the immediately previous iteration, which prevents the problems with Adagrad and provides better 883

performance in some cases. The Adam optimization approach is proposed based on the momentum and the 884

Electronics 2018, 7, x FOR PEER REVIEW 31 of 74

magnitude of the gradient for calculating adaptive learning rate similar RMSprop. Adam has improved overall 885

accuracy and helps for efficient training with the better convergence of deep learning algorithms [126]. The 886

improved version of the Adam optimization approach has been proposed recently, which is called EVE. EVE 887

provides even better performance with fast and accurate convergence [127]. 888

5. Recurrent Neural Network (RNN) 889

5.1. Introduction 890

Human thoughts have persistence; Human don’t throw a thing away and start their thinking 891

from scratch in a second. As you are reading this article, you understand each word or sentence 892

based on the understanding of previous words or sentences. The traditional neural network 893

approaches including DNNs and CNNs cannot deal with this type of problem. The standard Neural 894

Networks and CNN are incapable due to the following reasons. First, these approaches only handle 895

a fixed-size vector as input (e.g., an image or video frame) and produce a fixed-size vector as output 896

(e.g., probabilities of different classes). Second, those models operate with a fixed number of 897

computational steps (e.g. the number of layers in the model). The RNNs are unique as they allow 898

operation over a sequence of vectors over time. The Hopfield Newark introduced this concept in 899

1982 but the idea was described shortly in 1974 [128]. The pictorial representation is shown in Figure 900

28. 901

 902

Figure 28. The structure of basic RNN with a loop. 903

Different versions of RNN have been proposed in Jordan and Elman [129, 130]. In the Elman, 904

architecture uses the output from hidden layers as inputs alongside the normal inputs of hidden 905

layers [129]. On the other hand, the outputs from the output unit are used as inputs with the inputs 906

of hidden layer in Jordan network [130]. Jordan, in contrast, uses inputs from the outputs of the 907

output unit with the inputs to the hidden layer. Mathematically expressed as: 908

Elman network [129]: 909

 ht = σh(whxt + uhht−1 + bh) (24) 910

 yt = σy(wyht + by) (25) 911

Jordan network [130] 912

 ht = σh(whxt + uhyt−1 + bh) (26) 913

Electronics 2018, 7, x FOR PEER REVIEW 32 of 74

 yt = σy(wyht + by) (27) 914

where xt is a vector of inputs, ht are hidden layer vectors, yt are the output vectors, w and u are 915

weight matrices and b is the bias vector. 916

A loop allows information to be passed from one step of the network to the next. A recurrent 917

neural network can be thought of as multiple copies of the same network, each network passing a 918

message to a successor. The diagram below shows what happens if we unroll the loop. 919

 920

 Figure 29. An unrolled RNNs. 921

The main problem with RNN approaches is that there exists the vanishing gradient problem. 922

For the first time, this problem is solved by Hochreiter el at. in 1992 [131]. A deep RNN consisting of 923

1000 subsequent layers was implemented and evaluated to solve deep learning tasks in 1993 [132]. 924

There are several solutions that have been proposed for solving the vanishing gradient problem of 925

RNN approaches in the past few decades. Two possible effective solutions to this problem are first to 926

clip the gradient and scale the gradient if the norm is too large, and secondly, create a better RNN 927

model. One of the better models was introduced by Felix A. el at. in 2000 named Long Short-Term 928

Memory (LSTM) [133,134]. From the LSTM there have been different advanced approaches 929

proposed in the last few years which are explained in the following sections. 930

The RNN approaches allowed sequences in the input, the output, or in the most general case 931

both. For example, DL for text mining, building deep learning models on textual data requires 932

representation of the basic text unit and word. Neural network structures that can hierarchically 933

capture the sequential nature of the text. In most of these cases, RNNs or Recursive Neural Networks 934

are used for language understanding [292]. In the language modeling, it tries to predict the next 935

word or set of words or some cases sentences based on the previous ones [135]. RNNs are networks 936

with loops in them, allowing information to persist. Another example: the RNNs are able to connect 937

previous information to the present task: using previous video frames, understanding the present 938

and trying to generate future frames as well [142]. 939

 940

Figure 30. Diagram for Long Short-Term Memory (LSTM). 941

Electronics 2018, 7, x FOR PEER REVIEW 33 of 74

5.2. Long Short-Term Memory (LSTM) 942

The key idea of LSTMs is the cell state, the horizontal line running through the top of the Figure 943

31. LSTMs remove or add information to the cell state called gates: an input gate(it), forget gate (ft) 944

and output gate(ot) can be defined as: 945

 ft = σ(Wf. [ht−1, xt] + bf) (28) 946

 it = σ(Wi. [ht−1, xt] + bi) (29) 947

 C̃t = tanh(WC. [hC−1, xt] + bC) (30) 948

 Ct = ft ∗ Ct−1 + it ∗ C̃t (31) 949

 Ot = σ(WO. [ht−1, xt] + bO) (32) 950

 ht = Ot ∗ tanh(Ct) (33) 951

LSTM models are popular for temporal information processing. Most of the papers that include 952

LSTM models with some minor variance. Some of them are discussed in the following section. There 953

is a slightly modified version of the network with “peephole connections” by Gers and 954

Schimidhuber proposed in 2000 [133]. The concept of peepholes is included with almost all the gated 955

in this model. 956

 957

Figure 31. Diagram for Gated Recurrent Unit (GRU). 958

5.3. Gated Recurrent Unit (GRU) 959

GRU also came from LSTMs with slightly more variation by Cho, et al. in 2014 [36]. GRUs are 960

now popular in the community who are working with recurrent networks. The main reason for the 961

popularity is computation cost and simplicity of the model, which is shown in Figure 31. GRUs are 962

lighter versions of RNN approaches than standard LSTM in term of topology, computation cost and 963

complexity [136]. This technique combines the forget and input gates into a single “update gate” and 964

merges the cell state and hidden state along with some other changes. The simpler model of the GRU 965

Electronics 2018, 7, x FOR PEER REVIEW 34 of 74

has been growing increasingly popular. Mathematically the GRU can be expressed with the 966

following equations: 967

 zt = σ(Wz. [ht−1, xt]) (34) 968

 rt = σ(Wr. [ht−1, xt]) (35) 969

 h̃t = tanh(W. [rt ∗ ht−1, xt]) (36) 970

 ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (37) 971

The question is which one is the best? According to the different empirical studies, there is no 972

clear evidence of a winner. However, the GRU requires fewer network parameters, which makes the 973

model faster. On the other hand, LSTM provides better performance, if you have enough data and 974

computational power [137]. There is a variant LSTM named Deep LSTM [138]. Another variant that 975

is a bit different approach called “A clockwork RNN” [139]. There is an important empirical 976

evaluation on a different version of RNN approaches including LSTM by Greff, et al. in 2015 [140] 977

and the final conclusion was all the LSTM variants were all about the same [140]. Another empirical 978

evaluation is conducted on thousands of RNN architecture including LSTM, GRU and so on finding 979

some that worked better than LSTMs on certain tasks [141] 980

5.4. Convolutional LSTM (ConvLSTM) 981

The problem with fully connected (FC) LSTM and short FC-LSTM model is handling 982

spatiotemporal data and its usage of full connections in the input-to-state and state-to-state 983

transactions, where no spatial information has been encoded. The internal gates of ConvLSTM are 984

3D tensors, where the last two dimensions are spatial dimensions (rows and columns). The 985

ConvLSTM determines the future state of a certain cell in the grid with respect to inputs and the past 986

states of its local neighbors which can be achieved using convolution operations in the state-to-state 987

or inputs-to-states transition shown in Figure 32. 988

 989

Figure 32. Pictorial diagram for ConvLSTM [142]. 990

ConvLSTM is providing good performance for temporal data analysis with video datasets [142]. 991

Mathematically the ConvLSTM is expressed as follows where * represents the convolution operation 992

and ∘ denotes for Hadamard product: 993

Electronics 2018, 7, x FOR PEER REVIEW 35 of 74

 it = σ(wxi . 𝒳t + whi ∗ ℋt−1 + whi ∘ 𝒞t−1 + bi) (38) 994

 ft = σ(wxf . 𝒳t + whf ∗ ℋt−1 + whf ∘ 𝒞t−1 + bf) (39) 995

 Ct̃ = tanh(wxc . 𝒳t + whc ∗ ℋt−1 + bC) (40) 996

 Ct = ft ∘ Ct−1 + it ∗ Ct̃ 997

(41) 998

 ot = σ(wxo . 𝒳t + who ∗ ℋt−1 + who ∘ 𝒞t + bo (42) 999

 ht = ot ∘ tanh (Ct) (43) 1000

5.5. A variant of architectures of RNN with respective to the applications 1001

To incorporate the attention mechanism with RNNs, Word2Vec is used in most of the cases for 1002

a word or sentence encoding. Word2vec is a powerful word embedding technique with a 2-layer 1003

predictive NN from raw text inputs. This approach is used in the different fields of applications 1004

including unsupervised learning with words, relationship learning between the different words, the 1005

ability to abstract higher meaning of the words based on the similarity, sentence modeling, language 1006

understanding and many more. There are different other word embedding approaches that have 1007

been proposed in the past few years which are used to solve difficult tasks and provide 1008

state-of-the-art performance including machine translation and language modeling, Image and 1009

video captioning and time series data analysis [143,144, and 288]. 1010

 1011

 (a) (b) (c) 1012

 1013

 (d) (e) 1014

Figure 33. The different structure of RNN with respect to the applications: (a) One to one (b) Many to 1015

one (c) One to many (d) Many to many and (e) Many to many. 1016

Electronics 2018, 7, x FOR PEER REVIEW 36 of 74

From the application point of view, RNNs can solve different types of problems which need 1017

different architectures of RNNs shown in Figure 33. In Figure 33, Input vectors are represented as 1018

green, RNN states are represented with blue and orange represents the output vector. These 1019

structures can be described as: 1020

One to One: Standard mode for classification without RNN (e.g. image classification problem) 1021

shown Figure 33 (a) 1022

Many to One: Sequence of inputs and a single output (e.g. the sentiment analysis where inputs are a 1023

set of sentences or words and output is a positive or negative expression) shown Figure 33 (b) 1024

One to Many: Where a system takes an input and produces a sequence of outputs (Image 1025

Captioning problem: input is a single image and output is a set of words with context) shown Figure 1026

33 (c). 1027

Many to Many: sequences of inputs and outputs (e.g. machine translation: machine takes a sequence 1028

of words from English and translates to a sequence of words in French) shown Figure 33 (d). 1029

Many to Many: sequence to sequence learning (e.g. video classification problem in which we take 1030

video frames as input and wish to label each frame of the video shown Figure 33(e). 1031

 1032

5.6. Attention-based models with RNN 1033

Different attention based models have been proposed using RNN approaches. The first 1034

initiative for RNNs with the attention that automatically learns to describe the content of images is 1035

proposed by Xu, et al. in 2015 [145]. A dual state attention based RNN is proposed for effective time 1036

series prediction [146]. Another difficult task is Visual Question Answering (VQA) using GRUs 1037

where the inputs are an image and a natural language question about the image, the task is to 1038

provide an accurate natural language answer. The output is to be conditional on both image and 1039

textual inputs. A CNN is used to encode the image and an RNN is implemented to encode the 1040

sentence [147]. Another outstanding concept is released from Google called Pixel Recurrent Neural 1041

Networks (Pixel RNN). This approach provides state-of-the-art performance for image completion 1042

tasks [148]. The new model called residual RNN is proposed, where the RNN is introduced with an 1043

effective residual connection in a deep recurrent network [149]. 1044

5.7. RNN Applications 1045

RNNs including LSTM and GRU are applied to Tensor processing [150]. Natural Language 1046

Processing using RNN techniques including LSTMs and GRUs [151,152]. Convolutional RNNs 1047

based on multi-language identification system has been proposed in 2017 [153]. Time series data 1048

analysis using RNNs [154]. Recently, TimeNet was proposed based on pre-trained deep RNNs for 1049

time series classification (TSC) [155]. Speech and audio processing including LSTMs for large-scale 1050

acoustic modeling [156,157]. Sound event prediction using convolutional RNNs [158]. Audio 1051

tagging using Convolutional GRUs [159]. Early heart failure detection is proposed using RNNs 1052

[160]. 1053

RNNs are applied in tracking and monitoring: data-driven traffic forecasting systems are 1054

proposed using Graph Convolutional RNN (GCRNN) [161]. An LSTM based network traffic 1055

Electronics 2018, 7, x FOR PEER REVIEW 37 of 74

prediction system is proposed with a neural network-based model [162]. Bidirectional Deep RNN is 1056

applied for driver action prediction [163]. Vehicle Trajectory prediction using an RNN [164]. Action 1057

recognition using an RNN with a Bag-of-Words [165]. Collection anomaly detection using LSTMs 1058

for cybersecurity [166]. 1059

 1060

6. Auto-Encoder (AE) and Restricted Boltzmann Machine (RBM) 1061

This section will be discussing one of the unsupervised deep learning approaches the Auto Encoder [55] 1062

(e.g. variational auto-encoder (VAE) [167], denoising AE [59], sparse AE [168], stacked denoising AE [169], 1063

Split-Brain AE [170]). The applications of different AE are also discussed at the end of this chapter. 1064

6.1. Review of Auto-Encoder (AE) 1065

An AE is a deep neural network approach used for unsupervised feature learning with efficient data 1066

encoding and decoding. The main objective of autoencoder is to learn and represent (encoding) of the input 1067

data, typically for data dimensionality reduction, compression, fusion and many more. This autoencoder 1068

technique consists of two parts: the encoder and the decoder. In the encoding phase, the input samples are 1069

mapped usually in the lower dimensional features space with a constructive feature representation. This 1070

approach can be repeated until the desired feature dimensional space is reached. Whereas in the decoding 1071

phase, we regenerate actual features from lower dimensional features with reverse processing. The conceptual 1072

diagram of auto-encoder with encoding and decoding phases is shown in Figure 34. 1073

 1074

Figure 34. Diagram for Auto encoder. 1075

 1076

The encoder and decoder transition can be represented with ∅ and 𝜑, ∅ ∶ 𝒳 → ℱ and 𝜑 ∶ ℱ → 𝒳, then 1077

 ∅, 𝜑 = 𝑎𝑟𝑔𝑚𝑖𝑛∅,𝜑 ‖𝑋 − (∅, 𝜑)𝑋‖2 1078

(44) 1079

If we consider a simple autoencoder with one hidden layer, where the input is 𝑥 ∈ ℝ𝑑 = 𝒳, which is mapped 1080

onto ∈ ℝ𝑝 = ℱ, it can be then expressed as follows: 1081

 𝑧 = 𝜎1(𝑊𝑥 + 𝑏) (45) 1082

Electronics 2018, 7, x FOR PEER REVIEW 38 of 74

where W is the weight matrix and b is bias. 𝜎1 represents an element wise activation function such as a 1083

sigmoid or a rectified linear unit (RLU). Let us consider 𝑧 is again mapped or reconstructed onto 𝑥′ which 1084

is the same dimension of 𝑥. The reconstruction can be expressed as 1085

 𝑥′ = 𝜎2(𝑊′𝑧 + 𝑏′) (46) 1086

This model is trained with minimizing the reconstruction errors, which is defined as loss function as follows 1087

 ℒ(𝑥, 𝑥′) = ‖𝑥 − 𝑥′‖2 = ‖𝑥 − 𝜎2(𝑊′(𝜎1(𝑊𝑥 + 𝑏)) + 𝑏′)‖
2
 1088

(47) 1089

Usually, the feature space of ℱ has lower dimensions than the input feature space 𝒳, which can be 1090

considered as the compressed representation of the input sample. In the case of multilayer auto encoder, the 1091

same operation will be repeated as required with in the encoding and decoding phases. A deep Auto encoder is 1092

constructed by extending the encoder and decoder of athe uto encoder with multiple hidden layers. The Gradient 1093

vanishing problem is still a big issue with the deeper model of AE: the gradient becomes too small as it passes 1094

back through many layers of a AE model. Different advanced AE models are discussed in the following 1095

sections. 1096

6.2. Variational autoencoders (VAEs) 1097

There are some limitations of using simple Generative Adversarial Networks (GAN) which are discussed 1098

in Section 7. At first, images are generated using GAN from input noise. If someone wants to generate a specific 1099

image, then it is difficult to select the specific features (noise) randomly to produce desired images. It requires 1100

searching the entire distribution. Second, GANs differentiate between ‘real’ and ‘fake’ objects. For example, if 1101

you want to generate a dog, there is no constraint that the dog must look like a dog. Therefore, it produces same 1102

style images which the style looks like a dog but if we closely observed then it is not exactly. However, VAE is 1103

proposed to overcome those limitations of basic GANs, where the latent vector space is used to represent the 1104

images which follow a unit Gaussian distribution. [167,174]. 1105

 1106

Figure 35. Variational Auto-Encoder. 1107

In this model, there are two losses, one is a mean squared error that determines, how good the network is 1108

doing for reconstructing the image, and loss (the Kullback-Leibler (KL) divergence) of latent, which determines 1109

how closely the latent variable match is with unit Gaussian distribution. For example, suppose 𝑥 is an input 1110

and the hidden representation is z . The parameters (weights and biases) are 𝜃 . For reconstructing the 1111

phase the input is 𝑧 and the desired output is 𝑥. The parameters (weights and biases) are 𝜙. So, we can 1112

represent the encoder as 𝑞𝜃(𝑧|𝑥) and decoder 𝑝𝜙(𝑥|𝑧) respectively. The loss function of both networks and 1113

latent space can be represented as 1114

Electronics 2018, 7, x FOR PEER REVIEW 39 of 74

 𝑙𝑖(𝜃, 𝜙) = −𝐸𝑧~𝑞𝜃(𝑧|𝑥𝑖)[𝑙𝑜𝑔𝑝𝜙(𝑥𝑖|𝑧)] + 𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)| 𝑝(𝑧)) (48) 1115

6.3. Split-Brain Autoencoder 1116

Recently Split-Brain AE was proposed from Berkeley AI Research (BAIR) lab, which is the architectural 1117

modification of traditional autoencoders for unsupervised representation learning. In this architecture, the 1118

network is split into disjoint sub-networks, where two networks try to predict the feature representation of an 1119

entire image [170]. 1120

 1121

 1122

Figure 36. Split-Brain Autoencoder. 1123

6.4. Applications of AE 1124

AE is applied in Bio-informatics [102,171] and cybersecurity [172]. We can apply AE for unsupervised feature 1125

extraction and then apply Winner Take All (WTA) for clustering those samples for generating labels [173]. AE 1126

has been used as an encoding and decoding technique with or for other deep learning approaches including 1127

CNN, DNN, RNN, and RL in the last decade. However, here are some other approaches recently published 1128

[174,175] 1129

6.5. Review of RBM 1130

Restricted Boltzmann Machine (RBM) is another unsupervised deep learning approach. The training phase 1131

can be modeled using a two-layer network called a “Restricted Boltzmann Machine” [176] in which stochastic 1132

binary pixels are connected to stochastic binary feature detectors using symmetrically weighted connections. 1133

RBM is an energy-based undirected generative model that uses a layer of hidden variables to model distribution 1134

over visible variables. The undirected model for the interactions between the hidden and visible variables is 1135

used to ensure that the contribution of the likelihood term to the posterior over the hidden variables is 1136

approximately factorial which greatly facilitates inference [177]. The conceptual diagram of RBM is shown in 1137

Figure 37. 1138

 1139

Electronics 2018, 7, x FOR PEER REVIEW 40 of 74

Figure 37. Block diagram for RBM. 1140

 1141

Energy-based models mean that the probability distribution over the variables of interest is defined 1142

through an energy function. The energy function is composed from a set of observable variables s 𝑉 = {𝑣𝑖} and 1143

a set of hidden variables = {ℎ𝑖} , where i is a node in the visible layer, j is a node in the hidden layer. It is 1144

restricted in the sense that there are no visible-visible or hidden-hidden connections. The values corresponding 1145

to “visible” units of the RBM because their states are observed; the feature detectors correspond to “hidden” 1146

units. A joint configuration, (v,h) of the visible and hidden units has an energy (Hopfield, 1982) given by: 1147

 𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖𝑖 𝑣𝑖 − ∑ 𝑏𝑗𝑗 ℎ𝑗 − ∑ ∑ 𝑣𝑖𝑗 𝑤𝑖,𝑗𝑖 ℎ𝑗 (49) 1148

where 𝑣𝑖 ℎ𝑗 are the binary states of visible unit 𝑖 and hidden unit 𝑗, 𝑎𝑖, 𝑏𝑗 are their biases and 𝑤𝑖𝑗 is 1149

the weight between them. The network assigns a probability to a possible pair of a visible and a hidden vector 1150

via this energy function: 1151

 𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ) (50) 1152

where the “partition function”, 𝑍 , is given by summing over all possible pairs of visible and hidden vectors: 1153

 𝑍 = ∑ 𝑒−𝐸(𝑣,ℎ)
𝑣,ℎ (51) 1154

The probability that the network assigns to a visible vector, v, is given by summing over all possible hidden 1155

vectors: 1156

 𝑝(𝑣) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ (52) 1157

The probability that the network assigns to a training sample can be raised by adjusting the weights and 1158

biases to lower the energy of that sample and to raise the energy of other samples, especially those have low 1159

energies and therefore make a big contribution to the partition function. The derivative of the log probability of 1160

a training vector with respect to a weight is surprisingly simple. 1161

𝜕𝑙𝑜𝑔𝑝(𝑣)

𝜕𝑤𝑖𝑗
= ⟨𝑣𝑖ℎ𝑗⟩

𝑑𝑎𝑡𝑎
− ⟨𝑣𝑖ℎ𝑗⟩

𝑚𝑜𝑑𝑒𝑙
 (53) 1162

where the angle brackets are used to denote expectations under the distribution specified by the subscript that 1163

follows. This leads to a simple learning rule for performing stochastic steepest ascent in the log probability of 1164

the training data: 1165

 𝑤𝑖𝑗 = 𝜀 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑚𝑜𝑑𝑒𝑙

) (54) 1166

where 𝜀 is a learning rate. Given a randomly selected training image,𝑣, the binary state, ℎ𝑗, of each hidden 1167

unit, j is set to 1 with probability 1168

 𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + ∑ 𝑣𝑖𝑖 𝑤𝑖𝑗) (55) 1169

where 𝜎(𝑥) is the logistic sigmoid function 1 (1 + 𝑒(−𝑥))⁄ , 𝑣𝑖ℎ𝑗 is then an unbiased sample. Because there 1170

Electronics 2018, 7, x FOR PEER REVIEW 41 of 74

are no direct connections between visible units in an RBM, it is also easy to get an unbiased sample of the 1171

state of a visible unit, given a hidden vector 1172

 𝑝(𝑣𝑖 = 1|ℎ) = 𝜎(𝑎𝑖 + ∑ ℎ𝑗𝑗 𝑤𝑖𝑗) (56) 1173

Getting an unbiased sample of ⟨𝑣𝑖ℎ𝑗⟩
𝑚𝑜𝑑𝑒𝑙

 is much more difficult. It can be done by starting at any 1174

random state of the visible units and performing alternating Gibbs sampling for a long time. Single iteration of 1175

alternating Gibbs sampling consists of updating all the hidden units in parallel using Eq. (55) followed by 1176

updating all the visible units in parallel using following Eq. (56). A much faster learning procedure was 1177

proposed in Hinton (2002). This starts by setting the states of the visible units to a training vector. Then the 1178

binary states of the hidden units are all computed in parallel using Eq. (55). Once binary states have been chosen 1179

for the hidden units, a “reconstruction” is produced by setting each 𝑣𝑖 to 1 with a probability given by Eq. (56). 1180

The change in a weight is then given by 1181

 ∆𝑤𝑖𝑗 = 𝜀 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑟𝑒𝑐𝑜𝑛

) (57) 1182

A simplified version of the same learning rule that uses the states of individual units instead of a pairwise 1183

product is used for the biases [178]. This approach is mainly used for pre-training a neural network in an 1184

unsupervised manner to generate initial weights. One of the most popular deep learning approaches called Deep 1185

Belief Network (DBN) is proposed based on this approach. Some of the examples of the applications with RBM 1186

and DBN for data encoding, news clustering, image segmentation, and cybersecurity are shown, for detail see 1187

[51, 179, 289, 315]. 1188

7. Generative Adversarial Networks (GAN) 1189

At the beginning of this chapter, we started with a quote from Yann LeCun, “GAN is the best concept 1190

proposed in the last ten years in the field of deep learning (Neural networks)”. 1191

7.1. Review on GAN 1192

The concept of generative models in machine learning started a long time before which is used for data 1193

modeling with conditional probability density function. Generally, this type of model is considered a 1194

probabilistic model with a joint probability distribution over observation and target (label) values. However, we 1195

did not see the big success of this generative model before. Recently deep learning based generative models 1196

Figure 38. Conceptual diagram for Generative Adversarial Networks (GAN)

Electronics 2018, 7, x FOR PEER REVIEW 42 of 74

have become popular and shown enormous success in different application domains. 1197

Deep learning is a data-driven technique that performs better as the number of input samples increased. 1198

Due to this reason, learning with reusable feature representations from a huge number of the un-labels dataset 1199

has become an active research area. We mentioned in the introduction that Computer vision has different 1200

tasks, segmentation, classification, and detection, which requires large amounts of labeled data. This problem 1201

has been attempted to be solved be generating similar samples with a generative model. 1202

Generative Adversarial Network (GAN) is a deep learning approach recently invented by Goodfellow in 1203

2014. GANs offer an alternative approach to maximum likelihood estimation techniques. GAN is an 1204

unsupervised deep learning approach where two neural networks compete against each other in a zero-sum 1205

game. In the case of the image generation problem, the generator starts with Gaussian noise to generate images 1206

and the discriminator determines how good the generated images are. This process continues until the outputs of 1207

the generator become close to actual input samples. According to Figure 38, it can be considered that 1208

Discriminator (D) and Generator (G) two players playing the min-max game with the function of V (D, G) 1209

which can be expressed as follows according to this paper [180,181]. 1210

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔(𝐷(𝑥))] + 𝔼𝑧~𝑃𝑑𝑎𝑡𝑎(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (58) 1211

In practice, this equation may not provide sufficient gradient for learning G (which started from random 1212

Gaussian noise) at the early stages. In the early stages, D can reject samples because they are clearly different 1213

compared to training samples. In this case, 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) will be saturated. Instead of training G to 1214

minimize 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) we can train G to maximize 𝑙𝑜𝑔(𝐺(𝑧)) objective function which provides 1215

much better gradients in early stages during learning. However, there were some limitations of convergence 1216

procethe ss during training with the first version. In the beginning state a GAN has some limitations regarding 1217

the following issues: 1218

 The lack of a heuristic cost function (as pixel-wise approximate means square errors (MSE)) 1219

 Unstable to train (sometimes that can because of producing nonsensical outputs) 1220

Research in the area of GANs has been ongoing with many improved versions being proposed [181]. 1221

GANs are able to produce photorealistic images for applications such as visualization of interior or industrial 1222

design, shoes, bags, and clothing items. GAN is also extensively used in the field of game development and 1223

artificial video generation [182]. GANs have two different areas of DL that they fall into semi-supervised and 1224

unsupervised. Some research in these areas focuses on the topology of the GAN architecture to improve 1225

functionality and the training approach. Deep convolution GAN (DCGAN) is a convolution-based GAN 1226

approach proposed in 2015 [183]. This semi-supervised approach has shown promised results compared to its 1227

unsupervised counterpart. The regenerated results from DCGAN have shown in the following figures [183]. 1228

Figure 39 shows the output for generated bedroom images after one training pass through the dataset. Most of 1229

the figures included in this section are generated through experiments. Theoretically, the model could learn to 1230

memorize training examples, but this is experimentally unlikely as we train with a small learning rate and mini 1231

batches with SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a 1232

small learning rate [183]. 1233

Electronics 2018, 7, x FOR PEER REVIEW 43 of 74

 1234

Figure 39. Experimental outputs of bedroom images. 1235

Figure 40 represents generated bedroom images after five epochs of training. There appears to be evidence of 1236

visual under-fitting via repeated noise textures across multiple samples such as the baseboards of some of the 1237

beds. 1238

 1239

Figure 40. Reconstructed bedroom images using DCGAN[183] 1240

In Figure 40, the top rows interpolation between a series of 9 random points in Z and show that the space 1241

learned has smooth transitions. In every image, space plausibly looks like a bedroom. In the 6th row, you see a 1242

room without a window slowly transforming into a room with a giant window. In the 10th row, you see what 1243

appears to be a TV slowly being transformed into a window. The following Figure 41 shows the effective 1244

application of latent space vectors. Latent space vectors can be turned into meaning output by first performing 1245

addition and subtraction operations followed by a decode. Figure 41 shows that a man with glasses minus a man 1246

and add a woman which results in a woman with glasses. 1247

Electronics 2018, 7, x FOR PEER REVIEW 44 of 74

 1248

Figure 41. Example of smile arithmetic and arithmetic for wearing glass using GAN[183]. 1249

Figure 42 shows a “turn” vector was created from four averaged samples of faces looking left versus 1250

looking right. By adding interpolations along this axis of random samples the pose can be reliably transformed. 1251

There are some interesting applications that have been proposed for GANs. For example, natural indoor scenes 1252

are generated with improved GAN structures. These GANs learn surface normal and are combined with a Style 1253

GAN by Wang and Gupta [184]. In this implementation, authors considered the style and structure of GAN 1254

named (S2-GAN), which generates a surface normal map. This is an improved version of GAN. In 2016, an 1255

information-theoretic extension to the GAN called “InfoGAN” was proposed. An infoGAN can learn with 1256

better representations in a completely unsupervised manner. The experimental results show that the 1257

unsupervised InfoGAN is competitive with representation learning with the fully supervised learning approach 1258

[185]. 1259

In 2016, another new architecture was proposed by Im et al. [186] where the recurrent concept is included 1260

with the adversarial network during training. Chen et. al. [187] proposed Info GAN (iGAN) which allowed 1261

image manipulation interactively on a natural image manifold. Image to image translation with conditional 1262

adversarial networks is proposed in 2017. Another improved version of GANs named Coupled Generative 1263

Adversarial Network (CoGAN) is a learned joint distribution of multi-domain images. The existing approach 1264

does not need tuples of corresponding images in different domains in the training set [188]. Bidirectional 1265

Generative Adversarial Networks (BiGANs are learned with inverse feature mapping and shown that the 1266

resulting learned feature representation is useful for auxiliary supervised discrimination tasks, competitive with 1267

contemporary approaches to un-supervised and self-supervised feature learning [189]. 1268

Electronics 2018, 7, x FOR PEER REVIEW 45 of 74

 1269

Figure 42. Face generation in different angle using GAN[183]. 1270

Recently, Google proposed extended versions of GANs called Boundary Equilibrium Generative 1271

Adversarial Networks (BEGAN) with a simple but robust architecture [190]. BEGAN has a better training 1272

procedure with fast and stable convergence. The concept of equilibrium helps to balance the power of the 1273

discriminator against the generator. In addition, it can balance the trade-off between image diversity and visual 1274

quality [190]. Another similar work is called Wasserstein GAN (WGAN) algorithm that shows significant 1275

benefits over traditional GAN [191]. WGANs had two major benefits over traditional GANs. First, a WGAN 1276

meaningfully correlates the loss metric with the generator’s convergence and sample quality. Secondly, 1277

WGANs have improved stability of the optimization process. 1278

The improved version of WGAN is proposed with a new clipping technique, which penalizes the normal 1279

of the gradient of the critic with respect to its inputs [192]. There is a promising architecture that has been 1280

proposed based on generative models where the images are represented with untrained DNN that give an 1281

opportunity for better understanding and visualization of DNNs [193]. Adversarial examples for generative 1282

models have also been introduced [194]. Energy-based GAN was proposed by Yann LeCun from Facebook in 1283

2016 [195]. The training process is difficult for GANs, Manifold Matching GAN (MMGAN) proposed with 1284

better training process which is experimented on three different datasets and the experimental results clearly 1285

demonstrate the efficacy of MMGAN against other models [196]. GAN for geo-statistical simulation and 1286

inversion with efficient training approach [197]. 1287

Probabilistic GAN (PGAN) which is a new kind of GAN with a modified objective function. The main 1288

idea behind this method is to integrate a probabilistic model (A Gaussian Mixture Model) into the GAN 1289

framework that supports likelihood rather than classification [198]. A GAN with Bayesian Network model 1290

[199]. Variational Auto encode is a popular deep learning approach, which is trained with Adversarial 1291

Variational Bayes (AVB) which helps to establish a principle connection between VAE and GAN [200]. The 1292

f-GAN which is proposed based on the general feed-forward neural network [201]. Markov model based GAN 1293

for texture synthesis [202]. Another generative model based on the doubly stochastic MCMC method [203]. 1294

GAN with multi-Generator [204] 1295

Is an unsupervised GAN capable of learning on a pixel level domain adaptation that transforms in the pixel 1296

space from one domain to another domain? This approach provides state-of-the-art performance against several 1297

unsupervised domain adaptation techniques with a large margin [205]. A new network is proposed called 1298

Schema Network, which is an object-oriented generative physics simulator able to disentangle multiple causes 1299

of events reasoning through causes to achieve a goal that is learned from dynamics of an environment from data 1300

[206]. There is interesting research that has been conducted with a GAN that is to Generate Adversarial Text to 1301

http://arxiv.org/abs/1702.06832v1
http://arxiv.org/abs/1702.06832v1

Electronics 2018, 7, x FOR PEER REVIEW 46 of 74

Image Synthesis. In this paper, the new deep architecture is proposed for GAN formulation which can take the 1302

text description of an image and produce realistic images with respect to the inputs. This is an effective 1303

technique for text-based image synthesis using a character level text encoder and class conditional GAN. GAN 1304

is evaluated on bird and flower dataset first then general text to the image which is evaluated on MS COCO 1305

dataset [36]. 1306

7.2. Applications of GAN 1307

This learning algorithm has been applied in the different domain of applications that are discussed in the 1308

following sections: 1309

a) GAN for image processing 1310

GANs used for generating a photo-realistic image using a super-resolution approach [207]. GAN for 1311

semantic segmentation with semi and weakly supervised approach [208]. Text Conditioned Auxiliary Classifier 1312

GAN (TAC-GAN) which is used for generating or synthesizing images from a text description [209]. 1313

Multi-style Generative network (MSG-Net) which retains the functionality of optimization based approaches 1314

with fast speed. This network matches image styles at multiple scales and puts the computational burden into 1315

training [210]. Most of the time, vision systems struggle with rain, snow, and fog. A single image de-raining 1316

system is proposed using a GAN recently [211]. 1317

b) GAN for speech and audio processing 1318

An End-to-End Dialogue system using Generative Hierarchical Neural Network models [212]. In addition, 1319

GANs have been used in the field of speech analysis. Recently, GANs are used for speech enhancement which 1320

is called SEGAN that incorporates further speech-centric design to improve performance progressively [213]. 1321

GAN for symbolic-domain and music generation which performs comparably against Melody RNN [214]. 1322

c) GAN for medical information processing 1323

GANs for Medical Imagining and medical information processing [102], GANs for medical image 1324

de-noising with Wasserstein distance and perceptual loss [215]. GANs can also be used for segmentation of 1325

Brain Tumors with conditional GANs (cGAN) [216]. A General medical image segmentation approach is 1326

proposed using a GAN called SegAN [217]. Before the deep learning revolution, compressive sensing is one of 1327

the hottest topics. However, Deep GAN is used for compressed sensing that automates MRI [218]. In addition, 1328

GANs can also be used in health record processing, due to the privacy issue the electronic health record (EHR) 1329

is limited to or is not publicly available like other datasets. GANs are applied for synthetic EHR data which 1330

could mitigate risk [219]. Time series data generation with Recurrent GAN (RGAN) and Recurrent Conditional 1331

GAN (RCGAN) has been introduced [220]. LOGAN consists of the combination of a generative and 1332

discriminative model for detecting the overfitting and recognition inputs. This technique has been compared 1333

against state-of-the-art GAN technique including GAN, DCGAN, BEGAN and a combination of DCGAN with 1334

a VAE [221]. 1335

d) Other applications 1336

A new approach called Bayesian Conditional GAN (BC-GAN) which can generate samples from 1337

deterministic inputs. This is simply a GAN with a Bayesian framework that can handle supervised, 1338

semi-supervised and unsupervised learning problems [222,223]. In machine learning and deep learning 1339

Electronics 2018, 7, x FOR PEER REVIEW 47 of 74

community, online learning is an important approach. GANs are used for online learning in which it is being 1340

trained for finding a mixed strategy in a zero-sum game which is named Checkov GAN 1[224]. Generative 1341

moment matching networks based on statistical hypothesis testing called maximum mean discrepancy (MMD) 1342

[225]. One of the interesting ideas to replace the discriminator of GAN with two-sample based kernel MMD is 1343

called MMD-GAN. This approach significantly outperforms Generative moment matching network (GMMN) 1344

technique which is an alternative approach for the generative model [226]. 1345

Some other applications of GAN include pose estimation [227], photo editing network [228], and anomaly 1346

detection [229]. DiscoGAN for learning cross-domain relation with GAN [230], single shot learning with GAN 1347

[231], response generation and question answering system [232,233]. Last but not least, WaveNet as a 1348

generative model has been developed for generating audio waveform [286]. 1349

 1350
8. Deep Reinforcement Learning (DRL) 1351

In the previous sections, we have focused on supervised and unsupervised deep learning approaches 1352

including DNN, CNN, RNN including LSTM and GRU, AE, RBM, GAN etc. These types of deep learning 1353

approaches are used for prediction, classification, encoding, decoding, data generation, and many more 1354

application domains. However, this section demonstrates a survey on Deep Reinforcement Learning (DRL) 1355

based on the recently developed methods in this field of RL. 1356

8.1. Review on DRL 1357

DRL is a learning approach which learns to act with general sense from the unknown real environment 1358

(For details please read the following article [234]). RL can be applied in a different scope of field including 1359

fundamental Sciences for decision making, Machine learning from a computer science point of view, in the 1360

field of engineering and mathematics, optimal control, robotics control, power station control, wind turbines, 1361

and Neuroscience the reward strategy is widely studied in the last couple of decades. It is also applied in 1362

economic utility or game theory for making better decisions and for investment choices. The psychological 1363

concept of classical conditioning is how animals learn. Reinforcement learning is a technique for what to do and 1364

how to match a situation to an action. Reinforcement learning is different from supervised learning technique 1365

and other kinds of learning approaches studies recently including traditional machine learning, statistical 1366

pattern recognition, and ANN. 1367

 1368

 1369

Figure 43. Conceptual diagram for RL system. 1370

 1371

Electronics 2018, 7, x FOR PEER REVIEW 48 of 74

Unlike the general supervised and unsupervised machine learning, RL is defined not by characterizing 1372

learning methods, but by characterizing a learning problem. However, the recent success of DL has had a huge 1373

impact on the success of DRL which is known as DRL. According to the learning strategy, the RL technique is 1374

learned through observation. For observing the environment, the promising DL techniques include CNN, RNN, 1375

LSTM, and GRU are used depending upon the observation space. As DL techniques encode data efficiently, 1376

therefore, the following step of action is performed more accurately. According to the action, the agent receives 1377

an appropriate reward respectively. As a result, the entire RL approach becomes more efficient to learn and 1378

interact in the environment with better performance. 1379

However, the history of the modern DRL revolution began from Google Deep Mind in 2013 with Atari 1380

games with DRL. In which the DRL based approaches perform better against the human expert in almost all of 1381

the games. In this case, the environment is observed on video frames which are processed using a CNN 1382

[235,236]. The success of DRL approaches depends on the level of difficulty of the task attempt to be solved. 1383

After a huge success of Alpha-Go and Atari from Google Deep mind, they proposed a reinforcement learning 1384

environment based on StarCraft II in 2017, which is called SC2LE (StarCraft II Learning Environment) [237]. 1385

The SC2LE is a game with multi-agent with multiple players’ interactions. This proposed approach has a large 1386

action space involving the selection and control of hundreds of units. It contains many states to observe from 1387

raw feature space and it uses strategies over thousands of steps. The open source Python-based StarCraft II 1388

game engine has been provided free in online. 1389

8.2. Q- Learning 1390

There are some fundamental strategies which are essential to know for working with DRL. First, the RL 1391

learning approach has a function that calculates the Quality of state-action combination which is called 1392

Q-Learning (Q-function). Algorithm II describes basic computational flow of Q-learning. 1393

Q-learning is defined as a model-free reinforcement learning approach which is used to find an optimal 1394

action-selection policy for any given (finite) Markov Decision Process (MDP). MDP is a mathematical 1395

framework for modeling decision using state, action and rewards. Q-learning only needs to know about the 1396

states available and what are the possible actions in each state. Another improved version of Q-Learning known 1397

as Bi-directional Q-Learning. In this article, the Q-Learning is discussed, for details on bi-directional 1398

Q-Learning please see [238]. 1399

At each step 𝑠, choose the action which maximizes the following function 𝑄 (𝑠, 𝑎) 1400

 𝑄 is an estimated utility function – it tells us how good an action is given in a certain state 1401

 𝑟 (𝑠, 𝑎) immediate reward for making an action best utility (Q) for the resulting state 1402

This can be formulated with the recursive definition as follows: 1403

 𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′)) (59) 1404

This equation is called Bellman’s equation, which is the core equation for RL. Here 𝑟(𝑠, 𝑎) is the immediate 1405

reward, 𝛾 is the relative value of delay vs. immediate rewards [0, 1] 𝑠′ is the new state after action 𝑎. The 1406

𝑎 and 𝑎′ are an action in sate 𝑠 and 𝑠′ respectively. The action is selected based on the following 1407

equation: 1408

 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) (60) 1409

Electronics 2018, 7, x FOR PEER REVIEW 49 of 74

In each state, a value is assigned called a Q-value. When we visit a state and we receive a reward 1410

accordingly. We use the reward to update the estimated value for that state. As the reward is stochastic, as a 1411

result, we need to visit the states many times. In addition, it is not guaranteed that we will get the same reward 1412

(Rt) in another episode. The summation of the future rewards in episodic tasks and environments are 1413

unpredictable, further in the future, we go further with the reward diversely as expressed. 1414

 Gt = Rt+1 + Rt+2+ Rt+3 + ……. …. + RT (61) 1415

The sum of discounted future rewards in both cases are some factor as scalar. 1416

 Gt =  Rt+1 + 2 Rt+2+ 3 Rt+3 + ……. …. + TRT (62) 1417

Here  is a constant. The more we are in the future, the less we take the reward into account 1418

 1419

Properties of Q-learning: 1420

 Convergence of Q-function: approximation will be converged to the true Q-function, but it must visit 1421

possible state-action pair infinitely many times. 1422

 The state table size can be vary depending on the observation space and complexity. 1423

 Unseen values are not considered during observation. 1424

The way to fix these problems is to use a neural network (particularly DNN) as an approximation instead 1425

of the state table. The inputs of DNN are the state and action and the outputs are numbers between 0 and 1 that 1426

represent the utility encoding the states and actions properly. That is the place where the deep learning 1427

approaches contribute for making better decisions with respect to the state information. Most of the cases for 1428

observing the environment, we use several acquisition devices including a camera or other sensing devices for 1429

observing the learning environment. For example: if you observed the setup for the challenge of Alpha-Go 1430

then it can be seen that the environment, action, and reward are learned based on the pixel values (pixel in 1431

action). For details see [235,236]. 1432

 1433

Algorithm II: Q-Learning

Initialization:

For each state-action pair (𝑠, 𝑎)

initialize the table entry 𝑄̂(𝑠, 𝑎) to zero

Steps:

1.Observed the current state s

2. REPEAT:

- Select an action a and execute it

- Received immediate reward r

- Observe the new state 𝑠′

- Update the table entry for 𝑄̂(𝑠, 𝑎) as follows:

𝑄̂(𝑠, 𝑎) = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′))

- 𝑠 = 𝑠′

Electronics 2018, 7, x FOR PEER REVIEW 50 of 74

However, it is difficult to develop an agent which can interact or perform well in any observation 1434

environment. Therefore, most of the researchers in the field select their action space or environment before 1435

training the agent for that environment. The benchmark concept, in this case, is a little bit different compared to 1436

supervised or unsupervised deep learning approach. Due to the variety of environments, the benchmark depends 1437

on what level of difficulty the environment has been considered compared to the previous or exiting researches? 1438

The difficulties depend on the different parameters, number of agents, a way of interaction between the agents, 1439

the number of players and so on. 1440

Recently, another good learning approach has been proposed for DRL [234]. There are many papers 1441

published with different networks of DRL including Deep Q-Networks (DQN), Double DQN, Asynchronous 1442

methods, policy optimization strategy (including deterministic policy gradient, deep deterministic policy 1443

gradient, guided policy search, trust region policy optimization, combining policy gradient and Q-learning) are 1444

proposed [234]. Policy Gradient (DAGGER) Superhuman GO using supervised learning with policy gradient 1445

and Monte Carlo tree search with value function [239]. Robotics manipulation using guided policy search [240]. 1446

DRL for 3D games using policy gradients [241]. 1447

8.3. Recent trends of DRL with applications 1448

There is a survey published recently, where basic RL, DRL DQN, trust region policy optimization, and 1449

asynchronous advantage actor-critic are proposed. This paper also discusses the advantages of deep learning 1450

and focuses on visual understanding via RL and the current trend of research [243]. A network cohesion 1451

constrained based on online RL techniques is proposed for health care on mobile devices called mHealth. This 1452

system helps similar users to share information efficiently to improve and convert the limited user information 1453

into better-learned policies [244]. Similar work with the group-driven RL is proposed for health care on a 1454

mobile device for personalized mHealth Intervention. In this work, K-means clustering is applied for grouping 1455

the people and finally shared with RL policy for each group [245]. Optimal policy learning is a challenging task 1456

with RL for an agent. Option-Observation Initiation sets (OOIs) allow agents to learn optimal policies in the 1457

challenging task of POMDPs which are learned faster than RNN [246]. 3D Bin Packing Problem (BPP) is 1458

proposed with DRL. The main objective is to place the number of the cuboid-shaped items that can minimize 1459

the surface area of the bin [247]. 1460

The import component of DRL is the reward which is determined based on the observation and the action 1461

of the agent. The real-world reward function is not perfect at all times. Due to the sensor error, the agent may get 1462

maximum reward whereas the actual reward should be smaller. This paper proposed a formulation based on 1463

generalized Markov Decision Problem (MDP) called Corrupt Reward MDP [248]. The trust region 1464

optimization based deep RL is proposed using recently developed Kronecker-factored approximation to the 1465

curvature (K-FAC) [249]. In addition, there is some research that has been conducted in the evaluation of 1466

physics experiments using the deep learning approach. This experiment focuses agent to learn basic properties 1467

such as mass and cohesion of the objects in the interactive simulation environment [250]. 1468

Recently Fuzzy RL policies have been proposed that is suitable for continuous state and action space 1469

[251]. The important investigation and discussion are made for hyper-parameters in policy gradient for 1470

continuous control, the general variance of the algorithm. This paper also provides a guideline for reporting 1471

results and comparison against baseline methods [252]. Deep RL is also applied for high precision assembly 1472

tasks [253]. The Bellman equation is one of the main function of RL technique, a function approximation is 1473

proposed which ensures that the Bellman Optimality Equation always holds. Then the function is estimated to 1474

Electronics 2018, 7, x FOR PEER REVIEW 51 of 74

maximize the likelihood of the observed motion [254]. DRL based hierarchical system is used for could 1475

resource allocation and power management in could computing system [255]. A novel Attention-aware Face 1476

Hallucination (Attention-FC) is proposed where Deep RL is used for enhancing the quality of the image on a 1477

single patch for images which are applied on face images [256]. 1478

9. Bayesian Deep Learning (BDL) 1479

The DL approaches have been providing the state-of-the-art accuracy for different applications. However, DL 1480

approaches are unable to deal with uncertainty of a given task due to model uncertainty. These learning 1481

approaches take input and assume the class probability without justification [299,300]. In 2015, two African 1482

American humans recognized as “gorilla” with an image classification system [301]. There are several 1483

application domains where the uncertainty can be raised including self-driven car, bio-medical applications. 1484

However, the BDN, which is an intersection between DL and Bayesian probability approaches show better 1485

results in different applications and understand the uncertainty of problems including multi-task problems 1486

[299,300]. The uncertainty is estimated with applying probability distribution over the model weights or 1487

mapping on the outputs probability [299,300]. 1488

The BDL is becoming very popular among the DL research community. In addition, the BDL approaches have 1489

been proposed with CNN techniques where probability distribution is applied on weight. These techniques help 1490

to deal with model overfitting problem and lack of training samples which are the two commons challenges for 1491

DL approaches [302,303]. Finally, there are some other research papers have published recently where some 1492

advanced techniques have been proposed on BDL [304-307]. 1493

 1494

 10. Transfer Learning 1495

10.1. Transfer learning 1496

A good way to explain transfer learning is to look at the student-teacher relationship. A teacher offers a 1497

course after gathering details knowledge regarding that subject. The information will be conveyed through a 1498

series of lectures over time. This can be considered that the teacher (expert) is transferring information 1499

(knowledge) to the students (learner). The same thing happens in case of deep learning, a network is trained 1500

Figure 44. Conceptual diagram for transfer learning: pretrained on ImageNet and transfer

learning is used for retraining on PASAL dataset.

Electronics 2018, 7, x FOR PEER REVIEW 52 of 74

with a big amount data and during the training, the model learns the weights and bias. These weights can be 1501

transferred to other networks for testing or retraining a similar new model. The network can start with 1502

pre-trained weights instead of training from scratch. 1503

10.2. What is a pre-trained model? 1504

A pre-trained model is a model which is already trained in the same domains as the intended domain. For 1505

example, for an image recognition task, an Inception model already trained on ImageNet can be downloaded. 1506

The Inception model can then be used for a different recognition task, and instead of training it from scratch the 1507

weights can be left as is with some learned features. This method of training is useful when there is a lack of 1508

sample data. There are a lot of pre-trained models available (including VGG, ResNet, and Inception Net on 1509

different datasets) in model-zoo from the following link: https://github.com/BVLC/caffe/wiki/Model-Zoo. 1510

10.3. Why will you use pre-trained models? 1511

There are a lot of reasons for using pre-trained models. Firstly, it requires a lot of expensive computation 1512

power to train big models on big datasets. Secondly, it can take up to multiple weeks to train big models. 1513

Training new models with pre-trained weights can speed up convergence as well as help the network 1514

generalization. 1515

10.4. How will you use pre-trained models? 1516

We need to consider the following criterions with respective application domains and size of the dataset 1517

when using the pre-trained weights which is shown in Table 3. 1518

10.5. Working with inference 1519

Research groups working specifically on inference applications look into optimization approaches that 1520

include model compression. Model compression is important in the realm of mobile devices or special purpose 1521

hardware because it makes models more energy efficient as well as faster. 1522

10.6. The myth about Deep Learning 1523

There is a myth; do you need a million labeled samples for training a deep learning model? The answer is 1524

yes but, in most cases,, the transfer learning approach is used to train deep learning approaches without having 1525

large amounts of label data. For example, the following Figure 44 demonstrates the strategy for the transfer 1526

Table 3. Criterions need to be considered for transfer learning.

 New dataset but small New dataset but large

Pre-trained model on

similar but new dataset

Freeze weights and train

linear classifier from top

level features

Fine-tune all the layers (pre-train for

faster convergence and better

generalization)

Pre-trained model on

different but new

dataset

Freeze weights and train

linear classifier from

non-top-level features

Fine-tune all the layers (pre-train for

enhanced convergence speed)

Electronics 2018, 7, x FOR PEER REVIEW 53 of 74

learning approach in details. Here the primary model has been trained with a large amount of labeled data which 1527

is ImageNet and then the weights are used to train with the PASCAL dataset. The actual reality is: 1528

 Possible to learn useful representations from unlabeled data. 1529

 Transfer learning can help learned representation from the related task [257]. 1530

We can take a trained network for a different domain which can be adapted for any other domain for the 1531

target task [258, 589]. First training a network with a close domain for which it is easy to get labeled data using 1532

standard backpropagation, for example, ImageNet classification, pseudo classes from augmented data. Then cut 1533

off the top layers of network and replace with the supervised objective for the target domain. Finally, tune the 1534

network using backpropagation with labels for the target domain until validation loss starts to increase [258, 1535

589]. There are some survey papers and books that are published on transfer learning [260,261]. Self-taught 1536

learning with transfer learning [262]. Boosting approach for transfer learning [263]. 1537

 1538
11. Energy efficient approaches and hardware for DL 1539

11.1. Overview 1540

DNNs have been successfully applied and achieved better recognition accuracies in different application 1541

domains such as Computer vision, speech processing, natural language processing, big data problem and many 1542

more. However, most of the cases the training is being executed on Graphics Processing Units (GPU) for 1543

dealing with big volumes of data which is expensive in terms of power. 1544

Recently researchers have been training and testing with deeper and wider networks to achieve even 1545

better classification accuracy to achieve human or beyond human level recognition accuracy in some cases. 1546

While the size of the neural network is increasing, it becomes more powerful and provides better classification 1547

accuracy. However, the storage consumption, memory bandwidth and computational cost are increasing 1548

exponentially. On the other hand, these types of massive scale implementation with large numbers of network 1549

parameters are not suitable for low power implementation, unmanned aerial vehicle (UAV), different medical 1550

devices, a low memory system such as mobile devices, Field Programmable Gate Array (FPGA) and so on. 1551

There is much research going on to develop better network structures or networks with lower 1552

computation cost, fewer numbers of parameters for low-power and low-memory systems without lowering 1553

classification accuracy. There are two ways to design an efficient deep network structure: 1554

 The first approach is to optimize the internal operational cost with an efficient network structure, 1555

 Second design a network with low precision operations or a hardware efficient network. 1556

The internal operations and parameters of a network structure can be reduced by using low dimensional 1557

convolution filters for convolution layers. [260]. 1558

There is a lot of benefit of this approach. Firstly, the convolutional with rectification operations makes 1559

the decision more discriminative. Secondly, the main benefit of this approach is to reduce the number of 1560

computation parameters drastically. For example: if one layer has 5×5 dimensional filters which can be replaced 1561

with two 3x3 dimensional filters (without pooling layer in between then) for better feature learning; three 3×3 1562

dimensional filters can be used as a replacement of 7×7 dimensional filters and so on. Benefits of using a 1563

lower-dimensional filter are that assuming both the present convolutional layer has C channels, for three layers 1564

for 3x3 filter the total number of parameters are weights: 3×(3×3×C×C) =27𝐶2weights, whereas in cthe ase of 1565

7×7 filters, the total number of parameters are (7×7×C×C) =49𝐶2 , which is almost double compared to the 1566

Electronics 2018, 7, x FOR PEER REVIEW 54 of 74

three 3x3 filter parameters. Moreover, placement of layers such as convolutional, pooling, drop-out in the 1567

network in different intervals has an impact on overall classification accuracy. There are some strategies that are 1568

mentioned to optimize the network architecture recently to design efficient deep learning models [89, 264]. 1569

Strategy 1: Replace the 3×3 filter with 1×1 filters. The main reason to use a lower dimension filter to 1570

reduce the overall number of parameter. By replacing 3×3 filters with 1×1 can be reduced 9x number 1571

of parameters. 1572

Strategy 2: Decrease the number of input channels to 3×3 filters. For a layer, the size of the output 1573

feature maps are calculated which is related to the network parameters using
𝑁−𝐹

𝑆
+ 1, where N is 1574

input map’s size, F is filter size, S is for strides. To reduce the number of parameters, it is not only 1575

enough to reduce the size of the filters but also it requires to control numa ber of input channels or 1576

feature dimension. 1577

 1578

Strategy 3: Down-sample late in the network so that convolution layers have activation maps: The outputs of 1579

present convolution layers can be at least 1x1 or often larger than 11. The output width and height can be 1580

controlled by some criterions: (1) the size of the input sample (e.g. 256256) and (2) Choosing the post down 1581

sample layer. Most commonly pooling layers are such as average or max pooling layer is used, there is an 1582

alternative sub-sampling layer with convolution (33 filters) and stride with 2. If most of the earlier layers have 1583

larger stride, then most of the layers will have small numbers of activation maps. On the other hand, if most of 1584

the layers have a stride of 1, and the stride larger than one applied at the end of the network, then many layers of 1585

the network will have large activation maps. One intuition is the larger activation maps (due to delayed 1586

down-sampling) can lead to higher classification accuracy [89]. This intuition has been investigated by K. He 1587

and H. Sun applied delayed down-sampling onto four different architectures of CNNs, and it is observed that 1588

each case delayed down-sampling led to higher classification accuracy [265]. 1589

11.2. Binary or ternary connect Neural Networks 1590

The computation cost can be reduced drastically with the low precision of multiplication and few 1591

multiplications with drop connection [266, 267]. These papers also introduced on Binary Connect Neural 1592

Networks (BNN) Ternary Connect Neural Networks (TNN). Generally, multiplication of a real-valued weight 1593

by a real-valued activation (in the forward propagations) and gradient calculation (in the backward 1594

propagations) are the main operations of deep neural networks. Binary connect or BNN is a technique that 1595

eliminates the multiplication operations by converting the weights used in the forward propagation to be binary, 1596

i.e. constrained to only two values (0 and 1 or -1 and 1). As a result, the multiplication operations can be 1597

performed by simple additions (and subtractions) and makes the training process faster. There are two ways to 1598

convert real values to its corresponding binary values such as deterministic and stochastic. In case of 1599

deterministic technique, straightforward thresholding technique is applied to weights. An alternative way to do 1600

that is a stochastic approach where a matrix is converted to binary based on probability where the “hard 1601

sigmoid” function is used because it is computationally inexpensive. The experimental result shows 1602

significantly good recognition accuracy [268,269,270]. There are several advantages of BNN as follows: 1603

 It is observed that the binary multiplication on GPU is almost seven times faster than traditional matrix 1604

multiplication on GPU 1605

Electronics 2018, 7, x FOR PEER REVIEW 55 of 74

 In forward pass, BNNs drastically reduce memory size and accesses, and replace most arithmetic 1606

operation with bit-wise operations, which lead great increase of power efficiency 1607

 Binarized kernels can be used in CNNs which can reduce around 60% complexity of dedicated hardware. 1608

 It is also observed that memory accesses typically consume more energy compared to the arithmetic 1609

operation and memory access cost increases with memory size. BNNs are beneficial with respect to both 1610

aspects. 1611

There are some other techniques that have been proposed in the last few years [271,272,273]. Another 1612

power efficient and hardware friendly network structure has been proposed for a CNN with XNOR operations. 1613

In XNOR based CNN implementations, both the filters and input to the convolution layer is binary. This result 1614

about 58x faster convolutional operations and 32x memory saving. In the same paper, Binary-Weight-Networks 1615

was proposed which saved around 32x memory saving. That makes it possible to implement state-of-the-art 1616

networks on CPU for real-time use instead of GPU. These networks are tested on the ImageNet dataset and 1617

provide only 2.9% less classification accuracy than full-precision AlexNet (in top-1% measure). This network 1618

requires less power and computation time. This could make it possible to accelerate the training process of deep 1619

neural network dramatically for specialized hardware implementation [274]. For the first time, Energy Efficient 1620

Deep Neural Network (EEDN) architecture was proposed for the neuromorphic system in 2016. In addition, 1621

they released a deep learning framework called EEDN, which provides close accuracy to the state-of-the-art 1622

accuracy almost all the popular benchmarks except ImageNet dataset [275,276]. 1623

12. Hardware for DL 1624

Along with the algorithmic development of DL approaches, there are many hardware architectures have 1625

been proposed in the past few years. The details about present trends of hardware for deep learning have been 1626

published recently [277]. MIT proposed “Eyeriss” as a hardware for deep convolutional neural networks 1627

(DCNN) [278]. There is another architecture for machine learning called “Dadiannao” [279]. In 2016, an 1628

efficient hardware that works for inference was released and proposed by Stanford University called Efficient 1629

Inference Engine (EIE) [281]. Google developed a hardware named Tensor Processing Unit (TPU) for deep 1630

learning and was released in 2017[280]. IBM released a neuromorphic system called “TrueNorth” in 2015 1631

[275]. 1632

Deep learning approaches are not limited to the HPC platform, there is a lot of application already 1633

developed which run on mobile devices. Mobile platforms provide data that is relevant to everyday activities 1634

of the user, which can make a mobile system more efficient and robust by retraining the system with collected 1635

data. There is some research ongoing to develop hardware friendly algorithms for DL [282,283,284]. 1636

13. Other topics 1637

There are several important topics including frameworks, SDK, benchmark datasets, related Journals and 1638

Conferences are included in Appendix I. 1639

14. Conclusion and Future Works 1640

In this paper, we have provided an in-depth review of deep learning and its applications over the past few 1641

years. We have reviewed different state-of-the-art deep learning models in different categories of learning 1642

including supervised, unsupervised, and Reinforcement Learning (RL), as well as their applications in different 1643

Electronics 2018, 7, x FOR PEER REVIEW 56 of 74

domains. In addition, we have explained in detail the different supervised deep learning techniques including 1644

DNN, CNN, and RNN. We have also reviewed un-supervised deep learning techniques including AE, RBM, 1645

and GAN. In the same section, we have considered and explained unsupervised learning techniques which are 1646

proposed based on LSTM and RL. In Section 8, we presented a survey on Deep Reinforcement Learning (DRL) 1647

with the fundamental learning technique called Q-Learning. Furthermore, we have conducted a survey on 1648

energy efficient deep learning approaches, transfer learning with DL, and hardware development trends of DL. 1649

Moreover, we have discussed some DL frameworks and benchmark datasets, which are often used for the 1650

implementation and evaluation of deep learning approaches. Finally, we have included relevant journals and 1651

conferences, where the DL community has been publishing their valuable research articles. 1652

References 1653

[1] Jump, Schmidhuber, J. "Deep Learning in Neural Networks: An Overview". Neural Networks. 61: 85–1654

117, 2015. 1655

[2] Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey (2015). "Deep Learning". Nature. 521: 436–1656

444. doi:10.1038/nature14539, 2015. 1657

[3] Bengio, Y.; Courville, A.; Vincent, P. "Representation Learning: A Review and New Perspectives". IEEE 1658

Transactions on Pattern Analysis and Machine Intelligence. 35 (8): 1798–1828, 2013. 1659

[4] Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends® in Machine Learning 2.1, 1-127, 1660

2009. 1661

[5] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540, 529-533, 1662

2015. 1663

[6] Mnih, Volodymyr, et al. "Playing Atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602, 2013. 1664

[7] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional neural networks. In 1665

NIPS, pp. 1106–1114, 2012. 1666

[8] Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013. 1667

Published in Proc. ECCV, 2014. 1668

[9] Simonyan, Karen, and Andrew Zisserman, "deep convolutional networks for large-scale image recognition." arXiv 1669

preprint arXiv:1409.1556, 2014. 1670

[10] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision 1671

and pattern recognition, 2015. 1672

[11] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer 1673

vision and pattern recognition, 2016. 1674

[12] Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for 1675

practical applications." arXiv preprint arXiv:1605.07678, 2016. 1676

[13] G. Zweig, “Classification and recognition with direct segment models,” in Proc. ICASSP. IEEE, pp. 4161– 1677

4164, 2012. 1678

[14] Y. He and E. Fosler-Lussier, “Efficient segmental conditional random fields for phone recognition,” in 1679

Proc. INTERSPEECH, pp. 1898–1901, 2012. 1680

[15] O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, “Deep segmental neural networks for speech recognition.” 1681

in Proc. INTERSPEECH, pp. 1849–1853, , 2013, 1682

[16] H. Tang, W. Wang, K. Gimpel, and K. Livescu, “Discriminative segmental cascades for feature-rich phone 1683

recognition,” in Proc. ASRU, 2015. 1684

https://en.wikipedia.org/wiki/Digital_object_identifier

Electronics 2018, 7, x FOR PEER REVIEW 57 of 74

[17] Song, William, and Jim Cai. "End-to-end deep neural network for automatic speech recognition.", 1. 1685

(Errors: 21.1), 2015. 1686

[18] Deng, Li, Ossama Abdel-Hamid, and Dong Yu. "A deep convolutional neural network using 1687

heterogeneous pooling for trading acoustic invariance with phonetic confusion." Acoustics, Speech and 1688

Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013. 1689

[19] Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in 1690

Proc. ICASSP. IEEE, pp. 6645–6649, 2013. 1691

[20] Zhang, Ying, et al. "Towards end-to-end speech recognition with deep convolutional neural 1692

networks." arXiv preprint arXiv:1701.02720 (2017). 1693

[21] Deng, Li, and John Platt. "Ensemble deep learning for speech recognition." 2014. 1694

[22] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models for speech 1695

recognition,” in Advances in Neural Information Processing Systems, pp. 577–585, 2015, 1696

[23] Lu, Liang, et al. "Segmental recurrent neural networks for end-to-end speech recognition." arXiv preprint 1697

arXiv:1603.00223, 2016. 1698

[24] Van Essen, Brian, et al. "LBANN: Livermore big artificial neural network HPC toolkit." Proceedings of the 1699

Workshop on Machine Learning in High-Performance Computing Environments. ACM, 2015. 1700

[25] Chen, Xue-Wen, and Xiaotong Lin . “Big Data Deep Learning: Challenges and Perspectives” IEEE Access in 1701

date of publication May 16, 2014. 1702

[26] Zhou, Zhi-Hua, et al. "Big data opportunities and challenges: Discussions from data analytics perspectives 1703

[discussion forum]." IEEE Computational Intelligence Magazine 9.4, 62-74, 2014. 1704

[27] Najafabadi, Maryam M., et al. "Deep learning applications and challenges in big data analytics." Journal of 1705

Big Data 2.1 (2015): 1. 1706

[28] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014. 1707

[29] Kaiser, Lukasz, et al. "One Model To Learn Them All." arXiv preprint arXiv:1706.05137, 2017. 1708

[30] Collobert, Ronan, and Jason Weston. "A unified architecture for natural language processing: Deep neural 1709

networks with multitask learning." Proceedings of the 25th international conference on Machine learning. ACM, 1710

2008. 1711

[31] Johnson, Melvin, et al. "Google's multilingual neural machine translation system: enabling zero-shot 1712

translation." arXiv preprint arXiv:1611.04558, 2016. 1713

[32] Argyriou, Andreas, Theodoros Evgeniou, and Massimiliano Pontil. "Multi-task feature learning." Advances 1714

in neural information processing systems. 2007. 1715

[33] Singh, Karamjit, et al. "Deep Convolutional Neural Networks for Pairwise Causality." arXiv preprint 1716

arXiv:1701.00597 (2017). 1717

[34] Yu, Haonan, et al. "Video paragraph captioning using hierarchical recurrent neural networks." Proceedings 1718

of the IEEE conference on computer vision and pattern recognition. 2016. 1719

[35] Kim, Taeksoo, et al. "Learning to discover cross-domain relations with generative adversarial 1720

networks." arXiv preprint arXiv:1703.05192 (2017). 1721

[36] Reed, Scott, et al. "Generative adversarial text to image synthesis." arXiv preprint arXiv:1605.05396 (2016). 1722

[37] Deng, Li, and Dong Yu. "Deep learning: methods and applications." Foundations and Trends® in Signal 1723

Processing 7.3–4 (2014): 197-387. 1724

[38] Gu, Jiuxiang, et al. "Recent advances in convolutional neural networks." arXiv preprint 1725

arXiv:1512.07108 (2015). 1726

Electronics 2018, 7, x FOR PEER REVIEW 58 of 74

[39] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A tutorial and survey." arXiv preprint 1727

arXiv:1703.09039 (2017). 1728

[40] Li, Yuxi. "Deep reinforcement learning: An overview." arXiv preprint arXiv:1701.07274 (2017). 1729

[41] Kober, Jens, J. Andrew Bagnell, and Jan Peters. "Reinforcement learning in robotics: A survey." The 1730

International Journal of Robotics Research 32.11 (2013): 1238-1274. 1731

[42] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data 1732

engineering22.10 (2010): 1345-1359. 1733

[43] Schuman, Catherine D., et al. "A Survey of Neuromorphic Computing and Neural Networks in 1734

Hardware." arXiv preprint arXiv:1705.06963 (2017). 1735

[44] McCulloch, Warren S., and Walter Pitts. "A logical calculus of the ideas immanent in nervous activity." The 1736

bulletin of mathematical biophysics 5.4 (1943): 115-133. 1737

[45] Rosenblatt, Frank. "The perceptron: A probabilistic model for information storage and organization in the 1738

brain." Psychological review 65.6 (1958): 386. 1739

[46] Minsky, Marvin, and Seymour Papert. "Perceptrons." (1969). 1740

[47] Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski. "A learning algorithm for Boltzmann 1741

machines." Cognitive science 9.1 (1985): 147-169. 1742

[48] Fukushima, Kunihiko. "Neocognitron: A hierarchical neural network capable of visual pattern 1743

recognition." Neural networks 1.2 (1988): 119-130. 1744

[49] LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the 1745

IEEE 86.11 (1998): 2278-2324. 1746

[50] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief 1747

nets." Neural computation 18.7 (2006): 1527-1554. 1748

[51] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural 1749

networks." science 313.5786 (2006): 504-507. 1750

[52] Bottou, Léon. "Stochastic gradient descent tricks." Neural networks: Tricks of the trade. Springer Berlin 1751

Heidelberg, 2012. 421-436. 1752

[53] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by 1753

back-propagating errors." Cognitive modeling 5.3 (1988): 1. 1754

[54] Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning." International 1755

conference on machine learning. 2013. 1756

[55] Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle, Greedy Layer-Wise Training of Deep 1757

Network, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 1758

153-160, MIT Press, 2007 1759

[56] Erhan, Dumitru, et al. "The difficulty of training deep architectures and the effect of unsupervised 1760

pre-training." Artificial Intelligence and Statistics. 2009. 1761

[57] Mohamed, Abdel-rahman, George E. Dahl, and Geoffrey Hinton. “Acoustic modeling using deep belief 1762

networks,”Audio, Speech, and Language Processing, IEEE Transactions on 20.1 (2012): 14-22 1763

[58] V. Nair and G. Hinton, Rectified linear units improve restricted boltzmann machines. Proceedings of the 1764

27th International Conference on Machine Learning (ICML-10). 2010. 1765

[59] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with 1766

denoising autoencoders,” Proceedings of the Twenty-fifth International Conference on Machine Learning, 1767

pp. 1096–1103, 2008. 1768

[60] Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013). 1769

Electronics 2018, 7, x FOR PEER REVIEW 59 of 74

[61] Springenberg, Jost Tobias, et al. "Striving for simplicity: The all convolutional net." arXiv preprint 1770

arXiv:1412.6806 (2014). 1771

[62] Huang, Gao, et al. "Densely connected convolutional networks." arXiv preprint arXiv:1608.06993 (2016). 1772

[63] Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich. "FractalNet: Ultra-Deep Neural Networks 1773

without Residuals." arXiv preprint arXiv:1605.07648 (2016). 1774

[64] Szegedy, Christian, Sergey Ioffe, and Vincent Vanhoucke. "Inception-v4, inception-resnet and the impact of 1775

residual connections on learning." arXiv preprint arXiv:1602.07261 (2016). 1776

[65] Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." arXiv preprint 1777

arXiv:1512.00567 (2015). 1778

[66] Zagoruyko, Sergey, and Nikos Komodakis. "Wide Residual Networks." arXiv preprint arXiv:1605.07146 1779

(2016). 1780

[67] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2016). Aggregated residual transformations for deep neural 1781

networks. arXiv preprint arXiv:1611.05431 1782

[68] Veit, Andreas, Michael J. Wilber, and Serge Belongie. "Residual networks behave like ensembles of 1783

relatively shallow networks." Advances in Neural Information Processing Systems. 2016. 1784

[69] Abdi, Masoud, and Saeid Nahavandi. "Multi-Residual Networks: Improving the Speed and Accuracy of 1785

Residual Networks." arXiv preprint arXiv:1609.05672 (2016). 1786

[70] Zhang, Xingcheng, et al. "Polynet: A pursuit of structural diversity in deep networks." arXiv preprint 1787

arXiv:1611.05725 (2016). 1788

[71] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal 1789

networks." Advances in neural information processing systems. 2015. 1790

[72] Chollet, François. "Xception: Deep Learning with Depthwise Separable Convolutions." arXiv preprint 1791

arXiv:1610.02357 (2016). 1792

[73] Liang, Ming, and Xiaolin Hu. "Recurrent convolutional neural network for object recognition." Proceedings 1793

of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. 1794

[74] Alom, Md Zahangir, et al. "Inception Recurrent Convolutional Neural Network for Object 1795

Recognition." arXiv preprint arXiv:1704.07709 (2017). 1796

[75] Li, Yikang, et al. "ViP-CNN: Visual Phrase Guided Convolutional Neural Network." 1797

[76] Bagherinezhad, Hessam, Mohammad Rastegari, and Ali Farhadi. "LCNN: Lookup-based Convolutional 1798

Neural Network." arXiv preprint arXiv:1611.06473 (2016). 1799

[77] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic 1800

segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. 1801

[78] Bansal, Aayush, et al. "Pixelnet: Representation of the pixels, by the pixels, and for the pixels." arXiv preprint 1802

arXiv:1702.06506(2017). 1803

[79] Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint arXiv:1603.09382 (2016). 1804

[80] Lee, Chen-Yu, et al. "Deeply-Supervised Nets." AISTATS. Vol. 2. No. 3. 2015. 1805

[81] Pezeshki, Mohammad, et al. "Deconstructing the ladder network architecture." arXiv preprint 1806

arXiv:1511.06430 (2015). 1807

[82] Ba, Jimmy, and Rich Caruana. "Do deep nets really need to be deep?." Advances in neural information 1808

processing systems. 2014. 1809

[83] Urban, Gregor, et al. "Do deep convolutional nets really need to be deep and convolutional?." stat 1050 1810

(2016): 4. 1811

[84] Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." arXiv preprint arXiv:1412.6550 (2014). 1812

Electronics 2018, 7, x FOR PEER REVIEW 60 of 74

[85] Mishkin, Dmytro, and Jiri Matas. "All you need is a good init." arXiv preprint arXiv:1511.06422 (2015). 1813

[86] Pandey, Gaurav, and Ambedkar Dukkipati. "To go deep or wide in learning?." AISTATS. 2014. 1814

[87] Ratner, Alexander, et al. "Data Programming: Creating Large Training Sets, Quickly." arXiv preprint 1815

arXiv:1605.07723 (2016). 1816

[88] Aberger, Christopher R., et al. "Empty-Headed: A Relational Engine for Graph Processing." arXiv preprint 1817

arXiv:1503.02368 (2015). 1818

[89] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model 1819

size." arXiv preprint arXiv:1602.07360 (2016). 1820

[90] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with 1821

pruning, trained quantization and huffman coding." CoRR, abs/1510.00149 2 (2015). 1822

[91] Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov. "Learning Convolutional Neural Networks 1823

for Graphs." arXiv preprint arXiv:1605.05273 (2016). 1824

[92] https://github.com/kjw0612/awesome-deep-vision 1825

[93] Jia, Xiaoyi, et al. "Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network." arXiv 1826

preprint arXiv:1705.05084 (2017). 1827

[94] Ahn, Byeongyong, and Nam Ik Cho. "Block-Matching Convolutional Neural Network for Image 1828

Denoising." arXiv preprint arXiv:1704.00524 (2017). 1829

[95] Ma, Shuang, Jing Liu, and Chang Wen Chen. "A-Lamp: Adaptive Layout-Aware Multi-Patch Deep 1830

Convolutional Neural Network for Photo Aesthetic Assessment." arXiv preprint arXiv:1704.00248(2017). 1831

[96] Cao, Xiangyong, et al. "Hyperspectral Image Segmentation with Markov Random Fields and a 1832

Convolutional Neural Network." arXiv preprint arXiv:1705.00727 (2017). 1833

[97] de Vos, Bob D., et al. "End-to-End Unsupervised Deformable Image Registration with a Convolutional 1834

Neural Network." arXiv preprint arXiv:1704.06065 (2017). 1835

[98] Wang, Xin, et al. "Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast 1836

Artistic Style Transfer." arXiv preprint arXiv:1612.01895 (2016). 1837

[99] Babaee, Mohammadreza, Duc Tung Dinh, and Gerhard Rigoll. "A deep convolutional neural network for 1838

background subtraction." arXiv preprint arXiv:1702.01731 (2017). 1839

[100] Hou, Jen-Cheng, et al. "Audio-Visual Speech Enhancement based on Multimodal Deep Convolutional 1840

Neural Network." arXiv preprint arXiv:1703.10893 (2017). 1841

[101] Xu, Yong, et al. "Convolutional gated recurrent neural network incorporating spatial features for audio 1842

tagging." arXiv preprint arXiv:1702.07787 (2017). 1843

[102] Litjens, Geert, et al. "A survey on deep learning in medical image analysis." arXiv preprint 1844

arXiv:1702.05747 (2017). 1845

[103] Zhang, Zizhao, et al. "MDNet: a semantically and visually interpretable medical image diagnosis 1846

network." arXiv preprint arXiv:1707.02485 (2017). 1847

[104] Tran, Phi Vu. "A fully convolutional neural network for cardiac segmentation in short-axis MRI." arXiv 1848

preprint arXiv:1604.00494(2016). 1849

[105] Tan, Jen Hong, et al. "Segmentation of optic disc, fovea and retinal vasculature using a single 1850

convolutional neural network." Journal of Computational Science 20 (2017): 70-79. 1851

[106] Moeskops, Pim, et al. "Automatic segmentation of MR brain images with a convolutional neural 1852

network." IEEE transactions on medical imaging 35.5 (2016): 1252-1261. 1853

[107] LeCun, Y., L. Bottou, and G. Orr. "Efficient BackProp in Neural Networks: Tricks of the Trade (Orr, G. and 1854

Müller, K., eds.)." Lecture Notes in Computer Science 1524. 1855

Electronics 2018, 7, x FOR PEER REVIEW 61 of 74

[108] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural 1856

networks." International conference on artificial intelligence and statistics. 2010. 1857

[109] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet 1858

classification." Proceedings of the IEEE international conference on computer vision. 2015. 1859

[110] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by 1860

reducing internal covariate shift." International Conference on Machine Learning. 2015. 1861

[111] Laurent, César, et al. "Batch normalized recurrent neural networks." Acoustics, Speech and Signal 1862

Processing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016. 1863

[112] Lavin, Andrew. "Fast algorithms for convolutional neural networks." arXiv preprint arXiv , ICLR 2016 1864

[113] Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning 1865

by exponential linear units (elus)." arXiv preprint arXiv:1511.07289 (2015). 1866

[114] Li, Yang, et al. "Improving Deep Neural Network with Multiple Parametric Exponential Linear Units." 1867

arXiv preprint arXiv:1606.00305 (2016). 1868

[115] Jin, Xiaojie, et al. "Deep Learning with S-shaped Rectified Linear Activation Units." arXiv preprint 1869

arXiv:1512.07030 (2015). 1870

[116] Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint 1871

arXiv:1505.00853 (2015) 1872

[117] He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual 1873

recognition." European Conference on Computer Vision. Springer, Cham, 2014. 1874

[118] Yoo, Donggeun, et al. "Multi-scale pyramid pooling for deep convolutional representation." Proceedings of 1875

the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2015. 1876

[119] Graham, Benjamin. "Fractional max-pooling." arXiv preprint arXiv:1412.6071 (2014). 1877

[120] Lee, Chen-Yu, Patrick W. Gallagher, and Zhuowen Tu. "Generalizing pooling functions in convolutional 1878

neural networks: Mixed, gated, and tree." International Conference on Artificial Intelligence and Statistics. 2016. 1879

[121] Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature 1880

detectors." arXiv preprint arXiv:1207.0580 (2012). 1881

[122] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of 1882

Machine Learning Research 15.1 (2014): 1929-1958. 1883

[123] Wan, Li, et al. "Regularization of neural networks using dropconnect." Proceedings of the 30th International 1884

Conference on Machine Learning (ICML-13). 2013. 1885

[124] Bulò, Samuel Rota, Lorenzo Porzi, and Peter Kontschieder. "Dropout distillation." Proceedings of The 33rd 1886

International Conference on Machine Learning. 2016. 1887

[125] Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint 1888

arXiv:1609.04747 (2016). 1889

[126] Ngiam, Jiquan, et al. "On optimization methods for deep learning." Proceedings of the 28th International 1890

Conference on Machine Learning (ICML-11). 2011. 1891

[127] Koushik, Jayanth, and Hiroaki Hayashi. "Improving Stochastic Gradient Descent with Feedback." arXiv 1892

preprint arXiv:1611.01505 (2016). (ICLR-2017) 1893

[128] Sathasivam, Saratha, and Wan Ahmad Tajuddin Wan Abdullah. "Logic learning in Hopfield 1894

networks." arXiv preprint arXiv:0804.4075 (2008). 1895

[129] Elman, Jeffrey L. "Finding structure in time." Cognitive science14.2 (1990): 179-211. 1896

[130] Jordan, Michael I. "Serial order: A parallel distributed processing approach." Advances in psychology 121 1897

(1997): 471-495. 1898

Electronics 2018, 7, x FOR PEER REVIEW 62 of 74

[131] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of 1899

learning long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical 1900

Recurrent Neural Networks. IEEE Press, 2001. 1901

[132] Schmidhuber, Jürgen . Habilitation thesis: System modeling and optimization in 1993. Page 150 ff 1902

demonstrates credit assignment across the equivalent of 1,200 layers in an unfolded RNN 1903

[133] Gers, Felix A., and Jürgen Schmidhuber. "Recurrent nets that time and count." Neural Networks, 2000. 1904

IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on. Vol. 3. IEEE, 2000. 1905

[134] Gers, Felix A., Nicol N. Schraudolph, and Jürgen Schmidhuber. "Learning precise timing with LSTM 1906

recurrent networks." Journal of machine learning research 3.Aug (2002): 115-143. 1907

[135] Mikolov, Tomas, et al. "Recurrent neural network based language model." Interspeech. Vol. 2. 2010. 1908

[136] Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence 1909

modeling." arXiv preprint arXiv:1412.3555 (2014). 1910

[137] Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. "An empirical exploration of recurrent network 1911

architectures." Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015. 1912

[138] Yao, Kaisheng, et al. "Depth-gated LSTM." arXiv preprint arXiv:1508.03790(2015). 1913

[139] Koutnik, Jan, et al. "A clockwork rnn." International Conference on Machine Learning. 2014. 1914

[140] Greff, Klaus, et al. "LSTM: A search space odyssey." IEEE transactions on neural networks and learning 1915

systems (2016). 1916

[141] Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image 1917

descriptions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. 1918

[142] Xingjian, S. H. I., et al. "Convolutional LSTM network: A machine learning approach for precipitation 1919

nowcasting." Advances in neural information processing systems. 2015. 1920

[143] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint 1921

arXiv:1301.3781 (2013). 1922

[144] Goldberg, Yoav, and Omer Levy. "word2vec Explained: deriving Mikolov et al.'s negative-sampling 1923

word-embedding method." arXiv preprint arXiv:1402.3722 (2014). 1924

[145] Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual a 1925

attention." International Conference on Machine Learning. 2015. 1926

[146] Qin, Yao, et al. "A Dual-Stage Attention-Based Recurrent Neural Network for Time Series 1927

Prediction." arXiv preprint arXiv:1704.02971 (2017). 1928

[147] Xiong, Caiming, Stephen Merity, and Richard Socher. "Dynamic memory networks for visual and textual 1929

question answering." International Conference on Machine Learning. 2016. 1930

[148] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural 1931

networks." arXiv preprint arXiv:1601.06759(2016). 1932

[149] Xue, Wufeng, et al. "Direct Estimation of Regional Wall Thicknesses via Residual Recurrent Neural 1933

Network." International Conference on Information Processing in Medical Imaging. Springer, Cham, 2017. 1934

[150] Tjandra, Andros, et al. "Gated Recurrent Neural Tensor Network." Neural Networks (IJCNN), 2016 1935

International Joint Conference on. IEEE, 2016. 1936

[151] Wang, Shuohang, and Jing Jiang. "Learning natural language inference with LSTM." arXiv preprint 1937

arXiv:1512.08849 (2015). 1938

[152] Sutskever, Ilya, Oriol Vinyals, and Quoc VV Le. “Sequence to sequence learning with neural networks.” 1939

Advances in Neural Information Processing Systems. 2014. 1940

Electronics 2018, 7, x FOR PEER REVIEW 63 of 74

[153] Lakhani, Vrishabh Ajay, and Rohan Mahadev. "Multi-Language Identification Using Convolutional 1941

Recurrent Neural Network." arXiv preprint arXiv:1611.04010 (2016). 1942

[154] Längkvist, Martin, Lars Karlsson, and Amy Loutfi. "A review of unsupervised feature learning and deep 1943

learning for time-series modeling." Pattern Recognition Letters 42 (2014): 11-24. 1944

[155] Malhotra, Pankaj, et al. "TimeNet: Pre-trained deep recurrent neural network for time series 1945

classification." arXiv preprint arXiv:1706.08838 (2017). 1946

[156] Soltau, Hagen, Hank Liao, and Hasim Sak. "Neural speech recognizer: Acoustic-to-word LSTM model for 1947

large vocabulary speech recognition." arXiv preprint arXiv:1610.09975 (2016). 1948

[157] Sak, Haşim, Andrew Senior, and Françoise Beaufays. "Long short-term memory recurrent neural network 1949

architectures for large scale acoustic modeling." Fifteenth Annual Conference of the International Speech 1950

Communication Association. 2014. 1951

[158] Adavanne, Sharath, Pasi Pertilä, and Tuomas Virtanen. "Sound event detection using spatial features and 1952

convolutional recurrent neural network." arXiv preprint arXiv:1706.02291 (2017). 1953

[159] Chien, Jen-Tzung, and Alim Misbullah. "Deep long short-term memory networks for speech 1954

recognition." Chinese Spoken Language Processing (ISCSLP), 2016 10th International Symposium on. IEEE, 2016. 1955

[160] Choi, Edward, et al. "Using recurrent neural network models for early detection of heart failure 1956

onset." Journal of the American Medical Informatics Association 24.2 (2016): 361-370. 1957

[161] Li, Yaguang, et al. "Graph Convolutional Recurrent Neural Network: Data-Driven Traffic 1958

Forecasting." arXiv preprint arXiv:1707.01926 (2017). 1959

[162] Azzouni, Abdelhadi, and Guy Pujolle. "A Long Short-Term Memory Recurrent Neural Network 1960

Framework for Network Traffic Matrix Prediction." arXiv preprint arXiv:1705.05690 (2017). 1961

[163] Olabiyi, Oluwatobi, et al. "Driver Action Prediction Using Deep (Bidirectional) Recurrent Neural 1962

Network." arXiv preprint arXiv:1706.02257 (2017). 1963

[164] Kim, ByeoungDo, et al. "Probabilistic Vehicle Trajectory Prediction over Occupancy Grid Map via 1964

Recurrent Neural Network." arXiv preprint arXiv:1704.07049 (2017). 1965

[165] Richard, Alexander, and Juergen Gall. "A bag-of-words equivalent recurrent neural network for action 1966

recognition." Computer Vision and Image Understanding 156 (2017): 79-91. 1967

[166] Bontemps, Loïc, James McDermott, and Nhien-An Le-Khac. "Collective Anomaly Detection Based on 1968

Long Short-Term Memory Recurrent Neural Networks." International Conference on Future Data and Security 1969

Engineering. Springer International Publishing, 2016. 1970

[167] Kingma, Diederik P., and Max Welling. "Stochastic gradient VB and the variational auto-encoder." Second 1971

International Conference on Learning Representations, ICLR. 2014. 1972

[168] Ng, Andrew. "Sparse autoencoder." CS294A Lecture notes72.2011 (2011): 1-19. 1973

[169] Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network 1974

with a local denoising criterion." Journal of Machine Learning Research 11.Dec (2010): 3371-3408. 1975

[170] Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Split-brain autoencoders: Unsupervised learning by 1976

cross-channel prediction." arXiv preprint arXiv:1611.09842 (2016). 1977

[171] Chicco, Davide; Sadowski, Peter; Baldi, Pierre (1 January 2014). "Deep Autoencoder Neural Networks for Gene 1978

Ontology Annotation Predictions". Proceedings of the 5th ACM Conference on Bioinformatics, Computational 1979

Biology, and Health Informatics - BCB '14. ACM: 533–540. 1980

[172] Alom, Md Zahangir and Tarek M. Taha. " Network Intrusion Detection for Cyber Security using 1981

Unsupervised Deep Learning Approaches " Aerospace and Electronics Conference (NAECON), National. IEEE, 1982

2017. 1983

Electronics 2018, 7, x FOR PEER REVIEW 64 of 74

[173] Song, Chunfeng, et al. "Auto-encoder based data clustering." Iberoamerican Congress on Pattern Recognition. 1984

Springer Berlin Heidelberg, 2013. 1985

[174] Lu, Jiajun, Aditya Deshpande, and David Forsyth. "CDVAE: Co-embedding Deep Variational Auto 1986

Encoder for Conditional Variational Generation." arXiv preprint arXiv:1612.00132 (2016). 1987

[175] Ahmad, Muhammad, Stanislav Protasov, and Adil Mehmood Khan. "Hyperspectral Band Selection Using 1988

Unsupervised Non-Linear Deep Auto Encoder to Train External Classifiers." arXiv preprint 1989

arXiv:1705.06920 (2017). 1990

[176] Freund, Yoav, and David Haussler. "Unsupervised learning of distributions of binary vectors using two 1991

layer networks." (1994). 1992

[177] Larochelle, Hugo, and Yoshua Bengio. "Classification using discriminative restricted Boltzmann 1993

machines." Proceedings of the 25th international conference on Machine learning. ACM, 2008. 1994

[178] R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In AISTATS, volume 1, page 3, 2009. 1995

[179] Alom, Md Zahangir, VenkataRamesh Bontupalli, and Tarek M. Taha. "Intrusion detection using deep 1996

belief networks." Aerospace and Electronics Conference (NAECON), 2015 National. IEEE, 2015. 1997

[180] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014. 1998

[181] T. Salimans, I. Goodfellow, W. Zaremba, V. Che- ung, A. Radford, and X. Chen. Improved techniques for 1999

training gans. arXiv preprint arXiv:1606.03498, 2016. 2000

[182] Vondrick, Carl, Hamed Pirsiavash, and Antonio Torralba. "Generating videos with scene 2001

dynamics." Advances In Neural Information Processing Systems. 2016. 2002

[183] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep 2003

convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015). 2004

[184] X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. In 2005

Proc. ECCV, 2016. 2006

[185] Chen, Xi, et al. "InfoGAN: Interpretable representation learning by information maximizing generative 2007

adversarial nets." Advances in Neural Information Processing Systems. 2016. 2008

[186] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. Generating images with recurrent adversarial net- works. 2009

http://arxiv.org/abs/ 1602.05110, 2016. 2010

[187] Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arXiv 2011

preprint (2017). 2012

[188] Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." Advances in neural information 2013

processing systems. 2016. 2014

[189] Donahue, Jeff, Philipp Krähenbühl, and Trevor Darrell. "Adversarial feature learning." arXiv preprint 2015

arXiv:1605.09782 (2016). 2016

[190] Berthelot, David, Tom Schumm, and Luke Metz. "Began: Boundary equilibrium generative adversarial 2017

networks." arXiv preprint arXiv:1703.10717(2017). 2018

[191] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2019

2017. 2020

[192] Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." arXiv preprint arXiv:1704.00028 (2017). 2021

[193] He, Kun, Yan Wang, and John Hopcroft. "A powerful generative model using random weights for the 2022

deep image representation." Advances in Neural Information Processing Systems. 2016. 2023

[194] Kos, Jernej, Ian Fischer, and Dawn Song. "Adversarial examples for generative models." arXiv preprint 2024

arXiv:1702.06832 (2017). 2025

Electronics 2018, 7, x FOR PEER REVIEW 65 of 74

[195] Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based generative adversarial network." arXiv 2026

preprint arXiv:1609.03126 (2016). 2027

[196] Park, Noseong, et al. "MMGAN: Manifold Matching Generative Adversarial Network for Generating 2028

Images." arXiv preprint arXiv:1707.08273 (2017). 2029

[197] Laloy, Eric, et al. "Efficient training-image based geostatistical simulation and inversion using a spatial 2030

generative adversarial neural network." arXiv preprint arXiv:1708.04975 (2017). 2031

[198] Eghbal-zadeh, Hamid, and Gerhard Widmer. "Probabilistic Generative Adversarial Networks." arXiv 2032

preprint arXiv:1708.01886 (2017). 2033

[199] Fowkes, Jaroslav, and Charles Sutton. "A Bayesian Network Model for Interesting Itemsets." Joint European 2034

Conference on Machine Learning and Knowledge Disco in Databases. Springer International Publishing, 2016. 2035

[200] Mescheder, Lars, Sebastian Nowozin, and Andreas Geiger. "Adversarial variational bayes: Unifying 2036

variational autoencoders and generative adversarial networks." arXiv preprint arXiv:1701.04722 (2017). 2037

[201] Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. "f-gan: Training generative neural samplers using 2038

variational divergence minimization." Advances in Neural Information Processing Systems. 2016. 2039

[202] Li, Chuan, and Michael Wand. "Precomputed real-time texture synthesis with markovian generative 2040

adversarial networks." European Conference on Computer Vision. Springer International Publishing, 2016. 2041

[203] Du, Chao, Jun Zhu, and Bo Zhang. "Learning Deep Generative Models with Doubly Stochastic Gradient 2042

MCMC." IEEE Transactions on Neural Networks and Learning Systems (2017). 2043

[204] Hoang, Quan, et al. "Multi-Generator Gernerative Adversarial Nets." arXiv preprint 2044

arXiv:1708.02556 (2017). 2045

[205] Bousmalis, Konstantinos, et al. "Unsupervised pixel-level domain adaptation with generative adversarial 2046

networks." arXiv preprint arXiv:1612.05424 (2016). 2047

[206] Kansky, Ken, et al. "Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive 2048

Physics." arXiv preprint arXiv:1706.04317 (2017). 2049

[207] Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial 2050

network." arXiv preprint arXiv:1609.04802 (2016). 2051

[208] Souly, Nasim, Concetto Spampinato, and Mubarak Shah. "Semi and Weakly Supervised Semantic 2052

Segmentation Using Generative Adversarial Network." arXiv preprint arXiv:1703.09695 (2017). 2053

[209] Dash, Ayushman, et al. "TAC-GAN-Text Conditioned Auxiliary Classifier Generative Adversarial 2054

Network." arXiv preprint arXiv:1703.06412 (2017). 2055

[210] Zhang, Hang, and Kristin Dana. "Multi-style Generative Network for Real-time Transfer." arXiv preprint 2056

arXiv:1703.06953 (2017). 2057

[211] Zhang, He, Vishwanath Sindagi, and Vishal M. Patel. "Image De-raining Using a Conditional Generative 2058

Adversarial Network." arXiv preprint arXiv:1701.05957 (2017). 2059

[212] Serban, Iulian Vlad, et al. "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural 2060

Network Models." AAAI. 2016. 2061

[213] Pascual, Santiago, Antonio Bonafonte, and Joan Serrà. "SEGAN: Speech Enhancement Generative 2062

Adversarial Network." arXiv preprint arXiv:1703.09452 (2017). 2063

[214] Yang, Li-Chia, Szu-Yu Chou, and Yi-Hsuan Yang. "MidiNet: A convolutional generative adversarial 2064

network for symbolic-domain music generation." Proceedings of the 18th International Society for Music 2065

Information Retrieval Conference (ISMIR’2017), Suzhou, China. 2017. 2066

[215] Yang, Qingsong, et al. "Low Dose CT Image Denoising Using a Generative Adversarial Network with 2067

Wasserstein Distance and Perceptual Loss." arXiv preprint arXiv:1708.00961 (2017). 2068

Electronics 2018, 7, x FOR PEER REVIEW 66 of 74

[216] Rezaei, Mina, et al. "Conditional Adversarial Network for Semantic Segmentation of Brain Tumor." arXiv 2069

preprint arXiv:1708.05227(2017) 2070

[217] Xue, Yuan, et al. "SegAN: Adversarial Network with Multi-scale $ L_1 $ Loss for Medical Image 2071

Segmentation." arXiv preprint arXiv:1706.01805 (2017). 2072

[218] Mardani, Morteza, et al. "Deep Generative Adversarial Networks for Compressed Sensing Automates 2073

MRI." arXiv preprint arXiv:1706.00051 (2017). 2074

[219] Choi, Edward, et al. "Generating Multi-label Discrete Electronic Health Records using Generative 2075

Adversarial Networks." arXiv preprint arXiv:1703.06490 (2017). 2076

[220] Esteban, Cristóbal, Stephanie L. Hyland, and Gunnar Rätsch. "Real-valued (Medical) Time Series 2077

Generation with Recurrent Conditional GANs." arXiv preprint arXiv:1706.02633 (2017). 2078

[221] Hayes, Jamie, et al. "LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative 2079

Adversarial Networks." arXiv preprint arXiv:1705.07663 (2017). 2080

[222] Gordon, Jonathan, and José Miguel Hernández-Lobato. "Bayesian Semisupervised Learning with Deep 2081

Generative Models." arXiv preprint arXiv:1706.09751 (2017). 2082

[223] Abbasnejad, M. Ehsan, et al. "Bayesian Conditional Generative Adverserial Networks." arXiv preprint 2083

arXiv:1706.05477 (2017). 2084

[224] Grnarova, Paulina, et al. "An Online Learning Approach to Generative Adversarial Networks." arXiv 2085

preprint arXiv:1706.03269 (2017). 2086

[225] Li, Yujia, Kevin Swersky, and Rich Zemel. "Generative moment matching networks." Proceedings of the 2087

32nd International Conference on Machine Learning (ICML-15). 2015. 2088

[226] Li, Chun-Liang, et al. "MMD GAN: Towards Deeper Understanding of Moment Matching 2089

Network." arXiv preprint arXiv:1705.08584(2017). 2090

[227] Nie, Xuecheng, et al. "Generative Partition Networks for Multi-Person Pose Estimation." arXiv preprint 2091

arXiv:1705.07422 (2017). 2092

[228] Saeedi, Ardavan, et al. "Multimodal Prediction and Personalization of Photo Edits with Deep Generative 2093

Models." arXiv preprint arXiv:1704.04997 (2017). 2094

[229] Schlegl, Thomas, et al. "Unsupervised Anomaly Detection with Generative Adversarial Networks to 2095

Guide Marker Disco ." International Conference on Information Processing in Medical Imaging. Springer, Cham, 2096

2017. 2097

[230] Kim, Taeksoo, et al. "Learning to discover cross-domain relations with generative adversarial 2098

networks." arXiv preprint arXiv:1703.05192 (2017). 2099

[231] Mehrotra, Akshay, and Ambedkar Dukkipati. "Generative Adversarial Residual Pairwise Networks for 2100

One Shot Learning." arXiv preprint arXiv:1703.08033 (2017). 2101

[232] Sordoni, Alessandro, et al. "A neural network approach to context-sensitive generation of conversational 2102

responses." arXiv preprint arXiv:1506.06714(2015). 2103

[233] Yin, Jun, et al. "Neural generative question answering." arXiv preprint arXiv:1512.01337 (2015). 2104

[234] Li, Yuxi. "Deep reinforcement learning: An overview." arXiv preprint arXiv:1701.07274 (2017). 2105

[235] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. 2106

[236] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian 2107

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc- tot, et al. Mastering the game of Go 2108

with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. 2109

[237] Vinyals, Oriol, et al. "StarCraft II: A New Challenge for Reinforcement Learning." arXiv preprint 2110

arXiv:1708.04782 (2017). 2111

Electronics 2018, 7, x FOR PEER REVIEW 67 of 74

[238] Koenig, Sven, and Reid G. Simmons. Complexity analysis of real-time reinforcement learning applied to finding 2112

shortest paths in deterministic domains. No. CMU-CS-93-106. CARNEGIE-MELLON UNIV PITTSBURGH PA 2113

SCHOOL OF COMPUTER SCIENCE, 1992. 2114

[239] Schulman, John, et al. "Trust region policy optimization." Proceedings of the 32nd International 2115

Conference on Machine Learning (ICML-15). 2015. 2116

[240] Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." Journal of Machine Learning 2117

Research 17.39 (2016): 1-40. 2118

[241] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International Conference 2119

on Machine Learning. 2016. 2120

[242] Kober, Jens, J. Andrew Bagnell, and Jan Peters. "Reinforcement learning in robotics: A survey." The 2121

International Journal of Robotics Research 32.11 (2013): 1238-1274. 2122

[243] Arulkumaran, Kai, et al. "A brief survey of deep reinforcement learning." arXiv preprint 2123

arXiv:1708.05866 (2017). 2124

[244] Zhu, Feiyun, et al. "Cohesion-based Online Actor-Critic Reinforcement Learning for mHealth 2125

Intervention." arXiv preprint arXiv:1703.10039 (2017). 2126

[245] Zhu, Feiyun, et al. "Group-driven Reinforcement Learning for Personalized mHealth Intervention." arXiv 2127

preprint arXiv:1708.04001 (2017). 2128

[246] Steckelmacher, Denis, et al. "Reinforcement Learning in POMDPs with Memoryless Options and 2129

Option-Observation Initiation Sets." arXiv preprint arXiv:1708.06551 (2017). 2130

[247] Hu, Haoyuan, et al. "Solving a new 3d bin packing problem with deep reinforcement learning 2131

method." arXiv preprint arXiv:1708.05930 (2017). 2132

[248] Everitt, Tom, et al. "Reinforcement Learning with a Corrupted Reward Channel." arXiv preprint 2133

arXiv:1705.08417 (2017). 2134

[249] Wu, Yuhuai, et al. "Scalable trust-region method for deep reinforcement learning using 2135

Kronecker-factored approximation." arXiv preprint arXiv:1708.05144 (2017). 2136

[250] Denil, Misha, et al. "Learning to perform physics experiments via deep reinforcement learning." arXiv 2137

preprint arXiv:1611.01843(2016). 2138

[251] Hein, Daniel, et al. "Particle swarm optimization for generating interpretable fuzzy reinforcement learning 2139

policies." Engineering Applications of Artificial Intelligence 65 (2017): 87-98. 2140

[252] Islam, Riashat, et al. "Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for 2141

Continuous Control." arXiv preprint arXiv:1708.04133 (2017). 2142

[253] Inoue, Tadanobu, et al. "Deep reinforcement learning for high precision assembly tasks." arXiv preprint 2143

arXiv:1708.04033(2017). 2144

[254] Li, Kun, and Joel W. Burdick. "Inverse Reinforcement Learning in Large State Spaces via Function 2145

Approximation." arXiv preprint arXiv:1707.09394 (2017). 2146

[255] Liu, Ning, et al. "A Hierarchical Framework of Cloud Resource Allocation and Power Management Using 2147

Deep Reinforcement Learning." Distributed Computing Systems (ICDCS), 2017 IEEE 37th International 2148

Conference on. IEEE, 2017. 2149

[256] Cao, Qingxing, et al. "Attention-aware face hallucination via deep reinforcement learning." arXiv preprint 2150

arXiv:1708.03132 (2017). 2151

[257] Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge 2152

transfer." arXiv preprint arXiv:1511.05641 (2015). 2153

Electronics 2018, 7, x FOR PEER REVIEW 68 of 74

[258] Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." arXiv 2154

preprint arXiv:1409.7495 (2014). 2155

[259] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." Journal of Machine Learning 2156

Research 17.59 (2016): 1-35. 2157

[260] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data 2158

engineering22.10 (2010): 1345-1359. 2159

[261] McKeough, Anne. Teaching for transfer: Fostering generalization in learning. Routledge, 2013. 2160

[262] Raina, Rajat, et al. "Self-taught learning: transfer learning from unlabeled data." Proceedings of the 24th 2161

international conference on Machine learning. ACM, 2007 2162

[263] Dai, Wenyuan, et al. "Boosting for transfer learning." Proceedings of the 24th international conference on 2163

Machine learning. ACM, 2007. 2164

[264] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural networks 2165

with pruning, trained quantization and huffman coding." arXiv preprint arXiv:1510.00149 (2015). 2166

[265] Qiu, Jiantao, et al. "Going deeper with embedded FPGA platform for convolutional neural network." 2167

Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 2016. 2168

[266] He, Kaiming, and Jian Sun. "Convolutional neural networks at constrained time cost." Proceedings of the 2169

IEEE Conference on Computer Vision and Pattern Recognition. 2015. 2170

[267] 13. Lin, Zhouhan, et al. "Neural networks with few multiplications." arXiv preprint arXiv:1510.03009 2171

(2015). 2172

[268] 14. Courbariaux, Matthieu, Jean-Pierre David, and Yoshua Bengio. "Training deep neural networks with 2173

low precision multiplications." arXiv preprint arXiv:1412.7024 (2014). 2174

[269] Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural 2175

networks with binary weights during propagations." Advances in Neural Information Processing Systems. 2176

2015. 2177

[270] Hubara, Itay, Daniel Soudry, and Ran El Yaniv. "Binarized Neural Networks." arXiv preprint 2178

arXiv:1602.02505 (2016). 2179

[271] Kim, Minje, and Paris Smaragdis. "Bitwise neural networks." arXiv preprint arXiv:1601.06071 (2016). 2180

[272] Dettmers, Tim. "8-Bit Approximations for Parallelism in Deep Learning." arXiv preprint arXiv:1511.04561 2181

(2015). 2182

[273] Gupta, Suyog, et al. "Deep learning with limited numerical precision." CoRR, abs/1502.02551 392 (2015). 2183

[274] Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural 2184

Networks." arXiv preprint arXiv:1603.05279(2016). 2185

[275] Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with a scalable communication 2186

network and interface." Science345.6197 (2014): 668-673. 2187

[276] Esser, Steven K., et al. "Convolutional networks for fast, energy-efficient neuromorphic computing 2188

“Proceedings of the National Academy of Science (2016): 201604850. 2189

[277] Schuman, Catherine D., et al. "A Survey of Neuromorphic Computing and Neural Networks in 2190

Hardware." arXiv preprint arXiv:1705.06963 (2017). 2191

[278] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional 2192

neural networks." IEEE Journal of Solid-State Circuits 52.1 (2017): 127-138. 2193

[279] Chen, Yunji, et al. "Dadiannao: A machine-learning supercomputer." Proceedings of the 47th Annual 2194

IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 2014. 2195

Electronics 2018, 7, x FOR PEER REVIEW 69 of 74

[280] Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor processing unit." arXiv preprint 2196

arXiv:1704.04760 (2017). 2197

[281] Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network." Proceedings of the 2198

43rd International Symposium on Computer Architecture. IEEE Press, 2016. 2199

[282] Zhang, Xiangyu, et al. "Efficient and accurate approximations of nonlinear convolutional 2200

networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. 2201

[283] Novikov, Alexander, et al. "Tensorizing neural networks." Advances in Neural Information Processing 2202

Systems. 2015. 2203

[284] Zhu, Chenzhuo, et al. "Trained ternary quantization." arXiv preprint arXiv:1612.01064 (2016). 2204

[285] Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of 2205

Computer Vision 115.3 (2015): 211-252. 2206

[286] Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint 2207

arXiv:1609.03499 (2016). 2208

[287] Zhang, Xingcheng, et al. "Polynet: A pursuit of structural diversity in deep networks." 2017 IEEE 2209

Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. 2210

[288] Kunihiko Fukushima, "Neural network model for selective attention in visual pattern recognition and 2211

associative recall," Appl. Opt. 26, 4985-4992 (1987) 2212

[289] Alom, Md Zahangir, et al. "Handwritten Bangla Digit Recognition Using Deep Learning." arXiv preprint 2213

arXiv:1705.02680 (2017) 2214

[290] Alom, Md Zahangir, et al. "Improved Inception-Residual Convolutional Neural Network for Object 2215

Recognition." arXiv preprint arXiv:1712.09888 (2017). 2216

[291] Alom, Md Zahangir, et al. "Handwritten Bangla Character Recognition Using The State-of-Art Deep 2217

Convolutional Neural Networks." arXiv preprint arXiv:1712.09872 (2017). 2218

[292] Socher, Richard, et al. "Parsing natural scenes and natural language with recursive neural 2219

networks." Proceedings of the 28th international conference on machine learning (ICML-11). 2011. 2220

[293] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in 2221

Neural Information Processing Systems. 2017. 2222

[294] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A tutorial and survey." Proceedings of the 2223

IEEE105.12 (2017): 2295-2329. 2224

[295] Rawat, Waseem, and Zenghui Wang. "Deep convolutional neural networks for image classification: A 2225

comprehensive review." Neural computation 29.9 (2017): 2352-2449. 2226

[296] Alom, Md Zahangir, et al. "Optical beam classification using deep learning: a comparison with rule-and 2227

feature-based classification." Optics and Photonics for Information Processing XI. Vol. 10395. International 2228

Society for Optics and Photonics, 2017. 2229

[297] Alom, Md Zahangir, et al. "Object recognition using cellular simultaneous recurrent networks and 2230

convolutional neural network." Neural Networks (IJCNN), 2017 International Joint Conference on. IEEE, 2017. 2231

[298] Khalid, Samina, Tehmina Khalil, and Shamila Nasreen. "A survey of feature selection and feature 2232

extraction techniques in machine learning." In Science and Information Conference (SAI), 2014, pp. 372-378. 2233

IEEE, 2014. 2234

[299] Kendall, Alex, and Yarin Gal. "What uncertainties do we need in bayesian deep learning for computer 2235

vision?." Advances in neural information processing systems. 2017. 2236

[300] Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for 2237

scene geometry and semantics." arXiv preprint arXiv:1705.07115 3 (2017). 2238

Electronics 2018, 7, x FOR PEER REVIEW 70 of 74

[301] https://www.usatoday.com/story/tech/2015/07/01/google-apologizes-after-photos-identify-black-people-a2239

s-gorillas/29567465/ 2240

[302] Gal, Yarin, and Zoubin Ghahramani. "Bayesian convolutional neural networks with Bernoulli 2241

approximate variational inference." arXiv preprint arXiv:1506.02158 (2015). 2242

[303] Kumar Shridhar, Felix Laumann, Adrian Llopart Maurin, Martin Olsen, Marcus Liwicki "Bayesian 2243

Convolutional Neural Networks with Variational Inference" arXiv preprint arXiv:1704.02798 (2018). 2244

[304] Vladimirova, Mariia, Julyan Arbel, and Pablo Mesejo. "Bayesian neural networks become heavier-tailed 2245

with depth." Bayesian Deep Learning Workshop during the thirty-second Conference on Neural 2246

Information Processing Systems (NIPS 2018). 2018. 2247

[305] Hu, Shell Xu, et al. "β-BNN: A Rate-Distortion Perspective on Bayesian Neural Networks." Bayesian Deep 2248

Learning Workshop during the thirty-second Conference on Neural Information Processing Systems (NIPS 2249

2018). 2018. 2250

[306] Salvator Lombardo, Jun Han, Christopher Schroers and Stephan Mandt “Video Compression through 2251

Deep Bayesian Learning” Bayesian Deep Learning Workshop during the thirty-second Conference on 2252

Neural Information Processing Systems (NIPS 2018). 2018. 2253

[307] Krishnan, Ranganath, Mahesh Subedar, and Omesh Tickoo. "BAR: Bayesian Activity Recognition using 2254

variational inference." arXiv preprint arXiv:1811.03305 (2018). 2255

[308] Ronao, Charissa Ann, and Sung-Bae Cho. "Human activity recognition with smartphone sensors using 2256

deep learning neural networks." Expert Systems with Applications 59 (2016): 235-244. 2257

[309] Yang, Jianbo, et al. "Deep Convolutional Neural Networks on Multichannel Time Series for Human 2258

Activity Recognition." Ijcai. Vol. 15. 2015. 2259

[310] Deep, convolutional, and recurrent models for human activity recognition using wearables 2260

[311] Ordóñez, Francisco Javier, and Daniel Roggen. "Deep convolutional and lstm recurrent neural networks 2261

for multimodal wearable activity recognition." Sensors 16.1 (2016): 115. 2262

[312] Rad, Nastaran Mohammadian, et al. "Deep learning for automatic stereotypical motor movement 2263

detection using wearable sensors in autism spectrum disorders." Signal Processing 144 (2018): 180-191. 2264

[313] Ravi, Daniele, et al. "Deep learning for human activity recognition: A resource efficient implementation on 2265

low-power devices." Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International 2266

Conference on. IEEE, 2016. 2267

[314] Sidike, Paheding, Sagan, Vasit, Maimaitijiang, Maitiniyazi., et al., dPEN: deep Progressively Expanded 2268

Network for mapping of heterogeneous agricultural landscape using WorldView-3 imagery. Remote 2269

Sensing of Environment, 221 (2019): 756-772. 2270

[315] Albalooshi, Fatema, Sidike, Paheding, Sagan, Vasit, Albastaki , Yousif and Asari, Vijayan. “Deep Belief 2271

Active Contours (DBAC) with Its Application to Oil Spill Segmentation from Remotely Sensed Aerial 2272

Imagery," Photogrammetric Engineering & Remote Sensing. 84, (2018): 451-458. 2273

 2274

© 2018 by the authors. Submitted for possible open access publication under the terms 2275
and conditions of the Creative Commons Attribution (CC BY) license 2276

(http://creativecommons.org/licenses/by/4.0/). 2277

 2278

 2279

 2280

http://creativecommons.org/licenses/by/4.0/

Electronics 2018, 7, x FOR PEER REVIEW 71 of 74

Appendix I 2281

 2282

Most of the time people use different deep learning frameworks and Standard Development Kits (SDKs) for 2283

implementing deep learning approaches which are listed below: 2284

1. Frameworks 2285

 Tensorflow: https://www.tensorflow.org/ 2286

 Caffe: http://caffe.berkeleyvision.org/ 2287

 KERAS: https://keras.io/ 2288

 Theano: http://deeplearning.net/software/theano/ 2289

 Torch: http://torch.ch/ 2290

 PyTorch: http://pytorch.org/ 2291

 Lasagne: https://lasagne.readthedocs.io/en/latest/ 2292

 DL4J (DeepLearning4J): https://deeplearning4j.org/ 2293

 Chainer: http://chainer.org/ 2294

 DIGITS: https://developer.nvidia.com/digits 2295

 CNTK (Microsoft): https://github.com/Microsoft/CNTK 2296

 MatConvNet: http://www.vlfeat.org/matconvnet/ 2297

 MINERVA: https://github.com/dmlc/minerva 2298

 MXNET: https://github.com/dmlc/mxnet 2299

 OpenDeep: http://www.opendeep.org/ 2300

 PuRine: https://github.com/purine/purine2 2301

 PyLerarn2: http://deeplearning.net/software/pylearn2/ 2302

 TensorLayer: https://github.com/zsdonghao/tensorlayer 2303

 LBANN: https://github.com/LLNL/lbann 2304

2. SDKs 2305

 cuDNN: https://developer.nvidia.com/cudnn 2306

 TensorRT: https://developer.nvidia.com/tensorrt 2307

 DeepStreamSDK: https://developer.nvidia.com/deepstream-sdk 2308

 cuBLAS: https://developer.nvidia.com/cublas 2309

 cuSPARSE: http://docs.nvidia.com/cuda/cusparse/ 2310

 NCCL : https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/ 2311

3. Benchmark Datasets 2312

Here is the list of benchmark datasets that are used often to evaluate deep learning approaches in different 2313

domains of application: 2314

3.1. Image classification or detection or segmentation 2315

List of datasets are used in the field of image processing and computer vision: 2316

 MNIST: http://yann.lecun.com/exdb/mnist/ 2317

 CIFAR 10/100: https://www.cs.toronto.edu/~kriz/cifar.html 2318

https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://keras.io/
http://deeplearning.net/software/theano/
http://torch.ch/
https://lasagne.readthedocs.io/en/latest/
https://deeplearning4j.org/
http://chainer.org/
https://developer.nvidia.com/digits
https://github.com/Microsoft/CNTK
http://www.vlfeat.org/matconvnet/
https://github.com/dmlc/minerva
https://github.com/dmlc/mxnet
http://www.opendeep.org/
https://github.com/purine/purine2
http://deeplearning.net/software/pylearn2/
https://github.com/zsdonghao/tensorlayer
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cusparse/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

Electronics 2018, 7, x FOR PEER REVIEW 72 of 74

 SVHN/ SVHN2: http://ufldl.stanford.edu/housenumbers/ 2319

 CalTech 101/256: http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 2320

 STL-10: https://cs.stanford.edu/~acoates/stl10/ 2321

 NORB: http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/ 2322

 SUN-dataset: http://groups.csail.mit.edu/vision/SUN/ 2323

 ImageNet: http://www.image-net.org/ 2324

 National Data Science Bowl Competition: http://www.datasciencebowl.com/ 2325

 COIL 20/100: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php 2326

 MS COCO DATASET: http://mscoco.org/ 2327

 MIT-67 scene dataset: http://web.mit.edu/torralba/www/indoor.html 2328

 Caltech-UCSD Birds-200 dataset: http://www.vision.caltech.edu/visipedia/CUB-200-2011.html 2329

 Pascal VOC 2007 dataset: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ 2330

 H3D Human Attributes 2331

dataset: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/ 2332

 Face recognition dataset: http://vis-www.cs.umass.edu/lfw/ 2333

 For more data-set visit: https://www.kaggle.com/ 2334

 http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm 2335

 Recently Introduced Datasets in Sept. 2016: 2336

 Google Open Images (~9M images) – https://github.com/openimages/dataset 2337

 Youtube-8M (8M videos: https://research.google.com/youtube8m/ 2338

3.2. Text classification 2339

 Reuters-21578 Text Categorization Collection: 2340

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html 2341

 Sentiment analysis from Stanford : http://ai.stanford.edu/~amaas/data/sentiment/ 2342

 Movie sentiment analysis from Cornel: 2343

http://www.cs.cornell.edu/people/pabo/movie-review-data/ 2344

3..3. Language modeling 2345

 free eBooks: https://www.gutenberg.org/ 2346

 Brown and stanford corpus on present americal english: 2347

o https://en.wikipedia.org/wiki/Brown_Corpus 2348

 Google 1Billion word corpus: 2349

https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark 2350

3.4. Image Captioning 2351

 Flickr-8k: http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html 2352

 Flickr-30k 2353

 Common Objects in Context (COCO) : http://cocodataset.org/#overview 2354

 http://sidgan.me/technical/2016/01/09/Exploring-Datasets 2355

3.4. Machine translation 2356

 Pairs of sentences in English and French: https://www.isi.edu/natural-language/download/hansard/ 2357

 European Parliament Proceedings parallel Corpus 196-2011 : http://www.statmt.org/europarl/ 2358

http://ufldl.stanford.edu/housenumbers/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://cs.stanford.edu/~acoates/stl10/
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
http://groups.csail.mit.edu/vision/SUN/
http://www.image-net.org/
http://www.datasciencebowl.com/
http://mscoco.org/
http://web.mit.edu/torralba/www/indoor.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
http://vis-www.cs.umass.edu/lfw/
https://www.kaggle.com/
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
https://github.com/openimages/dataset
https://research.google.com/youtube8m/
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://ai.stanford.edu/~amaas/data/sentiment/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.gutenberg.org/
https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
http://cocodataset.org/#overview
http://sidgan.me/technical/2016/01/09/Exploring-Datasets
https://www.isi.edu/natural-language/download/hansard/
http://www.statmt.org/europarl/

Electronics 2018, 7, x FOR PEER REVIEW 73 of 74

 The statistics for machine translation: http://www.statmt.org/ 2359

3.5. Question Answering 2360

 Stanford Question Answering Dataset (SQuAD): https://rajpurkar.github.io/SQuAD-explorer/ 2361

 Dataset from DeepMind: https://github.com/deepmind/rc-data 2362

 Amazon dataset: http://jmcauley.ucsd.edu/data/amazon/qa/ 2363

 http://trec.nist.gov/data/qamain... 2364

 http://www.ark.cs.cmu.edu/QA-data/ 2365

 http://webscope.sandbox.yahoo.co... 2366

 http://blog.stackoverflow.com/20.. 2367

3.6. Speech Recognition 2368

 TIMIT : https://catalog.ldc.upenn.edu/LDC93S1 2369

 Voxforge: http://voxforge.org/ 2370

 Open Speech and Language Resources: http://www.openslr.org/12/ 2371

3.7. Document summarization 2372

 https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports 2373

 http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html 2374

 https://catalog.ldc.upenn.edu/LDC2002T31 2375

3.8. Sentiment analysis: 2376

 IMDB dataset: http://www.imdb.com/ 2377

3.9. Hyperspectral image analysis 2378

 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes 2379

 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html 2380

 http://www2.isprs.org/commissions/comm3/wg4/HyRANK.html 2381

In addition, there is another alternative solution in data programming that labels subsets of data using weak 2382

supervision strategies or domain heuristics as labeling functions even if they are noisy and may conflict samples 2383

[87]. 2384

 2385
4. Journals and Conferences 2386

In general, researchers publish their primary version of research on the ArXiv (https://arxiv.org/). Most of 2387

the conferences have been accepting papers on Deep learning and its related field. Popular conferences are 2388

listed below: 2389

4.1. Conferences 2390

 Neural Information Processing System (NIPS) 2391

 International Conference on Learning Representation (ICLR): What are you doing for Deep Learning? 2392

 International Conference on Machine Learning(ICML) 2393

 Computer Vision and Pattern Recognition (CVPR): What are you doing with Deep Learning? 2394

http://www.statmt.org/
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/deepmind/rc-data
http://jmcauley.ucsd.edu/data/amazon/qa/
http://trec.nist.gov/data/qamain.html
http://www.ark.cs.cmu.edu/QA-data/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/
https://catalog.ldc.upenn.edu/LDC93S1
http://voxforge.org/
http://www.openslr.org/12/
https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html
https://catalog.ldc.upenn.edu/LDC2002T31
http://www.imdb.com/
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www2.isprs.org/commissions/comm3/wg4/HyRANK.html
https://arxiv.org/

Electronics 2018, 7, x FOR PEER REVIEW 74 of 74

 International Conference on Computer Vision (ICCV) 2395

 European Conference on Computer Vision (ECCV) 2396

 British Machine Vision Conference (BMVC) 2397

4.2. Journal 2398

 Journal of Machine Learning Research (JMLR) 2399

 IEEE Transaction of Neural Network and Learning System (2400

 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2401

 Computer Vision and Image Understanding (CVIU) 2402

 Pattern Recognition Letter 2403

 Neural Computing and Application 2404

 International Journal of Computer Vision 2405

 IEEE Transactions on Image Processing 2406

 IEEE Computational Intelligence Magazine 2407

 Proceedings of IEEE 2408

 IEEE Signal Processing Magazine 2409

 Neural Processing Letter 2410

 Pattern Recognition 2411

 Neural Networks 2412

 ISPPRS Journal of Photogrammetry and Remote Sensing 2413

4.3. Tutorials on deep learning 2414

 http://deeplearning.net/tutorial/ 2415

 http://deeplearning.stanford.edu/tutorial/ 2416

 http://deeplearning.net/tutorial/deeplearning.pdf 2417

 Courses on Reinforcement Learning: http://rll.berkeley.edu/deeprlcourse/ 2418

4.4. Books on deep learning 2419

 https://github.com/HFTrader/DeepLearningBookhttps://github.com/janishar/mit-deep-learning-book2420

-pdf 2421

 http://www.deeplearningbook.org/ 2422

https://www.computer.org/web/tpami
http://deeplearning.net/tutorial/
http://deeplearning.stanford.edu/tutorial/
http://deeplearning.net/tutorial/deeplearning.pdf

