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Abstract

We investigate the long-time behavior of solutions to a stochastically forced one-
dimensional Navier—Stokes system, describing the motion of a compressible viscous
fluid, in the case of linear pressure law. We prove existence of an invariant measure
for the Markov process generated by strong solutions. We overcome the difficul-
ties of working with non-Feller Markov semigroups on non-complete metric spaces
by generalizing the classical Krylov—Bogoliubov method, and by providing suitable
polynomial and exponential moment bounds on the solution, together with pathwise
estimates.
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1 Introduction

We consider the question of existence of an invariant measure for the stochastically
forced Navier—Stokes equations of compressible fluid flows in one space dimension.
Formulated on the unit interval (0, 1), the equations read
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or + (pu)y =0 (1.1
d(pu) + (,Ou2 + A2p> df = uy dt + podW, (12)
X

where p = p(t, x) is the fluid density and u = u(¢, x) is the fluid velocity. System
(1.1)—(1.2) is appropriately written in dimensionless form, and is supplemented by the
initial conditions

p0,x) = po(x),  u(0,x) =up(x), (1.3)

where pg, ug are assigned functions defined on the interval [0, 1], with the (strictly
positive) initial density having normalized mass

1
/ po(x)dx = 1.
0

In view of mass conservation, we obviously have

1
/ p(t,x)dx =1, vt > 0. (1.4)
0

Moreover, we assume homogeneous Dirichlet boundary conditions for the velocity u,
namely

u(t,0) =u(,1) =0, vVt > 0. (1.5)
Above, the driving noise is given by a collection of independent white noise pro-
cesses, suitably colored in space (see (2.1) below), while A > 0 is a dimensionless
parameter, inversely proportional to the Mach number. When considering strong (in

the deterministic sense) solutions to (1.1)—(1.5), the natural phase space for our system
is

1
X = {(p,u) e H'(0,1) x HOI(O, 1) :/ px)ydx =1, p > O}. (1.6)
0

The main result of this article is the following.

Theorem 1.1 For every fixed A > 0, the Markov semigroup {P;};>0 associated to
(1.1)—(1.5) possesses an invariant probability measure (Lo € B(X;2). Furthermore,

[ (420008 02015 + i izao. ) = ol (a7

Here, X;> denotes the set X in (1.6), endowed with the L? x L% metric, and ||o ||~
is given by (2.2) below.
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The existence of statistically stationary states to randomly driven systems in fluid
dynamics is of basic importance from both mathematical and experimental viewpoints.
On the one hand, the existence of an invariant measure provides information on the
generic long-time behavior of the system. On the other hand, under ergodicity assump-
tions, it provides a link between experimental observations (for example, in turbulence
theory) and theoretical predictions.

In the context of fluid dynamics, a satisfactory theory of invariant measures has been
developed for two-dimensional, incompressible flows [6,7,14,22,26,27,36,37,41,42,
52]. In three dimensions, we mention the works [11,12,23], and especially [21], in
which solutions which are strictly stationary stochastic processes are constructed, but
the concept of invariant measure as a steady state is not well defined due to the absence
of the Markov property. In this sense, the situation for multi-dimensional compressible
flows is similar. To the best of our knowledge, the only relevant articles are [24], in
which an invariant measure is constructed for an approximation of the Lagrangian
version of (1.1)—(1.2) and for a different pressure law, and the more recent [4], in which
statistically stationary solutions (but no invariant measure) are constructed. There are,
however, results for both the dissipative and non-dissipative one-dimensional Burgers
equation [10,13,25,44,51].

In this article, we prove existence of an invariant measure for the compressible
Navier—Stokes system. The main advantage in working in one space dimension is that
the equations are globally well-posed and can be solved pathwise, leaning on various
works in the deterministic setting [28,29,31-34,43,46]. For the global solvability in the
stochastic case, we mention [48,49], valid in one space dimension, and [2,5,45,47,50]
for the multi-dimensional case. For the deterministic set-up, we refer to the classical
references [16,38], and to [18,19] for long-time behavior results.

In turn, (1.1)-(1.5) generates a proper Markov semigroup, and the concept of an
invariant measure can be defined in a standard manner. However, there are several
obstructions on the path towards the proof of Theorem 1.1. The main ingredients of
our approach and contributions to the existing theory on invariant measures can be
summarized as follows:

e An L*-based continuity result via the derivation of polynomial and exponen-
tial moment bounds As it is is clear from its statement, the topology on
X plays an essential role. The metric space A;> is not complete (hence
not Polish), due to both the open condition p > 0 and the fact that the
Sobolev space H' is not a closed subspace of L?. This choice is dictated
by the available continuous dependence estimates (cf. Theorem 2.7), which
make use of the so-called relative entropy functional and essentially provide
an L’-based continuity result. Such a result crucially depends on polyno-
mial and exponential moment bounds of the solution to (1.1)-(1.5), which
are carried out in detail in Sect. 2.1, and on careful pathwise estimates (see
Sect. 2.2).

e Introduction of a (larger) class of functions on X;> which is invariant under the
Markov semigroup P, Closely related to the issue mentioned above, a second
difficulty lies in the fact that the Markov semigroup associated to (1.1)—(1.5) is
not known to be Feller (cf. Sect. 3.1), namely P; may not map Cj(X}2) (the real-

@ Springer



Applied Mathematics & Optimization

valued, continuous bounded functions on A7 ») into itself. This is again attributable
to the mismatch between the set X’ and the L? topology, and causes problems when
trying to apply the classical Krylov—Bogoliubov procedure to prove existence and,
in particular, invariance of a probability measure constructed as a subsequential
limit of time-averaged measures. We circumvent this issue by defining a class of
functions on &> that is slightly larger that Cp (X} 2), which is invariant under the
Markov semigroup P;, and still well-behaved in the above limiting procedure.

e Derivation of lower and upper bounds of the density with the correct time-averaged
growth Lastly, the lack of instantaneous smoothing in the density equation (1.1)
constitutes an obstacle towards compactness estimates for time-averaged mea-
sures. However, an energy structure already exploited in [32,43] allows to obtain a
dissipation term involving || (log p) || 12, thanks to the linear pressure law adopted
here. Consequently, upper and lower bounds on the density (which, in 1D, can be
proven with more general pressure laws) have the correct time-averaged growth
and provide suitable tightness estimates for time-averaged measures (cf. Sect. 3.2).

e The present article is, according to our knowledge, the first that presents rigorous
results on the existence of invariant measures for compressible flows.

Remark 1.2 (The low Mach number limit) One may be tempted to study the behavior
of the measures 4 as A — 00, in the spirit of compressible-incompressible limits
[3,15,17,39,40]. From (1.7), it is clear that, as A — oo, the density component of
the measures concentrates on sets such that log p = 0, namely, p = 1. However,
(1.1) implies that u, = 0, and due to the homogeneous boundary conditions (1.5),
we deduce that also # = 0. This is inconsistent with the second equation, as long as
o # 0. By replacing o with A7, for any > 0, it is easily seen from (1.7) that
Ha — 8p=1,u=0) a8 A — 00, essentially describing rigid body motion.

Extensions and Further Developments

Theorem 1.1 is in fact true for pressure laws of the type

p(p) ~p, asp—0,

and any polynomial growth as p — oo. The case of pure power law p(p) = p?,
for y > 1, remains open. Another important question is the uniqueness (and hence
ergodicity) and the attracting properties of the measure 4. It is worth to point out that
the problem is highly degenerate, since the noise only acts on one component of the
phase space. We conjecture that uniqueness holds, since the unforced system evolves
(at a very slow rate) towards the unique steady state (p, u) = (1, 0).

Outline of the Article

Section 2 is dedicated to the properties of solutions to the compressible Navier—Stokes
equations. Energy estimates and moment bounds are proven in Sect. 2.1, pathwise esti-
mates in Sect. 2.2, while uniqueness and continuous dependence on data are discussed
in Sects.2.3 and 2.4 , respectively. In Sect.3 we prove Theorem 1.1, setting up the
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Markovian framework and discussing existence of invariant measure for non-Feller
Markov processes on non-complete metric spaces.

Notation and Conventions

Throughout the paper, ¢ will denote a generic positive constant independent of A,
whose value may change even in the same line of a certain equation. In the same way,
Cq, Ca, ... denote specific large deterministic constants. We will denote by X7 the
set X endowed with L? x L? metric. Notice that X, > is clearly a metric space. When
we want to indicate the set X endowed with the H! x H! metric, we write X’ y1. By
B(X;2), wedenote the family of Borel subsets of X 2. With the symbol M}, (X 2) (resp.
Cp(X}2)) we refer to the set of all real valued bounded measurable (resp. bounded
continuous) functions on X72. Finally, P3(X}2) is the set of all probability measures
on .

2 Existence and Uniqueness of Solutions

In view of the particular form of the stochastic forcing in (1.2), the proof of existence
and uniqueness of pathwise solutions borrows many ideas from the deterministic case.
Fix a stochastic basis

§=(Q, F, P AFi}i=0, W).
We write the noise term in (1.2) as

odW =" op(x)dWH(0). 2.1)
k=1

The sequence W(t) = {Wk (t)}ken consists of independent copies of the standard
one-dimensional Wiener process (Brownian motion). As such, for each k, dwk (1)
is formally a white noise which, in particular, is stationary in time. Throughout the
article, we will assume

1 o0
ol = [ D Ho0mtoPdx <00, o e 2N,
0
=1

In particular, this implies

o
lollZe == sup Y Joe(x)|* < oo. (2.2)
x€(0,1) =1

By considering the change of variable & = u — o W, a pathwise approach for the

existence of solutions (even in the multidimensional case) has been carried out in [20]
(see also [47-49] and the more recent [S] for local existence of strong solutions). In
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the deterministic setting and in one space dimension, the local existence of strong
solutions has been proved in [46], while their global existence can be found in [43], in
the case of pressure law of the type p?, for y > 1. That this result can be extended to
our case is a consequence of the estimates provided in the work [32] on (deterministic)
weak solutions and their regularization properties. We summarize these observations
in the theorem below.

Theorem 2.1 Fix a stochastic basis S = (Q, F, P, {Fi}i>0, W). For any (po, up) €
X, there exists a unique (p(t; po), u(t; ug)) satisfying (1.1)—(1.5), in the time inte-
grated sense and with the regularity

peLX (0,00 HY, ueLi(0,00; H)NL? (0,00 H?),
almost surely. Moreover, the map t — (p(t; po), u(t; uo)) is weakly continuous, and
foreveryt >0,

1
p(®) e L*® and —— €L,
p(1)

almost surely.

The bounds in the Theorem 2.1 (see also Lemma 2.2) for the density show that
neither vacuum states nor concentration states can occur, no matter how large the
initial datum is. This is one of several important differences between the Navier—
Stokes equations and the inviscid Euler equations, for which vacuum states may in
fact occur for large initial data and for certain equations of state (cf. [8,9]). It is also
relevant in this regard that solutions of the Navier—Stokes equations show certain
instabilities when vacuum states are allowed (cf. Hoff and Serre [30]).

As far as the regularity of solutions is concerned, we need quantitative estimates
and moment bounds that are new to the best of our knowledge. These estimates are
contained in the the Propositions 2.3 and 2.4 below, and, in particular, agree with the
regularity expressed in the theorem above.

2.1 Energy Estimates

For a pair (p, u) € X, we define the entropy function in the classical way as

1
1
H(,o,u):f <§pu2+A2plogp) dx.
0

In the one-dimensional setting, it turns out the strong solutions are also well-behaved
with respect to the modified energy functional

1 1 " 1 2
fo0 =Hpw+y [ (20455
2Jo \p  2p
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Several quantities are controlled by £. In particular, uniform estimates on £ entail

lower bounds on p.

Lemma 2.2 Assume that (p, u) € X are such that E(p, u) < oo. Then

e*[g‘g(p’“)]l/2 <pkx) =< e[&g(”’“)]”2

and

loxll72 < 8E(p, u)e

Moreover,

lull?, < 2H(p, uyeld€@w]

Proof As a preliminary observation we note that (pointwise)

Moreover, since p € H land

1
f pdx =1,
0

we have
1 1
/ plogpdx:/ [plogp — p+1]dx > 0.
0 0
Therefore
1
1 1,0 u 1p?2
S , — _ 2 A2 X
(p,u) /0 <2pu + > 40

3[8E(0.0]"*

2.3)

2.4)

(2.5)

(2.6)

2.7)

Px
) _8/ Sdx. (2.8

By continuity of p and (2.7), we can choose xg € (0, 1) such that p(xg) = 1 and write

|log p(x)| =

X
/(Ing)ydy <
X0

Hence,

1 12 1
loxlo
|logp(x>|s/ dx < [/ Py
0 /03/2 0

@ Springer



Applied Mathematics & Optimization

Consequently,

2 172
I og pll o = [/ —’;dx:| .
0o P

From (2.8), the first bound (2.3) follows immediately. Regarding (2.4), we combine
the upper bound in (2.3) with (2.8) to deduce that

1 I p2 "
| e <ol [ Zras < sego et
0 0

Finally, (2.5) follows from the lower bound in (2.3). O

It is fairly clear from the above estimates that if (p,u) € X, then £(p, u) < oo.
Viceversa, if (p, u) are smooth functions such that £(p, u) < oo, then (p, u) € X.
The above lemma provides a quantification of this dichotomy.

It is crucial for us to prove various estimates on strong solutions to the compress-
ible Navier—Stokes equations, keeping particular attention to the dependence on the
parameter A > (0. We collect these estimates in the next two propositions, whose
proofs are carried out in the subsequent sections.

Proposition 2.3 Consider a solution (p, u) to (1.1)—(1.5) with initial data (po, ug) €
X in (1.3) such that

E(po, up) < 0.

Then there hold the entropy inequality
! 2 1 2
EH(p, u)(®) + ]E/O luxlly2ds < H(po, uo) + EIIOIILoot, (2.9)
and the energy inequality
1 t 5 A2 t 5
EE(p, u)(1) + EE lluxlly-ds + TE l[dog p)xI72ds
0 0
1
= E(po, uo) + Sl 7, (2.10)

forallt > 0. Moreover, the exponential martingale estimate

1 t
P [sup (Sm, 0N+ /O [lx12: + 4% Gog p). 12, | s

t>0

1
—EHGII%oot> — &(po, uo) > R} <e MR, 2.11)
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holds for every R > 0 and for

min {1, 442}
Yo'=———>5
4ol
As a consequence, for every m > 1, there exists a constant c,, > 0 such that
1 ! 2 2 2 "
E sup (E(p.)®)+7 | [IuslFs + A% Gog o)l ] as
1€[0,7] 0

< cn (E000,u0)" + o BT + 757). 2.12)

for every T > 1, and the exponential moment bound holds

1 t
E exp (% sup <5<p,u><r)+z / [nuxniz+A2||<1ogp>x||iz]ds))
] 0

tel0, T

0 1
<exp (s(po, uo) + EuoniooT) : (2.13)

qgforall T > 1.
The next result is instead a collection of similar, yet pathwise, estimates.

Proposition 2.4 Consider a solution (p, u) to (1.1)—(1.5) with initial data (pg, ug) €
X such that E(pg, ug) < oo. For every T > 0 and almost surely, there holds

T
sup [8(p<r),u(r))+ [0 [nuxniz+A2||<1ogp)x||iz]dr]

tel0,7T]
<Ci(cW, A, E(po, uo), T). (2.14)

In particular,

sup [0l + o™ )1 |
te[0,T]

= G (oW, A, E(po, uo), T). (2.15)

Moreover,

T 1 Uy 2
sup [llux(l)llsz-i- / [ / udx}dt}ECs(UW,A,f(Po,uo), 1)l 2. T).
1€[0,7] 0 0 P
(2.16)

In the above the constants C; can be explicitly computed.

The proof of (2.15) is simply a consequence of (2.3). We begin with Proposition
2.3.
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2.1.1 Entropy Estimates
According to the Itd lemma
d(ou®) =d (%(pu)z) = —puldi + %(2pu -d(pu) +d(pu)d(pu))
= (,ou)xuzdt + 2u [uxx — (pu2 + Azp)x] dt

o0 o0
+2) puodW' + 3" plog|2dr.
=1 =1

Hence, integrating by parts,

e 2 2 2 !
dE pudx + Jlux||;.dt = —A pyudxdt
0 0

+y (/ puagdx> dwt + 3 Z/ ploe|2dxdt.
0 0
=1 =1

Moreover, by integration by parts and using only (1.1), we have

d r! 1 1
—/ plog pdx = —/ (pu) [log,o + l] dx = / oxudx.
dr Jo 0 0

Combining the above computations we find

9]

1 00 1
1
dH(p, 1) + llux||,dr = § (/ puagdx> dwt + 3 § / ploe*dxde, (2.17)
0 =1 0

=1

so that, for every ¢ > 0, we find the entropy balance

t 1 o t pl
EH(p,u><t)+E/0 ||ux||izds=H<po,uo)+§EZ/o /0 plor*dxds.
=1

Notice that by (1.4) and (2.2), we have

© t pl
S [ [ otoniaxds < ol
=70 Jo
so that
! 2 1 2
EH(p, u)(t) +E/ lluxlly2ds < H(po, uo) + EIIGIILoot-
0
This is precisely (2.9).
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2.1.2 Energy Estimates

Let £ = p~ /2 5o that

Y __l Px 62_1,0)%

T 5/03/2’ x—Z;,

(o), = — L@ 3o Lpwax 3 palp
x)t = 2/03/2 4,05/2_2 ,03/2 4 p5/2
PRV Y

232 T 4 52
As such

o)
(60n + () = =575 (Lx)s o+ L) + Et

C px (12psux + puxs 3 pepux) 1 ppus
,03/2 2 p3/2 4 ,05/2 4 ,03
lpxuxx

) p

Notice that this computation only makes use of (1.1). On the other hand

d (p"”> = ou (%) dr + 2 d(ou)
o 0*), p

Zpu((px2)t _pr/;z)dter_;(um_ <pu2+A2p) )dt
o o o x

00
Px ¢
+ —odW
2

2 2
pxuxxd u(pu)yx upy(pu)x Px (,ou +A P)x
= —5—dr - -2 — + 3 dr
P P P P
00
+ p—xo'gdWE
=1
2 2u2 uZ 2
_ pxuzxxdt _ <(uux)x _ u% + PxUUx _ ,Ox2 + Pxx +A2,0_,;> dr
P P P P P

00
+ Z p—xo‘gdWZ
=1
PxUxx 2 poZ zp)%
= —zdt - <(uux)x —uy+ <—) + A —2) dt
P P Jx P

o0
+ Z p—xo‘gdWl.
=1 P
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Combining the above two equations and weighting appropriately we infer

2 o0
d(’ox +2£2> (px +uux+252) dr + A2 a0 = i2ar + 3 PEoawt,
0

P X o =1
and hence
] ) 1,2 s 1
1
d/ (p"”+—p—§)dx+A2/ p—édxdl‘=||ux||%zdl‘+z</ p—xaedx>dWe~
o \p 2p 0 P =1 Vo P

(2.18)

We sum together (2.17) and half of (2.18) to finally obtain

L, A
AE(p. u) + 3l Fdr + ) dedt

= Z (/ <,0u + —'O—x> O'[dX) dwt
= \Jo 2 p

EZ/ ploe|>dxdr. (2.19)

2
Hence
1t A2 12
IEE(p,u)(t)—i——IE/ ||ux||2L2ds+—IE// Px drds
2 Jo 2 JoJo o
1 x t 1
ZS(PO,MO)-F—EZ/ / ploe|>dxds,
2 I Jo
so that

E f u)(t —_ u d _ —_ d Y f u + —||lo t
X 2 2 1607 0 I
and theref()re (2 1()) h()ldS.

2.1.3 Exponential Estimates

It remains to prove (2.11), which follows from (2.19) and an application of the expo-
nential martingale estimate

P |:sup (Z(t) _ —( )(z)) ] <e 7R WR,y >0, (2.20)

t>0
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valid for any continuous martingale {Z(¢) };>0 with quadratic variation (Z)(¢). Indeed,
consider the time integrated version of (2.19), namely

I 2 X !2 ,0 dY
,0 u - u dS + 10g X !2

1 0 t pl
= E&(po, uo) + Z(t) + 5 Z/ / ,olog|2dxds. 2.21)
=170 Jo

where Z(t) is the martingale

o t 1 1p
Z(t) = + =22 ) opdx | dW?
o= [ ([ (s 35 ) ouer)

with quadratic variation

2

0 t 1 1 px
(Z)(1) =;/0 [/0 (pu+§;> Ugdxi| ds.

In view of the Poincaré-like inequality [32]

1
/ putdx < fluyll3.. (2.22)
0

the mass constraint (1.4) and (2.2), we have

i/o [/Olpuagdx]

=1

2 t
2 2
ds < ||U||Loo/ lleex [l72ds
0

and

1 0 t lpx 2 1 ) t )
- —szx] ds < —|lo]| oo/ l|(log p)x|l72ds.
4;/0 Uo p 47 e

As a consequence, the quadratic variation of Z(¢) can be estimated as

t 1
(Z)(1) <2l 7 /0 [uuxniz +Z||(logp)x||iz]ds. (2.23)

Now, from (2.21) we infer that the functional
1 t 5 A2 t )
(1) =5(p,u)(l)+z ”ux”deS"'T [[(log p)x|l; 2ds
0 0
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satisfies with probability one the inequality

W)~ gl it = oo, u) + [ 200~ 2 (2)0)]

2
+ 22y - —/ lluy %, ds — A—ft lI(log p)« [1,ds
2 4 Jo L 4 Jo L
(2.24)

where we conveniently fix the constant yg > 0 as

min {1, 442}

Yo =
4llo 1700

In this way, from (2.23) it follows that

Y0 1 t 5 A2 t 5
7(2)0) ~1), lluxll;ds — A [(log p)xll72ds <0

and thus (2.24) implies

1
V(o) = Sllo 7t < Epo. uo) + [z() - §<Z>(r>] . (2.25)

In turn, from (2.20) and the above (2.25) we deduce that

P |:SUP <‘1’(t) - —||0||Lool) — &E(po, uo) > R:|

t>0

<P [Sup (Z(t) - —( )(t)) ] <e "k (2.26)

t>0

for every R > 0. This is exactly (2.11).

2.1.4 Polynomial and Exponential Moments

We now focus on (2.12), which is, in fact, an easy consequence of (2.11). Indeed,
(2.26) implies that

P| sup W(r) — E(po, uo) — —||o||LooT > R| <e Mk (2.27)
t€[0,T]

where W is the functional defined in (2.24). Using that, for a non-negative random
variable Z, any m > 1 and any constant ¢ > 0, there holds

E[Z™] < 2" 'E[(Z — &)l z=c] + 2" 1™

@ Springer



Applied Mathematics & Optimization

o0
=m-l / P[Z — ¢ > A/™da + 21 em,
0

we infer from (2.27) that for some constant ¢,, > 0, independent of yy, T and £ (pg, ug)
there holds

R m 1 "
E |: sup q,(t)m} < 2m—l f e—VOAI/ dx + 2m—1 (5(,007 uo) —+ EHUH%OOT)
tel0,T] 0

< cn (15" + oo, u0)" + oI AT")

which is precisely (2.12). For (2.13), the idea is similar. Indeed, for a non-negative
random variable Z and any &, ¢ > 0, we also have that that

57 Sc 8(Z—o)l se [ In A
E[e’?] < e ]E[e Z>v]=e P|Z—c>="dn
1
Hence, for any § < yp, we deduce from (2.27) that

1 2 * 1
E |:exp (8 tes&pﬂ \IJ(I)>:| < exp |:8 <S(,00, ug) + §||¢7||LOO T)i| /] de

= eXp ) 5 Lo, U + =701 5

and (2.13) simply follows by choosing é = yp/2. We concluded the proof of Propo-
sition 2.3.

2.2 Pathwise Estimates

By setting it = u — w, with w = o W we obtain from (1.1) to (1.2) that the pair (p, i)
satisfies the system

ot + (pit)y = f(p, w)
(pit); + (pit® + A%p)y = iy + i f(p, w) + pg(p, i, w), (2.28)

where

Wy x

f(,O, w) = _(pw))C7 g(IO7 ﬁ’ w) = - (ﬁw)x — WWy, (229)

with initial datum (pg, iig) = (00, ug). Notice that from (2.28) we can also write the
velocity equation alone as

- u -
u,+uux+A2% - %+g(p,u,w), (2.30)
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which will also be useful in the sequel. Without explicit reference, we will use (2.2)
multiple times to bound the various norms of w appearing in the estimates.

2.2.1 Pathwise Energy Estimates

We begin by proving (2.14). A lengthy calculation analogous to that in Sect. 2.1.2
shows that

d o, A2 5 3
—&(p,u) + S lluxll; + —-Ildog p)xll;2 = F(p. i, £, 8)s
dt 2 2

where

(1 Lox
5. f0 = [ <§fﬁ2+A2f(logP+1)+§p—2fu
0 p

1 fru oxitf I px fx 3 (px)zf
TS T 3 53 — 3 a4 )
2p P 2 p 4 p

V|
+ / (,oug + —'O—xg> dx.
0 2p

Recalling (2.29), we may rewrite the above term as

px(pw)xx 3 (px)*(pw)x
o3 2 pt

1 1
mp,ﬁ,f,g):—Az/ (pw)xlogpdx—lf [
0 2 Jo

Px <wxx ):|
e —wwy | [dx
1Y P
1 riry/. u W)yl
. 5/ |:<u2 . :Ox2 )(Pw)x + (pw)xx
0 1Y P

—2pil <% — (dw)y — wu)x> + &(ﬂw)x:| dx.
o o

We now integrate by parts multiple times. Clearly,

1 1 1
—A2/ (pw)y log pdx = A2/ wpy dx = —A2/ wyp dx.
0 0 0

Moreover, expanding all the derivatives and integrating by parts, the second term above
reduces to

/1 [px(Pw)xx 3 (Px)z(pw)x Px (wxx >:|
0

,03 2 ot P Y
2
_ /1 l[(’oX) low . l(px)zwff _ %(,Ox)3w P | dx
o |2 P 2 p? 2 pt P
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1
=/ 'o—xwwxdx.
0o P

Concerning the third term, similar arguments lead to

1 ~ ~
/ |:<122 . ;Oxzu) (pw)y + (pw)xxt
0 P P

—2pu (ﬁ — (aw)y, — wwx) + &(ﬁw)x:| dx
o o

_<ﬁ2—(2) —p*f><pw>x
L o)y P

i wy + 2pi W), + 2piww, + p—*(aw)x} dx
P

Ir -

. i
= / UyWy + 3pﬁ2wx + ﬁz,oxw + 2pti,w + 2puwwy, + 'Owa:| dx
0 1Y

Ir -
i
= / UyWy + 2,0L72wx + 2puwwy + 'Owa:| dx.
0 1Y

Therefore, collecting all of the above we find that

~ 2 ! 1 ! Px
g(ps uv f7 g) = _A wxpdx_ - _wwxdx
0 2Jo »p

1 (! i
- 5/ |:ftxu)x + 2pft2wx + 2puwwy + wa] dx
0 P

and using (1.4), (2.22), (2.6) and standard inequalities we deduce that

IS0, u, f, 2l

1
< A% lwyllze + lwyll3ee + 5lldog o).l 2 lwsll?
1 -
Il 2 lwell g2 + cllwglli=EGp. @)

implying that

d 1 A? .
3 &0 i+ iz + -1 0og p)elize < ellwello€(p, @) + wxlly

1
+ A% lwy Lo + cllwell? (1 - ﬁnwxniz) :

Hence, (2.14) follows from the standard Gronwall lemma, together with the fact that

1 1 1 1 ~ 1 2
E(p,u) =/ (—p(ﬂ+w)2+A2plogp> dx—l——/ (—p"(Hw) +—'0—§> dx
0 \2 2 Jo o 2p
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1
~ w ~
fcé’(p,u)Jr/ (/ow2 p); )dxfcé’(p,u)JrCIwalliz'
0

2.2.2 H" Estimates on the Velocity

To prove (2.16), we multiply (2.30) by u,, and integrate by parts, to obtain the identity

TR +2/1 el g 2/1~~~ d
— U —dx = uuu X
dt X LZ 0 IO 0 xXWxx

1 1
42A2 [ P dx—2 /g(p,ﬁ,w)ﬁxxdx.
0

0o P
Now,
1
2[ Uiy Uy dx
0
! |’/~lxx|2 12 2
52</ dx) 02t ol .2
0 P
D2 N2
52</ dx) Lol Y2 112
0 P
1 ! |uxx|
< - ——dx +c¢ oo ||u s
_3/0 ; ol llie I,
and

1 1~ 2 1 .2
5-[ de+cA4/ P
3Jo »p 0o P

Concerning the last term, we find

1
2 V 8(p. i, w)iiyedx
0

1 ~
/ ,01/2 (ﬁ — (w)y — wwx) %dx’
0 P oY

=2

< [0 e lwaall3 + O+ ol lwellFoo i |2, + 1

1 1 2
+_/ [t x] dx.
3Jo »p
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Thus, (2.31) and the above estimates entail

d o ! i |?
= 2l g
dt||ux||L2+f0 “Las
~ 12 2 ~ 12
< c[IollemlnZs + (4 + ol lwilF | Nl
e[l e lwaclZs + lwilide + A%plle | Gog )il ]

In view of (2.14), (2.15) and Lemma 2.2, we can apply the Gronwall lemma to the
above inequality and deduce (2.16).

2.3 Uniqueness of Strong Solutions

Let (p, u) and (r, v) be two solutions to (1.1)—(1.2). The relative entropy between
(p,u) and (r, v) is defined as the functional

e
Hr(p,u|r,v):/ <§p(u—v)2+A2plog g) dx.
0

Itis well-known that the above functional is not a distance, and it is not even symmetric.
Nonetheless H, (p, u|r,v) = 0 if and only if (p,u) = (r, v). More precisely, the
following well-known facts hold.

Lemma 2.5 Let (p,u) € X and (r,v) € X. Then

min{l, A%} . 1 1 2 2
= min {lp ™ e 1 oo f [l = I + o = 7122 ] = P o, ulr v)
(2.32)
and
l a2 A_2 -1 -1 2
M (p,ulrv) < Slpllln = vlFz + 5 max { o™ o, Ir "o | o = .
(2.33)

Proof The proof is based on the fact that the function & — F (&) := &logé — & + 1
is convex. In particular,

1
F'(§) = logé, F”(E)=g, véE > 0.

Moreover, due to (1.4), the relative entropy can be rewritten as
b1 2 2
Hr(p,ulr,v) = / <§p(u -0+ A% [F(p) — F(r) — (p — r)F/(r)]> dx.
0
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Therefore, using Taylor’s theorem, on the one hand we have the lower bound

} (&1 — &) < F&) — F(&) — (&1 — &) F (&)

while on the other hand the upper bound reads

1
F(&) = F(&) — (61 —&)F'(§) < 5 max {5 5 }(51 &)

Using the above bounds in the expression for H, yields precisely (2.32)—(2.33), and
the proof is over. O

We then have the following uniqueness result.

Theorem 2.6 Let (p, u) and (r, v) be two solutions of (1.1)—(1.5), corresponding to
the same initial condition (pg, ug) € X. Then

Pl(p(1), u()) = (r(1), v(1)), V1 = 0] = 1.

Proof We compute the time derivative of H,(p, u|r, v). Firstly, notice that (1.2) can
be rewritten as

du + (qu + Azp—"> dr = 224t 4 odw,
p P

so that the difference of the velocities satisfies

(U — v); + uuy — vog + A? [log (B)] _ Hax _ Ux_x, (2.34)
r x 1% r
Therefore, making use of (1.1) and (2.34), we have that
d1 /1 ( 2d
—= u —v)“dx
dr 2 0 p
1 1 1
= —/ pr (1 — v)*dx +/ pu —v)(u —v)dx
2 Jo 0

__/ (ou)y (u — v)2dx +/ p(u—v) <— - v;—x) dx
0
1
5 0
- /0 p(u —v)(uuy —vvy)dx — A /O p(u—v) [log (7>]x dx

1 ) Lo—r
=/0 ,OM(U_U)(M_U)xdx_||(M_U)x||L2+/O

- /01 p(u — v)(uity — vo,)dx — A /01 plu—uv) [log (é)]x dx
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P

1
= = )l + /O (0 — w)vgdy — fo v — v)dx

A2 /01 o = v) [log (é)]x dx. (2.35)

On the other hand, due to (1.1) once more, we compute

%/(;l,olog(§>dx=/0 ptlog( )dx+/l<p,—£r,)dx

1
/ (pu).tog (2) ax (pu>xdx+ / P (rv)d

1

:/o pu [log( )]x dx+/01pvxdx+/() érxvdx
= /Ol pu [log (é)]x dx — /0] pxvdx + /01 grxvdx
_ /Ol oGt — ) [log (é)]x . (2.36)

Therefore, combining (2.35) and (2.36), we arrive at

Lo—y

1

(v — u)vydx — / vep(u — v)zdx.
0

(2.37)

d 2
Ty (p.ulr. v) + = v 112 =/0

We now estimate each term in the right-hand side above. We preliminary notice that
for any smooth function g such that g(xg) = 0 for some xo € [0, 1], there holds the

inequality
1/2
g\
lgllLe < ——dx ) (2.38)
0o P

where p can be replaced by any positive function with mass at most 1 (and, in particular,

by r). Indeed,
X X
_ 12 8y
g-dy‘— / P —dy‘
/xo Y X0 101/2

x 1/2 x 2 1/2 1 2 1/2
() (] 50) ([ )
X0 B 1Y 0 1Y

Concerning the first term in the right-hand side of (2.37), using standard inequalities
and (2.32) we obtain

1, _
/ p r(v—u)vxxdx
0

lg()] =

r
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1,172 Doy ? 12
<r =l = rlig2llv—ullp= (/ dx)
0

r

-1 l|U)cx|2d 2 1 2
lr™ e A ||:0_r||L2+§||(u_U)x||L2

2 e ' ol
= (/ Vsl dx>H,(p,u|r,v)
0

<
= min{1, A%} min {||p~"|| <. 7"l } r

IA

1 2
+ 31 = vl

2 1o /1 e 2
< — 1, ——— dx ) H,(p, ,
= min{1, A2} max{ o Te | g &) Tertouirv)

1 2
+ 3 = sl

where the last line follows from (2.32). For the second term, we use (2.22) and (2.38)
to deduce that

1/2

1 1
/0 vep( — v)%dx < ol (/0 p(u_v)zdx> 1 = )2

! |Uxx|2 1 2
< ——dx | Hy(p, ulr,v) + S [[(u — v)xll7-
0 r 2
Hence, from (2.37) it follows that

d
EHr(pv M|r, U)

2 7= oo }) </1 Vx| )
< 1+,—max{1,— ——dx | H,(p, ulr, v).
( min{1, A2} o=l o0 o T '

(2.39)

Thanks to Proposition 2.4, the term multiplying H, (o, u|r, v) in the right-hand side
above is locally integrable in time. We now apply the standard Gronwall lemma to
(2.39) and use the fact that

Hr(p’ L£|l", U)|t=0 =0
by assumption to conclude that the two solutions are indistinguishable. O

2.4 Continuous Dependence of Solutions

Regarding the continuous dependence of solutions, the picture is more complicated,
and can be proven in the following situation.
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Theorem 2.7 Let {(p", u™)},en be a sequence of solutions to (1.1)—(1.5) with initial
data {(p(, up)Inen such that

sup E(pg, 1) < 00, (2.40)
neN

and let (p, u) be a a solution to (1.1)—(1.5) with initial datum (po, ug) € X. If
(08, ul) — (po, uo) in L* x L? (2.41)
then
(", u™) = (p,u) as.inL?x L?,
forallt > 0.

Proof We use the approach in Theorem 2.6. Arguing in the same way as we did to
derive (2.39), we arrive at
d

dt’Hr(p”, u"|p, u)

2 o~ iz }) </1 x| >
< 1+.—maX{1,— dx ) Hr-(p", u"|p, u).
< min{1, A2} (o)~ zee 0o P
(2.42)

Due to the lack of symmetry of the relative entropy, it is important that we consider
the above quantity, and not the other possible H, (o, u|p”, u"). Let

R = max {supg(ﬂ(’)lv ug), E(po, 140)} < 00.
neN

In view of Proposition 2.4, we have n-independent almost sure bounds of the form

t /ol 2
sup /0 (/0 x| dx) ds <C (T, oW, R, [|(uo)xll2) .
]

tel0,T 1Y
and

—12
o™ 700

—— <C(T,ocW,R).
tel0.71 [l on |7 o0

The point s that the latter bound does not depend on || () || 1.2, Which is not, in general,
under control uniformly in n € N. Thanks to Lemma 2.5, the fact that £ (,06’, ug) <R
and (2.41), we have that

llm Hr(p(')l’ u8|p0’ MO) = O'
n—o0o
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Thus, the standard Gronwall lemma applied to (2.42) implies
Jim H (" (), u" ()| p(t), u(r)) =0, as.

forall # > 0. Hence, a further application of Lemma 2.5 leads to the conclusion of the
proof. O
3 Invariant Measures

In this section, we prove of the main results of this article, namely the existence of

invariant measures to (1.1)—(1.2). As mentioned earlier, we will work in the phase
space

1
X:{(p,u)eHl(o, 1) x H{ (0, 1):/ p(x)dx =1, ,0>0}.
0

However, in view of Theorem 2.7, the correct topology does not seem to be the natural
one induced by the product norm in &', since Lemma 2.5 suggests that continuous
dependence for our system holds in a weaker sense. We make this precise here below.

3.1 The Markovian Framework

We denote by p(¢; po), u(t; ug) the unique solution to (1.1)—(1.2), with (deterministic)
initial data (pg, uo) € X. For a set B € B(X}2), we define the transition functions

Pi(po, uo, B) =P((p(t; po), u(t; uo)) € B),
for any # > 0. For ¢t > 0, define the Markov semigroup
Prp(po, uo) = Ed(p(t; po), u(t; ug)), ¢ € Mp(Xp2).

The usual semigroup properties

Po = identity on Mp(X}2)
and

Piys =PiroPs, Vi, s >0,

follow from the existence and uniqueness results for our system. The goal is to prove

the existence of a probability measure p € P (X;2) that is invariant under P;, namely
such that

fmsdu:/ ddu, Vo € Cp(X;2).
X X
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Now, it is clear from the estimates in Propositions 2.3 and 2.4 that

Pr: Mp(Xp2) — Mp(Xp2),
namely, P; is well defined on measurable bounded functions. The Feller property,
namely that P; maps Cp(X;2) into Cp(X;2) is more delicate, and we are not able
to prove it at the moment. In particular, it does not follow from Theorem 2.7, due

to the additional requirement (2.40). However, Theorem 2.7 suggests the following
definition.

Definition 3.1 Let ¢ € M (X;2). We say that ¢ : X — R belongs to the class G if
lim ¢(p", u") = ¢(p, ),
n—oo

whenever

{(0", u}hen C Xp2,  lim (0", u") = (p,u) in X2, and supE(p",u") < oo.
n—0o0

neN
3.1
From the above definition and Lemma 2.2, it is clear that
Cp(X;2) C G C Cp(Xy).
It turns out that G is also invariant under P;.
Lemma 3.2 The class G is invariant under the Markov semigroup P;, namely
P :G—G.

Proof Let {(pg, up)tnen C Xj2 be a sequence, complying with (3.1), namely

nan;o(pg, ug) = (po, uo) in Xp2, and M :=sup E(pgy, ug) < 0. (3.2)

neN

In light of Theorem 2.7,
lim (p(t; pgy), u(t; ug)) = (p(t: po), u(t:ug)) as.in X2, Ve>0. (3.3)
n—oo

Moreover, in view of (2.10) and (3.2), there exists a constant M := M(t, M, o)
independent of n € N such that

EE(p(t; pg), ult; ud)) < M,

which, by Chebyshev’s inequality, it implies that

, 3.4)

= =

P[E(p(t; pf), u(t; ug)) > R] <
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for any R > 0. Fix ¢ € G, and let

My := sup |¢(p,u)| < oo. 3.5
(o,u)eX, 2

To show that P;¢ € G, we are required to prove that for any fixed ¢ > 0 there holds
hm Pt¢(p87 ”8) = Pt(p(va “O)
n—oQ
Writing &, = E(p(t; pg), u(t; ug)) for short, we have by definition that

Pip (0 ug) — Pi(po. o)
=E[¢(o(t: p). ult; uf)) — ¢(p(t: po), ult; uo))]
=E[(@(o; pg). ult: ug)) — ¢ (p(t: po), ult: uo))) g, <g]
+E[(@ (o pg). uts ug)) — ¢(p(t; po), u(t; up)) g, - r].

In light of (3.4)-(3.5),

2M My

[E[(@ (o5 p5), u(t; up)) — ¢ (p(t; po), u(t; up)) g, ~r]| < R

(3.6)
Since ¢ € G, we also deduce by (3.2) and (3.3) that

Jim (@ (p(t; pg), uts ug)) — ¢ (015 po), ut; uo))llg, <k =0, as.,
and therefore by the bounded convergence theorem that

nlggoE [@ (o5 pg), ut; up)) — ¢ (p(t; po), ult; up)) g, <g] = 0. (3.7

Let us now arbitrarily fix ¢ > 0, and pick R, = 4M My /e. Invoking (3.6), we deduce
that

E[(¢(p(t: pg), u(t; ug)) — ¢ (o(t; po), u(t; up))) g~ g] <

NSRS

Moreover, from (3.7) there exists n, € N such that
|E[(@(p(t: pg), u(ts ug)) — ¢ (o(t; po), ut; up)) e, <]| < % vn > n,.
Thus,
[P (g, up) — Ped(po,uo)|l <&, Vi >0,n>ne,

and the proof is over. O
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3.2 Tightness of Time-Averaged Measures

We prove the existence of an invariant measure for P; via the classical Krylov—
Bogoliubov procedure. However, since we are working in a non-complete metric
space, and with a Markov semigroup that is not Feller, some details do not follow
directly from the well-known theory. In what follows, the parameter A > 0 appearing
in (1.2) is fixed, but we suppress the dependence on it of all the quantities (except for
bounds), in order to keep the notation as simple as possible. As initial conditions to our
problem, we fix pp = 1 and up = 0. Notice that the corresponding energy vanishes,
namely £(1, 0) = 0. For T > 0, define the time-averaged measure on X by

T
pr(B) = %/ P(p(z; 1), u(r; 0) € B)dt, (3-8)
0

where B € B(X}2). The first step is to prove tightness of the family {7}7r-0. We
will make use of the following lemma.

Lemma 3.3 Assume that p € H' is such that p > 0 and

1 1,02 1
/ pdx =1, M?> :=f “Ldx =f [(log p)«]?dx < o0.
0 0 P 0

Then, for x € [0, 1], we have the pointwise bounds

e ™ < px) <eM, (3.9)

and, moreover
1
/ ,ofdx < M2eM
0
Proof Firstly, we notice since p is continuous and has mean 1, there exists xg € (0, 1)

such that p(xp) = 1. Therefore, for every x € [0, 1] we have

1/2

1
[log p(x)| = 5[/0 [(logp)ylzdy} =M, Vxel01]

X
/ (log 0),dy
X0

AS a consequence,
eM<px)<eM, vxelo 1],

proving (3.9). Moreover,

1 ) ) 1,02
p2dx < Il oo/ Px g
/0 * L= Jo 02

The claim then follows from (3.9). ]
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As a consequence, tightness of {{t7}7~¢ follows in a straightforward manner.

Proposition 3.4 The family of probability measures {tr}r~0 C ‘PB(X;2) is tight.
Hence, there exists a subsequence T; — oo and a measure . € B(X;2) such that

lim ¢dM _/ ddu, Vo e Cy(X;2). (3.10)
X

/—)OO

Proof For any fixed R, S > 1, define the sets
1 I p2
Kr = {(p,u) GX:/ uidx+/ —);dx < Rz}
0 0o P
and
1 1
Cg = {(p,u) ex ;f uidx+/ p2dx + [|pllze + o s < s}. (3.11)
0 0

Note that since Cg is bounded in H' x HOl and is closed, it is compact in X;2. By
Lemma 3.3, we have that if (p, u) € Kg, then

1 1
/ pidx < R*e%, / uidx < R% pllr= <e®, o7t e < ef,
0 0
In particular, if R > 1, we obtain
! 2 ! 2 1 2.2
/ pldx +/ udx + llpllz + o~ I < Sg := 4R%eR, (3.12)
0 0

which therefore translates into the set inclusion
Kr C Cgy. (3.13)
In view of (3.13) and Chebyshev’s inequality we have

ur(Csp) = ur(Kg) =1 —pur (X \ Kg)

1 T e 1
=1——/ ]P’|:/ —édx—i—/ uidx>R2:|
o1 [/ p—de+/ )%dx]

In light of the energy inequality (2.10) and the fact that £(1, 0) = 0, it follows that

I
=
)
ﬂ

2
”U”Loo 1

- 3.14
min{1, A2} R? 319

ur(Csg) > 1
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Hence, the family {7}7~0 is tight, and therefore there exists a subsequential limit
1 € P(Xr2). Note that this uses the direction of Prokhorov’s theorem that does
not require completeness (see [1, Theorem 6.1]). Now, since Cg, is a closed set, the
Portmanteau theorem implies

. lolZee 1
w(X) > u(Csg) > limsup ur(Csz) > 1 —

—_ . 3.15
T—o00 min{l’ A2} R2 ( )

Notice again that this does not require the metric space &> to be complete (see [1,
Theorem 2.1]). Thus

p(X) = lim p(Csp) = 1.
R—o0
The proof is therefore concluded. O

3.3 Invariance of the Limit Measure

We aim to prove the following proposition.

Proposition 3.5 For every fixed A > 0, the Markov semigroup {P;};>0 associated to
(1.1)—(1.5) possesses an invariant probability measure pa € L(X;2). Furthermore,

/X (42102 I3, + 22 ] o, ) < llor . (3.16)

The main issue here is that P; is not known to be Feller, and therefore we cannot
directly apply (3.10) to P;¢. As a first step, we extend property (3.10) to the class G.

Lemma3.6 Let {7} jen C P(X)2) be the convergent sequence in Proposition 3.4.
Then

lim ddur, =/ ¢du, V¢ eg.
X X

Jj—o00

Proof Let¢ € G, arbitrarily fix R > 1, and consider the compact sets Cs, from (3.11),
where S is given by (3.12). Since ¢ € G, ¢ is bounded on X2, so that

Mg := sup |p(p,u)| < oo.
(p,u)eX,»

Moreover, the restriction of ¢ to Cg, is continuous (in the L? x L? metric) on C Sg»
for every R > 1. Since Cg, is a closed set, Tietze extension theorem (see e.g. [35])

guarantees the existence of a function ¢~>R € Cp(X2) such that

dr =¢ onCs,, sup  |pr(p,u)| < My, VR > 1. (3.17)
(o, u)eX, >
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Now,

=

’/ ddur, ~ [ pan

X X

+‘/ &Rdurj—/ ikdu'-l-’/ (¢;R_¢)dllv'
X X X

Fix ¢ > 0. By (3.14) and the above (3.17), there exists R, > 1 such that

| @-dnraus,
X

‘ /X (¢ — dr,) dur, <2Mgpr;(X\ Csp)

= / (¢ — dr,) dur,
X\CSRg
2Myllo 7 1

&
= min{l, A2} RZ 3’

uniformly for j € N, and, similarly, in light of (3.15),

&
< —.

‘ f Gr, — ¢ du
X

Since ‘/BRS € Cp(X;2), property (3.10) implies the existence of j. € N such that

‘/ Pk, dur; —/ ok, du
X X

Hence, for every ¢ > 0, there exists j, € N such that

VXMM,- —/Xqﬁdu

which proves the claim. O

3 Vi> i
< -, .
3 J = Je

<e, Vj > Je,

We are now in the position to prove invariance of the limiting measure and the
bound (3.16).

Proof of Proposition 3.5 As before, A > 0 is fixed and we suppress the various depen-
dences on it. Let ¢ € Cp(X;2) be fixed. Thanks to Lemma 3.2,

Pip g, vt > 0.

In view of Lemma 3.6, we then have that

lim Prpdur; =/ Propdu, vt > 0.
X X

j—o0
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Hence, by (3.8), we conclude that

/’P,(ﬁdu
X
1 T; 1 Tj+t
= lim | Ppdur, = lim —/ Prisd(1,0)ds = lim —/ Py (1, 0)ds
j—>oo Jx Jj—00 Tj 0 j—00 Tj t

1 T; 1 Tj+t 1 t
lim —/ PS¢(1,0)ds+—/ Psd(1,0)ds — —f P (1, 0)ds
0 Tj Jr, Tj Jo
J

j—o00 Tj

tim [ gdur, = [ pau.
X X

]

so that invariance follows from the arbitrariness of ¢. Lastly, (3.16) is deduced directly
from (2.10). Indeed, is (p%, u®) € X is a statistically stationary solution distributed
as u, the we can use (2.10) to derive the bound

Elujl7, + A*E| (og p¥)xl|72 < o7,

which is precisely (3.16) after the usual change of variables. The proof is over. O
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Appendix A: A General Result on Existence of Invariant Measures

The results in Sect. 3 on the existence of invariant measures can be stated in greater
generality as follows. Let (X, d;) be a metric space, and assume we are given another
metric d,, on X such that

(1) Any dg-bounded subset of X is dy,-precompact.
) If dy(xy, yn) — 0 asn — oo for some x,,y, € &, then dy,(x,,, yp) — O as
n — oo.

@ Springer
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We denote by X, the space X’ endowed with the metric d,,. Given x € X, let {X} };>0
be a Markov process on X’ with X 6‘ = x, and define the time-averaged measures

1 T
wy(B) = P(X; € B)dr, T >0, (A.1)
where B € B(X),), the Borel oT Sebra of &),. For ¢ > 0, define the Markov semi-

group
Pip(x) = Ep(X7), ¢ € Mp(X).

We assume that the Markov semigroup is well defined on measurable bounded func-
tions, namely the property that P, : My (X)) — Mp(X),) is well-defined.

Definition A.1 Let ¢ € M,(X,). We say that ¢ : X — R belongs to the class G if
¢ € C(K) for any ds- bounded set K C X.

The following is a slight variant of the Krylov—Bogoliubov procedure to prove the
existence of an invariant measure for P;.

Theorem A.2 Assume that for some initial condition x € X the following two prop-
erties hold.

e (Tightness) For every ¢ € (0, 1], there exists a dg-bounded and d,,-closed set
K¢ C X such that the time-averaged measures {7y }1>0 satisfy

inf puy(Kg) >1—e. (A.2)
T>0
e (Almost Feller) For all t > 0,

PiCh(Xy) CG. (A.3)

Then there exists an invariant measure (i for Py.

Proof From the tightness property (A.2) and the fact that ds-bounded sets are dy,-
precompact, we infer the existence of a sequence T; — oo and a measure p € PB(X,)
such that

hm f ¢duT/ /(ﬁdu, Vo € Cp(Xy). (A4)

Lete > 0, and let K be the corresponding sets as above. Now, since K, is a dy,-closed
set, the Portmanteau theorem and (A.2) imply

w(Kg) > limsupur(Ke) > 1—e. (A.5)

T—o00

We now claim that, in fact,

lim ¢>d,uT _/ pdu, Vo eg. (A.6)

/—)OO
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To prove the claim, let ¢ € G be arbitrarily fixed, and set

My = sup [$(y)| < oo.
yeX

It is important to notice here that My does not depend on . We can then apply Tietze
extension theorem (see e.g. [35]) and deduce the existence of a function b € Cp(Xy)
such that

¢ =¢ onK..  suplp:(y)| <My  Vee (0, 1] (A7)
yeX

Now,

=<

‘/ ¢du§j—/ $du

X X

+V e duy, — [ ésdu‘+‘/ (438—¢>du‘.
X ’ X X

By (A.2) and the above (A.7), we have

- V ¢ - $o)du,
X\K:

uniformly for j € N, and, similarly, in light of (A.5),

V (¢ — @) dp
X

Since ¢, € Cp(X, 72), property (A.4) implies the existence of j. € N such that

‘/ (Z’sdﬂj}/ _/ ‘ised,u
X ’ X

Hence, for every ¢ > 0, there exists j. € N such that

‘/ ¢du§j—/ pdu
X X

which proves (A.6). We are now left to prove that p is invariant for P;. Let ¢ € Cp(Xy,)
be fixed. Thanks to assumption (A.3),

/ (¢ — ¢e) dpu,
X

'/X(qb — ) dur, < 2Myuy, (X \ Ke) < 2Mge.

< 2M¢8.

< 2Mye, Vj > Jje.

< 6Mye, Vi > Je,

Pip €g, vt > 0.

In view of (A.6), we then have that

lim Pipdur, =/ Pipdu,  Vi>0.
X ! X

j—o0
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Hence, by (A.1), we conclude that

/ P due
X

1 T; 1 Tj+t
= lim Pt¢>duT = lim o Prys@p(x)ds = hm F/ P (x)ds
t

Jj—00 j—=oo 1 Jo J

1 0 1 T+t 1 rt
= lim —/ ’Ps¢(x)ds—|——/ Psp (x)ds — —/ Psp (x)ds
Tj Jo Tj Jr; Tj Jo

j—o0

— lim [ oau, = [ oan,

j—)OO

so that invariance follows from the arbitrariness of ¢. O
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