1diosnuely Joyiny 1duosnuely Joyiny 1diiosnuely Joyiny

1duosnuely Joyiny

Author manuscript
Annu Rev Anal Chem (Palo Alto Calif). Author manuscript; available in PMC 2019 August
30.

Published in final edited form as:
Annu Rev Anal Chem (Palo Alto Calif). 2019 June 12; 12(1): 177-199. doi:10.1146/annurev-
anchem-061318-114959.

Challenges in Identifying the Dark Molecules of Life

-~ HHS Public Access
«

Maria Eugenia Monge', James N. Dodds?, Erin S. Baker?, Arthur S. Edison?, Facundo M.
Fernandez*

Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones
Cientificas y Técnicas (CONICET), C1425FQD, Ciudad de Buenos Aires, Argentina

2Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA

3Department of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate
Research Center, University of Georgia, Athens 30602, USA

4School of Chemistry and Biochemistry, Georgia Institute of Technology and Petit Institute for
Biochemistry and Bioscience, Atlanta, Georgia 30332, USA

Abstract

Metabolomics is the study of the metabolome, the collection of small molecules in living
organisms, cells, tissues, and biofluids. Technological advances in mass spectrometry, liquid- and
gas-phase separations, nuclear magnetic resonance spectroscopy, and big data analytics have now
made it possible to study metabolism at an omics or systems level. The significance of this
burgeoning scientific field cannot be overstated: It impacts disciplines ranging from biomedicine
to plant science. Despite these advances, the central bottleneck in metabolomics remains the
identification of key metabolites that play a class-discriminant role. Because metabolites do not
follow a molecular alphabet as proteins and nucleic acids do, their identification is much more
time consuming, with a high failure rate. In this review, we critically discuss the state-of-the-art in
metabolite identification with specific applications in metabolomics and how technologies such as
mass spectrometry, ion mobility, chromatography, and nuclear magnetic resonance currently
contribute to this challenging task.
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INTRODUCTION

Metabolomics is the newest omics field focused on the examination of metabolites in
complex systems, with the goal of identifying pathway alterations that correlate with the
onset and progression of specific processes, such as disease (1, 2). The metabolome is
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typically defined as the collection of small molecules in a given biological system that
roughly falls under the ~1,500-Da molecular weight window. Metabolites in the
metabolome include endogenous molecules that are biosynthesized in primary metabolism,
specialized secondary metabolite signaling molecules, lifestyle or environmental exposure
molecules (the exposome), and molecules originating from the microbial community
associated with the organism under study (the microbiome). Metabolomics can be either
targeted to detect and quantify a set of known metabolites, or nontargeted, where the
emphasis is to detect as many compounds as possible, even if associated with unknown
chemical species. The metabolome, by definition, spans a vast diversity of chemistries,
including lipids, sugars, amino acids, steroids, and a whole array of molecule types. These
species exist in large concentration ranges that can be as high as millimolars and as low as
femtomolars, suggesting that no single analytical method in existence today is able to detect,
identify, and quantify all present species (3). Nuclear magnetic resonance (NMR) and liquid
chromatography mass spectrometry (LC-MS) are the main platforms used for metabolomics,
each with its own advantages and disadvantages in terms of sensitivity and peak capacity.
These techniques are used individually in most studies but can also be combined to better
yield metabolome coverage and enable more accurate metabolite identity annotation (4-6).

Despite rapid technological advances in both NMR and LC-MS, metabolite identification
still remains the undisputed bottleneck in nontargeted metabolomics experiments. Only a
small fraction, less than 2—10%, of the detected compounds in a nontargeted metabolomics
study can be annotated reliably, with the chemical identity of most species detected
remaining unknown (7). This vast chemical space has been described as the metabolome
dark matter (8) and continues to be the focus of intense scientific research, in terms of new
hardware and methods for improved separations and structural identification, but also new
databases, libraries, and algorithms that can predict some of the analyte’s molecular
properties.

Much effort has been directed toward defining the confidence levels and minimum reporting
standards associated with metabolite identification in any given metabolomics study. As
early as 2007, Sumner et al. (9) proposed a four-level metabolite identification confidence
scheme that divides metabolites into (a) identified compounds, (5) putatively annotated
compounds, (¢) putatively characterized compounds, and (d) unknown compounds. In level
a, identified compounds are those that include at least two orthogonal molecular
characterization methods that match a chemical standard [e.g., retention time (RT) and high-
resolution mass spectrum, RT and NMR resonances, elemental formula and tandem MS
(MS/MS) spectra, 'H and/or 13C NMR, and two-dimensional (2D) NMR spectra] (9).
Generation of more than two pieces of such orthogonal metabolite characterization data is
widely seen as providing good evidence in metabolite annotation, but it is not always
possible due to a number of factors, including low signal-to-noise ratios, unavailability of
chemical standards, and a lack of database coverage. Putatively annotated compounds are
those that are identified by matching to literature or database information, but for which no
chemical standard can be obtained for comparison purposes. Putatively characterized
compounds are those for which only similarities to a given family of compounds can be
established, but further information is not available [e.g., a glycerophospholipid
characterized by the presence of an m7/z 184 fragment in MS/MS experiments corresponding
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to the phosphocholine headgroup; or the neutral loss of 141 Da corresponding to the
phosphatidylethanolamine headgroup (10, 11)].

Despite its usefulness, this four-level scheme lacks granularity and detail, so here we
propose to further expand it through a score card (Table 1) that further refines the
assignment of metabolite identification confidence in nontargeted metabolomics experiments
using a points system. This system builds on advances in metabolomics instrumentation and
algorithms described below, such as RT prediction, use of ion mobility (IM) collision cross
sections (CCS), and prediction of MS/MS fragmentation and NMR spectra.

An example of how to apply the scoring approach described in Table 1 would be as follows:
If an identity is proposed for an unknown metabolite by (2) matching the [M+H]" and [M
+Na]* monoisotopic adduct ions (5 points) with an average 2.5-ppm error (10 points),
followed by (6) an MS? (10 points) and MS> (5 points) match to the mzCloud database, (¢)
its experimentally measured CCS matched within tolerance to a database value (10 points),
and (d) its '"H NMR spectrum matched to a database entry (15 points), a confidence score of
(10 +5)+ (10 +5) + (10) + (15) = 55 points could be assigned. Further improving
identification confidence would require (a) increasing mass accuracy to 1-2 ppm for more
than one adduct ion (5 points) while employing ultrahigh-resolution MS experiments to
examine isotopic fine structure (20 points); (5) manually interpreting (5 points) the database-
matched product ion spectrum to verify that observed fragment ions are compatible with
known fragmentation pathway; (¢) matching chromatographic RT to a chemical standard (10
points); (d) and performing 2D instead of one-dimensional (1D) NMR experiments (20
points). This would yield a more confident score of (5 +20) + (10 + 10 + 5) + (10) + (10)

+ (20) = 90 points in total. By applying these more specific metabolite identification
techniques to unknown species and combining the information they provide, a better
confidence score is obtained. Strengths and limitations of each of these techniques, as
applied to metabolomics, are discussed in the sections below.

CHROMATOGRAPHIC SEPARATIONS

Historically, chromatographic separations coupled to MS have offered one of the most
versatile platforms for complex sample analysis and metabolite identification in nontargeted
metabolomics studies (12). LC-MS is by far the most popular MS-based hyphenated
technique in metabolomics due to its sensitivity, selectivity, reproducibility, and versatility
for analyzing small molecules with a wide range of different physicochemical properties in
biological samples (13, 14). Gas chromatography (GC)-MS, a predecessor to LC-MS,
continues to be the obvious choice for fingerprinting volatile and low molecular weight
compounds (15, 16). Analysis of less volatile compounds by GC-MS, however, requires
additional preparation steps such as lyophilization, followed by chemical derivatization to
increase thermal stability and volatility prior to analysis (17). To a lesser extent, capillary
electrophoresis has also been utilized in metabolomics studies involving highly charged and
polar ionogenic metabolites in small-volume biological samples (13, 18). Capillary
electrophoresis is attractive in the sense that it separates compounds based on their intrinsic
electrophoretic mobility, a parameter that reflects the charge and size of the analyte (18).
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LC-MS offers the widest coverage and most efficient separation of complex metabolomes,
with much enhanced peak capacity compared to MS alone (13). LC and MS are coupled by
means of soft ionization techniques; electrospray ionization (ESI) (19-21) is the most
common. ESI generally produces protonated or deprotonated gas-phase ions that can be used
for accurate predictions of metabolite elemental formulae (22). In addition to in-source
fragment ions, various adduct ions and multiply charged species that complicate data
interpretation are also produced, leading to higher false-positive rates in metabolite
identification (23). GC, on the other hand, is coupled to MS by means of electron ionization
sources operated under vacuum and standardized at 70 eV, causing predictable
fragmentation and rearrangement reactions that lead to highly reproducible mass spectra for
comparison with libraries (16).

Reverse phase (RP) and hydrophilic interaction chromatography (HILIC) are by far the most
commonly used chromatographic methods for LC-MS-based metabolomics (13, 24). In
RPLC-MS, analytes are typically eluted by an aqueous-based mobile phase under a gradient
of increasing organic solvent content from a hydrophobic stationary phase. In HILIC,
analytes are eluted in order of increasing hydrophilicity from a hydrophilic stationary phase
as the polarity of the mobile phase is increased by increasing the aqueous content.

Traditionally, chromatographic identification in metabolomics by either RP or HILIC
approaches is best performed by RT matching with authentic chemical standards. However,
not all metabolites are commercially available, and purchasing authentic standards for all
possible metabolite candidates in a nontargeted study is incredibly costly and inefficient.
Indeed, there are fewer reference standards available than the number of peaks that is
detected in LC-MS experiments of biological samples (25-27). Although chemical synthesis
can be attempted for specific cases of high-value unknowns, this degree of effort is seldom
warranted.

GC-MS capillary columns are highly reproducible, which facilitates the compilation of
standardized retention indices (28, 29) in libraries or public databases for compound
identification (16, 30). In particular, Fiechn and collaborators (30) have greatly contributed to
the metabolomics field by building FiehnLib libraries comprising mass spectra and retention
indices from quadrupole and time-of-flight (ToF) GC-MS data. In contrast, it is difficult to
catalog RT information from LC experiments in libraries due to the lack of procedural
standardization and instrumentation involved, with varying LC pumps and injectors,
columns, run temperatures, solvent gradients, mobile phase pH, and flow rates. In addition,
column aging, temperature changes, MS detector drift, and other analytical factors may
further compound RT variance in nontargeted LC-MS metabolomics experiments. Matrix
effects caused by differences in biofluids matrix compositions can also lead to RT shifts.
Spiking experiments with chemical standards can mitigate these effects (31), but in cases
where chemical standards are not available, RT window prediction can complement
metabolite identification efforts.

Different attempts have been reported in the literature (31-36) to integrate RT window
prediction into the metabolite annotation process, most of which rely on quantitative
structure—retention relationship (QSRR) modeling (37). The generalization of such
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predictive models depends on the application domain investigated, because using overly
restricted domains for model building also leads to poor prediction in independent test sets
(38). Molecular descriptors (39-42) also play a significant role in defining such application
domains (38, 43, 44), as well as in defining the multiple algorithmic options and
combinations of adjustable parameters involved in QSRR model building (42, 45). In
general, RT factors (RF in the equation below, where 7j represents the chromatographic
column void time) are calculated to allow comparison between different chromatographic
systems (32, 36). Other studies utilize retention indices (28, 29), which are measures of
relative RT based on reference compounds that elute immediately prior to and immediately
following the analyte of interest (30, 45—48).

RT—TO

Ty

RF =

Cao et al. (31), for example, conducted QSRR modeling based on theoretical molecular
descriptors and experimental RTs of 93 authentic compounds analyzed with HILIC LC-MS.
A predictive QSRR model based on a random forest algorithm achieved high predictive
accuracy, with mean and median absolute errors of 0.52 min and 0.34 min (5.1% and 3.2%),
respectively. These authors applied this model to annotate features (RT, n17/2) of perennial
ryegrass (Lolium perenne) samples, significantly reducing the number of false-positive
metabolite annotations that would be obtained if only accurate masses were considered.
Predicted RTs were validated in this study using either authentic compounds or ion
fragmentation patterns (31). Among the molecular descriptors utilized to build QSRR
models, the partition coefficient (XLogP) was found to be the most relevant predictor in
agreement with the HILIC model previously reported by Creek et al. (32). These authors
converted the RT of 120 metabolite standards to retention factors that were input into a
multiple linear regression model. The optimal QSRR model used six physicochemical
variables and showed good predictive ability (cross-validated RZ = 0.82 and mean square
error = (.14) for RTs of metabolites with MW <400. Availability of predicted RTs translated
into the removal of 40% of the false metabolite identifications based on accurate mass alone
(32). The model was evaluated to putatively identify 690 metabolites in extracts of the
protozoan parasite 7rypanosoma brucei. Model limitations were associated with the
applicability to only low-MW metabolites, since larger compounds were poorly predicted,
most likely due to errors associated with predicted log D, the octanol-water partition
coefficient calculated at a pH of 3.5. Based on their QSRR model, the authors produced a
template file that allows users to calculate predicted RTs for a database of metabolites based
on experimental RTs measured for standards.

QSRR modeling has also been applied to RPLC data. Bruderer et al. (34) evaluated RT
prediction for a metabolomics database with 532 human metabolites. The authors built a
model with only 16 compounds using logD2 (calculated based on log P and pKa) and the
molecular volume as molecular descriptors. The developed model was evaluated for two
different RP C18 columns and two pH conditions (pH = 3.0 and 8.0 for positive and negative
ESI modes, respectively), achieving good prediction accuracy for a time window below 4
min (34). In addition, RT prediction combined with the data-independent acquisition (DIA)
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method known as sequential windowed acquisition of all theoretical fragment ion mass
spectra (SWATH) aided in annotating isobaric metabolites found in human urine, which
increased identification confidence and reduced the number of false positives (34).

A different RT prediction model for RPLC was built by Wolfer et al. (44) based on 442
authentic standards, including fatty acids, nucleosides, sterols, sphingolipids, lipids,
vitamins, cofactors, amino acids, aromatic biogenic acids, carbohydrates, catechols,
neurotransmitters, and other metabolites to cover a large variety of polarity and chemical
topology. The authors combined random forest and support vector regression models with
97 computationally determined descriptors derived from chemical structures. The model was
further tested on an external validation set of 111 known compounds, predicting RTs with an
average 13% error that reduced by 77% the number of incorrect candidates. The models
were made available through a user-friendly interface to be integrated into existing
workflows.

Identification of isobaric lipids is challenging even with high-resolution mass spectrometers.
Aicheler et al. (33) developed an RT prediction model based on machine learning
approaches that enabled the improved assignment of lipid structures and automated
annotation of lipidomics data obtained by RPLC-high-resolution MS. A support vector
regression model was built based on 201 lipids originating from mouse adipose tissue,
including molecular structural features. The cross-validated model achieved good correlation
(R=10.989) between predicted and experimental RT in test samples (Figure 1) and allowed
filtering out of more than half of the potential identifications, while retaining 95% of the
correct candidates.

Most QSRR approaches have been successful at predicting RT with good accuracy. The
main limitations of these strategies, however, are related to the lack of large and sufficiently
diverse metabolite training sets for building predictive models that could cover the thousands
of metabolites found in biological samples. In addition, some published models have lacked
comprehensive external validation, thus risking overfitting (36). Further drawbacks are
associated with the type of stationary phase material used (36, 43) that determines, together
with the sample preparation protocol, the metabolome fraction that can be effectively
resolved.

Alternative efforts have involved the development of tools that allow crowd sourcing of RT
information across laboratories and chromatographic systems such as retention projection
(49) and direct mapping (50) for GC-MS and LC-MS systems, respectively. The retention
projection methodology for GC-MS data, for example, was shown to be threefold more
accurate than retention indexing across five different laboratories under identical
experimental conditions. This made it easier to account for unintentional differences
between the various GC systems, such as temperature calibration errors, flow rate
nonidealities, or variance in column dimensions (49). RT mapping for LC-MS data,
developed under the name of PredRet, was done pairwise between LC systems using the
same chromatographic method and provided higher accuracy than QSRR (50). However,
QSRR models are able to a priori predict the RT of any given metabolite structure, whereas
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PredRet can only predict RT for compounds already in the database, i.e., those for which the
RT has been previously determined in a comparable chromatographic system (50).

MASS SPECTROMETRY

MS/MS experiments select a precursor ion for activation and fragmentation due to ion-
neutral collisions with the gas filling the collision cell. The combination of chromatographic
separations and MS/MS is one of the most powerful approaches to metabolite and natural
product identification (51). In nontargeted metabolomics, these tandem mass spectra can be
obtained in either a data-dependent acquisition (DDA) or DIA fashion (52). DIA
approaches, such as MSE, benefit from larger precursor ion coverage (53), but they suffer
from difficulties in matching precursor ions to product ions when chromatographic overlap
is substantial. DDA, on the other hand, preferentially targets the most abundant precursor
ions, resulting in poorer sampling of lower abundant precursor species. Repeated analysis
can somewhat improve precursor ion coverage, but this improvement is typically only
marginal due to redundant precursor ion sampling. Advanced precursor ion selection
algorithms used in proteomics (54) could also benefit metabolomic studies. Broeckling et al.
(55), for example, have proposed an alternative method for enabling the comprehensive
MS/MS coverage of complex samples via data set—dependent acquisition. With this
approach, real-time feedback between data processing and data acquisition was achieved
using a combination of R, ProteoWizard, XCMS, and WRENS software, yielding a threefold
improvement in the number of peaks mapped by MS/MS. Elaborate DDA approaches that
combine with higher-energy collision dissociation have also been reported (56).

Targeted metabolomics approaches are different from nontargeted approaches in the sense
that they typically rely on chemical standards with known structures, using triple quadrupole
mass spectrometers in multiple reaction monitoring (MRM) mode, or hybrid quadrupole
ToF/Orbitrap analyzers in SWATH or parallel reaction monitoring modes (57). Approaches
that bridge the targeted and nontargeted methods, however, have been reported in the
literature. Chen et al. (58) recently developed a hybrid method utilizing DIA for targeted
quantitative metabolomics experiments. In this method, a sequentially stepped targeted
MS/MS scan is used for improving coverage. In this type of scan, multiple product ion scans
are acquired for all ions in the examined m7/zranges, selecting them as the chosen precursor
ions. These scans are then followed by scheduled MRM scans for numerous ion pairs that
are used for quantitation. Ferreira et al. (59) have also reported an approach that bridges
classical targeted and nontargeted methods. This approach, named MRM profiling, makes
use of numerous product-precursor ion transitions that are developed in a supervised fashion.
By combining neutral loss and precursor ion scans, a list of more than 1,000 transitions is
built from a pooled sample. Relative abundances of all product ions targeted in these MRM
transitions are then measured for all samples and used to build univariate and multivariate
diagnostic models for a specific condition, such as polycystic ovarian syndrome (60).

Precursor ion coselection is an underappreciated issue that commonly hinders metabolite
identification in LC-MS/MS metabolomics, particularly with lipids. Most high-resolution
mass spectrometers use a low-resolution quadrupole mass analyzer for mass selection prior
to MS? fragmentation. The selection window for the precursor ions is typically limited to
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0.5-3 Da. When a high number of isobaric species chromatographically coelute, these are
inevitably coselected and cofragmented, yielding a product ion spectrum that is a composite
of all product ions yielded from the initial precursors in that window. One way to mitigate
these interferences is to perform collision-induced dissociation (CID) experiments a
posteriori from IM separations. Damen et al. (61) recently reported an ultraperformance LC
(UPLC) method for the separation of closely related lipid molecular species using a
stationary phase incorporating charged surface hybrid technology. The chromatographic
method showed excellent RT reproducibility [intraassay relative standard deviation <0.385%
and <0.451% for 20- and 10-min gradients, respectively (N=5)]. The UPLC system was
coupled to a hybrid quadrupole ToF mass spectrometer, equipped with a traveling wave ion
mobility (TWIM) cell. Despite the use of a quadrupole mass analyzer for precursor ion
selection, separations in the TWIM cell followed by transfer cell ion activation enabled the
acquisition of cleaner low- and high-energy DIA MS/MS spectra that were more useful in
terms of metabolite identification. Another approach to prevent precursor ion coselection is
through the use of different variations of stored waveform inverse Fourier transform
(SWIFT) ion excitation in Fourier transform ion cyclotron resonance (FT-ICR) (62). As
early as 1995, O’Connor & McLafferty (63) reported on high resolution ion isolation using a
capacitively coupled FT-ICR open cell. In these experiments, isotopic peaks of ubiquitin (8.6
kDa) and carbonic anhydrase (29 kDa) were isolated by SWIFT with an order of magnitude
higher isolation power than previously reported in the literature. Another approach yielding
high-resolution ion selection in FT-ICR MS is known as correlated harmonic excitation
fields (64). With this approach, de Koning et al. (64) were able to achieve a resolution of
~50,000 in the separation of deuterated toluene isotopes. Routine implementation of high-
resolution precursor ion selection approaches such as those described above in a
metabolomics context could significantly improve the odds of correct unknown
identification via more selective CID experiments and higher confidence MS/MS database
matching.

Although MS! information coupled with local network enhancement analysis can be used
for tentative metabolite annotation (65), high-quality tandem mass spectral libraries are
becoming essential for more confident identification (66). A growing number of these
libraries are currently available, including the Human Metabolome Database (HMDB) (67,
68), METLIN (69, 70), MassBank of North America (MoNA; http://
mona.ftehnlab.ucdavis.edu/), LipidBlast (71), mzCloud (72), LIPID MAPS Structure
Database (64, 73), Manchester Metabolomics Database (MMD) (23), and many others (74,
75). More general databases, such as PubChem (65, 76) and ChemSpider (65, 77), can also
be incredibly useful for MS-based identification of unknowns. However, metabolite
identification through mass spectral library searches is far from an automated task, and the
analyst is typically forced to manually search each individual database and manually curate
the obtained matches (if any) to ensure that differences in the type of mass spectrometer
used and the collision energy employed are considered. Along these lines, Stein and
coworkers (78) have proposed an approach for creating high-quality ESI tandem mass
spectral libraries. The procedure involved the acquisition of tandem mass spectra for all
major precursor ions in a direct infusion experiment. This was followed by assigning spectra
to clusters and creating a consensus spectrum. Filtering through intensity-based constrains
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for cluster membership was then applied, together with peak testing, noise reduction, and
examination by an experienced human evaluator, yielding a library of >9,000 compounds
with ~230,000 spectra.

When MS/MS database matches are not found, prediction of such spectra in silico can be
advantageous to provide an added level of confidence to the proposed metabolite identity. To
this purpose, Wolf and coworkers (79, 80) described the popular package named MetFrag,
where a candidate list of metabolite identities is first obtained by searches of precursor ion
masses, followed by ranking based on the agreement between in silico fragmentation spectra
and experimental data. Initial evaluation of MetFrag showed that it was able to rank most of
the correct compounds in the top three candidates produced by KEGG queries, producing
better results than commercial software. In related work, Duhrkop et al. (81) described an
approach named CFM-ID that combines computation and comparison of elemental formulae
fragmentation trees with machine learning techniques. They reported a 2.5-fold increase in
correct identifications compared with state-of-the-art methods when searching PubChem.
Li’s group (82) described a web interface (https://www.MyCompoundID.org) for metabolite
identification based on both MS and MS/MS data for compounds in the HMDB and
metabolites derived from these through in silico metabolic reactions. Fragmentation
prediction for specific metabolite families, such as lipids, has certainly benefited subfields
such as lipidomics (83—85), where chemical structures follow combinatorial rules. Prediction
of electron impact spectra has also been achieved with a significant degree of success (86)
based on an approach previously used for ESI data (87).

Combined prediction of various molecular properties, including retention indices, energy
required to fragment 50% of a selected precursor ion, IM drift time, and CID spectrum, has
been proposed by Grant and coworkers (88) through a package known as MolFind, but
follow-up validation of such an approach through comparison with large experimental data
sets has not been reported. Similar motivation led Hu et al. (89) to attempt the simultaneous
prediction of both RTs and fragmentation patterns with the goal of identifying
micropollutants.

ION MOBILITY SPECTROMETRY

In order to increase confidence in the identification of prioritized features after MS analysis,
additional structural techniques, including infrared spectroscopy, NMR spectroscopy, and
more recently, IM spectrometry (IMS), are often incorporated into nontargeted studies (90,
91) and are taken into account in our proposed identity confidence scoring scheme (Table 1).
IMS is a gas-phase separation technique in which analytes are separated based on their
rotationally averaged surface area or CCS. Briefly, IMS separations are conducted as analyte
migration through an inert buffer gas under the influence of an applied electric field.
Although specifics of gas composition, pressure, and applied field strength vary depending
on the instrument configuration, interactions between these forces drive ion motion and
separation in the IMS cell (92, 93). Because IMS distinguishes analytes based on their
structural size in the gas phase, it is orthogonal to MS to a great extent, and it provides
capabilities such as isomeric separations that are not possible with only the mass dimension
(94, 95). Furthermore, IMS measurements occur on a millisecond timescale, which is readily
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nested into traditional LC and GC-MS workflows (96). Descriptions of various IMS
platforms and configurations are available in several in-depth review articles (74, 97, 98) and
are beyond the scope of this article.

Although growth in MS databases has steadily continued for several decades, CCS databases
are still in their infancy. Since the commercialization of IMS-MS instrumentation in 2006
(73, 76), several studies have been devoted to collecting CCS values on a larger scale. These
efforts have made CCS values available to the public, while also creating databases useful
for nontargeted metabolomics experiments (77, 91, 99-101). Despite these advances,
obtaining reproducible CCS values across various instrument platforms still remains
challenging owing to several key factors that include variations in instrument design,
experimental parameters, and calibration protocols. For example, only drift tube and
differential mobility instruments can empirically measure CCS from first principles,
meaning that no calibrants are needed for the values they produce. IMS platforms based on
TWIM spectroscopy and trapped ion mobility spectroscopy (TIMS) instruments, however,
must be calibrated with ions of known mobility before reliable CCS values can be generated
(102—104). Also, the specific manner in which each instrument is calibrated can greatly
influence the reproducibility of the reported CCS values. Several studies have previously
described the challenges of choosing the correct calibrant ions for traveling wave devices
with similar structural characteristics as the species being studied (105, 106). For example,
Gelb et al. (107) observed that improper calibration of TWIMS with calibrant ions of a
different chemical class and charge state could produce CCS measurements with an error in
excess of 4% compared to using proper calibration protocols. Even after proper calibrant
ions are chosen for a specific instrument and experiment, the optimal mathematical
calibration procedure remains a topic of debate for several platforms (108, 109). As IMS-
MS instrumentation continues to improve in terms of generating reliable and reproducible
CCS values, slight variations in calibration procedures become increasingly critical. For
example, a recent interlaboratory study from Paglia et al. (77) characterized TWIMS
reproducibility to typically less than 3% relative standard deviation, suggesting that errors in
CCS calibration could lead to errors in calculated CCS that are larger than the instrument’s
own reproducibility. In a similar fashion, a recent interlaboratory study by Stow et al. (100)
demonstrated that new advancements in drift tube technology resulted in reproducibility of
typically less than 1% relative standard deviation for CCS measurements between
laboratories because no calibration was required.

Despite challenges in calibration procedures, once a reproducible CCS value is measured for
a given analyte, matching a molecular feature to a library entry is a straightforward process
when the analyte m/zand CCS are compared to entries based on analytical standards. If
there is a structural match within a certain mass error and CCS tolerance, the molecule is
considered a match. However, if a database search generates no matches, further work is
needed. CCS databases are typically generated based solely on commercially available
analytical standards. Unfortunately, the availability of such standards limits the size of
databases, as many compounds either cannot be isolated or they are simply too expensive to
obtain. For these molecules, CCS matching may only be feasible against predicted values
generated by computational methods (110-112). Such computational approaches have
shown promise in generating CCS values, usually with <2% agreement with experimental
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values (113). As more CCS values are published for the various IMS platforms, it is
expected that predicted values will be able to fill the gap of unavailable standards for the
identification of unknown metabolites.

IMS-MS also allows identification of metabolites through monitoring the placement of the
analyte’s observed CCS as a function of the measured m7/z For example, lipid molecules are
typically characterized by their headgroup, length of the fatty acid tails, and the number of
double bonds (114). These characteristics make the three-dimensional gas-phase structure of
lipids quite rigid and, as a consequence, lipids have, on average, larger CCS values than
peptides, carbohydrates, and nucleotides with similar masses, as shown in Figure 2 (99,
115). Several studies have noted these resulting mass/CCS ratios and have generated
analytical trend lines describing the relationship between analyte mass and CCS values for a
wide range of biomolecules (116, 117). In fact, if both the mass and CCS of an unknown
analyte are accurately known, it may be possible to classify an unknown metabolite into a
tentative biological class, after including other related factors such as mass defect and
isotope ratio pattern. It is also worth noting that while there is significant overlap for several
zones of the illustrated mass/CCS relationships in Figure 2, further advances in IMS
resolving power and selectivity continue to increase the likelihood of producing better-
resolved features in the CCS dimension.

NUCLEAR MAGNETIC RESONANCE

NMR spectroscopy exploits the quantum mechanical interactions of atomic nuclei with an
external magnetic field. These interactions arise because some nuclei have an intrinsic type
of angular momentum called spin. In metabolomics applications, the most common nucleus
to measure is 'H, with some applications using '3C (e.g., 118-121), 3P (e.g., 122), or other
nuclei. All of these biological nuclei are spin 1/2, which means that when they are in an
external magnetic field, they can adopt two energy levels separated by the resonance
frequency (wy) that is proportional to the magnetic field strength (By), according to the
equation

@o= o

where y is the gyromagnetic ratio, which is a physical constant for a specific nucleus. Thus,
H resonates at 600 MHz in a 14.1-Tesla (T) magnet and 900 MHz in a 21.1-T magnet.
Because of the quantum mechanical underpinnings of NMR spectroscopy, it provides atom-
specific information, which makes it the method of choice for the structural characterization
of unknown molecules. It can be quantitative, with the integrated value of each NMR
proportional to the number of nuclei and thus the concentration of the molecule. NMR
spectroscopy is also nondestructive and highly reproducible because the sample never comes
into direct contact with the instrument. But all of these significant strengths come at a cost of
overall sensitivity. Because it is a resonance phenomenon, NMR spectroscopy has a
fundamental sensitivity that is limited by the Boltzmann equation
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N
up

Ndown

where Ny, and Nyown represent the number of nuclear spins in the upper and lower energy
levels, AE'is the energy gap between levels, kg is the Boltzmann constant, and 7'is the
absolute temperature. For 'H at 600 MHz and room temperature, if the number of spins in
the upper energy state is 1 million, there are only 1 million + 96 spins in the lower state, so
only a small fraction of the sample contributes to the NMR signal. But the low energies
associated with NMR spectroscopy also allow its noninvasive application in living systems
through magnetic resonance imaging.

ONE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE

NMR metabolomics applications are typically done without chromatography or significant
sample extraction steps. Therefore, the measured signals represent a complex mixture of
metabolites in a sample. With modern spectrometers and probes, the practical lower limit of
detection is about 10 pM in a 550-pL sample. The most common experiment in NMR
metabolomics is a 1D 'H spectrum, which can have hundreds to sometimes thousands of
overlapping peaks. These can be matched to databases with standard spectra of known
metabolites. The most important public databases with NMR spectral libraries are the
Biological Magnetic Resonance Data Bank (BMRB) (123) and HMDB (124). The primary
difficulty in using these databases is that 1D NMR spectra can be heavily overlapped and,
thus, there are almost always uncertainties in peak assignment using exclusively 1D
methods.

TWO-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE

Two-dimensional NMR offers significant advantages over 1D NMR. It not only reduces
resonance overlap by spreading the signal into a second dimension, but it also can provide
extra information about chemical bonding between nuclei. The drawback of 2D NMR is the
length of time required for each experiment, so these are typically only used for pooled
samples rather than every sample in a study. However, new approaches are improving the
speed of 2D methods (125). One of the most useful 2D experiments in metabolomics is
heteronuclear single quantum correlation (HSQC). The 2D HSQC experiment correlates 'H
with 13C (or less common in metabolomics, N) that are covalently bonded. Each pair of
bonded nuclei give a single peak in a 2D HSQC, and this provides a useful fingerprint of a
mixture. Edison & Schroeder (126) wrote a more complete description of 2D NMR
experiments and their interpretation.

NUCLEAR MAGNETIC RESONANCE DEREPLICATION

Before the difficult step of unknown compound identification, it is important to first
recognize and assign peaks that are known and in databases. This is called dereplication.
There are several approaches to this, as both freely available and commercial packages. One
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of the most popular commercial software is Chenomx, which allows users to fit a library of
reference standards to 1D 'H experimental metabolomics data. This is an excellent
visualization tool but suffers from the problems mentioned above about 1D NMR and peak
overlap. At least one study reports inconsistent results with Chenomx using the same data

set and multiple analysts (127). Bruker Corporation offers a spectral database that includes a
wide range of pH values for many common metabolites, and this can be used with both 1D
and 2D data in its Assure software. The 2D data add confidence in annotation, but the cost of
this solution may be beyond the budget of many labs.

Briischweiler’s laboratory has developed a suite of free web-based tools called COLMAR
(complex mixture analysis by NMR; http://spin.ccic.ohio-state.edu/index.php/colmar).
COLMAR has several functionalities that are useful for metabolomics. One of the simplest
ways to use COLMAR is the 'H-13C-HSQC query, which takes a peak list from an HSQC
spectrum and finds database matches using a combination of BMRB, HMDB, and internally
curated data. HSQC matches are useful but can also be prone to misinterpretation, because
they only report on a 'H-13C pair and do not include correlations between peaks. COLMAR
adds to the HSQC query by allowing the addition of TOCSY (total correlation spectroscopy)
or HSQC-TOCSY. The TOCSY experiments provide correlations between coupled 'H spins.
Adding both HSQC and TOCSY or HSQC-TOCSY data significantly improves the
confidence of dereplication of known metabolites in a mixture.

COMPOUND ISOLATION

The most straightforward approach to NMR-based compound identification is to use a
natural products-like strategy that involves purification of the unknown molecule. The
purification steps are typically activity guided, essentially using the desired activity as a
detector for the compound of interest. For example, the identification of the mating
pheromone for Caenorhabditis elegans involved a series of low-resolution fractionations
followed by assays of male-specific attraction (128). Once a fraction is sufficiently pure,
both 2D NMR (and MS) data can be obtained and analyzed. There are several advantages of
this strategy. First, the focus is on the compound of interest (i.e., the one with the desired
biological activity or discriminating power). Second, the limits of detection are defined by
the assay and not the NMR spectrometer. This is very important, because unknown
molecules at concentrations lower than NMR detection limits can be concentrated and
identified if sufficient material is available for the bioassay (129). Finally, the pure (or
semipure) compound provides a straightforward way to relate NMR and MS data, which is
important for a more reliable identification (see Table 1).

Although it is common to use some type of LC system for fractionation, it is not always best
to start with analytical chromatography. It is often simpler to start with simpler solid-phase
extraction (SPE) steps, which can be done on a larger scale than LC. Orthogonal SPE (e.g.,
C18 followed by ion exchange) can be quite effective at quickly simplifying mixtures, even
with just a few fractions from each step. If necessary, the crude material from SPE
fractionation can then be purified further using LC. This approach was used for the isolation
of C. elegans (128) and Panagrellus redivivus (130) mating pheromones (and many other
activity-guided fractionation studies).

Annu Rev Anal Chem (Palo Alto Calif). Author manuscript; available in PMC 2019 August 30.


http://spin.ccic.ohio-state.edu/index.php/colmar

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Monge et al. Page 14

Alternatively, the assay can be NMR or MS spectra in order to isolate an unknown peak of
interest (131). In most metabolomics applications, important NMR or MS features are first
determined from statistical analysis. If these features do not match databases, the same
purification steps described for activity-guided fraction can be used, and fractions can be
screened for the feature(s) of interest. Chemical fractionation is time consuming and not
always possible without sample degradation (132).

DIFFERENTIAL ANALYSIS BY TWO-DIMENSIONAL NUCLEAR MAGNETIC
RESONANCE SPECTROSCOPY

Frank Schroeder’s lab has developed a technique called differential analysis by 2D NMR
spectroscopy (DANS) (133). A review of DANS and other approaches to NMR mixture
analysis provides an additional overview (134). Briefly, DANS compares unfractionated
high-resolution 2D NMR data sets (COSY) of two different genetic strains of organism, e.g.,
wild-type and a mutant of interest. In DANS, the data are manually overlaid, subtracted, and
adjusted so that peaks common to both spectra will cancel, while peaks unique to one of the
genotypes are retained. The DANS strategy does not include integration of MS data, but it
does provide a very helpful overview of the major metabolic differences between the two
genotypes and also then yields 2D NMR data that can be used to either partially or fully
determine the structure of unknowns.

THE SUMMIT APPROACH

The Briischweiler lab recently developed a powerful approach to link NMR and high-
resolution MS data in metabolomics called structures of unknown metabolomic mixture
components by MS/NMR (SUMMIT) (135). SUMMIT links MS and NMR data through
computation (Figure 3). Chemical purification can be used but is not a requirement. The
general idea is that both high-resolution MS and NMR data are collected on the same
sample. The high-resolution MS can be obtained through either chromatography or direct
infusion, e.g., with an FT-ICR instrument (136). Starting with a feature of interest from the
MS data, it is possible to obtain a molecular formula directly from the intact precursor ion
provided there is sufficiently high mass resolution.

Once a reliable molecular formula is known, it is possible to enumerate all structures that are
consistent with that formula, e.g., by searching the ChemSpider database (http://
www.chemspider.com). The difficulty with this step is that the number of possible molecules
grows substantially with molecular weight. For example, C4HgO5 (e.g., maleic acid) yields
35 structures from ChemSpider. In contrast, ChemSpider yields 1,023 results for C,H3003.
Therefore, it is desirable for the number of possible structures to be reduced by other data,
e.g., through association with a specific metabolic pathway through a metabolite-genome-
wide association study.

The next step is to calculate the NMR chemical shifts of all possible structures from MS
data. Calculations of NMR chemical shifts have become quite reliable with high-level ab
initio or density functional quantum mechanical calculations (137). However, even

semiempirical-based methods can provide reasonable results (135). The computed NMR
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chemical shifts are then compared against experimental NMR data for the closest match.
This conceptually simple step can be complicated when the NMR data are from a complex
and unfractionated metabolomics mixture, so a modification of this strategy would be to
fractionate the NMR sample using similar chromatography to the LC-MS. By doing this
step, the overall approach becomes similar to natural products fractionation described above
with the additional step of using computational chemistry to determine the best structure
rather than through traditional analysis.

CONCLUSIONS AND OUTLOOK

Despite the limitations associated with each of the strategies described here, all of them have
significantly contributed to addressing the most challenging problem in nontargeted
metabolomics studies, which is to know the unknowns (27, 69, 138). Integration of the
information produced by such advanced assays, however, is still largely lacking, thus
preventing identification of metabolites in a high-throughput fashion. Expected advances in
metabolomics informatics pipelines are expected to propel the field to a more mature stage,
in a similar fashion to what has occurred in other omics fields such as genomics,
transcriptomics and proteomics.
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Figure 1.
Comparison of predicted and experimental retention times of the initial model. The model
was trained on 50 data points and evaluated for 151 validation analytes. The depicted test

lipids are distinguished by lipid class. The listed R2 was computed from the test lipids.
Reproduced from Ref. 33 with permission from the American Chemical Society ©2015.
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IMS-MS plots showing the regions occupied by (A) lipids and peptides; (B) subclasses of
antibiotics; (C) compounds of various densities; and (D) corticosteroid and nonsteroidal

anti-inflammatory drugs (NSAIDS). Structures are shown for: cephalexin a cephalosporin

antibiotic, benzalkonium C12 an amphiphilic ammonium, clioquinol an antifungal drug,

ibuprofen a common NSAID, and cortisone a common corticosteroid. Reproduced from Ref.

100 with permission from the American Chemical Society ©2017.
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Figure 3.
The SUMMIT approach is a powerful way to link high-resolution MS and NMR data.

Starting from an accurate mass measurement and molecular formula, NMR chemical shift
calculations are done on all potential structures consistent with that formula. The computed
NMR chemical shifts are then compared to experimental NMR data, and the best match is
the most likely structure. Figure from Ref. 136 with permission from the American
Chemical Society ©2015.
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Proposed “score card” approach to assign metabolite identity confidence levels. In this approach, points are

added as various orthogonal methods of molecular characterization are successfully applied. A higher score

indicates higher certainty on metabolite identity.

selection prior to MS?

data can be obtained by IM separation prior to CID,
mitigating precursor ion co-selection.

Qualifier Explanation Points assigned
(i) High resolution a. Monoisotopic peak 177/z match Simplest metric for assigning a tentative identity. 5
MS * within 5-10 ppm. Should be used with caution, as high ambiguity exists
in ID assignment based solely on m/z.
b. Monoisotopic peak m/z match Higher mass accuracy reduces the number of elemental 10
within 1-5ppm. formula candidates, helping in reducing the number of
tentative IDs.
c. Mass-to-charge ratio match within Relative abundance information found in isotopic 15
1-2 ppm and isotopic ratio match structure can further reduce number of plausible
with proposed elemental formula. elemental formula candidates.!
d. More than one matched ESI adduct | The match of elemental formulae to more than one 5
or in-source fragment (e.g. [M-H]", spectral feature (e.g. [M+H]" and [2M+H]") results in
[M+CI]). increased confidence.
e. Mass-to-charge ratio match within Ultrahigh resolution MS measurements allow readout 20
1-2 ppm and X+1, X+2 ion isotopic of elemental formulae directly from mass spectrum.
fine structure (e.g. high field Orbitrap,
FT ICR).
Sub-Total Max 25
(ii) MSN Match of MS? fragmentation Tandem MS experiments, although not 100% 10 total,
spectrum to experimental, database, conclusive, greatly increase identification confidence. proportional to #
or literature spectra. fragments
matched
Match of expected fragment ion ratios | Relative ratios of fragment ion pairs can discriminate 5
between closely related, isobaric, species
Match of experimental MS? If database entries are not available, or not match is 5
fragmentation spectrum to in silico found, some degree of success can be obtained by
predictions predicting CID fragmentation via software tools (e.g.
Thermo Mass Frontier, CFM-ID, MetFrag, Mass
Fragment)
Manual interpretation of MS? Manual interpretation of tandem MS spectra is 10
fragmentation spectrum consistent sometimes necessary in the absence of database
with proposed structure. matches or unsuccessful in si/ico prediction.
Higher than MS?-level match to MSN Emerging databases now include MSN information. 5
database (such as mzcloud)
Sub-Total Max 20
(iii) Chromatography Retention time match (within Chromatographic retention times are excellent 10 (+5 if spiked
expected window) between candidate qualifiers for increasing ID certainty. Analytes should in sample)
ID and chemical standard. elute outside of the dead volume window.
In absence of standard, retention time QSRR tools to predict retention time for small 10
may be matched to predicted value. metabolites can be used to reinforce ID confidence.
Sub-Total Max 20
(iv) Ion mobility Database CCS matches to Ton mobility is an emerging technique in terms of 10
experimental CCS. metabolite ID. Databases are being created to facilitate
identification using CCS.
Predicted CCS matches experimental Molecular descriptor-based prediction of CCS is 5
CCS possible.
IM filtering post precursor ion Better matches of experimental MSZ2data to database 5
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Qualifier Explanation Points assigned
Sub-Total Max 15
(v) NMR 1D NMR match (e.g. 'H or 13C) Matches to COLMAR or any other query interfaces 15
2D NMR match Matches to COLMAR or any other query interfaces/ 20
databases.
¢ Sub-Total Max 20

*
Only ia, ib or ic should be applied.

(1) Pluskal, T.; Uehara, T.; Yanagida, M. Anal. Chem. 2012, 84, 4396-4403.
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