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Securing Internet of Things Devices Using
The Network Context
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Abstract—Internet of Things (loT) devices have been
widely adopted in recent years. Unlike conventional in-
formation systems, loT solutions have greater access to
real-world contextual data and are typically deployed in
an environment that cannot be fully controlled, and these
circumstances create new challenges and opportunities. In
this article, we leverage the knowledge that an loT device
has about its network context to provide an additional se-
curity factor. The device periodically scans a network and
reports a list of all devices in the network. The server ana-
lyzes movements in the network and subsequently reacts to
suspicious events. This article describes how our method
can detect network changes, retrieved only from scanning
devices in the network. To demonstrate the proposed solu-
tion, we perform a multiweek case study on a network with
hundreds of active devices and confirm that our method
can detect network anomalies or changes.

Index Terms—Context-awareness, anomaly detection,
authentication, Internet of Things (loT), security.

|. INTRODUCTION

URRENTLY, access to the Internet is available to many
devices that we use in our everyday lives; such devices

are described by the term “smart objects” [1]. The Internet of
Things (IoT) consists of smart devices that cooperate with each
to provide complex services [2]. It is expected that the number
of IoT devices will significantly increase in the near future;
predictions state that there will be 20.5 billion devices in 2020,
with over three trillion U.S. dollars spent on hardware alone [3].
Authentication and authorization in an environment with
many devices that are heterogeneous and that dynamically
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connect and disconnect from a network are challenging. For
example, Gartner Inc. [3] states the following: Security and
risk concerns will continue to be the greatest impediment to
loT adoption. The market for loT specific security solutions
will dramatically expand in 2017 as existing security providers
aggressively retool existing capabilities to address loT security
risks. Another security survey [4]-[6] confirms that authentica-
tion is a major open-ended issue.

The IoT intensifies security challenges compared to tradi-
tional applications. Sensors are often deployed in an environ-
ment over which we do not have full control. Furthermore,
devices, applications, and communication schemes are heteroge-
neous. All of this makes device authentication more difficult and
gives potential attackers more opportunities. Another problem
is that a correctly authenticated device can provide malicious
data if attackers gain access to its environment (which can be
virtual or an actual real-world place). We aim to extend the
authentication model to take its surroundings into account.

One general idea of how to enhance security is to consider
the context of the device [7], and attempts to leverage context
information for security applications are more than 15 years
old [8]-[10]. The context provides an explanation for the data
provided by any participant and allows us to better understand
the participant’s situation. With more information about IoT
devices, we can enhance an authentication process to improve
its overall reliability. In this article, we propose a method of
extracting the context from an IoT device and using it as an
additional factor for authentication. Our core concept is that,
together with traditional methods (e.g., credentials), the context
of a device can play a role in its authentication. We particularly
focus on the network neighborhood of a device. The idea is to
create a virtual map of surrounding devices and to track their
changes and patterns over time. If an unexpected and significant
change occurs, a red flag can be raised, and further actions can
be taken. A significant change is marked by the percentage of
devices that have changed, and the method of determining the
percentage is illustrated in Section V.

The contribution of the article is summarized as follows.

1) We present an additional authentication factor for usage
in the IoT environment.

2) We illustrate how to set up our method in a network.

3) We discuss how various settings affect the proposed
method and how to determine the ideal values.

4) We demonstrate the feasibility of the method based on
a network with hundreds of unique devices and we
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provide experimental data allowing better insight into and
applicability of the method.

This article is organized as follows. Section II summarizes the
background of the problem. Section III provides an overview of
related work. In Section IV, we describe our proposed method
for context-aware IoT authentication using the network context
of a device. Section V evaluates the proposed technique and
describes our experimental results and experimental settings.
Section VI elaborates possible threats to validity and facts
that are mitigating them. Section VII discusses the results.
Section VIII concludes this article.

Il. BACKGROUND

An extensive overview of IoT context-awareness research is
provided in the survey by Perera et al. [11]. This article shows the
existing approaches to the IoT and distributed environments and
identifies various context types. Related work often considers
different context categories, such as user, identity, location, time,
activity, or even the environment with its available resources.
Various sensors can extend awareness with highly dynamic in-
formation, e.g., measuring temperature or biometrical functions.
Utilizing the device constellation for context awareness, which
our research aims to do, is uncommon. The survey mentioned
above [11] explicitly mentions that security and privacy issues
in context-aware computing are not seriously evaluated and
considered in many existing solutions. However, if security is
addressed, then itis related to sensor data, locations, preferences,
or user details. In the extensive overview above, the authors
shows that approximately one-fifth of context-awareness pro-
posals mention security and privacy as trending topics.

Initial proposals operated with limited context information.
Technical restrictions allowed access only to either the context
data that the user provided about him or herself or data about
the server side. A particular user provided the application with
the communication history and with the timestamp for every
part of the interaction and his/her virtual address, represented
by the IP address. The server side could enrich the known
context with a few extra properties—for example, the CPU load,
memory usage, operating system, and user activities. Neverthe-
less, those early proposals provide valuable architectures from
which we can evolve. Covington et al. [8] described enhancing
role-based access control with environmental roles. Architecture
with four context elements (context owner, context provider,
context broken, and context-aware service) was discussed by
Bhatti et al. [9]. One of the earliest methods to dynamically
calculate context-based properties used for authentication was
proposed by Hulsebosch ez al. [10].

The IoT consists of various elements that often utilize con-
nections to the Internet. In particular, end devices are not con-
nected to the Internet directly but through some kind of usually
private subnetwork.! These networks are diverse—they can be
wireless or wired, their size can vary from a few devices (e.g.,
a smart home) to thousands (a smart city), and the participants
in the network can be simple sensors or sophisticated services

n this article, we use the term “network” for the Internet subnetwork.

providing complex functions. The devices involved are often
provided by various vendors and have a heterogeneous set of
properties.

Networks do not vary only between themselves; a single
network may have different structures and devices at various
times. This is especially true in the dynamic IoT environment,
where devices regularly connect and disconnect. The idea behind
the proposed method is that there might exist recurring patterns
in the network signature that can indicate regular behavior, based
on which we can find anomalies. Some devices may connect or
disconnect regularly at similar times; however, some devices
may be connected all the time, while others may connect just
once.

This property of IoT solutions can be leveraged for [oT device
context-aware security. A device can regularly report the state
of its network, and the server will determine the security of
the device based on the recurring patterns in the network and
the changes that have happened. Naturally, this method cannot
provide the same authentication power as a key authentication
or similar methods. However, as an additional factor, it can be
an excellent complement. This method brings the ability to trace
suspicious events and anomalies in the network. Such changes
can be caused by, e.g., connecting unauthorized devices to the
network, trying to eavesdrop on communication, performing any
variation of a man-in-the-middle attack, sending spurious data,
or even trying to hijack a device.

I1l. RELATED WORK

Location-based authentication has been explored in the area of
indoor smart environments [12], [13]. In general, such works at-
tempt to identify a particular user by using proximity sensors and
customize services according to user preferences. Al-Muhtadi
et al. [12] introduced a confidence level for the authentication;
their proposal requires having full knowledge about the envi-
ronment retrieved from sensors and other elements in the smart
environment. In contrast, our method uses only information that
is available from the network. A similar topic is explored by [14]
and [15], who predict future movements and locations. They do
not explicitly mention using this prediction for authentication;
however, comparing real with predicted locations can clearly be
used as a factor for authentication.

Location awareness for authentication in an IoT involving
smartphones is considered in [16] and is applicable to pro-
cesses such as an online purchase or car unlocking. This article
considers the possibility of modeling user location and user
movements in the [oT. The authors suggest utilizing multiple
devices of a given user to better prevent malicious activity, and
they indicate that the state of the art is going in the direction of
multifactor authentication to prevent fraud, e.g., by combining
biometrical information with a secret password and a token.
However, for performing routine operations, this approach is
clearly not user-friendly. Location and movement can bring an
additional factor to improve authentication, which the authors
consider. Their solution involves location derived from multiple
user things, e.g., smart wear, cars, body sensors, and mobile
devices. They suggest that location can be derived not only
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through GPS but also through Wi-Fi signals or proximity to
other devices with known coordinates. They also suggest using
access points and home hubs to assess the location and the use of
connected devices. They highlight important privacy concerns
and suggest that remote service providers cannot ask direct
questions, such as where the user is; however, they could ask
whether the user could be physically near a particular location.
Their protocol does not reveal device location; rather, it con-
siders relative distances. Interestingly, the article observes that
79% of people aged 18—44 have their cellphone with them 22 h
a day. Their envisioned methodology is complicated; it would
require a user to define a private hub, which would have to be
linked to a dedicated device or a cloud service, that aggregates
various devices in a hierarchy; the hub would collect device
information but would not forward it directly to a third party.
Furthermore, third-party services are expected to interact with
the user’s hub; upon receiving a notification signal, third parties
(e.g., banks) would then query the hub for the user’s location.
This methodology would significantly change the interaction
pattern for server-based systems. Moreover, the approach is data
intensive and eager since devices interact with the hub even when
no service is called upon for days, which could lead to congestion
when there is large-scale use. Furthermore, the approach utilizes
only user devices registered to the hub; thus, visiting a new
environment does not expand the context awareness. In their
evaluation, they analyze the prototype service at the Amazon
EC2 cloud, revealing a 4—6% false incidence of service denial.

Multifactor authentication for Smart Homes using biometric
information and hardware signature is described in [17].
It smartly combines face recognition with photo response
nonuniformity, which is a hardware fingerprint that can be used
to uniquely identify smartphones. Using this authentication,
user takes a photo of his face and this image is used for
authentication with IoT hub. In comparison to our method,
this works only for user authentication and cannot be user to
machine authentication.

The innovative usage of Bayesian decision theory [18] for
authorization also considers context. It defines three trust
parameters—the history of previous interactions, public and
private knowledge about the peer (which includes contextual
information), and the peer’s reputation with other devices. By
definition, biometric information is a subset of contextual data;
thus, security systems that use such information [19], [20] are
context aware. Abovementioned methods focus more on the trust
between two participants than on changes in the context, as we
propose.

Wi-Fi networks have been used to enhance security in an
area, where some results have been obtained. All of the pro-
posed methods share a common property—they do not require
user cooperation. Some of them work even if the user does
not carry a device (not even a Wi-Fi device such as a cell
phone). There are various methods for acquiring a user’s precise
location based on the Wi-Fi signals of his or her devices [21],
[22]. Such methods use a standard Wi-Fi router to measure the
position of the user; the position is determined with median
precision under 30 cm based on changes in the signal-strength,
amplitude, etc. Accordingly, another IoT authentication per-
spective has been suggested by [23], who consider using Wi-Fi

signals to assess identification. Their aim is to use a device-less
approach; thus, the person profiled does not have to possess
a smartphone or smart device. This approach utilizes Wi-Fi
signals to capture unique human psychological and behavioral
characteristics derived from the person’s daily activities. They
extract the channel state information (CSI) for the given Wi-Fi
and develop a deep learning scheme to identify users. They test
their concept in a small indoor environment with 11 subjects,
achieving authentication accuracy of 91-94%. This approach
can fit well with smart homes, preventing children from using the
oven or operating potentially dangerous appliances. The method
exploits the signal evaluations of individuals performing daily
tasks, measuring the CSI amplitude and relative phase of signals
among the devices in a room. For the same activities, different
individuals exhibit different impacts on the wireless channel.
First, the approach must recognize a particular activity, and then,
it can start identifying a particular individual. Clearly, the major
drawback is that for the system to identify users, it must learn
about them first. Additionally, used at a large scale, it would have
difficulty identifying a particular individual among many users;
the evaluation was performed one person at a time. Similarly, in
smart indoor environments, a recent study [24] utilizes features
from CSI variations caused by the walking gait of humans. It
uses signals to identify particular individuals, and only a few
steps are needed to identify an individual. The researchers had
an accuracy rate of 80-92%; however, the experiment involved
only a small group of individuals. Various other CSI studies,
including [25], have also been conducted primarily indoors.
Another approach is to use the Wi-Fi device that users carry
with them [26]. These devices can be used to assess the particular
network and acquire knowledge about the devices connected to
the network, with changes in the patterns of the devices being
used as an additional factor during authentication. This research
has been conducted on real users, and it is questionable whether
itis transferable to the [oT environment for machine-to-machine
authentication.

In our proposal, we try to use the network context to detect
suspicious events in the IoT device neighborhood. In this regard,
it is partially similar to network anomaly detection. Based on a
comprehensive study focused on this topic [27], our proposal
would be categorized as rule based, with network information
being retrieved using probes that defend against network attacks
and physical attacks. Because [oT networks and the environment
are generally specific and slightly different from traditional
networks, IoT-specific anomaly detection methods have been
proposed. One of the oldest examples is the system called [28],
which specifically focuses on 6LoWPAN [29] networks. An-
other promising method [30] involves using an artificial neural
network to detect Distributed Denial of Service / Denial of
Service. Possibly (Distributed) Denial of Service (DDoS/DoS)
attacks. Our approach differs in two ways. First, we aim to
enhance the security of a single device using knowledge about
its surroundings, not the whole network. Second, we do not
analyze network traffic, as doing so is resource demanding for
any device; rather, we take snapshots of the network state and
use them to compare changes in the network.

With respect to the related work, the closest approaches that
we identify are as follows: Agadakos et al. [16], who consider
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location awareness and multiple “registered” devices that help
with authentication; Shi et al. [23], who consider Wi-Fi signals
to recognize individuals with a device-less approach; and Trnka
et al. [26], who consider context as an additional factor during
authentication. We do not aim to replace the utilization of other
contextual elements, such as those mentioned in [11]. Instead,
we aim to augment the possibilities and to assess recurrent
patterns in the behavior of networks and devices.

IV. PROPOSED METHOD

The idea of the proposed method is based on the regular
network context reports provided by every IoT device. They
retrieve a list of all devices discoverable in the network and send
it to the server regularly. Ideally, that information is passed along
during every server request. Due to the network bandwidth,
storage and computation capabilities of the server and other
limiting factors, it can be restricted to a certain reasonable time
frame (e.g., every 15 min) to reduce communication overhead.
The server subsequently stores the data for further use, evaluates
the received data, and eventually proceeds with further actions.
Such actions may include an additional authentication request to
the suspicious device (which may or may not be the device that
triggered the action), a notification to a network administrator
or even a limitation to or removal of network access for the
suspicious device. A network context scan is performed on end
devices, and the server performs only a context evaluation, which
results in great scalability.

The utilization of our approach and its full possibilities re-
quires a significant amount of contextual data gathered over
extended periods of time, preferably in various distinct physical
locations, across multiple different networks and mainly with
the knowledge of the security incidents that happened. Given
such an extensive dataset, it can be analyzed using standard
algorithms based on decision tree induction [31] or advanced
adaptive fuzzy rule-based classification [32]. Once the patterns
are recognized, they can be searched for in real time, and
appropriate control mechanisms can be activated as needed.
Unfortunately, we do not possess such a dataset. Therefore, in
this article, we propose a method to analyze the network context
of a particular device.

The method utilizes “recurring” devices for analyzing net-
work context. A recurring device is a device that has been in
the network in several consecutive days. For example, such a
device is typically present in the network at particular time.
Internet follows standard open systems interconnection (OSI)
networking model [33], possibly with media access control
(MAC) layer protocols adapted for IoT devices [34]. Therefore,
MAC addresses are used as device identifiers because, by def-
inition, they are unique. Problem of their potential counterfeit
is not significant in most of the scenarios as multiple devices
with spoofed MAC address would need to be introduced into
the network. The possibility of the attacking device changing
its MAC address does not affect our method more than any
other device with spoofed MAC address, as this MAC address
is treated as one of the addresses on the network. Potential
successful attack targeting our method would lead to higher

ratio of false positives, which would not affect user experience
or security (in comparison not to use our method as additional
factor at all).

The recurring device list is created specifically for a given
network. While it is possible that a recurring device will be a
recurring device in more than one network, this is rarely the case.

A. lllustration of The Proposed Approach

An example of such a situation is a personal device carried by
a user; the device is in a network during the day when the user
is at work but in a different “home” network at night.

Recurring devices are determined based on historical values
that are stored by the server. If a device appears in the network
at the same time over multiple consecutive days, it is marked
as a recurring device. Recurring devices are determined from
a limited historical time frame (e.g., the last five days), and
therefore, the set of recurring devices can vary from one day to
the next. When the process is started, recurring devices cannot
be determined, as there is no reference point. A list of recurring
devices can be made when the time frame passes (e.g., five days).
Recurring devices are calculated every day given the historical
values. The algorithm takes all devices from the first day and
marks them as candidates. Every subsequent day, it removes
devices that are not present during the day from the list of
candidates. After all steps are completed, the candidate list is
the final list of recurring devices.

Fig. 1 illustrates the three-step determination of recurring
devices. The steps illustrate a network at the same time over three
consecutive days. The sample network consists of 16 various
devices; thus, we can easily visualize it. Real networks often
contain hundreds of network elements. During step 1, all devices
are considered recurring device candidates. In step 2, there are
the same six devices as in step 1. These are new recurring device
candidates. In the final step, four devices from the candidate
list are present. This list is a new list of recurring devices and
can be used on the following day. Each step represents a single
day. After the first step, we cannot determine recurring devices
because there is no reference point. On day two, we make a
list of candidates with the devices that have been active during
both days; on the following day, the list of candidates is reduced
again. If the number of previous records is larger than that from
the time frame used for determining a recurring device, then
some devices can also be added.

During communication, a device sends the list of all reach-
able devices in the network. The same rules described above
are applied for the determination of recurring devices; thus,
the device does not need to obtain the list for every request.
The server compares the sent list with the list of recurring
devices (which we call the benchmark) for the given network
for a roughly similar time frame. It also uses the provided list
to modify and verify the benchmark for the following days.
Our preliminary implementation of the approach can configure
the desired recurring device match with the devices in the
network. Fig. 2. illustrates a network with 16 devices and a
set of recurring devices consisting of four devices from the
previous figure—A, D, I, and L. In this example, the match
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Step 1

Step 2

Step 3

Devices in the network: A, B,C,D,E, F, G, H,I,J,K,L,M,0,P,Q Devices in the network: A, D, G, I, L,O,R,S,T,U,V,W, X,Y,Z, 1 Devices in the network: A,B,D, E, H,|,L,R, U,W,Y, Z1,2,3,4

Same devices: A, D, G, |, L, O

@ B @
0™\ 5
«.»K///\x«» @ ///':

(('\3 -

Fig. 1. Creation of recurring devices set in three steps.

Stable devices: A, D, |, L
Present in the network: D, |, L

Fig. 2. Using network context to determine changes in the network.

is 75% (device A is missing). If the threshold is not met (e.g.,
70% match), then the network context of the device is marked
as suspicious, and further steps can be taken—the administrator
is notified, an additional authentication factor can be invoked, or
a more sophisticated network search for malicious devices can
be triggered.

B. Problem Model and Proposed Algorithm

We model the analyzed network as a set of devices N =
{n1,na,...,n,}, where device n is every network element with
MAC address. Time frame ¢ = (fsqart, tend), tend — tsart < 1 day
is a time period during a single day. Times ts g and teng can
be equal; in such a case, the timeframe ¢ is not an interval, but
a time point. Age (denoted as age) is a number of consecutive
days, for which the benchmark is created. We denote the day in
which the analysis is performed as d.

Benchmark is B(t,d,age) = N'_}, age—1 devices(NV, ¢, z)
where devices(V, t,2) denotes set of devices present in the
network in arandomly selected time from the time frame ¢ during
the day x.

We define match(t, d, age) = 2{tdeselii(td) g5 the ratio be-
tween number of devices in the benchmark and number of

N

Devices from previous days~ A DL

// © «@»\\\ /// @ \ // @

ﬂ

- -

devices in the benchmark present on the network, where ¢ is
a time frame and d is a day in which the analysis is performed.
Then, Threshold is a value of match(¢, d, age) such that if
Threshold > match(¢, d, age) the authentication check (as in-
troduced in Section IV-A) is passed.
In Algorithm IV-B, we describe the process to determine the
threshold and age. The algorithm accepts the following inputs.

1) Set of all analyzed time frames 7.

2) Analyzed network V.

3) Constant ¢ defining when to stop the algorithm.

4) Constant [im which is the number of days for which we
run the algorithm.

The outputs of the algorithm are as follows.

1) Age,p. which denotes the optimal age.

2) Threshold, which denotes maximal possible threshold for
given lim.

The principle of the Algorithm IV-B is the following.

1) For network N, create a set of benchmarks for defined set
of ages (2 to lim) (lines 6-24). During this process, two
principal activities are conducted:

a) Compare the last created benchmark with a previ-
ously determined best benchmark which of them the
best value of match function. If the latest benchmark
has better value of match function, consider this
benchmark as the best one (line 15).

b) When the value of match function of compared
benchmarks starts converging to meet the algorithm
stopping criteria defined by ¢, return the best found
age, denoted as Age,,. (line 19)

2) Foratime span from Age,,, + 1 to lim determine Thresh-
old such that all match for each of the analyzed time spans
are equal or higher than Threshold (lines 25 to 33)

V. EXPERIMENTAL VERIFICATION

To verify the proposed method using a real network, we
conducted a case study described in this section. To demonstrate
validity of the proposed approach, we performed: 1) evaluation
using a real network and 2) simulation of the network with
various possible events that could happen (e.g., recurring device
disappearance or MAC address spoofing). Details are presented
in the following sections.
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Algorithm 1: getAgeAndThreshold(T’, N).
Input : Timeframes 7', Network N, ¢, lim
Output: Age,p, Threshold
1 devices(N,t,d) = set of present devices in N for ¢
and d, t € T, d is day

d—1
2 B(t,d,age) = () devices(N,t,z)
r=d—age—1

3 match(t,d,age) =
4 Ageopr < 0

5 Match,, <+ 1

6 for d=3...lim do

B(t,d,age)

7 for age=d—1...lim — 1 do

8 Match,in < 1

9 for each t € T do

10 Matchymy = match(t, d, age)
11 if ( Matchyim > Matchyy,), ) then
12 | Matchmin = Matchyp,

13 end

14 end

15 if ( Match,,;n > Match,, ) then
16 AMatch = Match,,in — Matchyg
17 Matchyq, = Matchn

18 Ageopr = age

19 if ( AMatch < ¢ ) then

20 | goto 25

21 end

22 end

23 end
24 end

25 Threshold < 1

26 for d = Ageop +1...lim do

27 for each t € T do

28 curMatch = match(t,d, Ageopt)

29 if ( curMatch < threshold ) then
30 ‘ Threshold = cur Match

31 end

32 end
33 end

34 return Age,p:, Threshold

A. Real-Network Evaluation

Initially, we determine relevant time frames for a benchmark.
Then, we determine whether the exact same time of the day
needs to be used for the measurements during various days or
whether an alternatively approximate interval can be used. Once
we have such values, we proceed to determine a threshold for the
percentage of recurring devices in the network based on network
historical data.

We perform five weeks of measurement in the same network
and conduct six control measurements. As our network, we
select a Baylor University Wi-Fi network in the Department of
Computer Science with hundreds of unique devices. We choose
this network for the experiment because it provides a consider-
able number of devices in which users periodically connect and

TABLE |
DAy 11 BENCHMARK AGE DIFFERENCE TIMES: DIFFERENT
BENCHMARKS FOR SPECIFIC DATE

8:00 | 12:00 | 16:00 | Morning | Noon | Afternoon
Devices count 272 | 620 | 931 309 581 560
2 day benchmark size 71 128 156 90 128 138
2 day recurring devices | 47 77 86 58 69 84
2 day recurring devices | 66% | 60% | 55% 64% 54% 61%
3 day benchmark size 51 70 90 46 70 80
3 day recurring devices | 36 54 65 32 49 57
3 day recurring devices | 71% | 77% | 72% 70% 70% 71%
4 day benchmark size 41 50 67 38 46 58
4 day recurring devices | 30 39 53 28 33 45
4 day recurring devices | 73% | 78% | 79% 74% 72% 78%
5 day benchmark size 35 41 54 30 37 44
5 day recurring devices | 28 33 44 24 26 36
5 day recurring devices | 80% | 80% | 81% 80% 70% 82%
6 day benchmark size 31 31 35 26 29 30
6 day recurring devices | 26 26 31 21 20 25
6 day recurring devices | 84% | 84% | 89% 81% 69% 83%
7 day benchmark size 25 27 30 22 24 25
7 day recurring devices | 21 23 26 17 18 21
7 day recurring devices | 84% | 85% | 87% 77% 75% 84%

disconnect (e.g., students’ devices) with various schedules and
devices that are always present (e.g., printers). We perform six
analyses per day, evaluating the network only during weekdays.
Three analyses are conducted at fixed times—08:00, 12:00, and
16:00—and three are conducted at random times within spe-
cific time intervals representing morning (07:30-10:00), midday
(11:00-13:00), and afternoon (14:00-17:00).

Initially, we aim to determine how many days are needed
for the benchmark. We run the algorithm for 11 days. We run it
twice—once for the fixed time frames and once for the intervals.
We show up to a 7-day benchmark for Day 11 in Table I with
different benchmark periods. There is a gradual decrease in the
benchmark size from over 100 devices in the two-day benchmark
down to 25 devices in the 7-day benchmark. Theoretically, as
these devices should be more stable, the percentage of recurring
devices found increases, which is also generally the case on the
example day. Note that for the last three days, the benchmark size
and percentage do not vary considerably. This finding leads us
to the conclusion that adding more than five days provides only
limited benefits; thus, we choose five days as our benchmark
period. Those findings are consistent across all measurement
times, even for those taken randomly within an interval. We
illustrate the percentage of recurring devices found for various
benchmark periods for all days in Fig. 3, where the 12:00 and
midday measurements are used. The randomized interval mea-
surements are illustrated on the right graph, and they fluctuate
significantly more than the measurements taken every day at
the same time, which are on the left graph. Note that only
weekdays are used; thus, day 6 corresponds to a Monday. The
algorithm yields five-day benchmark that provides a percentage?

2Comparing the minimal value from the 25 days.
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Precise time Randomized interval
Day 1 Day1
Day 25 100% Day2 Day 25 100% Day?2
Day 24 Day 3 Day 24 Day 3
v 90% v v 90% v
Day 23 20% Day 4 Day 23 80% Day 4
7 . N
Day 22 i 70% Day 5 Day 22 70% Day5
60% 60%
Day 21 50% Day 6 Day 21 Day 6
Day 20 0% Day7 Day20 Day 7
a e a a a
Y 30% Vi Y Y Y
Day 19 Day8 Day19 Day 8
Day 18 N Day 9 Day 18 g Day 9
Day 17 Day 10 Day17 O\ Rt Day 10
Day 16 Day 11 Day 16 Day 11
Day 15 Day 12 Day 15 Day 12
Day 14 Day 13 Day 14 Day 13
Benchmarkage ——2day - -3day —4day - 5day ---6day —7day
Fig. 3. Percentage of recurring devices for ever day using different benchmark age.

TABLE Il
DAY 11 MEASUREMENT: DEVICES ON THE NETWORK IN THE SPECIFIC
TIMES AND INTERVALS WITH 5-DAY BENCHMARK AGE

Devices | Benchmark | Recurring devices | Benchmark
count size count match

8:00 272 35 28 80%
12:00 620 41 33 80%
16:00 931 54 44 81%
Morning 309 30 24 80%
Noon 581 37 26 70%
Afternoon 560 44 36 82%

nearly as good as that of the benchmarks consisting of a longer
period, with differences of only approximately 2% from the
6-day benchmark and 5% from the 7-day benchmark age, while
also providing better stability than the 7-day benchmark.

The next unknown piece is the difference between the mea-
surements taken at strictly the same time and those taken dur-
ing the same interval. Randomized measurements decrease the
possibility of intentionally spoofing the network and providing
fictitious MAC addresses to inflate the set of recurring devices.
As in the previous paragraph, we use day 11 to demonstrate our
findings. However, we now choose only a 5-day benchmark and
illustrate the number of devices in the network, the benchmark
size, the recurring device count, and the benchmark match for
every time in Table II. For every time or interval, we use the
corresponding times or intervals on previous days to determine
the benchmark. The table shows that there is a noticeable and
randomly occurring decrease in the match percentage between
the interval and corresponding fixed time measurement. We
choose to continue the case study with fixed time measurements

because they provide higher consistency. This higher consis-
tency is also confirmed by the measurements in Table III, where
the recurring devices for a specific time never drop below a 73%
match, while the interval measurements can drop as low as a
65% match.

With the benchmark period set using fixed times for the
measurement strategy, to run the control measurements, the only
part that is missing is an optimal threshold for validation of
the network context. Algorithm IV-B gave us output of 76%
as maximal threshold, we choose to lower it to 70% to give us
some safety margin. Table III presents the network evaluation for
every day and time or interval during our study using the 5-day
benchmark. Day 1 in the table corresponds to the Monday of the
first week of the case study, with days 6, 11, 16, and 21 also being
Mondays. The number of devices in the network varies from 250
to over 1000, with Fridays and parts of Monday being the days
with the fewest devices and mornings being the time with the
lowest number of active devices. However, the percentage of
recurring devices is fairly consistent, never reaching below 73%
across all days and times.

Five control measurements are conducted to verify the ability
to detect changes in the context. The measurements are com-
pared to the 5-day benchmark from previous days based on the
base network at Baylor University. All measurements are taken
at 12:00 to allow an exact match with the benchmark, which
should give the highest similarity. The first control measurement
is taken in a completely different environment to validate the
capability of detecting an environment that significantly changes
on day 6. This measurement is taken at a grocery store, and
a match with single devices of only 3% is achieved. Another
measurement is taken again in a completely distinct environment
but with some devices from the base network regularly appearing
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TABLE IlI
DAY OVERVIEW OF THE 5-DAY BENCHMARK: NUMBER OF DEVICES ON THE NETWORK AND RECURRING
DEVICES FOR EACH MEASUREMENT DURING EVERY DAY
8:00 12:00 16:00 Morning (07:30-10:00) | Noon (11:00-13:00) | Afternoon (14:00-17:00)
Day Devices | Recurring | Devices | Recurring | Devices | Recurring | Devices | Recurring | Devices | Recurring | Devices Recurring
devices devices devices devices devices devices

Day 1 343 N/A 769 N/A 729 N/A 568 N/A 599 N/A 568 N/A
Day 2 447 N/A 615 N/A 628 N/A 606 N/A 585 N/A 722 N/A
Day 3 349 N/A 645 N/A 753 N/A 337 N/A 629 N/A 781 N/A
Day 4 365 N/A 546 N/A 521 N/A 389 N/A 715 N/A 534 N/A
Day 5 245 N/A 456 N/A 557 N/A 191 N/A 537 N/A 580 N/A
Day 6 271 N/A 546 N/A 696 N/A 314 N/A 703 N/A 651 N/A
Day 7 429 96% 566 90% 573 76% 449 100% 518 88% 653 76%
Day 8 261 82% 691 83% 715 86% 182 69% 627 73% 705 82%
Day 9 416 100% 656 84% 514 82% 491 100% 578 89% 532 82%
Day 10 252 86% 540 87% 520 81% 280 96% 562 96% 446 76%
Day 11 272 84% 620 84% 931 89% 309 81% 581 69% 560 83%
Day 12 510 79% 772 82% 701 86% 198 79% 611 92% 577 83%
Day 13 316 79% 830 81% 981 82% 317 86% 765 83% 632 76%
Day 14 538 81% 689 81% 728 86% 162 79% 600 87% 746 88%
Day 15 320 77% 726 74% 709 78% 175 76% 677 73% 451 83%
Day 16 436 88% 811 86% 1166 76% 352 86% 600 84% 877 82%
Day 17 571 85% 765 81% 1004 79% 626 79% 720 66% 563 76%
Day 18 360 83% 1304 83% 1247 80% 351 88% 1206 83% 703 76%
Day 19 611 81% 938 81% 823 79% 549 81% 885 85% 664 75%
Day 20 304 82% 676 86% 739 81% 430 79% 966 89% 683 65%
Day 21 405 87% 1168 80% 928 73% 480 75% 1180 82% 829 77%
Day 22 564 79% 968 87% 723 77% 689 79% 994 81% 664 95%
Day 23 | 400 91% 818 82% 1147 78% 496 91% 1252 88% 986 72%
Day 24 602 92% 687 84% 708 75% 581 77% 740 81% 603 79%
Day 25 309 92% 576 79% 548 84% 378 78% 519 74% 386 75%

there. The place that is chosen is an apartment complex with TABLE IV

a considerable number of Baylor students. However, there are CONTROL MEASUREMENTS

zero matches, most likely because the network is segmented Place Devices | Bench. | Recurring devices | Percentage | Day

into smaller subnetworks thaF we were un'ab¥e to scan. Two Supermarket | 595 37 ] 3%

other megsurements are taken in a parFlally similar environment Apartment 3 33 0 0%

where a high number qf common devices can be f:xpected. The Dinning hall | 1095 33 0 0%

chosen places are locaFlons lethm Baylor Un1vers1ty. but outS}de Commons %) P 5 5% 5

of the base network, with a significant number of devices flowing Saturday 118 38 T 9% 10

between these networks. They provide a match of 5% and 0%,
confirming that places with high fluctuation in the same devices
are not matched. For the last control measurement, we choose
our base network but during the weekend to verify that we
can also detect a change in the context in the main network.
During the analysis, there was less than one-fifth the normal
number of devices, and the match was only 29%. All of the
control measurements obtained values significantly lower than
the threshold of 70% set in the previous paragraph. An overview
of the results is presented in Table IV, including the benchmark
size and the number of recurring devices found for every day of
the measurements.

We evaluated the performance of this method in a network.
address resolution protocol (ARP) scans are used to determine
the devices available. Therefore, with our method, every device
receives an ARP request. We evaluate the performance in a
network with 254 addresses. With six devices scanning, the

network simultaneously increases the latency in the network
(measured between two other devices) from 2 ms to between 13
and 20 ms. A full scan of the network with 254 addresses takes
slightly under 3 s.

This verification shows that we can detect anomalies in the
network and provides data that illustrate this ability in a network
with hundreds of users active at the same time. It demonstrates
how 5-day benchmark was chosen as the ideal benchmark age,
it explains when measurements taken at random times in an
interval are better for analyzing networks than measurements
taken at the same fixed times, and it describes the process
for determining the optimal threshold value for this particular
scenario. The control measurements demonstrate the ability to
detect an unfamiliar context in numerous networks with different
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TABLE V
SIMULATION WITH THRESHOLD 70%

Simulation Simulation | Original | Threshold | Simulation
match match classification
Failure same day 78.04% 80.48% 70% True positive
Failure day before 80.00% 80.48% 70% True positive
Adverse device 80.95% 80.48% 70% True positive
Attack with 15 devs. 28.95% 49.06% 70% True negative
Spoof attack 28.95% 31.57% 70% True negative

characteristics or at a different times in the base network. This
method alone cannot be used for device authentication, but it can
serve as an additional factor during the authentication process.
With an unfamiliar or suspicious network context, actions such
as further authentication or time or resource-intensive network
analysis can be taken. An example of a suspicious network is
one involving the sudden appearance of a significant number of
unknown devices.

B. Simulation

In this section, we simulate behavior of the network in poten-
tial situations that did not occur during our five weeks real-world
evaluation, but are of a significant concern. For the simulation,
we use the measurements from the real-world network and we
adjust them to the particular scenarios by removing or adding
the devices into the measured data. We explore cases that could
potentially lead both to false negative and false positive clas-
sification. For initial simulations, we choose the day 11, time
12:00 from our measurements. For latter scenarios that could
lead to false positives, we choose the Saturday following the
day 10 and again 12:00 time as we have data for it in the control
measurements. Results are summarized in Table V and described
below.

The first simulated case is failure of the stable device. This
can be divided into two events. The device can either fail before
the measurement is taken, which means that it is not included
in the current benchmark. Or it can fail on the same day and,
therefore, is included in the benchmark. Failure on the same
day decreases number of recurring devices from 33 to 32 and,
therefore, match decreases from 80.48 to 78.04%, which is well
above the threshold. Failure of the device in the preceding days
decreases both benchmark size from 41 to 40 and number of
recurring devices to 32, which leads to 80.00% match. Again
above the threshold we set. The only measurement, where failure
on the same day would lead to false negative is day 21 in 16:00 as
it would decrease to match to 68.23% (failure on the day before
would only decrease the match to 72.00%).

The second scenario is when an adversary is present on the
network from the beginning. This leads to the increase of the
benchmark and stable devices are found. In our simulation, it
increases match from 80.48 to 80.95% with benchmark increase
of one to 42 and number of recurring devices increase to 34.

Third case simulates wider attack to the network, with mali-
cious 15 devices present on the network. This increases number
of devices on the network to 133, benchmark size to 53, and
number of recurring devices from 11 to 26. It leads to match of

49.06%, while the match without the attack was 28.95%. Given
our network and the specific day, attack would need to consist of
52 devices to reach our threshold and, thus, lead to false positive.

Fourth case simulates an attack where the malicious devices
spoofs the MAC address to one of the benchmark addresses not
present on the network. Presence of the device increases number
of recurring devices to 12 and the match from 28.95 to 31.57%.
Opverall, 11 devices in an coordinated attack would be needed to
lead to false positive. Therefore, we identify this as the weakest
part of our method, as 11 devices is considerably smaller than 53
devices from the previous scenario. Also, those 11 devices can
be present on the network only during the attack and, therefore,
they will more likely stay unnoticed by network administrators.

VI. THREATS TO VALIDITY

Experimental verification presented in this article is based on
an experiment with one selected network and a simulation of
various situations that can occur during network operation. This
can be considered as a threat to validity. Although the network
used in the experiment was sufficiently extensive, it cannot be
assumed that other large networks will have a similar topology
and characteristics.

However, this issue can be mitigated by adjustment of param-
eters of the proposed methods. In networks where devices do
not fluctuate as much as they do in university networks or in
networks where there is a high number of newcomers or irregu-
larities, the values for the threshold, the optimal benchmark size
or the measurement times may vary significantly.

Another concern may be raised regarding the fact that in
the proposed method and in the experiments, we used MAC
addresses as a device identifier. Generally, MAC addresses are
easy to spoof, and if attackers determine the set of recurring
devices, they can spoof them in the network, which would lead
to false positive result.

To mitigate this issue, alternative device identification can be
used. With an alternative identification of a device, principle of
the method does not change.

VIl. DISCUSSION

The threshold given by the Algorithm IV-B can be further ad-
justed to modify behavior of the method. Lowering the threshold
decreases the amount of the false positive, while it may increase
the number of false negative. Increasing the threshold has the
opposite effect. Each percent we remove from the threshold
determines percentage of devices that are allowed to fail without
false negative. For instance, this could provide safety margin,
while decreasing the accuracy of the method.

The number of benchmark days determines the adaptability to
network changes. Networks with a higher number of fluctuating
devices will have a lower value than networks where the same
devices are present all the time. Those values can be modified
to suit the particular network.

Time frames definition affects the behavior characteristics
of the method. Basically the longer the time frame, the more
devices fluctuate. While this can offer some extra protection
against MAC spoofing, it decreases the threshold and, therefore,
can lead to false positives.
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The proposed method is dependent on the size of the network.
Atleast tens of overall devices are needed to provide meaningful
results and hundreds to achieve a consistent output.

Our approach provides an additional authentication factor,
and, therefore, it would not be sufficient as a standalone authen-
tication method. Also, the method does not detect changes in
the behavior of the devices itself, but in its network neighbor-
hood. Therefore, the proposed method does not detect device
hijacking.

VIIl. CONCLUSION

In the recent decade, IoT solutions have reached the point
where they are being regularly deployed in the real world.
However, the security of [oT devices (and, thus, of such solutions
as a whole) still present numerous challenges that have to be
addressed.

To date, various articles have described using existing security
solutions in the IoT world or have proposed specific methods
specifically tailored to the IoT. This article focused not on a
standalone security method; rather, it proposed an additional au-
thentication factor as a supplement to existing security solutions.
It made decisions based on changes in the context in the network
around devices, and therefore, it can detect suspicious or even
malicious behavior. It is a simple mechanism in terms of device
resources, and it can be deployed on every IoT device capable
of communication over TCP/IP, allowing system operators to
inspect the network and, if needed, to take appropriate actions
to resolve an issue.

Performed experiments demonstrated the feasibility of our
approach in a real-world network with a significant number of
devices. The results indicated that our concept can provide valid
results and increase the security of both the devices and the entire
network. This sort of approach is especially fitting for secure
locations, such as laboratories, energy sources or military bases,
where the aim is to limit outside devices. However, this method
might not be the best for locations where devices have a high
rate of churn, such as shopping centers.

In future work, we seek to conduct more detailed and exten-
sive testing of the method in various networks under different
scenarios and observe whether it can detect security threats,
e.g., monitoring when an external device (a potential threat)
appears in the network. To evolve the proposed method further,
in the future research, we are going to investigate options of gen-
eral algorithm for threshold value determination using machine
learning algorithms. We will focus on performance because a
full network scan slows down the network if the scan is run
from multiple devices. We seek to explore the possibilities of
running the network scan for the given network from a single
device and reusing it for others. We also seek to further refine our
algorithm for detecting suspicious behavior and to apply various
machine learning strategies.
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