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Abstract
Metabolomics is the study of the metabolome, the collection of small molecules in living 
organisms, cells, tissues, and biofluids. Technological advances in mass spectrometry, liquid- and 
gas-phase separations, nuclear magnetic resonance spectroscopy, and big data analytics have now 
made it possible to study metabolism at an omics or systems level. The significance of this 
burgeoning scientific field cannot be overstated: It impacts disciplines ranging from biomedicine 
to plant science. Despite these advances, the central bottleneck in metabolomics remains the 
identification of key metabolites that play a class-discriminant role. Because metabolites do not 
follow a molecular alphabet as proteins and nucleic acids do, their identification is much more 
time consuming, with a high failure rate. In this review, we critically discuss the state-of-the-art in 
metabolite identification with specific applications in metabolomics and how technologies such as 
mass spectrometry, ion mobility, chromatography, and nuclear magnetic resonance currently 
contribute to this challenging task.
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INTRODUCTION
Metabolomics is the newest omics field focused on the examination of metabolites in 
complex systems, with the goal of identifying pathway alterations that correlate with the 
onset and progression of specific processes, such as disease (1, 2). The metabolome is 
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typically defined as the collection of small molecules in a given biological system that 
roughly falls under the ∼1,500-Da molecular weight window. Metabolites in the 
metabolome include endogenous molecules that are biosynthesized in primary metabolism, 
specialized secondary metabolite signaling molecules, lifestyle or environmental exposure 
molecules (the exposome), and molecules originating from the microbial community 
associated with the organism under study (the microbiome). Metabolomics can be either 
targeted to detect and quantify a set of known metabolites, or nontargeted, where the 
emphasis is to detect as many compounds as possible, even if associated with unknown 
chemical species. The metabolome, by definition, spans a vast diversity of chemistries, 
including lipids, sugars, amino acids, steroids, and a whole array of molecule types. These 
species exist in large concentration ranges that can be as high as millimolars and as low as 
femtomolars, suggesting that no single analytical method in existence today is able to detect, 
identify, and quantify all present species (3). Nuclear magnetic resonance (NMR) and liquid 
chromatography mass spectrometry (LC-MS) are the main platforms used for metabolomics, 
each with its own advantages and disadvantages in terms of sensitivity and peak capacity. 
These techniques are used individually in most studies but can also be combined to better 
yield metabolome coverage and enable more accurate metabolite identity annotation (4–6).

Despite rapid technological advances in both NMR and LC-MS, metabolite identification 
still remains the undisputed bottleneck in nontargeted metabolomics experiments. Only a 
small fraction, less than 2–10%, of the detected compounds in a nontargeted metabolomics 
study can be annotated reliably, with the chemical identity of most species detected 
remaining unknown (7). This vast chemical space has been described as the metabolome 
dark matter (8) and continues to be the focus of intense scientific research, in terms of new 
hardware and methods for improved separations and structural identification, but also new 
databases, libraries, and algorithms that can predict some of the analyte’s molecular 
properties.

Much effort has been directed toward defining the confidence levels and minimum reporting 
standards associated with metabolite identification in any given metabolomics study. As 
early as 2007, Sumner et al. (9) proposed a four-level metabolite identification confidence 
scheme that divides metabolites into (a) identified compounds, (b) putatively annotated 
compounds, (c) putatively characterized compounds, and (d) unknown compounds. In level 
a, identified compounds are those that include at least two orthogonal molecular 
characterization methods that match a chemical standard [e.g., retention time (RT) and high-
resolution mass spectrum, RT and NMR resonances, elemental formula and tandem MS 
(MS/MS) spectra, 1H and/or 13C NMR, and two-dimensional (2D) NMR spectra] (9). 
Generation of more than two pieces of such orthogonal metabolite characterization data is 
widely seen as providing good evidence in metabolite annotation, but it is not always 
possible due to a number of factors, including low signal-to-noise ratios, unavailability of 
chemical standards, and a lack of database coverage. Putatively annotated compounds are 
those that are identified by matching to literature or database information, but for which no 
chemical standard can be obtained for comparison purposes. Putatively characterized 
compounds are those for which only similarities to a given family of compounds can be 
established, but further information is not available [e.g., a glycerophospholipid 
characterized by the presence of an m/z 184 fragment in MS/MS experiments corresponding 
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to the phosphocholine headgroup; or the neutral loss of 141 Da corresponding to the 
phosphatidylethanolamine headgroup (10, 11)].

Despite its usefulness, this four-level scheme lacks granularity and detail, so here we 
propose to further expand it through a score card (Table 1) that further refines the 
assignment of metabolite identification confidence in nontargeted metabolomics experiments 
using a points system. This system builds on advances in metabolomics instrumentation and 
algorithms described below, such as RT prediction, use of ion mobility (IM) collision cross 
sections (CCS), and prediction of MS/MS fragmentation and NMR spectra.

An example of how to apply the scoring approach described in Table 1 would be as follows: 
If an identity is proposed for an unknown metabolite by (a) matching the [M+H]+ and [M
+Na]+ monoisotopic adduct ions (5 points) with an average 2.5-ppm error (10 points), 
followed by (b) an MS2 (10 points) and MS3 (5 points) match to the mzCloud database, (c) 
its experimentally measured CCS matched within tolerance to a database value (10 points), 
and (d) its 1H NMR spectrum matched to a database entry (15 points), a confidence score of 
(10 + 5) + (10 + 5) + (10) + (15) = 55 points could be assigned. Further improving 
identification confidence would require (a) increasing mass accuracy to 1–2 ppm for more 
than one adduct ion (5 points) while employing ultrahigh-resolution MS experiments to 
examine isotopic fine structure (20 points); (b) manually interpreting (5 points) the database-
matched product ion spectrum to verify that observed fragment ions are compatible with 
known fragmentation pathway; (c) matching chromatographic RT to a chemical standard (10 
points); (d) and performing 2D instead of one-dimensional (1D) NMR experiments (20 
points). This would yield a more confident score of (5 + 20) + (10 + 10 + 5) + (10) + (10) 
+ (20) = 90 points in total. By applying these more specific metabolite identification 
techniques to unknown species and combining the information they provide, a better 
confidence score is obtained. Strengths and limitations of each of these techniques, as 
applied to metabolomics, are discussed in the sections below.

CHROMATOGRAPHIC SEPARATIONS
Historically, chromatographic separations coupled to MS have offered one of the most 
versatile platforms for complex sample analysis and metabolite identification in nontargeted 
metabolomics studies (12). LC-MS is by far the most popular MS-based hyphenated 
technique in metabolomics due to its sensitivity, selectivity, reproducibility, and versatility 
for analyzing small molecules with a wide range of different physicochemical properties in 
biological samples (13, 14). Gas chromatography (GC)-MS, a predecessor to LC-MS, 
continues to be the obvious choice for fingerprinting volatile and low molecular weight 
compounds (15, 16). Analysis of less volatile compounds by GC-MS, however, requires 
additional preparation steps such as lyophilization, followed by chemical derivatization to 
increase thermal stability and volatility prior to analysis (17). To a lesser extent, capillary 
electrophoresis has also been utilized in metabolomics studies involving highly charged and 
polar ionogenic metabolites in small-volume biological samples (13, 18). Capillary 
electrophoresis is attractive in the sense that it separates compounds based on their intrinsic 
electrophoretic mobility, a parameter that reflects the charge and size of the analyte (18).

Monge et al. Page 3

Annu Rev Anal Chem (Palo Alto Calif). Author manuscript; available in PMC 2019 August 30.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



LC-MS offers the widest coverage and most efficient separation of complex metabolomes, 
with much enhanced peak capacity compared to MS alone (13). LC and MS are coupled by 
means of soft ionization techniques; electrospray ionization (ESI) (19–21) is the most 
common. ESI generally produces protonated or deprotonated gas-phase ions that can be used 
for accurate predictions of metabolite elemental formulae (22). In addition to in-source 
fragment ions, various adduct ions and multiply charged species that complicate data 
interpretation are also produced, leading to higher false-positive rates in metabolite 
identification (23). GC, on the other hand, is coupled to MS by means of electron ionization 
sources operated under vacuum and standardized at 70 eV, causing predictable 
fragmentation and rearrangement reactions that lead to highly reproducible mass spectra for 
comparison with libraries (16).

Reverse phase (RP) and hydrophilic interaction chromatography (HILIC) are by far the most 
commonly used chromatographic methods for LC-MS-based metabolomics (13, 24). In 
RPLC-MS, analytes are typically eluted by an aqueous-based mobile phase under a gradient 
of increasing organic solvent content from a hydrophobic stationary phase. In HILIC, 
analytes are eluted in order of increasing hydrophilicity from a hydrophilic stationary phase 
as the polarity of the mobile phase is increased by increasing the aqueous content.

Traditionally, chromatographic identification in metabolomics by either RP or HILIC 
approaches is best performed by RT matching with authentic chemical standards. However, 
not all metabolites are commercially available, and purchasing authentic standards for all 
possible metabolite candidates in a nontargeted study is incredibly costly and inefficient. 
Indeed, there are fewer reference standards available than the number of peaks that is 
detected in LC-MS experiments of biological samples (25–27). Although chemical synthesis 
can be attempted for specific cases of high-value unknowns, this degree of effort is seldom 
warranted.

GC-MS capillary columns are highly reproducible, which facilitates the compilation of 
standardized retention indices (28, 29) in libraries or public databases for compound 
identification (16, 30). In particular, Fiehn and collaborators (30) have greatly contributed to 
the metabolomics field by building FiehnLib libraries comprising mass spectra and retention 
indices from quadrupole and time-of-flight (ToF) GC-MS data. In contrast, it is difficult to 
catalog RT information from LC experiments in libraries due to the lack of procedural 
standardization and instrumentation involved, with varying LC pumps and injectors, 
columns, run temperatures, solvent gradients, mobile phase pH, and flow rates. In addition, 
column aging, temperature changes, MS detector drift, and other analytical factors may 
further compound RT variance in nontargeted LC-MS metabolomics experiments. Matrix 
effects caused by differences in biofluids matrix compositions can also lead to RT shifts. 
Spiking experiments with chemical standards can mitigate these effects (31), but in cases 
where chemical standards are not available, RT window prediction can complement 
metabolite identification efforts.

Different attempts have been reported in the literature (31–36) to integrate RT window 
prediction into the metabolite annotation process, most of which rely on quantitative 
structure–retention relationship (QSRR) modeling (37). The generalization of such 
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predictive models depends on the application domain investigated, because using overly 
restricted domains for model building also leads to poor prediction in independent test sets 
(38). Molecular descriptors (39–42) also play a significant role in defining such application 
domains (38, 43, 44), as well as in defining the multiple algorithmic options and 
combinations of adjustable parameters involved in QSRR model building (42, 45). In 
general, RT factors (RF in the equation below, where T0 represents the chromatographic 
column void time) are calculated to allow comparison between different chromatographic 
systems (32, 36). Other studies utilize retention indices (28, 29), which are measures of 
relative RT based on reference compounds that elute immediately prior to and immediately 
following the analyte of interest (30, 45–48).

RF =
RT − T0

T0
.

Cao et al. (31), for example, conducted QSRR modeling based on theoretical molecular 
descriptors and experimental RTs of 93 authentic compounds analyzed with HILIC LC-MS. 
A predictive QSRR model based on a random forest algorithm achieved high predictive 
accuracy, with mean and median absolute errors of 0.52 min and 0.34 min (5.1% and 3.2%), 
respectively. These authors applied this model to annotate features (RT, m/z) of perennial 
ryegrass (Lolium perenne) samples, significantly reducing the number of false-positive 
metabolite annotations that would be obtained if only accurate masses were considered. 
Predicted RTs were validated in this study using either authentic compounds or ion 
fragmentation patterns (31). Among the molecular descriptors utilized to build QSRR 
models, the partition coefficient (XLogP) was found to be the most relevant predictor in 
agreement with the HILIC model previously reported by Creek et al. (32). These authors 
converted the RT of 120 metabolite standards to retention factors that were input into a 
multiple linear regression model. The optimal QSRR model used six physicochemical 
variables and showed good predictive ability (cross-validated R2 = 0.82 and mean square 
error = 0.14) for RTs of metabolites with MW <400. Availability of predicted RTs translated 
into the removal of 40% of the false metabolite identifications based on accurate mass alone 
(32). The model was evaluated to putatively identify 690 metabolites in extracts of the 
protozoan parasite Trypanosoma brucei. Model limitations were associated with the 
applicability to only low-MW metabolites, since larger compounds were poorly predicted, 
most likely due to errors associated with predicted log D, the octanol-water partition 
coefficient calculated at a pH of 3.5. Based on their QSRR model, the authors produced a 
template file that allows users to calculate predicted RTs for a database of metabolites based 
on experimental RTs measured for standards.

QSRR modeling has also been applied to RPLC data. Bruderer et al. (34) evaluated RT 
prediction for a metabolomics database with 532 human metabolites. The authors built a 
model with only 16 compounds using logD2 (calculated based on log P and pKa) and the 
molecular volume as molecular descriptors. The developed model was evaluated for two 
different RP C18 columns and two pH conditions (pH = 3.0 and 8.0 for positive and negative 
ESI modes, respectively), achieving good prediction accuracy for a time window below 4 
min (34). In addition, RT prediction combined with the data-independent acquisition (DIA) 
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method known as sequential windowed acquisition of all theoretical fragment ion mass 
spectra (SWATH) aided in annotating isobaric metabolites found in human urine, which 
increased identification confidence and reduced the number of false positives (34).

A different RT prediction model for RPLC was built by Wolfer et al. (44) based on 442 
authentic standards, including fatty acids, nucleosides, sterols, sphingolipids, lipids, 
vitamins, cofactors, amino acids, aromatic biogenic acids, carbohydrates, catechols, 
neurotransmitters, and other metabolites to cover a large variety of polarity and chemical 
topology. The authors combined random forest and support vector regression models with 
97 computationally determined descriptors derived from chemical structures. The model was 
further tested on an external validation set of 111 known compounds, predicting RTs with an 
average 13% error that reduced by 77% the number of incorrect candidates. The models 
were made available through a user-friendly interface to be integrated into existing 
workflows.

Identification of isobaric lipids is challenging even with high-resolution mass spectrometers. 
Aicheler et al. (33) developed an RT prediction model based on machine learning 
approaches that enabled the improved assignment of lipid structures and automated 
annotation of lipidomics data obtained by RPLC–high-resolution MS. A support vector 
regression model was built based on 201 lipids originating from mouse adipose tissue, 
including molecular structural features. The cross-validated model achieved good correlation 
(R = 0.989) between predicted and experimental RT in test samples (Figure 1) and allowed 
filtering out of more than half of the potential identifications, while retaining 95% of the 
correct candidates.

Most QSRR approaches have been successful at predicting RT with good accuracy. The 
main limitations of these strategies, however, are related to the lack of large and sufficiently 
diverse metabolite training sets for building predictive models that could cover the thousands 
of metabolites found in biological samples. In addition, some published models have lacked 
comprehensive external validation, thus risking overfitting (36). Further drawbacks are 
associated with the type of stationary phase material used (36, 43) that determines, together 
with the sample preparation protocol, the metabolome fraction that can be effectively 
resolved.

Alternative efforts have involved the development of tools that allow crowd sourcing of RT 
information across laboratories and chromatographic systems such as retention projection 
(49) and direct mapping (50) for GC-MS and LC-MS systems, respectively. The retention 
projection methodology for GC-MS data, for example, was shown to be threefold more 
accurate than retention indexing across five different laboratories under identical 
experimental conditions. This made it easier to account for unintentional differences 
between the various GC systems, such as temperature calibration errors, flow rate 
nonidealities, or variance in column dimensions (49). RT mapping for LC-MS data, 
developed under the name of PredRet, was done pairwise between LC systems using the 
same chromatographic method and provided higher accuracy than QSRR (50). However, 
QSRR models are able to a priori predict the RT of any given metabolite structure, whereas 
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PredRet can only predict RT for compounds already in the database, i.e., those for which the 
RT has been previously determined in a comparable chromatographic system (50).

MASS SPECTROMETRY
MS/MS experiments select a precursor ion for activation and fragmentation due to ion-
neutral collisions with the gas filling the collision cell. The combination of chromatographic 
separations and MS/MS is one of the most powerful approaches to metabolite and natural 
product identification (51). In nontargeted metabolomics, these tandem mass spectra can be 
obtained in either a data-dependent acquisition (DDA) or DIA fashion (52). DIA 
approaches, such as MSE, benefit from larger precursor ion coverage (53), but they suffer 
from difficulties in matching precursor ions to product ions when chromatographic overlap 
is substantial. DDA, on the other hand, preferentially targets the most abundant precursor 
ions, resulting in poorer sampling of lower abundant precursor species. Repeated analysis 
can somewhat improve precursor ion coverage, but this improvement is typically only 
marginal due to redundant precursor ion sampling. Advanced precursor ion selection 
algorithms used in proteomics (54) could also benefit metabolomic studies. Broeckling et al. 
(55), for example, have proposed an alternative method for enabling the comprehensive 
MS/MS coverage of complex samples via data set–dependent acquisition. With this 
approach, real-time feedback between data processing and data acquisition was achieved 
using a combination of R, ProteoWizard, XCMS, and WRENS software, yielding a threefold 
improvement in the number of peaks mapped by MS/MS. Elaborate DDA approaches that 
combine with higher-energy collision dissociation have also been reported (56).

Targeted metabolomics approaches are different from nontargeted approaches in the sense 
that they typically rely on chemical standards with known structures, using triple quadrupole 
mass spectrometers in multiple reaction monitoring (MRM) mode, or hybrid quadrupole 
ToF/Orbitrap analyzers in SWATH or parallel reaction monitoring modes (57). Approaches 
that bridge the targeted and nontargeted methods, however, have been reported in the 
literature. Chen et al. (58) recently developed a hybrid method utilizing DIA for targeted 
quantitative metabolomics experiments. In this method, a sequentially stepped targeted 
MS/MS scan is used for improving coverage. In this type of scan, multiple product ion scans 
are acquired for all ions in the examined m/z ranges, selecting them as the chosen precursor 
ions. These scans are then followed by scheduled MRM scans for numerous ion pairs that 
are used for quantitation. Ferreira et al. (59) have also reported an approach that bridges 
classical targeted and nontargeted methods. This approach, named MRM profiling, makes 
use of numerous product-precursor ion transitions that are developed in a supervised fashion. 
By combining neutral loss and precursor ion scans, a list of more than 1,000 transitions is 
built from a pooled sample. Relative abundances of all product ions targeted in these MRM 
transitions are then measured for all samples and used to build univariate and multivariate 
diagnostic models for a specific condition, such as polycystic ovarian syndrome (60).

Precursor ion coselection is an underappreciated issue that commonly hinders metabolite 
identification in LC-MS/MS metabolomics, particularly with lipids. Most high-resolution 
mass spectrometers use a low-resolution quadrupole mass analyzer for mass selection prior 
to MS2 fragmentation. The selection window for the precursor ions is typically limited to 
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0.5–3 Da. When a high number of isobaric species chromatographically coelute, these are 
inevitably coselected and cofragmented, yielding a product ion spectrum that is a composite 
of all product ions yielded from the initial precursors in that window. One way to mitigate 
these interferences is to perform collision-induced dissociation (CID) experiments a 
posteriori from IM separations. Damen et al. (61) recently reported an ultraperformance LC 
(UPLC) method for the separation of closely related lipid molecular species using a 
stationary phase incorporating charged surface hybrid technology. The chromatographic 
method showed excellent RT reproducibility [intraassay relative standard deviation <0.385% 
and <0.451% for 20- and 10-min gradients, respectively (N = 5)]. The UPLC system was 
coupled to a hybrid quadrupole ToF mass spectrometer, equipped with a traveling wave ion 
mobility (TWIM) cell. Despite the use of a quadrupole mass analyzer for precursor ion 
selection, separations in the TWIM cell followed by transfer cell ion activation enabled the 
acquisition of cleaner low- and high-energy DIA MS/MS spectra that were more useful in 
terms of metabolite identification. Another approach to prevent precursor ion coselection is 
through the use of different variations of stored waveform inverse Fourier transform 
(SWIFT) ion excitation in Fourier transform ion cyclotron resonance (FT-ICR) (62). As 
early as 1995, O’Connor & McLafferty (63) reported on high resolution ion isolation using a 
capacitively coupled FT-ICR open cell. In these experiments, isotopic peaks of ubiquitin (8.6 
kDa) and carbonic anhydrase (29 kDa) were isolated by SWIFT with an order of magnitude 
higher isolation power than previously reported in the literature. Another approach yielding 
high-resolution ion selection in FT-ICR MS is known as correlated harmonic excitation 
fields (64). With this approach, de Koning et al. (64) were able to achieve a resolution of 
∼50,000 in the separation of deuterated toluene isotopes. Routine implementation of high-
resolution precursor ion selection approaches such as those described above in a 
metabolomics context could significantly improve the odds of correct unknown 
identification via more selective CID experiments and higher confidence MS/MS database 
matching.

Although MS1 information coupled with local network enhancement analysis can be used 
for tentative metabolite annotation (65), high-quality tandem mass spectral libraries are 
becoming essential for more confident identification (66). A growing number of these 
libraries are currently available, including the Human Metabolome Database (HMDB) (67, 
68), METLIN (69, 70), MassBank of North America (MoNA; http://
mona.ftehnlab.ucdavis.edu/), LipidBlast (71), mzCloud (72), LIPID MAPS Structure 
Database (64, 73), Manchester Metabolomics Database (MMD) (23), and many others (74, 
75). More general databases, such as PubChem (65, 76) and ChemSpider (65, 77), can also 
be incredibly useful for MS-based identification of unknowns. However, metabolite 
identification through mass spectral library searches is far from an automated task, and the 
analyst is typically forced to manually search each individual database and manually curate 
the obtained matches (if any) to ensure that differences in the type of mass spectrometer 
used and the collision energy employed are considered. Along these lines, Stein and 
coworkers (78) have proposed an approach for creating high-quality ESI tandem mass 
spectral libraries. The procedure involved the acquisition of tandem mass spectra for all 
major precursor ions in a direct infusion experiment. This was followed by assigning spectra 
to clusters and creating a consensus spectrum. Filtering through intensity-based constrains 
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for cluster membership was then applied, together with peak testing, noise reduction, and 
examination by an experienced human evaluator, yielding a library of >9,000 compounds 
with ∼230,000 spectra.

When MS/MS database matches are not found, prediction of such spectra in silico can be 
advantageous to provide an added level of confidence to the proposed metabolite identity. To 
this purpose, Wolf and coworkers (79, 80) described the popular package named MetFrag, 
where a candidate list of metabolite identities is first obtained by searches of precursor ion 
masses, followed by ranking based on the agreement between in silico fragmentation spectra 
and experimental data. Initial evaluation of MetFrag showed that it was able to rank most of 
the correct compounds in the top three candidates produced by KEGG queries, producing 
better results than commercial software. In related work, Duhrkop et al. (81) described an 
approach named CFM-ID that combines computation and comparison of elemental formulae 
fragmentation trees with machine learning techniques. They reported a 2.5-fold increase in 
correct identifications compared with state-of-the-art methods when searching PubChem. 
Li’s group (82) described a web interface (https://www.MyCompoundID.org) for metabolite 
identification based on both MS and MS/MS data for compounds in the HMDB and 
metabolites derived from these through in silico metabolic reactions. Fragmentation 
prediction for specific metabolite families, such as lipids, has certainly benefited subfields 
such as lipidomics (83–85), where chemical structures follow combinatorial rules. Prediction 
of electron impact spectra has also been achieved with a significant degree of success (86) 
based on an approach previously used for ESI data (87).

Combined prediction of various molecular properties, including retention indices, energy 
required to fragment 50% of a selected precursor ion, IM drift time, and CID spectrum, has 
been proposed by Grant and coworkers (88) through a package known as MolFind, but 
follow-up validation of such an approach through comparison with large experimental data 
sets has not been reported. Similar motivation led Hu et al. (89) to attempt the simultaneous 
prediction of both RTs and fragmentation patterns with the goal of identifying 
micropollutants.

ION MOBILITY SPECTROMETRY
In order to increase confidence in the identification of prioritized features after MS analysis, 
additional structural techniques, including infrared spectroscopy, NMR spectroscopy, and 
more recently, IM spectrometry (IMS), are often incorporated into nontargeted studies (90, 
91) and are taken into account in our proposed identity confidence scoring scheme (Table 1). 
IMS is a gas-phase separation technique in which analytes are separated based on their 
rotationally averaged surface area or CCS. Briefly, IMS separations are conducted as analyte 
migration through an inert buffer gas under the influence of an applied electric field. 
Although specifics of gas composition, pressure, and applied field strength vary depending 
on the instrument configuration, interactions between these forces drive ion motion and 
separation in the IMS cell (92, 93). Because IMS distinguishes analytes based on their 
structural size in the gas phase, it is orthogonal to MS to a great extent, and it provides 
capabilities such as isomeric separations that are not possible with only the mass dimension 
(94, 95). Furthermore, IMS measurements occur on a millisecond timescale, which is readily 
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nested into traditional LC and GC-MS workflows (96). Descriptions of various IMS 
platforms and configurations are available in several in-depth review articles (74, 97, 98) and 
are beyond the scope of this article.

Although growth in MS databases has steadily continued for several decades, CCS databases 
are still in their infancy. Since the commercialization of IMS-MS instrumentation in 2006 
(73, 76), several studies have been devoted to collecting CCS values on a larger scale. These 
efforts have made CCS values available to the public, while also creating databases useful 
for nontargeted metabolomics experiments (77, 91, 99–101). Despite these advances, 
obtaining reproducible CCS values across various instrument platforms still remains 
challenging owing to several key factors that include variations in instrument design, 
experimental parameters, and calibration protocols. For example, only drift tube and 
differential mobility instruments can empirically measure CCS from first principles, 
meaning that no calibrants are needed for the values they produce. IMS platforms based on 
TWIM spectroscopy and trapped ion mobility spectroscopy (TIMS) instruments, however, 
must be calibrated with ions of known mobility before reliable CCS values can be generated 
(102–104). Also, the specific manner in which each instrument is calibrated can greatly 
influence the reproducibility of the reported CCS values. Several studies have previously 
described the challenges of choosing the correct calibrant ions for traveling wave devices 
with similar structural characteristics as the species being studied (105, 106). For example, 
Gelb et al. (107) observed that improper calibration of TWIMS with calibrant ions of a 
different chemical class and charge state could produce CCS measurements with an error in 
excess of 4% compared to using proper calibration protocols. Even after proper calibrant 
ions are chosen for a specific instrument and experiment, the optimal mathematical 
calibration procedure remains a topic of debate for several platforms (108, 109). As IMS-
MS instrumentation continues to improve in terms of generating reliable and reproducible 
CCS values, slight variations in calibration procedures become increasingly critical. For 
example, a recent interlaboratory study from Paglia et al. (77) characterized TWIMS 
reproducibility to typically less than 3% relative standard deviation, suggesting that errors in 
CCS calibration could lead to errors in calculated CCS that are larger than the instrument’s 
own reproducibility. In a similar fashion, a recent interlaboratory study by Stow et al. (100) 
demonstrated that new advancements in drift tube technology resulted in reproducibility of 
typically less than 1% relative standard deviation for CCS measurements between 
laboratories because no calibration was required.

Despite challenges in calibration procedures, once a reproducible CCS value is measured for 
a given analyte, matching a molecular feature to a library entry is a straightforward process 
when the analyte m/z and CCS are compared to entries based on analytical standards. If 
there is a structural match within a certain mass error and CCS tolerance, the molecule is 
considered a match. However, if a database search generates no matches, further work is 
needed. CCS databases are typically generated based solely on commercially available 
analytical standards. Unfortunately, the availability of such standards limits the size of 
databases, as many compounds either cannot be isolated or they are simply too expensive to 
obtain. For these molecules, CCS matching may only be feasible against predicted values 
generated by computational methods (110–112). Such computational approaches have 
shown promise in generating CCS values, usually with <2% agreement with experimental 
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values (113). As more CCS values are published for the various IMS platforms, it is 
expected that predicted values will be able to fill the gap of unavailable standards for the 
identification of unknown metabolites.

IMS-MS also allows identification of metabolites through monitoring the placement of the 
analyte’s observed CCS as a function of the measured m/z. For example, lipid molecules are 
typically characterized by their headgroup, length of the fatty acid tails, and the number of 
double bonds (114). These characteristics make the three-dimensional gas-phase structure of 
lipids quite rigid and, as a consequence, lipids have, on average, larger CCS values than 
peptides, carbohydrates, and nucleotides with similar masses, as shown in Figure 2 (99, 
115). Several studies have noted these resulting mass/CCS ratios and have generated 
analytical trend lines describing the relationship between analyte mass and CCS values for a 
wide range of biomolecules (116, 117). In fact, if both the mass and CCS of an unknown 
analyte are accurately known, it may be possible to classify an unknown metabolite into a 
tentative biological class, after including other related factors such as mass defect and 
isotope ratio pattern. It is also worth noting that while there is significant overlap for several 
zones of the illustrated mass/CCS relationships in Figure 2, further advances in IMS 
resolving power and selectivity continue to increase the likelihood of producing better-
resolved features in the CCS dimension.

NUCLEAR MAGNETIC RESONANCE
NMR spectroscopy exploits the quantum mechanical interactions of atomic nuclei with an 
external magnetic field. These interactions arise because some nuclei have an intrinsic type 
of angular momentum called spin. In metabolomics applications, the most common nucleus 
to measure is 1H, with some applications using 13C (e.g., 118–121), 31P (e.g., 122), or other 
nuclei. All of these biological nuclei are spin 1/2, which means that when they are in an 
external magnetic field, they can adopt two energy levels separated by the resonance 
frequency (ω0) that is proportional to the magnetic field strength (B0), according to the 
equation

ω0 = − γB0,

where γ is the gyromagnetic ratio, which is a physical constant for a specific nucleus. Thus, 
1H resonates at 600 MHz in a 14.1-Tesla (T) magnet and 900 MHz in a 21.1-T magnet. 
Because of the quantum mechanical underpinnings of NMR spectroscopy, it provides atom-
specific information, which makes it the method of choice for the structural characterization 
of unknown molecules. It can be quantitative, with the integrated value of each NMR 
proportional to the number of nuclei and thus the concentration of the molecule. NMR 
spectroscopy is also nondestructive and highly reproducible because the sample never comes 
into direct contact with the instrument. But all of these significant strengths come at a cost of 
overall sensitivity. Because it is a resonance phenomenon, NMR spectroscopy has a 
fundamental sensitivity that is limited by the Boltzmann equation
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Nup
Ndown

= e
− ΔE

kBT ,

where Nup and Ndown represent the number of nuclear spins in the upper and lower energy 
levels, ΔE is the energy gap between levels, kB is the Boltzmann constant, and T is the 
absolute temperature. For 1H at 600 MHz and room temperature, if the number of spins in 
the upper energy state is 1 million, there are only 1 million + 96 spins in the lower state, so 
only a small fraction of the sample contributes to the NMR signal. But the low energies 
associated with NMR spectroscopy also allow its noninvasive application in living systems 
through magnetic resonance imaging.

ONE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE
NMR metabolomics applications are typically done without chromatography or significant 
sample extraction steps. Therefore, the measured signals represent a complex mixture of 
metabolites in a sample. With modern spectrometers and probes, the practical lower limit of 
detection is about 10 µM in a 550-µL sample. The most common experiment in NMR 
metabolomics is a 1D 1H spectrum, which can have hundreds to sometimes thousands of 
overlapping peaks. These can be matched to databases with standard spectra of known 
metabolites. The most important public databases with NMR spectral libraries are the 
Biological Magnetic Resonance Data Bank (BMRB) (123) and HMDB (124). The primary 
difficulty in using these databases is that 1D NMR spectra can be heavily overlapped and, 
thus, there are almost always uncertainties in peak assignment using exclusively 1D 
methods.

TWO-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE
Two-dimensional NMR offers significant advantages over 1D NMR. It not only reduces 
resonance overlap by spreading the signal into a second dimension, but it also can provide 
extra information about chemical bonding between nuclei. The drawback of 2D NMR is the 
length of time required for each experiment, so these are typically only used for pooled 
samples rather than every sample in a study. However, new approaches are improving the 
speed of 2D methods (125). One of the most useful 2D experiments in metabolomics is 
heteronuclear single quantum correlation (HSQC). The 2D HSQC experiment correlates 1H 
with 13C (or less common in metabolomics, 15N) that are covalently bonded. Each pair of 
bonded nuclei give a single peak in a 2D HSQC, and this provides a useful fingerprint of a 
mixture. Edison & Schroeder (126) wrote a more complete description of 2D NMR 
experiments and their interpretation.

NUCLEAR MAGNETIC RESONANCE DEREPLICATION
Before the difficult step of unknown compound identification, it is important to first 
recognize and assign peaks that are known and in databases. This is called dereplication. 
There are several approaches to this, as both freely available and commercial packages. One 
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of the most popular commercial software is Chenomx, which allows users to fit a library of 
reference standards to 1D 1H experimental metabolomics data. This is an excellent 
visualization tool but suffers from the problems mentioned above about 1D NMR and peak 
overlap. At least one study reports inconsistent results with Chenomx using the same data 
set and multiple analysts (127). Bruker Corporation offers a spectral database that includes a 
wide range of pH values for many common metabolites, and this can be used with both 1D 
and 2D data in its Assure software. The 2D data add confidence in annotation, but the cost of 
this solution may be beyond the budget of many labs.

Brüschweiler’s laboratory has developed a suite of free web-based tools called COLMAR 
(complex mixture analysis by NMR; http://spin.ccic.ohio-state.edu/index.php/colmar). 
COLMAR has several functionalities that are useful for metabolomics. One of the simplest 
ways to use COLMAR is the 1H-13C-HSQC query, which takes a peak list from an HSQC 
spectrum and finds database matches using a combination of BMRB, HMDB, and internally 
curated data. HSQC matches are useful but can also be prone to misinterpretation, because 
they only report on a 1H–13C pair and do not include correlations between peaks. COLMAR 
adds to the HSQC query by allowing the addition of TOCSY (total correlation spectroscopy) 
or HSQC-TOCSY. The TOCSY experiments provide correlations between coupled 1H spins. 
Adding both HSQC and TOCSY or HSQC-TOCSY data significantly improves the 
confidence of dereplication of known metabolites in a mixture.

COMPOUND ISOLATION
The most straightforward approach to NMR-based compound identification is to use a 
natural products-like strategy that involves purification of the unknown molecule. The 
purification steps are typically activity guided, essentially using the desired activity as a 
detector for the compound of interest. For example, the identification of the mating 
pheromone for Caenorhabditis elegans involved a series of low-resolution fractionations 
followed by assays of male-specific attraction (128). Once a fraction is sufficiently pure, 
both 2D NMR (and MS) data can be obtained and analyzed. There are several advantages of 
this strategy. First, the focus is on the compound of interest (i.e., the one with the desired 
biological activity or discriminating power). Second, the limits of detection are defined by 
the assay and not the NMR spectrometer. This is very important, because unknown 
molecules at concentrations lower than NMR detection limits can be concentrated and 
identified if sufficient material is available for the bioassay (129). Finally, the pure (or 
semipure) compound provides a straightforward way to relate NMR and MS data, which is 
important for a more reliable identification (see Table 1).

Although it is common to use some type of LC system for fractionation, it is not always best 
to start with analytical chromatography. It is often simpler to start with simpler solid-phase 
extraction (SPE) steps, which can be done on a larger scale than LC. Orthogonal SPE (e.g., 
C18 followed by ion exchange) can be quite effective at quickly simplifying mixtures, even 
with just a few fractions from each step. If necessary, the crude material from SPE 
fractionation can then be purified further using LC. This approach was used for the isolation 
of C. elegans (128) and Panagrellus redivivus (130) mating pheromones (and many other 
activity-guided fractionation studies).
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Alternatively, the assay can be NMR or MS spectra in order to isolate an unknown peak of 
interest (131). In most metabolomics applications, important NMR or MS features are first 
determined from statistical analysis. If these features do not match databases, the same 
purification steps described for activity-guided fraction can be used, and fractions can be 
screened for the feature(s) of interest. Chemical fractionation is time consuming and not 
always possible without sample degradation (132).

DIFFERENTIAL ANALYSIS BY TWO-DIMENSIONAL NUCLEAR MAGNETIC 
RESONANCE SPECTROSCOPY

Frank Schroeder’s lab has developed a technique called differential analysis by 2D NMR 
spectroscopy (DANS) (133). A review of DANS and other approaches to NMR mixture 
analysis provides an additional overview (134). Briefly, DANS compares unfractionated 
high-resolution 2D NMR data sets (COSY) of two different genetic strains of organism, e.g., 
wild-type and a mutant of interest. In DANS, the data are manually overlaid, subtracted, and 
adjusted so that peaks common to both spectra will cancel, while peaks unique to one of the 
genotypes are retained. The DANS strategy does not include integration of MS data, but it 
does provide a very helpful overview of the major metabolic differences between the two 
genotypes and also then yields 2D NMR data that can be used to either partially or fully 
determine the structure of unknowns.

THE SUMMIT APPROACH
The Brüschweiler lab recently developed a powerful approach to link NMR and high-
resolution MS data in metabolomics called structures of unknown metabolomic mixture 
components by MS/NMR (SUMMIT) (135). SUMMIT links MS and NMR data through 
computation (Figure 3). Chemical purification can be used but is not a requirement. The 
general idea is that both high-resolution MS and NMR data are collected on the same 
sample. The high-resolution MS can be obtained through either chromatography or direct 
infusion, e.g., with an FT-ICR instrument (136). Starting with a feature of interest from the 
MS data, it is possible to obtain a molecular formula directly from the intact precursor ion 
provided there is sufficiently high mass resolution.

Once a reliable molecular formula is known, it is possible to enumerate all structures that are 
consistent with that formula, e.g., by searching the ChemSpider database (http://
www.chemspider.com). The difficulty with this step is that the number of possible molecules 
grows substantially with molecular weight. For example, C4H6O5 (e.g., maleic acid) yields 
35 structures from ChemSpider. In contrast, ChemSpider yields 1,023 results for C21H30O3. 
Therefore, it is desirable for the number of possible structures to be reduced by other data, 
e.g., through association with a specific metabolic pathway through a metabolite-genome-
wide association study.

The next step is to calculate the NMR chemical shifts of all possible structures from MS 
data. Calculations of NMR chemical shifts have become quite reliable with high-level ab 
initio or density functional quantum mechanical calculations (137). However, even 
semiempirical-based methods can provide reasonable results (135). The computed NMR 
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chemical shifts are then compared against experimental NMR data for the closest match. 
This conceptually simple step can be complicated when the NMR data are from a complex 
and unfractionated metabolomics mixture, so a modification of this strategy would be to 
fractionate the NMR sample using similar chromatography to the LC-MS. By doing this 
step, the overall approach becomes similar to natural products fractionation described above 
with the additional step of using computational chemistry to determine the best structure 
rather than through traditional analysis.

CONCLUSIONS AND OUTLOOK
Despite the limitations associated with each of the strategies described here, all of them have 
significantly contributed to addressing the most challenging problem in nontargeted 
metabolomics studies, which is to know the unknowns (27, 69, 138). Integration of the 
information produced by such advanced assays, however, is still largely lacking, thus 
preventing identification of metabolites in a high-throughput fashion. Expected advances in 
metabolomics informatics pipelines are expected to propel the field to a more mature stage, 
in a similar fashion to what has occurred in other omics fields such as genomics, 
transcriptomics and proteomics.
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Figure 1. 
Comparison of predicted and experimental retention times of the initial model. The model 
was trained on 50 data points and evaluated for 151 validation analytes. The depicted test 
lipids are distinguished by lipid class. The listed R2 was computed from the test lipids. 
Reproduced from Ref. 33 with permission from the American Chemical Society ©2015.
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Figure 2. 
IMS-MS plots showing the regions occupied by (A) lipids and peptides; (B) subclasses of 
antibiotics; (C) compounds of various densities; and (D) corticosteroid and nonsteroidal 
anti-inflammatory drugs (NSAIDS). Structures are shown for: cephalexin a cephalosporin 
antibiotic, benzalkonium C12 an amphiphilic ammonium, clioquinol an antifungal drug, 
ibuprofen a common NSAID, and cortisone a common corticosteroid. Reproduced from Ref. 
100 with permission from the American Chemical Society ©2017.
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Figure 3. 
The SUMMIT approach is a powerful way to link high-resolution MS and NMR data. 
Starting from an accurate mass measurement and molecular formula, NMR chemical shift 
calculations are done on all potential structures consistent with that formula. The computed 
NMR chemical shifts are then compared to experimental NMR data, and the best match is 
the most likely structure. Figure from Ref. 136 with permission from the American 
Chemical Society ©2015.
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Table 1

Proposed “score card” approach to assign metabolite identity confidence levels. In this approach, points are 
added as various orthogonal methods of molecular characterization are successfully applied. A higher score 
indicates higher certainty on metabolite identity.

Qualifier Explanation Points assigned

(i) High resolution 
MS*

a. Monoisotopic peak m/z match 
within 5–10 ppm.

Simplest metric for assigning a tentative identity. 
Should be used with caution, as high ambiguity exists 
in ID assignment based solely on m/z.

5

b. Monoisotopic peak m/z match 
within 1–5ppm.

Higher mass accuracy reduces the number of elemental 
formula candidates, helping in reducing the number of 
tentative IDs.

10

c. Mass-to-charge ratio match within 
1–2 ppm and isotopic ratio match 
with proposed elemental formula.

Relative abundance information found in isotopic 
structure can further reduce number of plausible 
elemental formula candidates.1

15

d. More than one matched ESI adduct 
or in-source fragment (e.g. [M-H]−, 
[M+Cl]−).

The match of elemental formulae to more than one 
spectral feature (e.g. [M+H]+ and [2M+H]+) results in 
increased confidence.

5

e. Mass-to-charge ratio match within 
1–2 ppm and X+1, X+2 ion isotopic 
fine structure (e.g. high field Orbitrap, 
FT ICR).

Ultrahigh resolution MS measurements allow readout 
of elemental formulae directly from mass spectrum.

20

Sub-Total Max 25

(ii) MSN Match of MS2 fragmentation 
spectrum to experimental, database, 
or literature spectra.

Tandem MS experiments, although not 100% 
conclusive, greatly increase identification confidence.

10 total, 
proportional to # 

fragments 
matched

Match of expected fragment ion ratios Relative ratios of fragment ion pairs can discriminate 
between closely related, isobaric, species

5

Match of experimental MS2 

fragmentation spectrum to in silico 
predictions

If database entries are not available, or not match is 
found, some degree of success can be obtained by 
predicting CID fragmentation via software tools (e.g. 
Thermo Mass Frontier, CFM-ID, MetFrag, Mass 
Fragment)

5

Manual interpretation of MS2 

fragmentation spectrum consistent 
with proposed structure.

Manual interpretation of tandem MS spectra is 
sometimes necessary in the absence of database 
matches or unsuccessful in silico prediction.

10

Higher than MS2-level match to MSN 

database (such as mzcloud)
Emerging databases now include MSN information. 5

Sub-Total Max 20

(iii) Chromatography Retention time match (within 
expected window) between candidate 
ID and chemical standard.

Chromatographic retention times are excellent 
qualifiers for increasing ID certainty. Analytes should 
elute outside of the dead volume window.

10 (+5 if spiked 
in sample)

In absence of standard, retention time 
may be matched to predicted value.

QSRR tools to predict retention time for small 
metabolites can be used to reinforce ID confidence.

10

Sub-Total Max 20

(iv) Ion mobility Database CCS matches to 
experimental CCS.

Ion mobility is an emerging technique in terms of 
metabolite ID. Databases are being created to facilitate 
identification using CCS.

10

Predicted CCS matches experimental 
CCS

Molecular descriptor-based prediction of CCS is 
possible.

5

IM filtering post precursor ion 
selection prior to MS2

Better matches of experimental MS2data to database 
data can be obtained by IM separation prior to CID, 
mitigating precursor ion co-selection.

5
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Qualifier Explanation Points assigned

Sub-Total Max 15

(v) NMR 1D NMR match (e.g. 1H or 13C) Matches to COLMAR or any other query interfaces 15

2D NMR match Matches to COLMAR or any other query interfaces/
databases.

20

‘ Sub-Total Max 20

*
Only ia, ib or ic should be applied.

(1) Pluskal, T.; Uehara, T.; Yanagida, M. Anal. Chem. 2012, 84, 4396–4403.
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