

Express Link Placement for NoC-Based Many-Core Platforms
Yunfan Li†, Di Zhu*, Lizhong Chen†

†School of Electrical Engineering and Computer Science, Oregon State University, United States
*Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, United States

Email: †{liyunf, chenliz}@oregonstate.edu, *dizhu@usc.edu

ABSTRACT
With the integration of up to hundreds of cores in recent general-
purpose processors that can be used in parallel processing systems,
it is critical to design scalable and low-latency networks-on-chip
(NoCs) to support various on-chip communications. An effective
way to reduce on-chip latency and improve network scalability is
to add express links between pairs of non-adjacent routers. How-
ever, increasing the number of express links may result in smaller
bandwidth per link due to the limited total bisection bandwidth on
chip, thus leading to higher serialization latency of packets in the
network. Unlike previous works on application-specific designs or
on fixed placement of express links, this paper aims at finding ef-
fective placement of express links for general-purpose processors
considering all the possible placement options. We formulate the
problem mathematically and propose an efficient algorithm that
utilizes an initial solution generation heuristic and enhanced candi-
date generator in simulated annealing. Evaluation on 4x4, 8x8 and
16x16 networks using multi-threaded PARSEC benchmarks and
various synthetic traffic patterns shows significant reduction of av-
erage packet latency over previous works.

1 INTRODUCTION
General-purpose multi-core and many-core processors are becom-
ing increasingly important in large-scale, high-performance paral-
lel computing systems and data centers for numerous scientific,
economic, and social computing applications. As more and more
cores are integrated in recent chip-multiprocessors (CMPs)
[10][15][23], it is crucial to design scalable and high-performance
networks-on-chip (NoCs) to support various possible communica-
tion patterns among the processing cores. Although NoCs are gen-
erally more scalable than buses, the conventional hop-by-hop to-
pologies significantly increase packet latency and tend to consume
a large amount of power due to repeated packet forwarding at every
hop. It is, thus, critical to explore effective use of express links that
allow packets to bypass intermediate routers in the network.

While adding express links may provide significant potential
benefits particularly for current and future large many-core chips,
the total number of express links at the cross-section between rout-
ers is limited by physical wiring resources. Consequently, the width

of express links may need to be reduced to satisfy network bisec-
tion bandwidth constraints. This leads to increased packet seriali-
zation latency, which is the time needed for transmitting the re-
mainder of a packet after receiving its first bit. Therefore, adding
express links may not necessarily result in reduction of the overall
packet latency.

A couple of works have been conducted in the past on this sub-
ject, but opportunities for finding effective express link placement
in general-purpose processors are still largely unexplored. For ex-
ample, many schemes have been proposed for application-specific
designs that optimize topologies based on prevailing traffic pat-
terns (e.g., [11][14][20]). These application-specific schemes have
limited applicability for general-purpose processors where infor-
mation about inter-core communication may not be available be-
forehand or may change frequently at runtime. In these situations,
it is needed to place express links in a way that benefits the overall
or the average case. Limited research has been conducted in this
regard including virtual express topology and physical express to-
pology for general-purpose computing. Either approach has its own
advantages and disadvantages (more discussion is in the related
work in Section 2).

In this paper, we focus on the optimization of physical express
topology and address a key limitation in prior works that add phys-
ical express links in rather fixed ways (e.g., [8][13][17]), represent-
ing only a few design points in a very large design space. In fact,
the number of possible valid ways of placing express links is a su-
per-exponential function of the network size, even under the con-
straints of bisection bandwidth. This not only presents a large op-
portunity for better express link placement, but also calls for effi-
cient algorithms that are able to find optimal or near-optimal place-
ment under network constraints in acceptable runtime.

This paper explores the opportunities for finding effective ex-
press link placement for general-purpose many-core platforms to
minimize average packet latency under bisection bandwidth con-
straints. This problem, however, is very difficult as the solution
space containing all possible link placement combinations grows
extremely rapidly with respect to network sizes, which makes enu-
meration-based optimal algorithms impractical. Furthermore, the
large number of invalid placements due to bandwidth constraints
may also slow down search-based algorithms (e.g., simulated an-
nealing) quite significantly.

To solve this optimization problem, we first propose a way to
transform a typical two-dimensional placement problem into a one-
dimensional problem while retaining the optimality of potential so-
lutions. We then propose an efficient divide and conquer algorithm
to generate the initial input to simulated annealing which greatly
increases the effectiveness. To further improve the efficiency of the
proposed algorithm, we devise a connection-matrix-based solution

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, re-

quires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

ICPP 2019, August 5–8, 2019, Kyoto, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6295-5/19/08…$15.00

https://doi.org/10.1145/3337821.3337877

ICPP 2019, August 5-8, 2019, Kyoto, Japan, Yunfan Li, Di Zhu, Lizhong Chen

space and a candidate generator that cleverly exclude the invalid
placement of express links while guaranteeing that all possible so-
lutions are still probabilistically reachable. We evaluate the pro-
posed scheme on 4x4, 8x8 and 16x16 networks using PARSEC
benchmarks as well as synthetic traffic patterns. Evaluation results
show a significant reduction of packet latency (23.5% to 36.4%)
compared with previous schemes while incurring neglibable hard-
ware overhead (less than 0.5%).

The rest of this paper is organized as follows. Section 2 provides
the related work and background information on express links. Sec-
tion 3 formulates the problem of express link placement, and Sec-
tion 4 elaborates the proposed solution and system implementation.
Section 5 evaluates the proposed express link placement scheme,
and finally Section 6 concludes this paper.

2 BACKGROUND

2.1 Related Work
With tens to hundreds of cores integrated in a many-core processor,
the performance as well as the scalability of on-chip networks have
become one of the primary challenges for NoC designers. Main-
stream mesh topologies are easy to implement and more scalable
than ring or bus topologies, but the average on-chip latency of mesh
still increases linearly with the network diameter.

Adding express links to existing mesh-based NoCs is a promis-
ing solution to improve the scalability of NoCs. One of these ex-
press link technologies is to hybridize the electronic NoCs with
photonic interconnects or multi-band radio frequency interconnects
(RF-I) to increase NoC performance. For example, Chang et al.
propose a general-purpose NoC with RF-I to enhance performance
[6]. Bahirat et al. propose a hybrid photonic NoC with a photonic
ring waveguide combined into a mesh NoC [2]. Photonic links and
RF-I deployments reduce the on-chip latency and power consump-
tion, but they also need considerable extra technological and hard-
ware support such as waveguides, optical-electronic and elec-
tronic-optical converters, signal mixers, etc., which may take quite
a while to mature for volume production in on-chip settings.

Alternatively, conventional electronic express channels can be
easily added between non-adjacent routers. It reduces the average
number of hops traversed by network packets, thereby reducing on-
chip communication latency. Researchers have proposed many ap-
plication-specific designs that improve NoC topology by utilizing
application characteristics (e.g., [11][14][20]). For example, Ogras
et al. enhance mesh networks with additional long range links be-
tween frequently-communicating routers determined by traffic pat-
terns of certain applications [20], and Dumitriu et al. present a NoC
topology generation process to provide high performance for given
applications [11]. However, the application-specific nature of these
designs may lead to non-optimal solutions in the use of general-
purpose processors.

For general-purpose many-core platforms, there are mainly two
categories of express link-based approaches that are equally com-
petitive, namely virtual express link approaches and physical ex-
press link approaches [6]. The virtual approach utilizes virtual ex-

press channels to allow certain packets to bypass the first few pipe-
line stages of intermediate routers [18]. This approach does not re-
quire actual additional links but packets cannot fully bypass the in-
termediate router stages (specifically, packets still need to go
through the switch traversal and link traversal stages in most de-
signs). Thus, it yields a limited reduction in packet latency.

In contrast, the physical approach deploys physical express
links between routers [8][13][17], enabling maximum bypass ef-
fects but consuming additional bisection bandwidth. For example,
Dally proposes a hierarchical express-link placement technique [8].
Kim et al. present flattened butterfly, which adds express links to
form full connectivity between the (concentrated) routers in each
row and column [17]. The flattened butterfly design successfully
achieves low-diameter NoC topology. A variant of flattened butter-
fly is a multi-drop express channel topology that achieves high con-
nectivity between routers but needs extra multiplexing logic [13].
Although these proposals highlight the promise of adding physical
express links, they represent only a few specific examples of place-
ment schemes while neglecting other potentially better placement
in the design space.

This paper distinguishes itself from existing studies by aiming
at finding optimal or near-optimal express link placement for gen-
eral-purpose processors by exploring the entire placement design
space. We identify the on-chip bisection bandwidth as a key con-
straint and factor that influences the overall packet latency.

2.2 Impact of Express Links on Latency
The on-chip latency of a packet is comprised of two components
[9]:

𝐿𝐿 = 𝐿𝐿𝐷𝐷 + 𝐿𝐿𝑆𝑆 = (𝐻𝐻 ∙ 𝑇𝑇𝑟𝑟 + 𝐷𝐷𝑀𝑀 ∙ 𝑇𝑇𝑙𝑙 + 𝐻𝐻 ∙ 𝑇𝑇𝑐𝑐) + (𝑆𝑆 𝑏𝑏⁄) (1)

where the first component 𝐿𝐿𝐷𝐷 = 𝐻𝐻 ∙ 𝑇𝑇𝑟𝑟 + 𝐷𝐷𝑀𝑀 ∙ 𝑇𝑇𝑙𝑙 is the head la-
tency, representing the time required for the first bit of a packet to
traverse the network. 𝐻𝐻 ∙ 𝑇𝑇𝑟𝑟 calculates the overall delay in router
pipeline stages. 𝐻𝐻 is the number of hops that the packet goes
through. Note that a hop can be either a bidirectional local link that
connects two adjacent routers or a bidirectional express link that
connects non-adjacent routers. Router delay 𝑇𝑇𝑟𝑟 is the number of cy-
cles that a packet takes to pass through a router. The overall link
delay 𝐷𝐷𝑀𝑀 ∙ 𝑇𝑇𝑙𝑙 for network links is proportional to their lengths. Ex-
press long-range links are segmented into unit-length links by re-
peaters [20]. Repeater insertion is necessary in long-range express
links to maintain the desired data rate on the links [16]. 𝐷𝐷𝑀𝑀 is the
total Manhattan distance that a packet traverses from source to des-
tination in the number of unit-length links. Unit-length link delay
𝑇𝑇𝑙𝑙 is the time for a flit1 to travel on a local link (one cycle). 𝑇𝑇𝑐𝑐 is
the average per-hop contention delay, which could become very
high in theory, but in practice is usually quite low in general-pur-
pose chip multiprocessors due to the typically low on-chip traffic
load of applications, the wide on-chip links, and multiple virtual
channels per link to reduce head-of-line blocking, as shown in em-
pirical findings as well as recent studies such as [7].

The second component, 𝐿𝐿𝑆𝑆, is the serialization latency, repre-
senting the time for the rest of the packet to complete transmission
at the destination after the arrival of the first bit. The serialization

Express Link Placement for Noc-Based Many-Core Platforms, ICPP 2019, August 5-8, 2019, Kyoto, Japan

latency is calculated by 𝑆𝑆/𝑏𝑏 where 𝑆𝑆 is the packet size in bits and
𝑏𝑏 is the link width (or the flit size).

Although deploying express links can reduce the number of
hops for a packet, it does not always result in reduced overall
packet latency. This is because the total bisection bandwidth 𝐵𝐵 of
a NoC is limited by many factors, including chip dimension, man-
ufacturing technology, and energy constraints to name a few [21].
Assume that the link count at the cross-section of two adjacent rout-
ers is 𝑐𝑐. For an 𝑛𝑛 × 𝑛𝑛 mesh, if we add express links such that each
row or column has 𝑐𝑐 links at the cross-section of two adjacent rout-
ers, the link width 𝑏𝑏 needs to be adjusted in order to stay within the
network bisection bandwidth constraint, i.e., 𝑏𝑏 ∙ 𝑐𝑐 ∙ 𝑛𝑛 ≤ 𝐵𝐵.

As an example, Figure 1 depicts the first row of an 8x8 mesh
network. Initially, there are only local links and the maximum num-
ber of wires at the cross-section of two neighboring routers is 256
(i.e., flit size is 256 bits). For a packet that contains two flits (512
bits), the serialization latency 𝐿𝐿𝑆𝑆 is two cycles. However, if we add
express links (the red dotted lines), the link width 𝑏𝑏 needs to be
reduced to 128 bits. Consequently, each flit is 128-bit, and the same
packet now needs to be transmitted using four flits, resulting in
four-cycle serialization latency.

The above analysis indicates that there is a design space in ex-
press link-based NoCs that needs further exploration. On the one
hand, we need to determine the appropriate link width to balance
head latency and serialization latency under bisection bandwidth
constraints. On the other hand, we also need to find the optimal
placement of express links at a given link width so as to minimize
average hop count. In the next section, we formulate this optimiza-
tion problem mathematically and then present, in Section 4, several
algorithms that produce effective placement results.

3 PROBLEM FORMULATION
We focus on the design of an express link-based on-chip network
for general-purpose many-core platforms. The goal is to reduce the
average NoC packet latency with the presence of multiple packet
types with different sizes (e.g., short packets for read requests or
write acknowledgements, and long packets for read replies or write
requests). To reflect general-purpose computing, packet latency is
averaged over all source-destination pairs to avoid unfairness dur-
ing the optimization process. Various synthetic traffic patterns as
well as application traffic are used during evaluation (Section 5).
Problem: Find the optimal number and placement of express links

to be added to a 𝑛𝑛 × 𝑛𝑛 mesh network under a given bisection band-
width constraint 𝐵𝐵.
Objective: Minimize the average on-chip packet latency 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎,

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐿𝐿𝐷𝐷,𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐿𝐿𝑆𝑆,𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ ∑ 𝐿𝐿𝐷𝐷(𝑖𝑖, 𝑗𝑗)𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1

𝑁𝑁 ∙ 𝑁𝑁 + � 𝑝𝑝𝑘𝑘
𝑆𝑆𝑘𝑘
𝑏𝑏𝑘𝑘

, (2)

where 𝑁𝑁 = 𝑛𝑛2 is the total number of routers in the network,
𝐿𝐿𝐷𝐷(𝑖𝑖, 𝑗𝑗) is the packet head latency from router 𝑖𝑖 to router 𝑗𝑗, deter-
mined by the express link placement; 𝑝𝑝𝑘𝑘 and 𝑆𝑆𝑘𝑘 are the percentage
and size of the 𝑘𝑘-th type of packets, and 𝑏𝑏 is the link width in bits.
Constraints: The number of links 𝑐𝑐 at the cross section between
any two adjacent routers (including both local and express links) in
a row or column, must not exceed a link limit 𝐶𝐶, which is calculated
as

𝑐𝑐 ≤ 𝐶𝐶 =
𝐵𝐵
𝑏𝑏 ∙ 𝑛𝑛 ,∀𝑐𝑐 (3)

Equations (2) and (3) imply that, with a specific value of 𝐶𝐶 and
thus fixed 𝑏𝑏 and 𝐿𝐿𝑆𝑆,𝑎𝑎𝑎𝑎𝑎𝑎, the overall average packet latency 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 is
determined by the average head latency 𝐿𝐿𝐷𝐷,𝑎𝑎𝑎𝑎𝑎𝑎, and 𝐿𝐿𝐷𝐷,𝑎𝑎𝑎𝑎𝑎𝑎 is de-
termined by the placement of express links.

4 PROPOSED APPROACH
To solve the above problem, the overall approach we take is to first
determine all the possible values of 𝐶𝐶, and for each 𝐶𝐶, determine
the optimal express link placement to minimize 𝐿𝐿𝐷𝐷,𝑎𝑎𝑎𝑎𝑎𝑎. The mini-
mal average packet latency can then be found by comparing all
cases of 𝐶𝐶 values.

4.1 Cross-Section Link Limit
For a regular 𝑛𝑛 × 𝑛𝑛 mesh network, 𝐶𝐶 has the minimum value of 1,
meaning that neighboring routers are connected with one bidirec-
tional link. When all routers on the same row (or column) are fully
connected, 𝐶𝐶 has the maximum value 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 at the cross-section be-
tween the two routers in the middle of a row or column, given by

𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑛𝑛
2 ∙

𝑛𝑛
2 =

𝑛𝑛2

4 (4)

meaning that each router on one side of the center line is connected
bi-directionally to all the routers on the other side. For example,
𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 4 for a 4x4 network where the maximum link count occurs
between the second and third router, and 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 16 for 8x8 net-
work where the maximum link count occurs between the fourth and
fifth router.

Since the possible flit sizes are very limited (the flit size or the
link width in bits is typically a divisor of the packet size and is a
power of 2), there are only a few possible values of 𝐶𝐶. For example,
the value of 𝐶𝐶 can be 1, 2, or 4 for 4x4 networks and 1, 2, 4, 8, or
16 for 8x8 networks.

In what follows, we use 𝑃𝑃(𝑛𝑛,𝐶𝐶) to denote the express link
placement problem that minimizes 𝐿𝐿𝐷𝐷,𝑎𝑎𝑎𝑎𝑎𝑎 on a 𝑛𝑛 × 𝑛𝑛 mesh NoC
for a specific link limit value of 𝐶𝐶.

1 A flow control digit or a flit is the basic control unit of a packet. The size
of a flit is assumed to be the same as the link width.

2 51 64 83 7

Local links Express links

Cross section link counts
2 2 2 1 2 2 2

Figure 1: Express Links and bandwidth limit.

ICPP 2019, August 5-8, 2019, Kyoto, Japan, Yunfan Li, Di Zhu, Lizhong Chen

4.2 Reduction from 2D to 1D
To tackle the express link placement problem, we start with the fol-
lowing key lemma that transforms the two-dimensional placement
problem into a one-dimensional while retaining the optimality of
potential solutions.
Lemma: For a specific value of link limit 𝐶𝐶, if dimension-order
routing is deployed, the express link placement problem 𝑃𝑃(𝑛𝑛,𝐶𝐶)
on a two-dimensional 𝑛𝑛 × 𝑛𝑛 mesh is reducible to the problem of
one-dimensional express link placement on a row (or column) of 𝑛𝑛
routers that minimizes the average head latency 𝐿𝐿𝐷𝐷 among these 𝑛𝑛
routers.

Before presenting the proof, it is important to justify the as-
sumption of dimension-order routing in the targeted problem do-
main of this paper. It is known that adaptive routing algorithms
have higher maximum achievable throughput, and have been
adopted in some off-chip networks in high-performance computing
systems. However, the difference between adaptive routing and di-
mension-order routing (e.g., XY routing) is noticeable only when
network loads approach saturation. For on-chip networks in many-
core CMPs where the traffic load is rarely very high, dimension-
order routing is as effective as adaptive routing most of the time.
Due to this reason as well as the consideration of implementation
cost, most, if not all, taped-out commercial and research many-core
chips adopt XY or YX routing (such as Intel Teraflop [23], Intel
SCC [15], TRIPS [12], and Scorpio [10]). Our simulation using
multi-threaded benchmarks also shows that the average contention
per hop is almost always less than 1 cycle, and the overall perfor-
mance difference between XY and adaptive routing is less than 1%.
Thus, to increase the applicability of this work in practical designs,
we follow the design choice and assume dimension-order routing
in this paper.
Proof: With dimension-order routing, given the source and desti-
nation routers, the routing path of a packet is comprised of a hori-
zontal path component and/or a vertical path component. The on-
chip traffic is then separated into horizontal traffic and vertical traf-
fic. Express links can be added to directly connect two non-adja-
cent routers on the same row or column (for any two routers that
are not on the same row or column, they can be connected by a
horizontal express link plus a vertical express link).

Mathematically, assuming the routing path of a packet from
router 𝑖𝑖 to router 𝑗𝑗 consists of a horizontal path and/or a vertical
path, we have 𝐿𝐿𝐷𝐷(𝑖𝑖, 𝑗𝑗) = 𝐿𝐿𝐷𝐷�𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖� + 𝐿𝐿𝐷𝐷�𝑣𝑣𝑖𝑖𝑖𝑖 , 𝑗𝑗� , where 𝑣𝑣𝑖𝑖𝑖𝑖 is the
turning point, i.e., the router on the same row with 𝑖𝑖 and on the
same column with 𝑗𝑗 . Since 𝑖𝑖 and 𝑣𝑣𝑖𝑖𝑖𝑖 are on the same row,
𝐿𝐿𝐷𝐷�𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖� is solely determined by the link placement on that row.
Similarly, 𝐿𝐿𝐷𝐷�𝑣𝑣𝑖𝑖𝑖𝑖 , 𝑗𝑗� is determined by the link placement on the
column that router 𝑗𝑗 and 𝑣𝑣𝑖𝑖𝑖𝑖 share. The average packet latency of
the head flit is then expressed by

𝐿𝐿𝐷𝐷,𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ �∑ ∑ 𝐿𝐿𝐷𝐷�𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖�𝑛𝑛∙𝑛𝑛

𝑗𝑗=1𝑖𝑖∈𝑟𝑟 �𝑛𝑛
𝑟𝑟=1 + ∑ �∑ ∑ 𝐿𝐿𝐷𝐷�𝑣𝑣𝑖𝑖𝑖𝑖 , 𝑗𝑗�𝑛𝑛∙𝑛𝑛

𝑖𝑖=1𝑗𝑗∈𝑐𝑐 �𝑛𝑛
𝑐𝑐=1

𝑁𝑁 ∙ 𝑁𝑁

=
∑ (𝑛𝑛∑ ∑ 𝐿𝐿𝐷𝐷(𝑖𝑖, 𝑣𝑣)𝑣𝑣∈𝑟𝑟𝑖𝑖∈𝑟𝑟)𝑛𝑛
𝑟𝑟=1 + ∑ �𝑛𝑛∑ ∑ 𝐿𝐿𝐷𝐷(𝑣𝑣, 𝑗𝑗)𝑣𝑣∈𝑐𝑐𝑗𝑗∈𝑐𝑐 �𝑛𝑛

𝑐𝑐=1

𝑁𝑁2

 =
𝑛𝑛�∑ 𝑛𝑛2𝐿𝐿𝐷𝐷,𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + ∑ 𝑛𝑛2𝐿𝐿𝐷𝐷,𝑐𝑐

𝑛𝑛
𝑐𝑐=1 �

𝑁𝑁2 (5)

where 𝐿𝐿𝐷𝐷,𝑟𝑟 and 𝐿𝐿𝐷𝐷,𝑐𝑐 denote the average packet latency on the 𝑟𝑟-th
row and the 𝑐𝑐-th column, respectively. Equation (5) shows that the
average latency can be minimized by minimizing the packet la-
tency on each row or column individually. Therefore, the express
link placement onto mesh network can be obtained by (i) solving a
one-dimensional link placement problem for a row of 𝑛𝑛 routers and
(ii) replicating the result of this sub-procedure 𝑛𝑛 times for 𝑛𝑛 rows
and another 𝑛𝑛 times for 𝑛𝑛 columns and combine them into a final
result.

Hereinafter, we use 𝑃𝑃�(𝑛𝑛,𝐶𝐶) to denote the one-dimensional ex-
press link placement problem on an 𝑛𝑛-router row with the link limit
of 𝐶𝐶. Due to the geometric symmetry of general-purpose CMPs,
𝑃𝑃�(𝑛𝑛,𝐶𝐶) only needs to be solved once to minimize pair-wise aver-
age packet latency for the 𝑛𝑛 routers on the same dimension, and the
solution can be duplicated for 𝑛𝑛 rows and 𝑛𝑛 columns.

4.3 Large Solution Space and Need for Heuristics
The solution space of 𝑃𝑃�(𝑛𝑛,𝐶𝐶) is of size 𝑂𝑂(2𝑛𝑛×𝑛𝑛), which is the

combination of any number of links between every router pair.
However, note that not all combinations are valid. First, a valid
combination must contain all the local links between adjacent rout-
ers. Second, at the cross-section between any two routers, the link
count cannot exceed 𝐶𝐶. Nevertheless, the solution space is still a
super-exponential function of 𝑛𝑛, which renders a brute-force solu-
tion impractical. Therefore, a properly designed heuristic is re-
quired for large networks and/or higher link limit.

4.4 Proposed Scheme
We propose an efficient simulated annealing-based algorithm to

solve the one dimensional link placement problem 𝑃𝑃�(𝑛𝑛,𝐶𝐶).
A general simulated annealing procedure starts from an initial

solution, and performs sufficient times of probabilistic searches on
the solution space. Its basic components include an initial solution,
the solution space, a candidate generator, a cooling schedule, and
an acceptance probability function. We adopt an exponential func-
tion for acceptance probability and a linear function for cooling.
Since the number of searches needed for simulated annealing to
locate a good solution, i.e., the efficiency of the algorithm, is
greatly affected by the quality of both the initial solution and the
neighboring states found by the candidate generator in each itera-
tion, we present how to choose a good initial solution and design a
good candidate generator in detail as follows.

4.4.1 Initial Solution Based on Divide-and-Conquer
The heuristic of initial solution generation should be efficient and
effective. Divide-and-conquer (D&C) is very fast if the problem
can be divided into sub-problems directly and its solution can be
combined efficiently using the solutions to sub-problems.

As shown in the pseudo code of the initial solution generation
procedure above, in the proposed algorithm, we divide 𝑃𝑃�(𝑛𝑛,𝐶𝐶) into
two problems of 𝑃𝑃�(⌊𝑛𝑛/2⌋,𝐶𝐶 − 1) and 𝑃𝑃�(⌈𝑛𝑛/2⌉,𝐶𝐶 − 1) . The com-
bination step is to add one express link between the solutions to
sub-problems, which is fast to implement and also a good estima-
tion to the optimal solution. When the size of the sub-problems be-
comes small after multiple divisions (e.g., 𝑛𝑛 ≤ 4), the local optimal

Express Link Placement for Noc-Based Many-Core Platforms, ICPP 2019, August 5-8, 2019, Kyoto, Japan

solution can be located by enumeration methods such as simple
branch and bound.

We analyze the complexity of Procedure (,) using the mas-
ter theorem [8] as follows. Each problem size of is divided into
2 sub-problems. Combining the solutions of the two sub-problems
has () iterations, and in each iteration the algorithm evaluates
the current link placement in (), which is elaborated shortly in
Section 4.5.1 where we discuss how packets are routed. Therefore,
the combination step takes () complexity, and based on the
master theorem, the overall Procedure (,) also has () =(.) complexity, where is the total number of nodes in the
network.

4.4.2 Candidate Generator Based on Connection Matrix
An efficient candidate generator is a key factor to the efficiency

of simulated annealing. A naive generator adds, deletes, stretches,
or shortens a randomly selected link in each move. However, a new
candidate solution generated this way is highly likely to fall out of
the feasible solution space. More precisely, it might have some lo-
cal links missing or exceed the link limit . This greatly degrades
the efficiency of the candidate generator. To tackle this problem,
we identify an equivalent search space that excludes illegal link
placements with no loss of possible valid solutions in the proposed
algorithm as follows.

For (,) , we define a binary matrix of size (2) ×(1), referred to as the connection matrix hereinafter. Each el-
ement represents whether the two links on both sides of a router are
connected. We elaborate the construction of such a matrix in Figure
2 for (8,4) as an example. There are (1) links available for
express link construction as one layer of links is reserved for local
links between adjacent routers (three layers as shown in Figure 2(a)
as = 4). In this way, we ensure the solution corresponding to this
matrix has the required local links. In each express-link layer in
Figure 2(a), the binary values at six connection points are used to
denote whether the two links on both sides of the router are con-
nected. For example, in the first layer (top layer) in Figure 2(a), the
connection point at Router 3 is connected (solid dot), meaning the

two links of Router 3 in this layer are connected, making an express
link from Router 2 and Router 4 as shown in the top layer of ex-
press links in Figure 2(b). Similarly, as the connection points at
Router 5, 6, 7 are connected, there is a long express link from
Router 4 to 8.

Based on the connection matrix, the candidate generator ran-
domly picks one connection point and flips its value to form the
new candidate solution in each move of the simulated annealing.
Compared to the naïve annealing procedure in the search space of
all links, the new procedure always conducts valid moves that sat-
isfy constraints, and it can be proven that all the possible solutions
are probabilistically reachable. As an example, the placement of
express links shown in Figure 2 is the best solution to (8,4) given
by the proposed simulated annealing-based algorithm.

Table 1 lists the parameters used in the above simulated anneal-
ing algorithm, for a row of eight routers and the NoC settings men-
tioned in Section 5.1. Specifically for each newly generated candi-
date, the algorithm evaluates the difference in average latency

 from that of the current candidate, and accepts the move to

the new candidate if 0 and otherwise accepts it with prob-
ability / if > 0 . The current temperature starts
at , and is divided by after each moves.

4.5 System Implementation

4.5.1 Deadlock-Free Routing
As express links are added on top of the mesh network, the rout-

ing paths need to be modified to take advantage of express links,
while avoiding new deadlock that might be formed by using these
express links. We avoid routing deadlock by enforcing packets to
traverse unidirectionally and disallowing “U-turns”. For instance,

Procedure (,): generates initial solution for (,).
1
2
3
4
5
6

7

8
9
10
11

12
13

initialize: label the routers from left to right as 1, 2, … , .
if is small enough

call the branch and bound algorithm
return the local optimal placement solution

else
call (/2 , 1) to place the express links among
Router 1 to /2
call (/2 , 1) to place the express links* among
Router /2 + 1 to
foreach router pair (,), /2 , > /2

add an express link between them
evaluate the current express link placement
if the average latency is lower than the current mini-
mum, update the minimum value

endfor
return the placement result with the minimum latency

*The previous placement result can be directly used if /2 = /2

1 2 3 4 5 6 7 8
(a)

(b) 2 51 64 83 7

Figure 2: (a) Connection matrix. A solid dot means the two
links of both sides are connected as one and a hole means
disconnected. (b) The corresponding express link place-
ment. From top to bottom, the blue, green, and red express
links are denoted by the three layers of corresponding col-
ors in the connection matrix, respectively.

Table 1. Parameters in simulated annealing.

Parameter Name Value
Initial Temperature 10 (cycles)
Total number of moves 104
Cooldown scale 2
Number of moves before each cooldown 103

2 A formal proof based on this rationale can be easily derived. The proof is
omitted here due to space constraints but is available upon request.

ICPP 2019, August 5-8, 2019, Kyoto, Japan, Yunfan Li, Di Zhu, Lizhong Chen

in Figure 2(b), a packet at Router 1 may use local and/or express
links to traverse from left to right to reach Router 6, but the packet
cannot use the express link to reach Router 7 first and then come
back to Router 6. Specifially, each channel only depends on its
downstream channels on the same direction. For the two-dimen-
sional chip, we adopt a dimensional routing fashion, i.e., routing
packets on X-dimension first and then Y dimension next. Enforcing
this rule eliminates any cyclic dependencies between the channels
in a dimension and across dimensions, thus avoiding deadlocks2.

In addition to ensuring deadlock freedom, the routing algorithm
should also minimize the path latency on links and routers. We
adopt the following deterministic routing algorithm to achieve this.
We first compute the directional shortest paths between all router
pairs within each row (or each column, i.e., on one dimension) of-
fline by applying Floyd-Warshall algorithm twice, one for each di-
rection. For example, within a row, the first round of the algorithm
calculates the shortest paths from router 𝑖𝑖 to 𝑗𝑗 where 𝑖𝑖 ∈ {1, … ,𝑛𝑛}
and 𝑗𝑗 > 𝑖𝑖, i.e., the paths of packets sent from left to right. To im-
plement this, all edges from 𝑗𝑗 to 𝑖𝑖 (from right to left) are set with
infinite weight. The second round then calculates the shortest path
from 𝑗𝑗 to 𝑖𝑖 (still 𝑗𝑗 > 𝑖𝑖) by setting all edges from 𝑖𝑖 to 𝑗𝑗 to have infi-
nite weight. The routing computation algorithm returns a look-up
table for each router that stores the next-hop router number on the
same row/column (more details in the next subsection).

The above step is performed to populate the routing tables in
each router. It has a complexity of 𝑂𝑂(𝑛𝑛3) as Floyd-Warshall algo-
rithm has a cubic complexity [8]. This routing calculation step is
executed during the proposed simulated annealing-based algorithm
each time when a newly generated placement needs to be evalu-
ated. In addition, at Line 10 in Procedure 𝐼𝐼(𝑛𝑛,𝐶𝐶), the current ex-
press link placement is evaluated by using this step to determine
routing paths and calculate average packet latency, and therefore
also has a complexity of 𝑂𝑂(𝑛𝑛3).

4.5.2 Router Implementation
Figure 3(a) depicts the router implementation. Compared to a

typical mesh router, it has more input and output ports but with
narrower link width for each port. When a packet arrives at a router,
the router first uses XY routing to determine the destination or the

X-to-Y turning point, and then uses the aforementioned look-up ta-
ble (routing table) to find the next-hop router.

 Two routing tables, one for X dimension and one for Y dimen-
sion, are associated with each router. Figure 3(b) shows a routing
table example of the first router in the first row based on the optimal
𝑃𝑃�(8,4) solution in Figure 2. For simplicity, we exclude local ports
to/from network interfaces in links and the routing table. Router 1
has three connections on one dimension, thus six output ports in
total for X and Y dimensions as shown in Figure 3(a). Its routing
table records the output port number for each next-hop router on X
or Y dimension (as well as its network interface(s) not shown here).
For example, if a packet with destination 63 is currently in Router
1, the turning point router is Router 7 according to DOR. Then the
packet is routed to Outport #3 based on the sixth entry in the X
direction routing table, which directs the packet to the next-hop
Router 4. The size of each routing table has at most 2(𝑛𝑛 − 1) en-
tries, so the hardware overhead of routing table is minimal. To eval-
uate this, we use the DSENT [22] NoC area model with 32nm bulk
CMOS technology. The result shows that the overhead is less than
0.5% of the router.

4.6 Impact on Power
The power consumption of routers is comprised of dynamic

power and static power. The dynamic power consumption is the
summation of the dynamic power consumed by each router com-
ponent, which is proportional to the switching activity factor of that
component. A lower average hop count resulted from the use of
express links means that the same packet is forwarded through
fewer routers and links. This leads to lower router and link activi-
ties and potentially lower dynamic power consumption.

The router static power, however, is not affected much by ex-
press links. In typical on-chip routers, static power is dominated by
input buffers and the crossbar. First, the buffers consume similar
static power as long as the total size (in number of bits) is similar.
As large buffer size may provide unfair performance advantage to
a scheme, we configure the buffer size of each router to be the same
for all schemes in comparison. This leads to similar buffer static
power consumption as shown in Section 5.5.

Input port X
Switch

Output port

Output portInput port

VC allocator &
Switch allocator

… …

Routing Unit
2 51 64 83 7

9

17

25

33

41

49

57 63

1
To R2

#3
#2
#1#4 #5 #6

To R4
To R3

To R
9

To R
25

To R
17

(a) Express links and outport numbering of Router 1 on 8x8 network. (b) Structure and routing table of Router 1.

#1 to #6: Numbers of
outports to other routers

Figure 3: An example of router implementation.

Express Link Placement for Noc-Based Many-Core Platforms, ICPP 2019, August 5-8, 2019, Kyoto, Japan

Second, for the crossbar, its static power consumption is pro-
portional to 𝑏𝑏 × 𝑘𝑘2, where 𝑏𝑏 is the link width and 𝑘𝑘 is the number
of input ports. Assume 𝑏𝑏𝑚𝑚 and 𝑘𝑘𝑚𝑚 are the link width and the num-
ber of input ports of the mesh network, and 𝑏𝑏𝑒𝑒 and 𝑘𝑘𝑒𝑒 are for the
cases where express links are used. The crossbar static power over-
head with express links is very limited compared to that of the mesh
network because of the following two reasons. First, due to the
fixed bandwidth, the link width 𝑏𝑏𝑒𝑒 of each input port decreases as
more express links are added (𝑏𝑏𝑒𝑒 = 𝑏𝑏𝑚𝑚/𝐶𝐶). Second, although add-
ing express links may theoretically result in 𝑘𝑘𝑒𝑒 to be as large as 𝐶𝐶 ∙
𝑘𝑘𝑚𝑚, the value of 𝑘𝑘𝑒𝑒 does not always reach this maximum possible
value. In fact, 𝑘𝑘𝑒𝑒 is much smaller than 𝐶𝐶 ∙ 𝑘𝑘𝑚𝑚 due to efficient ex-
press link placement. Take the optimal solution of 𝑃𝑃�(8,4) shown in
Figure 2 as an example within one row. In the same row, the origi-
nal mesh network has two input ports within the row (i.e., 𝑘𝑘𝑚𝑚 = 2)
and 𝐶𝐶 = 4, but none of the routers in 𝑃𝑃�(8,4) has 2 × 4 = 8 input
ports. The average number of input ports 𝑘𝑘𝑒𝑒 in this case is only 3.5,
indicating that the number of crossbar input ports does not increase
linearly in good express link placement. These reasons lead to sim-
ilar crossbar static power with and without express links, as con-
firmed by evaluation results.

5 EVALUATION

5.1 Evaluation Methodology
We evaluate the proposed express link placement algorithm on
three different network sizes, namely 4x4, 8x8, and 16x16. A ca-
nonical 3-stage credit-based wormhole router is assumed. The flit
size of the baseline mesh network is 256 bits. The bisection band-
width increases proportionally with network size 𝑛𝑛. Based on pre-
vious findings [19], the ratio of long packets (512 bits) to short

packets (128 bits) is set to 1:4 to reflect the characteristics of real
applications.

We evaluate the proposed algorithms by running multi-threaded
benchmarks on the cycle-accurate full-system simulator Gem5 [4]
with GARNET [1] for detailed timing of the on-chip network. The
evaluated PARSEC 2.0 benchmarks [3] include emerging applica-
tions such as recognition, mining, and synthesis (RMS) to represent
a wide range of general-purpose computing applications. The latest
DSENT [22] NoC power simulator is integrated into GARNET to
estimate NoC power consumption.

We compare the following topologies/schemes in this section.
1) A mesh network (baseline system),
2) The hybrid flattened butterfly (HFB) as proposed in [17],
3) Mesh with express link placement given by the proposed sim-

ulated annealing with random initial placement (OnlySA), and
4) Mesh with express link placement given by the proposed sim-

ulated annealing with D&C-based initial placement
(D&C_SA).

The hybrid flattened butterfly (HFB) given in [17] is proposed
as an approach to scale the on-chip flattened butterfly beyond a 4x4
router network. It divides the network into four quadrants, each
having a fully-connected flattened butterfly, and then connects
them with local links. Figure 4 shows an example of HFB on an
8x8 network.

5.2 Results for PARSEC Benchmarks
Figure 5 plots the average packet latency as a function of link
limit 𝐶𝐶, averaged over the ten PARSEC benchmarks, as well as the
head latency 𝐿𝐿𝐷𝐷 and the serialization latency 𝐿𝐿𝑆𝑆 results of the pro-
posed D&C_SA on 4x4, 8x8, and 16x16 networks. The best place-
ment corresponds to the lowest point on the curve of D&C_SA.
The Mesh and HFB are represented only as single design points as

0

5

10

15

20

25

30

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (c

yc
le

s)

blackscholes
bodytrack

canneal
dedup

ferret
fluidanimate

raytrace
swaptions

vips x264
average

Mesh HFB D&C_SA

Figure 6: Average packet latency results on 8x8 net-

2-D

Flattened
Butterfly

2-D
Flattened
Butterfly

2-D
Flattened
Butterfly

2-D
Flattened
Butterfly

Local
links

1 2 4
0

5

10

15

20
(a) 4x4

Link limit C

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

1 2 4 8 16
0

10

20

30
(b) 8x8

Link limit C
1 2 4 8 16 32 64

0

20

40

60

80
(c) 16x16

Link limit C

D&C_SA
OnlySA
HFB
Mesh
LD
LS

Figure 5: Average packet latencies as a function of link limit C. Figure 4: Hybrid flattened butterfly

ICPP 2019, August 5-8, 2019, Kyoto, Japan, Yunfan Li, Di Zhu, Lizhong Chen

they are fixed designs, whereas the various placements of express
links offer a wide range of design options. It can be seen that, as
the link count increases, the serialization latency gradually cancels
out the saving from the head latency.

Figure 5 shows that, the performance improvement of D&C_SA
becomes much higher compared with the fixed topologies Mesh
and HFB on 8x8 and 16x16 due to higher placement flexibilities.
On the small 4x4 network, the proposed D&C_SA reduces the av-
erage packet latency by 8.1% compared with the Mesh, and has
similar latency as the HFB. The latency savings, compared with the
Mesh and HFB, increase to 23.5% and 8.0%, respectively, on the
8x8 network, and to 36.4% and 20.1%, respectively, on the 16x16
network. The packet latency difference between D&C_SA and On-
lySA also enlarges as the network size increases, when both
schemes are allowed with the same runtime (note that the scale of
y-axis in Figure 5 is different from left to right). Specifically, both
schemes achieve very similar average packet latency in the 4x4
network. However, on the 8x8 network, OnlySA results in 7.4%
higher latency than D&C_SA, and the difference increases to 9.4%
on the 16x16 network.

Figure 6 presents the 8x8 network in more detail, showing the
average packet latency of the Mesh, HFB, and proposed D&C_SA
for each benchmark. As mentioned previously, the placement of the
proposed D&C_SA is obtained by first finding the local best place-
ment for each value of link limit C and then comparing the place-
ments from different link limit value cases. It can be seen that, de-
spite the potentially distinct traffic behaviors among the bench-
marks, the proposed D&C_SA is able to achieve similar reduction
in the average packet latency across the benchmarks. This demon-
strates the suitability of the proposed scheme for general-purpose
computing.

5.3 Runtime Comparison of SA Schemes
We assess the effectiveness of the proposed initial solution genera-
tion by comparing the results of OnlySA and D&C_SA given the
same runtime (i.e., how long the algorithm is allowed to run and
search for good placements; due to the nature of simulated anneal-
ing, the longer the algorithm runs, the closer the placement would
approach the optimal case). Figure 7 plots the “goodness” of the
placement (i.e., lower average packet latency) of the two schemes
with a wide range of allowed runtimes. The runtime is normalized
to that of the initial process 𝐼𝐼(8,4) for the 8x8 network and 𝐼𝐼(16,4)
for the 16x16 network. To reduce the randomness in simulated an-
nealing, the figure shows the average results of the benchmarks.

Even after a very long runtime (e.g., 10,000 units of the normalized
runtime), OnlySA is not able to reach the same results as D&C_SA;
whereas the proposed D&C_SA generates a satisfying result at
about 150 units of the normalized runtime. This indicates that the
proposed initial solution generation process is able to not only save
runtime but also assist in achieving better express link placement.

5.4 Results for Synthetic Traffic Patterns
Besides PARSEC benchmarks, we also evaluate the proposed

scheme on several representative synthetic traffic patterns, includ-
ing uniform random (UR), transpose (TP), and bit-reverse (BR).
Figure 8(a) shows the average packet latency for the 8x8 network.
The proposed scheme achieves an average of 24.4% and 16.9% la-
tency reduction compared to the Mesh and HFB, respectively.

Due to the fact that real applications typically have very low
network load, on-chip networks are more sensitive to latency than
throughput. Adding express links in general is a way to leverage
this fact by reducing latency at the cost of lowered throughput, as
reported in prior work [13]. Adding express links may lead to in-
sufficient utilization of the overall bandwidth between two routers.
For example in Figure 2(b), there are only three links between
Routers 1 and 2 or Routers 7 and 8 while the maximum link al-
lowed is four, meaning that the bandwidth is not fully utilized. Fig-
ure 8(b) compares the throughput results of the three topologies.
The Mesh has the highest throughput. The use of express links in
the HFB results in less than half of the Mesh throughput, mainly
because of the bottleneck links between 2-D flattened butterfly
blocks shown in Figure 4. In contrast, the proposed D&C_SA re-
covers a large part of the unused bandwidth in the HFB. The
D&C_SA has higher throughput than the HFB in all the three traffic
patterns, with an average of 63.7% higher throughput compared to
the HFB. It also restores to more than three quarters of the Mesh
throughput.

5.5 Power Consumption
Figure 9 shows the dynamic and static power consumption of the
PARSEC benchmarks for the Mesh, HFB, and proposed scheme.
The changes in the number of router ports and the datapath width
of each port are all accounted for in different schemes. As can be
seen from the results, the static power consumption accounts for
about two-thirds of the overall power consumption, confirming the
relatively low average activity of NoC components. The proposed
express link placement algorithm reduces the total router power
consumption by 10.4% compared to the Mesh and 0.6% compared

10
0

10
1

10
2

10
3

10
4

19

20

21

22

23

24

25

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Normalized runtime

(a) 8X8

10
0

10
1

10
2

10
3

10
4

28
30
32
34
36
38
40
42

Normalized runtime

(b) 16X16

D&C_SA
OnlySA

Figure 7: Runtime comparison.

0

10

20

30

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (c

yc
le

s)

UR TP BR Avg

(a) Latency

0

0.05

0.1

0.15

0.2

0.25

0.3

Th
ro

ug
hp

ut
 (p

ac
ke

ts
 p

er
 c

yc
le

)

UR TP BR Avg

(b) Throughput

Mesh
HFB
D&C_SA

Figure 8: Network latency and throughput comparisons.

Express Link Placement for Noc-Based Many-Core Platforms, ICPP 2019, August 5-8, 2019, Kyoto, Japan

to the HFB on average for the 8x8 network. The power saving
mainly comes from the reduction in dynamic power consumption
due to reduced packet forwarding activities. The dynamic power in
D&C_SA is reduced by 15.1% and 6.6% compared to the Mesh
and HFB, respectively. It can also be seen in Figure 9 that the static
power consumption of the three topologies is very similar, as ex-
plained in Section 4.6. Figure 10 further breaks down the router
static power consumption. It confirms that the static power of
crossbar does not necessarily increase when express links are
added. This is mainly because of the reduced link width associated
with the increase in link count, as well as the sub-linear increase in
the number of input ports in good express link placement.

5.6 Discussions

5.6.1 Worst-Case Latency
A desirable express link placement scheme for general-purpose
processors should provide good support for various traffic patterns,
including worst case traffic. Table 2 shows the packet latency for
the worst-case, maximum zero-load on-chip latency between any
two routers in the network. As can be seen, while the maximum
latency increases quickly as the network size increases, the pro-
posed D&C_SA is still considerably superior to the Mesh and HFB
across different network sizes.

5.6.2 Impact of Bandwidth Limitations
The bisection bandwidth available for on-chip networks may have

a large impact on the network latency. For example, Figure 11 plots
the case for the 8x8 network operating at 1.0GHz with the bisection
bandwidth increases from 2KGb/s to 8KGb/s (i.e., equivalent to the
flit size changing from 128 bits to 512 bits). As the bandwidth in-
creases, the mesh network benefits only from the reduction in seri-
alization latency due to the increased capacity to accommodate
larger flit sizes, resulting in latency reduction from 25.9 cycles to
25.3 cycles, or 2.3%. In comparison, good express link placement
can take advantage of the increased bandwidth by using multiple
narrower express links, thus reducing the average latency from
21.8 cycles to 17.9 cycles, or 17.8% reduction. This highlights that
the proposed express link placement algorithm is very effective in
utilizing on-chip bandwidth for latency reduction.

5.6.3 Comparison to Optimal
D&C_SA achieves near-optimal results and, for smaller network
sizes and link limits, we can verify this by comparing with the op-
timal solution that can be obtained by exhaustive search algorithm
with branch and bound. Figure 12 shows the result comparison of
D&C_SA against optimal results for (4,2) , (8,2) , (8,3) , (8,4), and (16,2). It can be seen that D&C_SA achieves exactly
the same results as the optimal solutions in (4,2) , (8,2) , and (8,3), and only 1.3% and 0.28% higher in latency compared to
the optimal solutions for (8,4) and (16,2), respectively. Mean-
while, the exhaustive search has approximately 30X nad 1000X
runtime compared to D&C_SA for (8,3) and (16,2) , respec-
tively.

1 2 4 8 16
20

25

30

35

40

Link limit C

(a) 2KGb/s

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (c

yc
le

s)

D&C_SA
HFB
Mesh

1 2 4 8 16
16

18

20

22

24

26

Link limit C

(b) 8KGb/s

Figure 11: Bandwidth impact.

0

5

10

15

P(4,2) P(8,2) P(8,3) P(8,4) P(16,2)
R

es
ul

t (
la

te
nc

y
in

 c
yc

le
s)

10-2

100

102

104

R
un

tim
e

ra
tio

Figure 12: Latency and runtime compared with optimal.

0

0.5

1

1.5

Ro
ut

er
 st

at
ic

 c
on

su
m

pt
io

n
(W

)

Mesh HFB D&C_SA

 Buffer
Crossbar
Others

N
or

m
al

iz
ed

 ro
ut

er
 p

ow
er

 c
on

su
m

pt
io

n

blackscholes
bodytrack

canneal
dedup

ferret fluidanimate
raytrace

swaptions
vips x264 average

0

0.5

1

1.5

2 Mesh(s) Mesh(d) HFB(s) HFB(d) D&C_SA(s) D&C_SA(d)

Figure 9: Router power consumption comparison on an 8x8 network. Figure 10: Router static breakdown.

Table 2. Maximum zero-load packet latency (cycles).

Topology 4x4 8x8 16x16
Mesh 28.2 60.2 71.2
HFB 15.2 38.2 63.8

D&C_SA 13.6 33.2 55.2

ICPP 2019, August 5-8, 2019, Kyoto, Japan, Yunfan Li, Di Zhu, Lizhong Chen

5.6.4 Application-Specific Design
The proposed problem formulation aims at minimizing the average
packet latency between all the source and destination pairs to rep-
resent general-purpose designs and provide fairness among various
possible applications that may be run on the processors. If the traf-
fic pattern of an executed application is known and relatively fixed,
we can further improve the express link placement with the given
traffic information. The head latency can be expressed as

𝐿𝐿𝐷𝐷,𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝐿𝐿𝐷𝐷(𝑖𝑖, 𝑗𝑗)𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1

∑ ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

,

where 𝛾𝛾𝑖𝑖𝑖𝑖 is the communication rate from router 𝑖𝑖 to router 𝑗𝑗. Sim-
ilar to the pairwise packet latency, this application-aware latency
can be separated into row latency and column latency, and the so-
lution to the application-aware express link placement problem can
also be proven as a combination of the one-dimensional placement
problem. Note that the one-dimensional problem 𝑃𝑃�(𝑛𝑛,𝐶𝐶) now
needs to be solved row by row and column by column instead of
simply duplicating results as each row/column has different 𝛾𝛾𝑖𝑖𝑖𝑖
values. However, the proposed divide-and-conquer method for
generating initial solution and the cleverly-designed connection
matrix for representing the search space are still applicable.
To demonstrate the above applicability, we first run each PARSEC
benchmark on a baseline 8x8 network once to collect traffic statis-
tics, and then apply the revised scheme. Simulation results show
that, with the knowledge of traffic patterns available in advance,
the proposed scheme is able to reduce an additional 18.1% of aver-
age packet latency reduction on top of the case without advanced
traffic information. This indicates that, while the proposed scheme
mainly targets general-purpose computing, it is useful in the appli-
cation-specific scenarios as well.

6 CONCLUSION
This paper investigates the opportunities in express link placement
for general-purpose many-core platforms useful in parallel pro-
cessing systems, and explores a large design space as opposed to
the few design points proposed previously. In order to minimize the
average packet latency under bisection bandwidth constraints, we
need to find good express link placement that balances the number
of bisection express links and the serialization latency. To achieve
that, we transform the design space of express link placement prob-
lem from two-dimensional to one-dimensional and propose an ef-
ficient simulated annealing-based algorithm. The algorithm adopts
divide-and-conquer to increase the effectiveness of the initial solu-
tion and uses a connection-matrix based search space to remove
invalid placements so as to speed up the simulated annealing pro-
cedure. Evaluation results demonstrate the effectiveness of the pro-
posed scheme. It achieves 23.5% and 8.0% average packet latency
reduction on the 8x8 network and 36.4% and 20.1% on the16x16
network compared to the traditional mesh topology and the hybrid
flattened butterfly, respectively.

ACKNOWLEDGMENTS
We sincerely thank the reviewers for their helpful comments and
suggestions. This research was supported, in part, by the National

Science Foundation grants #1619456, #1619472 and #1750047.

REFERENCES
[1] Agarwal, N., Krishna, T., Peh, L. S., & Jha, N. K. (2009, April). “GARNET: A

detailed on-chip network model inside a full-system simulator,” International
Symposium on Performance Analysis of Systems and Software (ISPASS), 33-
42.

[2] Bahirat, S., & Pasricha, S. (2009). “Exploring hybrid photonic networks-on-
chip for emerging chip multiprocessors,” Proceedings of the 7th IEEE/ACM
international conference on Hardware/software codesign and system synthesis,
129-136.

[3] Bienia, C., Kumar, S., Singh, J. P., & Li, K. (2008). “The PARSEC benchmark
suite: Characterization and architectural implications,” In 17th International
Conference on Parallel Architectures and Compilation Techniques (PACT), 72-
81.

[4] Binkert, N., et al. (2011). “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, 39(2), 1-7.

[5] Chang, M. F., et al. (2008) “CMP network-on-chip overlaid with multi-band
RF-interconnect,” High Performance Computer Architecture (HPCA) IEEE
14th International Symposium on.

[6] Chen, C. et al. (2010). “Physical vs. virtual express topologies with low-swing
links for future many-core nocs,” 4th ACM/IEEE International Symposium on
Networks-on-Chip (NOCS), 173-180.

[7] Chen, L. and Pinkston, T. M. (2012). “NoRD: Node-Router Decoupling for Ef-
fective Power-gating of On-Chip Routers,” In 45th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 270-281.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to al-
gorithms," MIT press, 2001.

[9] Dally, W. J. (1991). “Express Cubes: Improving the Performance of k-ary n-
cube Interconnection Networks,” In IEEE Transactions on Computers, 40(9),
1016-1023.

[10] Dally, W. J., & Towles, B. P. (2004). Principles and practices of interconnection
networks. Elsevier.

[11] Daya, B. K, et al. (2014). “SCORPIO: a 36-core research chip demonstrating
snoopy coherence on a scalable mesh NoC with in-network ordering,” In IEEE
International Symposium on Computer Architecture (ISCA).

[12] Dumitriu, V., & Khan, G. N. (2009). “Throughput-oriented NoC topology gen-
eration and analysis for high performance SoCs,” In IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 17(10), 1433-1446.

[13] Gratz, P., et al. (2007). "On-chip interconnection networks of the TRIPS chip,"
IEEE Micro, vol. 27, 41-50.

[14] Grot, B., Hestness, J., Keckler, S. W., & Mutlu, O. (2009). “Express cube to-
pologies for on-chip interconnects,” In 15th IEEE International Symposium on
High Performance Computer Architecture (HPCA), 163-174.

[15] Ho, W., & Pinkston, T. (2006). “A Design Methodology for Efficient Applica-
tion-Specific On-Chip Interconnects,” In IEEE Transactions on Parallel & Dis-
tributed Systems (TPDS), vol.17, no. 2, 174-190.

[16] Howard, J., et al. (2010). “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS,” In Proceedings of the International Solid-State Circuits
Conference (ISSCC).

[17] Kim, B. and Stojanovi´c, V. (2007). “Equalized interconnects for on-chip net-
works: modeling and optimization framework,” In Int’l Conference Computer-
Aided Design (ICCAD), 552–559.

[18] Kim, J., Balfour, J., & Dally, W. (2007). “Flattened butterfly topology for on-
chip networks,” In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 172-182.

[19] Kumar, A., Peh, L. S., Kundu, P., & Jha, N. K. (2007). “Express virtual chan-
nels: towards the ideal interconnection fabric,” In ACM SIGARCH Computer
Architecture News, 35(2), 150-161.

[20] Ma, S., Jerger, N. E., & Wang, Z. (2012). “Whole packet forwarding: Efficient
design of fully adaptive routing algorithms for networks-on-chip,” In Interna-
tional Symposium on High Performance Computer Architecture (HPCA), 1-12.

[21] Ogras, U. Y., & Marculescu, R. (2006). "It's a small world after all": NoC per-
formance optimization via long-range link insertion. In IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 14(7), 693-706.

[22] Park, S., et al. (2012). “Approaching the theoretical limits of a mesh NoC with
a 16-node chip prototype in 45nm SOI,” In Proceedings of the 49th ACM An-
nual Design Automation Conference (DAC), 398-405.

[23] Sun, C., et al. (2012). “DSENT-a tool connecting emerging photonics with elec-
tronics for opto-electronic networks-on-chip modeling,” In IEEE/ACM Inter-
national Symposium on Networks-on-Chip (NOCS), 201-210.

[24] S. Vangal, et al. (2007). “An 80-tile 1.28 TFLOPS network-on-chip in 65nm
CMOS,” In International Solid-State Circuits Conference (ISSCC).

	ABSTRACT
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Related Work
	2.2 Impact of Express Links on Latency

	3 PROBLEM FORMULATION
	4 PROPOSED APPROACH
	4.1 Cross-Section Link Limit
	4.2 Reduction from 2D to 1D
	4.3 Large Solution Space and Need for Heuristics
	4.4 Proposed Scheme
	4.4.1 Initial Solution Based on Divide-and-Conquer
	4.4.2 Candidate Generator Based on Connection Matrix

	4.5 System Implementation
	4.5.1 Deadlock-Free Routing
	4.5.2 Router Implementation

	4.6 Impact on Power

	5 EVALUATION
	5.1 Evaluation Methodology
	5.2 Results for PARSEC Benchmarks
	5.3 Runtime Comparison of SA Schemes
	5.4 Results for Synthetic Traffic Patterns
	5.5 Power Consumption
	5.6 Discussions
	5.6.1 Worst-Case Latency
	5.6.2 Impact of Bandwidth Limitations
	5.6.3 Comparison to Optimal
	5.6.4 Application-Specific Design

	6 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

