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ABSTRACT KEYWORDS

Understanding and predicting real-time vehicle mobility pat-
terns on highways are essential to address traffic congestion
and respond to the emergency. However, almost all existing
works (e.g., based on cellphones, onboard devices, or traffic
cameras) suffer from high costs, low penetration rates, or
only aggregate results. To address these drawbacks, we uti-
lize Electric Toll Collection systems (ETC) as a large-scale
sensor network and design a system called VeMo to trans-
parently model and predict vehicle mobility at the individual
level with a full penetration rate. Our novelty is how we
address uncertainty issues (i.e., unknown routes and speeds)
due to sparse implicit ETC data based on a key data-driven
insight, i.e., individual driving behaviors are strongly corre-
lated with crowds of drivers under certain spatiotemporal
contexts and can be predicted by combining both personal
habits and context information. More importantly, we eval-
uate VeMo with (i) a large-scale ETC system with tracking
devices at 773 highway entrances and exits capturing more
than 2 million vehicles every day; (ii) a fleet consisting of
114 thousand vehicles with GPS data as ground truth. We
compared VeMo with state-of-the-art benchmark mobility
models, and the experimental results show that VeMo out-
performs them by average 10% in terms of accuracy.
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1 INTRODUCTION

Understanding and modeling individual vehicular mobility
on highways have various applications, e.g., congestion pre-
diction [23], route planning [6] and ramp metering [37]. How-
ever, modeling and predicting individual vehicle locations in
fine spatial-temporal granularity are extremely challenging
due to a large number of vehicles and limited infrastructures
on highways compared to cities [1][35].

The existing approaches for vehicle location prediction can
be basically categorized into two groups: (i) mobile infrastruc-
ture based solutions such as cellphones (e.g., Online Map Ser-
vices [18]) and onboard devices (e.g., OBD devices [7]), and
(ii) static infrastructure based solutions: traffic cameras [45],
loop sensors [39], and RFID [52]. For mobile infrastructure
based solutions, they typically have privacy issues since they
require real-time GPS locations of vehicles [55]; for static
infrastructure based solutions, they typically introduce low
spatial coverage or high costs for a complete highway system
coverage [43]. Further, both of them may suffer low penetra-
tion rates, e.g., some commuters do not use navigation apps
when traveling some familiar routes [38]; traffic cameras are
not pervasive on highways in some countries [16].
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In this paper, to address these drawbacks, we utilize a high-
way Electric Toll Collection (ETC) system as a sensor net-
work for vehicular mobility modeling and prediction. Com-
pared to the existing approaches, our ETC based solution
has the following features: (i) it requires no additional infras-
tructure since it relies on data already gathered in real time
over highway networks for toll collections; (ii) it poses no
additional privacy threats because it does not collect vehicle-
specific GPS data; (iii) it does not suffer from low penetration
rates since all vehicles have to be charged by an ETC system
when using highway systems. Even some highways are in-
stalled with induction loops, they cannot achieve individual
level modeling compared to the ETC system.

However, since an ETC system is deployed for toll collec-
tions instead of mobility modeling, we have the following
new challenges. (i) An ETC system only logs when and where
a vehicle enters and leaves a highway system for billing pur-
poses and it leads to extremely sparse location records for
each vehicle, i.e., only two data points per trip, which makes
predicting destinations without intermediate locations be
challenging. Without any historical routes or speeds logged,
it is difficult to train a model. (ii) In a complicated highway
network, given an entrance and exit, there are many potential
routes as shown by our later analyses, and ETC data do not
log any information regarding which route was taken during
a particular origin and destination pair. Based on our data,
we found that the shortest routes are not the first choices
for many vehicles due to congestion. (iii) Traffic speeds vary
by different spatiotemporal contexts, and ETC data do not
directly log speeds. Straightforward solutions (e.g., assuming
real-time speeds vary near the speed limit) usually do not
perform well because of various driving behaviors under
different contexts.

To address these challenges, in this paper, we perform a
systemic investigation of a large-scale ETC system along
with its data, and we found a key data-driven insight: even
with complicated highway networks and real-time context,
individual travel behaviors are strongly correlated with crowds
under certain spatiotemporal contexts and can be predicted
by combining both personal habits and context information.
Built upon this insight, we design a model called VeMo to
model and predict individual vehicular mobility patterns
based on sparse observations on real-time origins as well as
historical origins and destinations only. In particular, the key
contributions of this paper are as follows.

e To our knowledge, we conduct the first systematic
investigation of real-time vehicular mobility modeling
and prediction based on large-scale ETC and GPS data.
Our investigation is based on real-time and historical
ETC data from 7.8 million vehicles and GPS data from
114 thousand vehicles. This large-scale vehicle sensing

RIGHTS L

study enables us to find mobility insights that are not
possible to obtain with small-scale systems and data.
By working with our collaborators, we released some
processed sample data for the benefit of the research
community!.

e We analyze both ETC and GPS data and provide some
in-depth discussions on vehicular mobility patterns on
highways. Based on the insights from our analyses, we
design a mobility prediction system called VeMo with
three key components to predict destinations, routes,
and speeds for individual vehicles based on both his-
torical and real-time ETC data. Technically, we extract
unobserved routes and speeds through a joint opti-
mization model. By studying various mobility features
at both the individual level and crowd level, we fuse
them based on a Mondrian Forests model to address
the uncertainty issue in the mobility prediction.

e More importantly, we implement and evaluate the
VeMo in Guangdong Province, China with (i) an ETC
system covering 1,439 highway entrances and exits,
and it captures around 2 million vehicles per day; (ii) a
vehicle fleet and its GPS data including 114 thousand
vehicles for evaluation only, where 20% of vehicles
have the trajectories on highways.

e We evaluate VeMo through a two-month set of ETC
and GPS data by showing both intermediate results
(e.g., predicting destinations, routes, and speeds) and
end-to-end results (e.g., predicting real-time locations).
We study the performance sensitivity of our system
to different spatial-temporal contexts. Compared with
state-of-the-art solutions, VeMo provides a 10% perfor-
mance gain on average in terms of prediction accuracy.

2 MOTIVATION

2.1 Use cases

VeMo aims to predict the real-time locations of individual
vehicles, which enables various applications that cannot be
achieved by previous solutions. As collaboration with the
highway administrators, we gives two exemplary applica-
tions that matter a lot to the highway management.

e Highway anomaly detection: One important task
for highway administrators is to detect the highway
anomaly at the first time, such as traffic accidents. How-
ever, it is quiet expensive to arrange regular road check
manually or cannot detect anomalies in time. Through
predicting the real-time location of a vehicle, we can
know when the vehicle is expected to leave the high-
way in the regular situation. Conversely, we could

Thttps://www.cs.rutgers.edu/ dz220/
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know there may be an anomaly event if a number of
vehicles do not leave the highway as expected.

e Highway risk assessment: Improving driving safety
on highways is always an important topic for the high-
way administration companies. Noticeably, there are
more than 6 million crashes on highways in the United
States during 2015, including more than 30 thousand fa-
talities and 1 million injuries [24]. By transparently pre-
dicting the locations of individual vehicles, highway
administration companies can understand the num-
ber of affected vehicles if there were an accident on
certain road segments, and provide some contingency
plans accordingly. Another safety related application
is to localize a vehicle of interest (e.g., a vehicle with
dangerous cargo or suspects) for public safety after it
enters the highway.

Uniqueness of ETC based systems: To implement those
applications, previous works either require extra installed in-
frastructures or suffer from low penetration rates of vehicles.
For example, mobile phone based solutions can only know
the locations of a number of vehicles, which cannot provides
the accurate number of vehicles in a certain location. In-
duction loop based solutions cannot identify the uniqueness
of a vehicle. Traffic cameras are potentially used to detect
individual vehicles but limited by the laws in many coun-
tries such as U.S. Moreover, in developing countries, satellite
images or mobile infrastructure is not well penetrated and
it is really hard to predict the real-time locations. The ETC
based toll system is universal and exist almost everywhere
even in developing countries. Therefore, ETC based systems
utilize widely deployed infrastructure (i.e., ETC), which can
transparently obtain information from vehicles (i.e., when
charging toll) with extremely low marginal cost. Moreover,
the full penetration rate on highways can also make up for
the weakness of mobile phone based solutions.

2.2 Challenges

It is not trivial to predict the real-time locations of vehicles
because of the uncertainties caused by various traffic condi-
tions and driving behaviors. To show these challenges, we
study one-month data (both ETC transactions and trajecto-
ries of sample vehicles) in the Guangdong province of China
and identify several challenges regarding three key factors
including destinations, routes and speeds. The detailed data
description is presented in Section 3 and Section 5.

(i) Destination uncertainty: To predict the real-time lo-
cations of vehicles, it is important to understand the des-
tinations and routes. However, it is not trivial to predict
the routes and destinations. To characterize the inherent
predictability across vehicles, we present the destination en-
tropy of each vehicle in Fig 1. The figure reveals two peaks
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as the entropy equals 0 and 1, which indicates the next lo-
cation of a vehicle could be found on average in any 2° = 1
and 2! = 2 locations, respectively. Especially, we find most
vehicles travel on highways only once in one month when
the entropy=0; vehicles are more like to commute between
two locations when the entropy=1. Many works [51] [11]
have been done to predict the destinations of vehicles whose
entropy is greater than or equal to one since those vehi-
cles generally have regular commute patterns or extensive
historical data. However, it is not clear how to predict the des-
tinations of vehicles with only a few historical transactions.
We refer this problem as a destination sparsity problem.
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Fig 1: Destination entropy Fig 2: Number of routes

(ii) Unobserved routes and speeds: Previous studies have

been done to model the route choices and driving speeds [6] [54].

Through studying the historical routes and speeds in the trip
recorded by GPS-based devices, some sophisticated models
are proposed to predict vehicular mobility in the near fu-
ture. However, in our setting, one of the key characteristics
of the ETC system is that it can only obtain very sparse
information (i.e., the time and location when entering and
exiting highways). This leads to the problem that we cannot
obtain detailed routes and speeds to learn the route choice
model and the driving speed model, which is not solved in
the previous work.

Probability
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Fig 3: Speed STD

Moreover, routes and speeds also vary depending on user
behaviors and contexts. For a given origin and destination,
people can choose different routes if the road network is



not trivial (i.e., only one route from the origin to the des-
tination). Fig 2 illustrates the number of routes between
the origin-destination pairs. We found that only 17% of sta-
tion pairs have only one route based on GPS trajectories
obtained from 114 thousand vehicles. It is impractical to as-
sume only shortest routes are used by vehicles. (Note that
these trajectories are only used in the motivation and evalu-
ation rather than the model design.) As for speeds, people
empirically expect that the driving speeds of vehicles are
around certain speeds (e.g., speed limit or average speed)
with less variance. However, in our study, we found the
real-time speed is more complicated than the empirical intu-
ition. To illustrate the characteristics of real-time speed, we
study the real-time speed standard deviation (STD) across
vehicles by replacing the mean value in the standard for-
mula of standard deviation with the speed limit(S(Limit)),
the historical average speed(S(Historical)), the current trip
average speed(S(Trip)), respectively. Fig 3 demonstrates both
S(Historical) and S(Trip) have a Gaussian-like distribution
with the mean STD near 20 km/h. It leads to a 330-meter
offset in one-minute driving if only the average speed is uti-
lized to obtain the real-time location. It also revels the fact
that it is difficult for people to drive at the speed limit (e.g.,
can only drive at 60 km/h compared to the speed limit of 120
km/h) because of the heavy traffic.

2.3 Summary

The ETC based system provides an unprecedented opportu-
nity to transparently model and predict vehicular mobility
with a full penetration rate, which enables various poten-
tial applications such as highway safety management and
adaptive dynamic toll strategies. However, due to the unique
characteristic of only observing vehicles at entrances and
exits, there are several challenges to be solved including des-
tination sparsity problem and unobserved routes and speeds.

3 ETC SYSTEM AND DATA DESCRIPTION

We first introduce some notations to facilitate our discussion,
and then give a brief description of an ETC system based on
our infrastructure access in Guangdong and finally provide
some data-driven insights.

Notations: Given ETC data on the vehicle’s trip levels,

e Anedge e is a highway segment between two adjacent
toll stations, i.e., the finest spatial unit for ETC data-
based modeling.

e Aroute r is a set of adjacent edges, which connect the
origin toll station and the destination toll station of a
particular trip.
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o A K-edge trip is a trip of a particular vehicle with K
edges in its route between the origin and the desti-
nation. Specifically, a single-edge trip has only one
edge in the route.

Based on the above terms, our problem definition is "Given
a vehicle entering a highway network from a toll station
as an origin S, at time T,, predict its real-time locations on
highways at any given time T, until it exits the highway.
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Fig 4: ETC Systems in Guangdong Province

Infrastructure Overview: Fig 4 shows the road structure
and the locations of toll stations in the Guangdong province,
which has 69 highways and 773 ETC toll stations with 1,439
highway entrances and exits covering an area of 179, 800km?.
The circles represent toll stations and the larger the icon, the
heavier the daily traffic volume. It shows the traffic mainly
concentrates on the central area and the road structure in
that area is also complex as shown in the Guangzhou-Foshan
Road Network. Each toll station detects all vehicles when
they enter the highway system, and then logs the records as
transactions after they leave the highway system. The toll
station identifies a vehicle by ETC RFID devices (for regular
charging) or cameras (for the purpose of detecting escaping
charges).

As shown in Table 1, each generated transaction contains
information including entering and exit station, entering and
exiting time, vehicle id, vehicle type (i.e., car, bus, truck), axis
count and weight. Such a transaction was generated when
a vehicle enters and exits the highway network with both
ETC cards or cash. On average, there are more than 4 million
transactions generated every day from 2 million vehicles.
Statistic description: Fig 5 plots the average traffic volume
in 24 hours of a day. It shows there are two peak hours
(i.e., 10 am and 6 pm), which potentially make prediction
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Table 1: ETC Transaction Description

Field Value

Entering/Exit Toll Station Humen Station

Entering/Exit Time 2016-07-01 13:00:01
Vehicle Id F37SS1D4GU
Vehicle Type Car/Bus/Truck
Axis Count 2

Weight 1500kg

Number of Daily Transactions: 4 millions
Number of Daily Vehicles: 2 millions

challenging due to uncertainty (e.g., route choice, traffic jam,
etc) introduced by high traffic volume. Fig 6 depicts the daily
transaction volume of all the toll stations, where 25 % of
the stations contribute 75 % of the transactions. It suggests
the major number of vehicles enter the highway from a
limited number of stations, indicating prediction related to
unpopular stations may suffer from lack of historical and
real-time data.
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£ 240 o\ o 3 40k 75% transactions)
[~ I \ <
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Fig 5: Volume over time Fig 6: Volume over stations

4 VEMO DESIGN

In this section, we first depict the overview framework of
VeMo, which is then followed by feature extraction of three
components including (i) destination prediction, (ii) route
inference, and (iii) speed estimation. Specifically, in the route
and speed inference, we utilize a joint optimization model to
learn the historical routes and speeds with only transaction
data, to obtain necessary training data. These features are
fed into a learner to learn predictors for different tasks.

Fig 7 shows the framework of our system, which consists
of two parts: offline learning and online prediction. In the
offline learning, all the data come from three data sources
including the road map, historical ETC transactions and con-
text data. In the feature extraction, we divide all the features
into three categories, which are individual features, crowd
features and context features. The feature summary is pre-
sented in Table 2 (next page). By fitting these features into
the learner, we train three predictors for destinations, routes
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and speeds. By combining these predictor together, we pre-
dict the real-time locations of vehicles. In the next three
subsections, we introduce three predictors for destinations,
routes, and speeds from a feature perspective respectively,
and then unify them together with a prediction model based
on Mondrian Forest.
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Fig 7: Framework

4.1 Framework

4.2 Destination Predictor

Destination prediction has been intensively studied in the
past few years [17, 57]. The existing approaches for the ve-
hicle destination prediction mainly rely on transition prob-
abilities between different locations through learning his-
torical trajectories using various Markov chain based mod-
els [12, 28]. One of the key prerequisites is that there should
be enough historical data of individuals to learn the transi-
tion probabilities. However, in our context, most vehicles
only have limited historical data (as we discussed in Sec-
tion 2), which makes it hard to directly apply the Markov
chain based models. To address this issue, we explore more
individual features, crowd features and context features.

Individual Features: Since individual destinations es-
sentially are based on personal habits, we utilize a set of
individual features.

e Historical Destinations: As shown in Fig 1, the mo-
bility patterns of most individuals in terms of destina-
tions are relatively stable. Therefore, historical destina-
tions may largely represent their future destinations.

e Time Factor: Considering the commute pattern in
Fig 1 when the entropy is equal to 1, by introducing the
entering time factor, the uncertainty of destinations is
reduced. We use half-hour time windows to split one
day into 48 time slots.

e Vehicle Type: It has three values: cars, buses, and
trucks. Intuitively, the trucks most probably go to ar-
eas with high cargo demand (e.g., industry parks) and
buses often go to areas with a dense population (e.g.,
commercial districts or transportation hubs). Fig 8
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Table 2: Mobility Modeling Features

Individual Features Crowd Features Context Features

Destination Predictor | Historical Destinations, Crowd Destination Distributions Day of Week
(Section 4.2) Time of Day, Vehicle Type W " Weekday/weekend
Route Predictor Historical Routes (Section 4.3), Crowd Route Distributions Day of Week
(Section 4.4) Driving Experience, Time of Day Traffic Speed
Speed Predictor Historical Driving Speed (Section 4.3), C Weekday/weekend,
(Section 4.5) Time of Day, Vehicle Type Crowd Speed Distributions Weather

shows the proportion of different vehicle types in dif- 0.75

’~" L o
ferent types of areas. We select three exemplary areas g :w. ’4’,0-0-‘%‘
: . 0.65 I ¥ v v
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T C s 1 . 0.35] bmpgm —-+- Weekend
Crowd Features: The individual vehicle’s historical data Y S— 73 06 "
can be very sparse (as we suggested in Section 2). we try Time (Hour)

to use the crowd destinations to provide complementary in-
formation. Fig 9 shows the possible destinations from the
same origins by half of all the vehicles. We found almost
50% of vehicles go to at most 10 destinations. It indicates lots
of vehicles from the same origins share the similar destina-
tions, which can be used to infer the destination of a vehicle
without any historical destination data.
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Fig 8: Dest. variance Fig 9: Crowd dest.

Context Features: We further consider other context fea-
tures, i.e., the day of the week, weekday/weekend, holidays,
that may have impacts on the destination choices. We choose
the 10 most popular destinations for each origin and compare
the rank of these destinations in a regular day with that in
other days with different contexts using the measurement of
Normalized Discounted Cumulative Gain NDCG [25]. The
lower the NDCG, the lower similarity the destination choices.
Fig 10 shows that the measurement between weekdays, week-
end, and holiday. The holiday has very different destination
choices compared to other days. In the early morning and
the late afternoon of weekends, the NDCG is also lower than
that of weekdays. It suggests these factors have impacts on
people’s choice of the destinations.

L
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Fig 10: Context impacts

4.3 Historical Route and Speed Learning

As we discuss in Section 2, the reason that previous works
are not feasible in our setting is that the historical routes
and speeds of individual vehicles cannot be observed by
the ETC system. In order to learn the mobility of individual
vehicles, we propose a joint learning approach to obtain
the historical routes and speeds of vehicles simultaneously,
which are utilized as training data to model the route choices
and real-time speeds in Section 4.4 and Section 4.5.

Several studies [15] [54] have been done to investigate the
relationship between the travel routes and real-time speeds,
which found the route of vehicles can be inferred with only
speeds information. This finding indicates the strong correla-
tion between the routes and speeds, which inspires our idea
to learn the routes and speeds simultaneously.

To achieve this, we first present a few preliminaries.

e Time: we divide a day of 24 hours into K time slots(t)
(i.e., each time slot is equal to 10 minutes).

e Location: we split the highway road networks into M
equal length road segments(s) (i.e., 1 km).

e Speed: instead of treating the speed as a continuous
variable, we discretize it into H discrete integer speed(v)
by the smallest unit of 1 km/h (e.g., if the speed limit is
120 km/h, then we can have 121 different speed values
ranging from 0 to 120km/h).

In this way, the states of vehicles in each trip on highways
can be presented as a sequence of states <t, s, v> between
the origin and the destination. As an example of the trip
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Time:

Location:

Trip i:

Other Trips

Fig 11: Route and speed Correlation

i in Fig 11, the vehicle enters the highway from the road
segment sy at the time f, and exits the highway from the
road segment s, at the time t,,. It is worth mentioning that,
in other trips, vehicles can be at the same location as the
same time as the trip i. Then our objective is to infer the
most likely state sequence of each trip. The solution is moti-
vated by the key observation that at the same time multiple
vehicles are traveling on the same road segments and their
real-time speeds can be considered as samples of the speed
distribution. The following insights reveal the characteristics
of the distribution.

e Speeds distribution on the road segment: By ana-
lyzing the sample GPS trajectories, we observe that
speeds of vehicles on the same road segment follow a
normal distribution, which is also validated in other
contexts [20].

e Speed STD distribution: Moreover, as shown in Fig 3,
we also observe strong normality of the speed.

Since both insights show the normality, to quantify them,
we utilize Kolmogorov-Smirnov test to test the normality.
Specifically, the states of different trips within the same time
and location are grouped as samples to test the normality of
speed on the road segments. For the speed STD distribution
insight, it is measured as suggested in Section 2. Then all the
STDs are considered as samples to test the normality.

Given the normality test of both the speed distribution in
each road segment and speed STD distribution of all the ve-
hicles, our problem can be transformed into an optimization
problem to find the best state sequence combination for the
maximization of the number of the acceptance of normality
tests. Suppose we have N trips with J vehicles, we formulate
the problem as following:

N J
maxsiznize Z 1a(Rnorm(sc)) + zj: 14(Snorm(sc))

where sc is the combination of the state sequences of different
trips, Rnorm is a test function to check the normality of the
speed distributions, Snorm is a test function to check the
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normality of the speed STD distribution. 14 is an indicator
function of the test acceptance.

A straightforward approach to solve the optimization prob-
lem is to search all the possible state sequence combinations.
For each trip, the possible state sequence is K X M X H. Then
the total search space is O(N¥*MxH) which is time con-
suming to search. To reduce the search space, we introduce
several simple but effective heuristics to guide the search.

e State sequences constrained by routes: Shown in Fig 2,
there is a limited number of routes between origins
and destinations, which naturally reduces the search
space of possible location sequences.

e Spatial smoothness: Constrained by the structure of
the road network and the speed limit, the next loca-
tion of the vehicle can be the reachable road segments
under the speed limit. (e.g., suppose the speed limit is
120km/h, the next location in 5 minutes can only be
the road segments within a range of 5 minutesx120
km/h = 10 km.)

Given these heuristics, we perform a standard search algo-
rithm (e.g., DFS) to find the best combination of the state
sequence. Then the historical routes can be obtained by con-
catenating the locations in each trip and speeds can be di-
rectly obtained from the state sequence.

4.4 Route Predictor

Similar to the destination prediction, we study the features
from three perspectives: individual features, crowd features
and context features.

Individual Features: We utilize the following features
for the route prediction at the individual level.

e Historical Routes: Based on a previous study, people
are more reluctant to change their regular routes if
they have more experience with these routes [6], which
indicates historical routes are most likely to be their
future routes given the same origin and destination.

e Driving Experience: Empirically, experienced peo-
ple are good at finding the best routes [6]. We quan-
tify the experience by two factors: (i) the frequency
of driving on highways, which can be obtained from
historical ETC transactions; (ii) the saved travel time
compared with the average travel time, which can also
be computed from historical ETC data.

e Time Factor: Empirically, people generally have their
own estimations about the route traffic at a different
time, e.g., taking a detour during the rush hour to avoid
the traffic. It affects their future route choices.

Crowd Features: For those people who have no or only
limited historical data, we incorporate the route choices of
crowds to infer their route choice. Specifically, we use the
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probability of historical crowds’ routes between particular
origin/destination at the certain time.

Context Features: People’s route choices are affected
by the real-time context [5], i.e., the day of the week and
real-time traffic speed, which can be estimated with ETC
transactions in the recent past.

4.5 Speed Predictor

In this subsection, we introduce different features that are
correlated to the real-time speed. The key idea is to learn the
relation between individual driving speed and other features
(e.g., crowd speed) in order to predict the real-time speed
given all these features.

4.5.1 Features: We introduce our features on the individ-
ual, crowd, and context level.

Individual Features: Since the driving speed is essen-
tially based on people’s behaviors, we define a set of individ-
ual vehicle’s features.

e Historical Driving Speed: As shown in Fig 3, the
driving speed is relatively stable for a particular person.
We use their average speeds of historical trips to reflect
their general driving speed.

e Vehicle Type: This feature reflects the vehicle’s type
(i.e., cars, buses, trucks). Intuitively, the driving speed
of cars should be higher than trucks and buses. Fig 12
also validates this intuition.

e Time Factor: Fig 12 shows that the driving speed
varies at the different time of a day, which is mainly
due to the different traffic conditions.

[
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Fig 12: Speed variance  Fig 13: Context impacts

Crowd Features: People may behave differently under
different traffic conditions. Instead of studying the detailed
behavior patterns of individuals, which may have many fac-
tors to discuss, we directly investigate the correlation be-
tween the individual speed and crowd speed. Fig 14 shows
the Pearson correlation of the individual speed and crowd
traffic speed. More than 80% of vehicles have at least 0.89
correlation coefficient with the crowd traffic speed. Moti-
vated by the strong correlation, the crowd traffic speed is an
important feature to estimate the individual driving speeds
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on specific edges. Therefore, we extract the features of the ve-
hicle speed samples, which are incorporated to estimate the
crowd traffic speed. Instead of using the average crowd traf-
fic speed (which may cause an estimation bias), we consider
the statistic values of the crowd traffic speed distribution,
including minimum, lower fourth, median, upper fourth and
maximum of the samples. We reply on the crowd features to
learn how the driver would react under different situations,
in order to predict the real-time speed in the future.
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Fig 14: Speed Correlation

Context Features: Besides the vehicle-related features,
we also consider other factors that may have impacts on
the driving speed, including weather and weekday/weekend.
As shown in Fig 13, the speed is decreased by 10% at most
in the rainy day and increased by 5% on weekend. This is
reasonable because people tend to drive slower when raining
and fewer people use highways to work on the weekend,
which makes the highways less congested.

4.6 Learning with Mondrian Forest

Mondrian forests [27] is an online random forest model us-
ing Mondrian processes to construct ensembles of decision
trees. Compared to the offline or online random forest [27], it
provides the ability to process online data and online updates
faster and more accurately. Compared with other algorithms,
the Mondrian forests model has the following advantages:

e It is more robust to heterogeneous features. In our data
input, we have both numerical variables (i.e., speed)
and categorical values (i.e., vehicle type, weather, week-
day/weekend). These variables can be input into the
model directly without conversion or normalization.

e It provides self-check on the importance of the features
during the training stage. For example, such as the
weather condition and holidays, these variables would
only have high importance under certain conditions
with a low frequency.

e Compared to other neural based model (e.g., deep neu-
ral network), the results are more explainable because
of the internally used decision tree [14].



For different tasks (i.e., destination prediction, route in-
ference, speed estimation), we fit all the extracted features
into Mondrian forests and learn three predictors to work
collaboratively on the real-time location prediction, which is
illustrated in Section 4.7. Even we choose Mondrian forests,
our system is flexible to many machine learning methods.
The more important aspect is the analysis process and find
the effective features.

4.7 Put them all together

In the previous sections, we have conducted an analysis of
the three key tasks: destination prediction, route inference
and speed estimation. Based on multiple extracted features,
we learn three predictors d-predictor, r-predictor, s-predictor
for each of the tasks, perceptively. The procedure of real-time
location prediction is described in Algorithm 1.

Algorithm 1: Real-time Location Prediction

: d-predictor: the destination predictor,
r-predictor: the route predictor,
s-predictor: the speed predictor,
entrance: the entering toll station,
interval: the updating time interval
to: the entering time.

Output:real-time locations

1 destination < d-predictor given entrance

route « r-predictor given destination

Input

while distance < route.length do
speed « s-predictor at t;

6 distance += speed X interval

7 location < match distance to route

8

2
3 distance =0
4
5

end

5 EVALUATION

In this section, we introduce our data-driven evaluation in
terms of methodology and results.

5.1 Evaluation Methodology

Ground Truth: To obtain the ground truth of real-time ve-
hicle locations, we introduce another real word dataset with
detailed GPS trajectories in Guangdong, which provide the
real-time locations of 114 thousand vehicles including 75%
cars, 13% buses and 12% trucks. These vehicles upload their
real-time locations in every 10 to 30 seconds. The detailed
data format is presented in Table 3. Fig 15 shows the tra-
jectories visualization on the main roads in Guangdong. It
shows our dataset covers most of the main roads, which can
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be utilized to evaluate the state-level mobility. Two high-
lighted areas are the two largest cities, i.e., Guangzhou and
Shenzhen, which are densest areas in terms of vehicles. For
each vehicle, we first apply a map matching algorithm [34]
to map trajectories onto the road network. Then only the
trajectories on highways are remained to obtain entering
toll stations, exit toll stations, routes and real-time locations,
which cover 20% of the vehicles in our dataset. Since the
training and testing are conducted on different datasets, we
do not need to split the datasets for cross-validation.

Table 3: Ground Truth Format

Field Value Field Value

Id POSF51B4GU Type Car/Bus/Truck
Longitude 113.402904 Latitude 23.167894
Time 2016-06-01 00:00:34

75% cars, 13% buses, 12% trucks #Vehicle: 114k

Evaluation Metrics: For each component, we define the
evaluation metrics as follows:

e Destination and Route prediction:

#predictioncorrect

accuracy = X 100% (1)

#predictiongy;
where #predictioncorrect is the number of corrected
prediction and #prediction,; is the total number.

e Speed Prediction:

|speedpredict - Speedactuall

speedactual
where speed,,;eqic: is the predicted speed and speedctuai
is the ground truth.

(2)

accuracy =1 —
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e Real-Time Location Prediction: we quantify the loca-
tion accuracy by measuring the percentage of pre-
dicted locations within the accuracy threshold (i.e.,
100 meters) of the ground truth considering the GPS
errors every 15 seconds (i.e., the average uploading
time interval of data in ground truth) [19]. The accu-
racy formula is defined as

#predictioncorrect
#predictiongy;

accuracy = X 100% (3)

Baselines for Intermediate Results: For the three individ-
ual prediction components, i.e., predictions for destinations,
routes, and speeds, since we utilize a unified algorithm for all
of them, we evaluate them from the perspective of a learning
model by comparing it with the other learning models. The
selected learning models are presented as follows, and each
of them is representative of a group of methods with the
similar bases:

e Empirical Estimation (Emp): The baseline repre-
sents the prediction based on the naive empirical knowl-
edge. For the destination and route prediction, we
consider the most frequently visited destinations and
routes. For speed prediction, we utilize their historical
average speed.

e Bayesian Network (Bayes) [14]: Bayesian network
is a typical graph-based algorithm, which is represen-
tative for the probability based models.

e Neural Network (Neural) [14]: Neural network rep-
resents the models that focus on learning the linear or
non-linear combination between features and targets.

Baselines for End-to-End Results: For the overall perfor-
mance of the real-time locations, we choose the baselines
based on two principles: (i) static infrastructure based meth-
ods; (ii) mobile sensor based methods.

e STrack: This baseline represents a wide range of static
infrastructure based methods, e.g., cameras [60]. Con-
sidering traffic cameras are set to detect motoring of-
fenses without open location information, we imple-
ment STrack by assuming a given percentage of edges
(defined in Section 3) have been installed with cameras
that can track vehicles. In the middle of each edge, we
assume one traffic camera is installed that can recog-
nize vehicle plates. The real-time locations of vehicles
are obtained as being observed by the cameras. For the
location estimation of vehicles between cameras, we
assume they are uniformly distributed on the roads
between cameras. Fig 16 shows the edge length in the
highway road network. Different percentages are also
evaluated to show the performance.
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Fig 16: Edge length

e CTrack [41]: This baseline aims to track individual ve-
hicles based on cellular networks by periodical commu-
nications between onboard cellphones and cell towers.
Based on the locations of communicated cell towers,
it infers the locations of the cellphones (thus vehicles).
The cell tower locations we use are located in Shen-
zhen City (shown in Fig 17), where the ETC system
is also widely spread with 79 toll stations. We imple-
ment CTrack by assuming each vehicle has an onboard
cellphone to interact with cell towers and follow the
trajectory mapping algorithm in [41].

Fig 17: Cell Tower Locations in Shenzhen

Impacts of Factors: We evaluate several factors to show
the impacts on the performance of VeMo,

e Weather: Weather condition is a factor that affects the
driving behavior such as driving speed. We evaluate
the accuracy in both regular day and extreme weather
day (e.g., heavy rain).

e Accuracy threshold: Given different accuracy thresh-
old to declare the accuracy, the performance may be
varied. We choose several threshold values to show
the accuracy changes.

e Time factors: The performance may vary at different
time. We evaluate it in weekday, weekend and holiday.
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e Spatial factors: Shown in the previous sections, dif-
ferent areas have different densities of toll stations
and different volume of traffic. We evaluate VeMo at
different areas in Guangdong, i.e., both the downtown
areas and suburb areas.

e Vehicle Types: Different types of vehicles may have
different challenges of prediction. We evaluate this
factor by applying VeMo on different types of vehicles,
i.e., car, bus, truck.

In the next subsection, we first compare the three indi-
vidual components with the baselines (i.e., Naive Empirical,
Bayesian, Neural). Then we comparing the overall perfor-
mance of the real-time location prediction with STrack and
CTrack followed by the impacts of the factors.

5.2 Evaluation Results

5.2.1  Efficiency. We implement VeMo on a server with Intel
Xeon E5-1660 3.00GHz CPU and 32GB RAM in 16 threads.
After loading all the data, the training process takes 450
seconds. The speed prediction is 500 times per thread every
second on average, which can satisfy the real-time need of 4
million daily transactions.

5.2.2  Real-Time Edge-Cloud Design. Since most of the ap-
plications built on our system require real-time response, it
is necessary to have real-time cloud components. Even it is
feasible to conduct prediction in a powerful server, however,
it is challenging to update the model in the cloud in real-time.
Our solution is to combine both the cloud (i.e., center servers)
and the edges (i.e., computer systems in the toll stations).
Cloud: All the data is stored in the cloud system for security
issues. As the new data collected in the edges, the data is
transmitted to the cloud through Ethernet. All the trained
models are also stored in the cloud to distribute to the edges.
Edge: Given the truth that a vehicle only appears in a few
toll stations, we could pre-distribute the trained individual
models to top frequent edges according to historical records.
Considering the online updating feature of our model, we up-
date the model directly in the edge devices. Then the model
itself is transmitted back the cloud to distribute to other sta-
tion. Generally, a vehicle leaving the toll station would not
get back to the highways immediately. There there is enough
time to transmit the model to the cloud.

5.2.3  Comparison to baselines. We evaluate both individual
predictors and overall location predictor. For each of the
individual component, we evaluate it by comparing it to
the three baselines, respectively. Then three predictors work
collaboratively to predict the locations of vehicles.

(i) Destination prediction: Fig 18 plots the result of the des-
tination prediction. It shows VeMo has better performance
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than other three learning models with an average perfor-
mance gain of 11%. The Bayesian network baseline performs
better than the neural network, which means the probability
relationship is better to model the destination prediction
problems. Moreover, the naive empirical baseline achieves
60% accuracy during the day time, which suggests the desti-
nation choices are relatively stable on highways.
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Fig 18: Destination pred. Fig 19: Route pred.

(ii) Route prediction: Fig 19 presents the result of the route
prediction. Compared to the other three baselines, VeMo
achieves an average performance gain of 6%. It suggests
the performance does not vary much in terms of different
learning models. The naive empirical baseline has similar
performance in the early morning but poor performance dur-
ing the daytime, which means the route choices are flexible
when there is heavy traffic.

(iii) Speed prediction: Fig 20 shows the result of average
speed prediction. VeMo has an average performance gain of
17%. During the day time, the accuracy is higher, because
the heavy traffic constrains the speed variation. The naive
empirical baseline shows poorer performance during the
daytime because the empirical knowledge cannot obtain the
real-time traffic information. Moreover, the neural network
baseline is better than the Bayesian-based baseline, which
suggests the advantage of linear combination based method
on the speed prediction tasks.
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Fig 20: Speed pred. Fig 21: Location pred.

(iv) Location prediction performance: After the individ-
ual predictors’ evaluation, we combine them together to
evaluate the real-time locations of vehicles. Since the route
has dominating impacts on the locations of vehicles, to show
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more sophisticated evaluations, we test the accuracy of both
(i) the vehicles (VeMo-a) and (ii) those vehicles with cor-
rectly predicted routes (VeMo-r). Then we compare them
with STrack and CTrack. Fig 21 plots the evaluation results.
Considering the vehicles with correctly predicted routes,
VeMo (shown as VeMo-r) has the average accuracy about
82%. The reason that VeMo has similar accuracy as CTrack is
that the baseline experiment is conducted inner city, which
has a dense cell tower distribution. Even including all the
vehicles (shown as VeMo-a), VeMo achieves average accu-
racy of 70%, which is still at the same level of STrack, which
means VeMo can be an alternative solution of STrack without
introducing extra infrastructures.

We also evaluate the impacts of coverage percentage of
STrack, and show the result in Fig 22. After the coverage per-
centage increases to 50%, STrack achieves better performance.
Since it is expensive to provide such high infrastructure cov-
erage, VeMo outperforms STrack in terms of feasibility.

5.2.4 Impacts of factors. Five factors are evaluated including
accuracy threshold, weather, time factors, spatial factors and
vehicle types. The metrics are the same as the equation 3.
(i) Impacts of Accuracy Threshold: We choose accuracy
threshold including 25, 50, 100, 150 meters to show how the
accuracy changes in Fig. 23. The lower the line, the better the
accuracy. We found higher thresholds lead to higher accuracy.
100-meter and 150-meter thresholds have closed accuracy
while 25-meter and 100-meter thresholds have obvious lower
accuracy.
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Fig 22: % of infra. Fig 23: Accuracy threshold

(ii) Impacts of Weather: We select one day with heavy
rain and compare the result with that of a regular day. We
surprisingly found the rain even increase the prediction ac-
curacy. Since people tend to drive slowly in the heavy rain,
the individual speed is reduced and there is a smaller range
of speed variance on the way, which benefits the prediction
accuracy.

(iii) Impacts of Time Factors: Fig 25 shows the perfor-
mance of VeMo in weekday, weekend and holiday. The ac-
curacy in weekday and weekend is similar. Moreover, the
performance in the holiday is different than other days, es-
pecially during the morning. This is because the destination
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choices are less predictable on the holidays when people
generally do not follow regular mobility patterns.
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Fig 24: Weather Impact Fig 25: Time impact
(iv) Impacts of Spatial Factors: We investigate the perfor-
mance of VeMo in both downtown areas and suburb areas
and show the result in Fig 26. In the early morning, two areas
have similar accuracy. During the daytime starting at 8 am,
the performance in the downtown areas decreases. This is
because the road structure is more complex in that areas,
which makes the route prediction less accurate.
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Fig 26: Spatial impact Fig 27: Type impact

(v) Impacts of Vehicle Types: Fig 27 shows the perfor-
mance of different types of vehicles. Trucks have the lowest
accuracy because they generally have longer travel distances
and irregular mobility patterns (e.g., one truck may travel
between different areas for cargo services as long as there
are demands of cargo transportation). Buses have higher
accuracy because they have most regular mobility patterns
compared to trucks and cars. Cars’ accuracy decreases during
the daytime because they generally travel inner cities, which
is impacted by both traffic conditions and road structures.

6 DISCUSSIONS

Lessons Learned: Based on our results in Guandong, we
learned a few valuable lessons.

e vehicle’s mobility pattern in terms of destinations can
be identified as three major groups, single-time travel
vehicles, commuting vehicles and multi-destination
vehicles;

e the overall distributions of both speed STDs cross ve-
hicles and speeds on the road segment follow strong



normality, which can be considered as constrains to
infer the routes and speeds simultaneously;

¢ individual highway speeds vary based on driving be-
haviors, but is highly correlated with generic traffic
speeds. The overall derivation of individual speeds
follows a Gaussian-like distribution;

o Both individual and crowd level features (e.g., histori-
cal destinations, routes, vehicle types, driving experi-
ence, etc ) are helpful to predict vehicle locations along
with contexts (e.g., time of day, day of week, weather).

Why ETC Data Only? In this work, we explore the possi-
bility of using ETC data alone to predict real-time vehicle
locations by solving some uncertainty issues, e.g., unknown
routes. This is because ETC systems can provide a full pen-
etration rate transparently based on data already collected.
Moreover, the ETC based toll system is universal and exist
almost everywhere even in developing countries where satel-
lite images or mobile infrastructure is not well penetrated.
If combined with other datasets even with small scale, e.g.,
GPS data from highway service vehicles or traffic camera
data, we may be able to further improve our accuracy sig-
nificantly. But due to space limitation, we focus on our core
contribution on ETC data.

Data Collection and Privacy Protection: In this work,
the ETC data we utilized are collected by an ETC company,

which is a part of Guangdong Highway Administration Agency;

the GPS data we utilized are collected by an insurance com-
pany under drivers’ agreement, which is a part of usage-
based insurances for discounts. In the ETC service agreement
and highway usage agreement, people are notified that their
data will be used to analyze traffic patterns and improve
traffic condition. Instead of tracking individual vehicles, our
project is to understand and improve traffic patterns, which
potentially benefits all ETC users.

Real-world Applications: Our project is part of highway
improvement initiative Guangdong Highway Administra-
tion Agency. One key application of our vehicle location
prediction is to address the traffic congestion on Guangdong
highway during peak hours. Based on our results, we can
estimate the number of vehicles on each edge of the high-
ways by predicting the real-time locations of all vehicles,
which can be utilized to design applications such as ramp
meters [37] and adaptive toll strategies [48].

Rest Area Stop: Since the ETC data only give the station to
station travel duration, it may contain time a person spent at
rest areas, which cannot be directly obtained from the ETC
transaction data. But based on our dataset, we found that 76%
of transactions have a duration less than 60 minutes, during
which a person is unlikely to go to rest areas unless it is a
part of a longer trip starting outside Guangdong Highway
System. Unfortunately, we cannot validate this assumption
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based on ETC data alone. However, with GPS data, we found
that for the trips shorter than 60 minutes, only 8% of vehicles
went to rest areas. It indicates rest area stops may not have
significant impacts on our results.

Limitations and Open Problems: We discuss some limi-
tations and open problems related to our system.

e Each highway system has its unique geographic and
demographic features, so data-driven insights and our
evaluation results we have in Guangdong may not
apply to other highways with very different features.
However, we believe the techniques we develop to pre-
dict destinations, infer routes, and estimate speeds are
generic and can be applied to other highway systems
if their data are available.

e Our system work in a controlled environment, i.e.,
a highway system with both entering and existing
records. Therefore the same technique may not be ap-
plied to local streets without toll booths to track every
vehicle enter or leave a street. In this case, additional
data, e.g., partial GPS, can be combined with our solu-
tion for prediction. However, we believe our solution
can be generalized to stationary sensors that can cap-
ture the vehicle’s passing (such as cameras, cellular
tower, etc.).

e Even ETC systems only capture the vehicle twice,
it still has the privacy issue of exposing locations.
However, compared with GPS based solutions, it is a
better/low-cost privacy-reserved approach since ETC
data have already been collected as a mandatory pro-
cess for billing; whereas other approaches need new
devices or dedicate data collection process with poten-
tial continuous location collection.

e Our solution can help to detect the abnormal events
when there are a certain number of vehicles (poten-
tially spatial correlated vehicles, e.g., their real-time
predicted locations are the same road segments) do
not leave the highway after their travel duration on
highways. But since in this work, we focused on the
fundamental location prediction and did not try to ex-
plicitly handle the anomalies, which would be a good
direction for our future work.

e Our solution replies on the historical data of vehicles
to learn their driving behaviors. In the ETC system, we
found there is only 9% of the new vehicles without any
historical data after 10-day data accumulation, which
is very small number of vehicles. For those without
historical data, we can only infer their behaviors ac-
cording to majority behaviors (i.e., crowd features). It
is still an interesting open problem.



7 RELATED WORK

The most related work to this paper is a system called Shared-
Edge [53] where ETC data are utilized to infer the generic
traffic speed on each highway edge. However, VeMo is differ-
ent in both the objective and methods. In particular, VeMo
focuses on location prediction, whereas SharedEdge focuses
on speed prediction. Even though VeMo also has a speed es-
timation but it focuses on individual speeds, whereas Shared-
Edge focuses on generic speed. Moreover, there a good body
of literature for vehicle mobility modeling and predictions
based on various sensing infrastructures [41][63][33]. Shown
in the Table 4, we divide them into two major parts: GPS
based approaches and None-GPS based approaches, where
highlight our position with the full penetration.

Table 4: Vehicular Mobility Survey

Aggregate Individual
Mobile | [59] [26] [22] [56] | [58] [64] [40] [2] [50] [31]
Partial Full

Static | [33] [60] [53] [36] | Penetration | Penetration

[42] [41] [8] | Our work

Static Infrastructure: Static infrastructures, e.g., traffic
cameras [60], cell towers [41], WiFi access point [42], are
widely used for vehicle mobility modeling. Some commu-
nication related works are also studies based on the static
infrastructure [4] [29] [3] [13]. However, one disadvantage
of these approaches is either the lower coverage of infrastruc-
tures [44] or the low penetration of the apps that are used
to interact with the infrastructure. Without the installation
of extra infrastructures for a full coverage, it is difficult to
model and predict the mobility of all the vehicles. Most of
these approaches require continuous movement detection,
which is not always satisfied in the real world [30]. Com-
pared with existing work, our approach makes use of the
existing infrastructures to predict vehicle mobility without
extra cost. All the vehicles entering the highways are de-
tected, which does not require the installation of interaction
apps. The requirement of only single real-time observations,
e.g., entrance to a highway, largely increases the feasibility
of our approach in the real world. Some approaches such
as cell phone network may have potential to infer traffic
condition with low cost. But normally the cellphone data
are not available for highway administrators. They can only
use the data collected by themselves. Further, the cell phone
network cannot be narrowed down to vehicular mobility
since the driver and passage cannot be distinguished from
the cell phone data only, which may introduce extra bias.

Mobile Infrastructure: Mobile infrastructures, i.e., smart-
phones and onboard devices, are extensively studied to un-
derstand both individual and groups of vehicles. [42] [64] [21]
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use smartphones to track vehicles in real time. The inference
on mobility is studied in details by smartphone data [40]. [2]
estimates the urban traffic using vehicular fleets with on-
board devices. [49] implements regular vehicle tracking through
commercial vehicles with onboard devices. Other works such
as crowdsoucing information collection and energy issues
can also benefit from the mobile infrastructures [10] [61] [32].
However, these approaches are either limited by low pene-
tration rates of apps [38] or focus on the aggregated level [2],
and typically rise privacy issues of exposing vehicle GPS
data [64].

Vehicular mobility on the highways is also studied in the
transportation community (i.e., the destination and speed
prediction [9] [47] [46] [62]). However, previous works mainly
focused on the aggregated traffic characteristics, such as
origin-destination matrix or traffic speed on the road seg-
ments. Different from these works, our system aims at the
mobility model of individual vehicles, which requires micro-
scope analysis of the vehicle mobility pattern. In addition,
our result can be extended to the aggregated traffic charac-
teristics by aggregating the individual vehicles. Moreover,
we utilize extra dataset as ground truth, which avoid the
drawbacks of cross-validation in the previous works.

Summary: Based on our discussion, most of the exist-
ing approaches are limited by extra deployment cost, low
penetration rates, or requirement for privacy-prying GPS
locations. In contrast, our approach makes use of the existing
infrastructures with a full penetration rate to track individu-
als with only sparse location information, which makes our
work significantly different from the existing approaches.

8 CONCLUSION

In this paper, we focus on vehicle location prediction on
large-scale highway systems with sparse ETC data. In par-
ticular, we motivate and design a novel system called VeMo
with three key technical components for the destination pre-
diction, route inference, and speed estimation. More impor-
tantly, we implement and evaluate VeMo based on the large-
scale data in the Guangdong highway network in China,
utilizing an large-scale ETC system with 773 stations and
a large-scale vehicle fleet with GPS data as ground truth.
We advance state-of-the-art vehicle mobility modeling ap-
proaches by some key lessons we learned. We envision our
results may benefit various applications including highway
anomaly detection and risk assessment that we have been
working with our partner.
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