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Abstract

Human mesenchymal stromal cells (hMSCs) are a promising cell source for numerous regenerative medicine and cell
therapy-based applications. However, MSC-based therapies have faced challenges in translation to the clinic, in part due
to the lack of sufficient technologies that accurately predict MSC potency and are viable in the context of cell
manufacturing. Microfluidic platforms may provide an innovative opportunity to address these challenges by enabling
multiparameter analyses of small sample sizes in a high throughput and cost-effective manner, and may provide a more
predictive environment in which to analyze hMSC potency. To this end, we demonstrate the feasibility of incorporating 3D
culture environments into microfluidic platforms for analysis of hMSC secretory response to inflammatory stimuli and
multi-parameter testing using cost-effective and scalable approaches. We first find that the cytokine secretion profile for
hMSCs cultured within synthetic poly(ethylene glycol)-based hydrogels is significantly different compared to those
cultured on glass substrates, both in growth media and following stimulation with IFN-y and TNF-a, for cells derived from
two donors. For both donors, perfusion with IFN-y and TNF-« leads to differences in secretion of interleukin 6 (IL-6),
interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), macrophage colony-stimulating factor (M-CSF), and
interleukin-1 receptor antagonist (IL-1ra) between hMSCs cultured in hydrogels and those cultured on glass substrates. We
then demonstrate the feasibility of analyzing the response of hMSCs to a stable concentration gradient of soluble factors
such as inflammatory stimuli for potential future use in potency analyses, minimizing the amount of sample required for
dose-response testing.
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Insight

The translation of human mesenchymal stromal cell (hMSC)-based therapies has been hindered by the lack of suffi-
cient technologies that accurately predict MSC potency and are viable in the context of cell manufacturing. Microfluidic
platforms may provide an innovative opportunity to address these challenges by enabling multiparameter analyses of
small sample sizes in a high throughput and cost-effective manner. We demonstrate the feasibility of incorporating 3D
culture environments into microfluidics for analysis of hMSC response, and show a difference in immunomodulatory
response between hMSCs cultured on conventional tissue culture substrates and those cultured in more clinically rele-

vant environments.

INTRODUCTION

Human mesenchymal stromal cells (hMSCs) are a promising
cell source for many regenerative medicine and cell therapy
based applications with more than 350 ongoing clinical trials in
the US [1, 2]. hMSCs are hypo-immunogenic, have self-renewal
and differentiation capacities, and can home to injured tissues
[1, 3, 4]. Importantly, hMSCs secrete a variety of cytokines,
growth factors, and metabolites that modulate the immune
response [4]. Such paracrine factors, including indoleamine 2,3-
dioxygenase (IDO) and a variety of interleukins and chemokines
such as interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin-1
receptor antagonist (IL-1ra), and chemokine CXCL10 [5-8], are
thought to primarily be responsible for hMSC immunosuppres-
sive effect through regulation of immune cell proliferation, mat-
uration and function [5, 9].

Moreover, it is due to these properties that hMSC-based ther-
apies are under evaluation in clinical trials for treatment of dis-
eases such as inflammatory bowel disease, graft-vs-host disease,
and in myocardial injury [10-13]. Here, hMSC-based therapies
may alleviate symptoms due to chronic inflammation of the
digestive tract in the case of inflammatory bowel disease, graft
immune response following allogeneic transplant in graft-vs-
host disease, and improve tissue regeneration in the case of
myocardial injury.

However, the translation of these therapies is severely
hindered by a lack of reliable potency assays that are both
predictive of clinical efficacy and are compatible with cell
manufacturing processes. Classified by the FDA as more-
than-minimally-manipulated cellular and gene therapy (CGT)
products and by the European Medicines Agency as advanced
therapeutic medicinal products (ATMP), hMSC-based thera-
pies require the development of potency assays, or functional
tests predictive of in vivo effect, for advanced phase clinical
trials [14]. Development of these assays is particularly chal-
lenging for hMSC based therapies due to heterogeneity of
source materials, variability in culture conditions [15], as well
as complex and poorly defined mechanisms of action [5].
Moreover, conventional assays often rely on analysis of cells
cultured on glass or plastic substrates, and often do not corre-
late well with in vivo performance, further impeding the
development of predictive potency assays [14, 16].

In previously reported hMSC-based regenerative medicine
applications, hMSCs are embedded within biomaterial scaf-
folds and implanted or inserted directly at the diseased or
injured site. This change in the microenvironment from planar
culture to a 3D scaffold may significantly impact hMSC activi-
ties, as it has been shown that hMSC differentiation and func-
tion are significantly influenced by environmental factors such
as topography, adhesive signals, stiffness and porosity [17-20].
Furthermore, hMSCs cultured in 3D spheroids and scaffolds

have been found to exhibit enhanced immunomodulatory
potential compared to those cultured on conventional tissue
culture substrates [21].

To that end, we begin to address this challenge by develop-
ing and analyzing hMSC responses in scalable tissue-on-a-chip
platforms. In these platforms, hMSCs are embedded in syn-
thetic polyethylene glycol (PEG)-based hydrogels and subjected
to a continuum of signals after which their phenotype can be
assessed (Fig. 1). PEG-based systems have proven to be particu-
larly advantageous for cell therapy and regenerative medicine
applications due to their support of cell functions, proven safety
in vivo, and tunable biochemical and mechanical properties [-
22-25]. The PEG-4MAL system in particular enables extensive
plug-and-play modality due to its enhanced reaction efficiency
compared to other PEG-based systems [26]. Moreover, these
hMSC-laden hydrogels are incorporated into scalable microflui-
dic platforms fabricated without the need for extensive engi-
neering training or state-of-the-art microfabrication facilities
typical of traditional photolithography-based microfluidic tech-
niques. Reducing sample size and increasing throughput of
such assays, while minimizing cost, simplifies and further en-
ables their manufacture and scale-up.

Using these platforms, we first find a differential in response
to specific inflammatory stimuli between hMSCs cultured
within PEG-based hydrogels and those cultured on planar glass
slides by comparing cytokine secretion profiles. Frequently
used assays to evaluate hMSC immunomodulatory function
examine measures of T-cell activation in response to hMSC co-
culture [5, 27, 28]. Surrogate measures of function have also
been proposed via analysis of hMSC response to inflammatory
stimuli such as interferon-y (IFN-y), which has been found to be
an important licensing cytokine in vitro and at sites of inflam-
mation [5, 29]. Moreover, recent reports have suggested that
hMSC secretome response after stimulation by IFN-y and after
stimulation by activated peripheral blood mononuclear cells is
highly correlated [29, 30]. This motivates our use of inflamma-
tory stimuli to analyze differences between hMSCs cultured on
planar substrates and those encapsulated in PEG-based hydro-
gels. Additionally, IDO is increasingly identified as a key media-
tor of hMSC induced inhibition of T-cell proliferation in vitro
[30, 31], and is chosen here for further exploration as an end-
point analysis for use in potential tissue-on-a-chip platforms
in which hMSCs cultured within PEG based hydrogels are
exposed to controlled, stable concentration gradients of
inflammatory stimuli. These studies support the need for fur-
ther characterization of the effect of different parameters of
the microenvironment on hMSC immunomodulatory proper-
ties, and indicate the potential to improve hMSC potency tests
via tissue-on-chip platforms compatible with cell manufactur-
ing processes.
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Figure 1. Mesenchymal stromal cells (MSCs) cultured on planar glass respond differently compared to those cultured in a tissue on a chip platform when perfused

with growth media alone or stimulated with inflammatory cytokines.

MATERIALS AND METHODS

Cell culture

Human mesenchymal stromal cells (hMSCs) were acquired from
the NIH Resource Center at Texas A&M University and confirmed
as hMSC [32]. Briefly, cells were obtained from healthy donors, a
22 year-old male (8013L) and a 23-year-old female (8011L), via
bone marrow aspirate, followed by density centrifugation for
mononuclear cells and selected for adherent culture. Cells were
screened for colony forming units, cell growth, and differentia-
tion into fat and bone using standard assays. Flow cytometry
analyses confirmed that cells were positive for CD90, CD105,
CD73a and negative for CD34, CD11b, CD45, CD19. Received fro-
zen stocks were thawed and grown in MEM-a (ThermoFisher)
containing 16% fetal bovine serum (FBS), 2 mM L-glutamine and
100 U/mL penicillin/streptomycin (ThermoFisher). hMSCs were
seeded at 1500 cells/cm? in a 15cm, sterile polystyrene dish
(Corning), and dissociated using 0.25% trypsin/EDTA. Cells were
used between passage 3-5.

Preparation of PEG-based hydrogel

Hydrogels used for hMSC culture were prepared by mixing 4-
arm poly(ethylene glycol)-maleimide (PEG-4MAL) (>95% purity,
Laysan Bio) with the cross-linkers GCRDVPMS|MRGGDRCG
(VPM) (>95% purity, Genscript) and dithiothreitol (DTT) (Sigma-
Aldrich)), and were functionalized with the adhesive peptide
GRGDSPC (RGD) (>95% purity, Genscript) [33]. Briefly, RGD, VPM
and DTT were dissolved in 50 mM HEPES buffer at 5.0 mM,
17.95mM, and 24.75 mM, respectively, and PEG-4MAL in 1X PBS
at 6.82 mM. Before use, components were filter-sterilized using
sterile Corning®, Costar®, Spin-X® 0.22 ym pore, centrifuge tube
filters (Sigma). Functionalization was performed by mixing PEG-
4MAL with RGD in a 2:1 ratio at room temperature for 20
minutes. VPM and DTT were combined to provide a final cross-
linking solution composed of 80% VPM and 20% DTT. hMSCs
were added to the PEG-4MAL/RGD solution and combined with
the crosslinker at a final ratio of 3:1:1 of PEG-MAL/RGD: hMSCs:

crosslinker, for a final PEG-MAL weight percent of 6.0% and RGD
density of 1.0 mM.

Measurement of inflammatory cytokine secretion

Secreted inflammatory biomarkers were first measured and
compared to glass slide controls using a device fabricated with
cost-effective and accessible materials, as previously described
[34, 35]. Brass wires (500pm diameter) were cast in polydi-
methylsiloxane (PDMS). Once cured, a 6 mm hole was punched
through the PDMS and around the wire. The wires were then
removed, generating a channel traversing the PDMS through
which inflammatory stimuli could be perfused. The hole was
then filled with PEG-4MAL hydrogel containing hMSCs, and en-
closed via plasma-bonded glass coverslip (Fig. 2).

Inflammatory biomarker expression by hMSCs cultured in
PEG-4MAL hydrogel or on planar glass slide controls in the mi-
crofluidic chip were analyzed using a custom Luminex kit (R&D)
for cultures treated with inflammatory stimuli IFN-y (50 ng/mL)
and TNF-a (15 ng/mL) or unstimulated controls at 96 hours post-
stimulation.

Design and fabrication of device for concentration
gradient generation

A device to analyze exposure of hMSCs to a concentration gradi-
ent of inflammatory stimuli was also developed to demonstrate
the feasibility of using microfluidics for high throughput
potency testing. We propose this platform as a more efficient
way to analyze hMSC response to a range of inflammatory sti-
muli concentrations for relative comparison, with an increased
length scale to reduce cross-talk and minimize the concentra-
tion gradient observed by the cell. Here, microfluidic channels
were formed using double sided adhesive and polydimethylsi-
loxane (PDMS). Specifically, a craft cutter (Silhouette) was used
to cut channels in double-sided tape, consisting of silicon adhe-
sive coated on both sides of a polyethylene terephthalate (PET)
carrier, and combined with a polyester secondary liner (3M™).
The top and bottom of these channels were formed by sand-
wiching the double-sided adhesive between two PDMS layers.
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Figure 2. Fabrication of microfluidic enabling perfusion and cytokine expression
in PEG-4MAL hydrogels [34, 35].

4mm and 1 mm biopsy punches were used to form holes for the
hydrogel and reservoirs, respectively, and a handheld corona
gun was used for bonding all other layers. The device was
assembled immediately before initiation of the experiment
(Fig. 4A).

Characterization of concentration gradient and CFD
modeling

FITC- Dextran (20kDa, Sigma Aldrich) at 1 mg/mL in PBS was
used to visualize and characterize the formation of a concentra-
tion gradient through the hydrogel in the microfluidic device.
Images were acquired using Nikon TE 2000 over a period of 96
hours, and identical acquisition parameters were used through-
out the experiment (Fig. 4B). Computational fluid dynamics sim-
ulations were conducted using COMSOL Multiphysics (COMSOL,
Inc., Burlington, MA, USA). A 3D model of the device was devel-
oped, and time-dependent diffusion through the hydrogel eval-
uated using the transport of diluted species module. Here, an
effective diffusion coefficient relative to that of water, calcu-
lated using Stokes Einstein, (D/Do) was used to model diffusion
through the hydrogel. A value of 0.3 was used here based on dif-
fusion measurements performed in other PEG-based hydrogels
[36].

Immunocytochemistry and image analysis

To analyze the effect of the inflammatory stimuli gradient on
cells encapsulated in the PEG-4MAL hydrogel, encapsulated cells
were fixed and stained for indoleamine 2,3-dioxygenase (IDO).
After 96 hours of exposure to the inflammatory stimuli gradient,
cells encapsulated in the gel were washed with PBS for 1 hour
and fixed with 4% paraformaldehyde for 3 hours. After fixation,

cells were washed for 3hours with PBS, permeabilized, and
blocked overnight with 0.2% Triton-X in 1% BSA. Cells were then
washed with PBS again for 3 hours, after which gels were incu-
bated with 50 pg/mL of AlexaFluor 488-conjugated IDO antibody
(R&D Systems) diluted 1:11 in 1% BSA for 2 days. Before imaging,
gels were washed overnight with PBS, additionally stained for 2
hours with Hoechst to visualize the nuclei, and washed for
lhour with PBS. Images were acquired using a Zeiss Laser
Scanning Confocal Microscope mounted on an AxioObserver Z1
inverted microscope stage, and analyzed using CellProfiler 3.0.0
(Broad Institute) [37] and MATLAB R2017a.

Stitched 10x images were analyzed by correlating the aver-
age IDO fluorescence intensity to the distance from each inlet.
Linear regression was used to model the relationship between
the average intensity and distance, and correlation coefficients
(R?) found for each. It is expected that the IDO intensity profile
moving away from the inflammatory stimuli inlet will more
closely match a linear profile compared to that moving away
from inlets perfusing growth media alone, where no change in
IDO intensity is expected.

Images were further analyzed by identifying the mean IDO
intensity per cell from z stacks taken at the inflammatory inlet
(0 microns) and at the opposing edge of the gel (4000 microns)
using CellProfiler. Briefly, images of the stained nuclei were
thresholded and identified as the primary objects. Associated
IDO stains were subsequently identified for each of the nuclei
using the propagation method, and the intensity measured for
each object.

Statistical Analysis

Cytokine secretion data comparing hMSCs cultured in different
environments are presented as mean + SEM, with 4-5 samples
per group. Differences between groups were analyzed by one-
way ANOVA followed by Tukey post hoc test using GraphPad
Prism. Two-way unsupervised hierarchical clustering was per-
formed on Luminex mean fluorescence intensities (MFI) using
JMP Pro.

Analysis of IDO expression after exposure to concentration
gradients was performed by correlating the average IDO fluores-
cence intensity to the distance from each inlet and determining
correlation coefficients (R?) for each. The distribution of the
mean IDO intensity per cell from z stacks taken at the inflam-
matory inlet (0 microns) and at the opposing edge of the gel
(4000 microns) were additionally compared using one-way
ANOVA.

RESULTS AND DISCUSSION

Functional differences observed between hMSCs
cultured in the 3D hydrogel-based tissue-on-a-chip
platform compared to on planar culture surface

We first evaluated the differences in cytokine secretion profile
between hMSCs cultured on glass slides and in PEG-4MAL hy-
drogels, both when perfusing with growth media and media
containing inflammatory stimuli. hMSCs were either allowed to
adhere to a glass slide or encapsulated within PEG-4MAL hydro-
gels and loaded into the described microfluidic device. After
perfusing with growth or inflammatory stimuli media for 72
hours, which has been shown in previous reports to provide suf-
ficient stimulation [30], the effluent from the following 24 hours
was collected and analyzed for their cytokine secretion profile.
Live/dead staining (Calcein AM/Toto-3 Iodide) on the first and
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Figure 3. Cytokine secretion profiles for MSCs cultured on planar glass slides or in PEG-4MAL hydrogels, after perfusion with growth media alone, and after perfusion
with inflammatory stimuli. (A) Live/Dead staining reveals no statistical difference in viability between conventional tissue culture well and microfluidic cultures at Day
1 and Day 4 of the experiment. (B) Differences in secretion of highlighted individual cytokines. (C) Hierarchical clustering analysis group unstimulated and stimulated
samples as well as according to microenvironment based on secretion profiles (results shown for Donor 8013L).
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last day of the experiment verified that there was no difference
in viability between cells cultured in tissue culture wells and
those cultured in the microfluidic device (Fig. 3A).

Without the addition of inflammatory cytokines, hMSCs
within hydrogels and those seeded on glass substrates exhib-
ited significant differences in their cytokine profiles. hMSCs iso-
lated from donor 8013L secreted significantly lower levels of IL-6,
tissue inhibitor of metalloproteinases 1 (TIMP-1) and macro-
phage colony-stimulating factor (M-CSF) when encapsulated in
PEG-4MAL hydrogels compared to cells cultured on glass (IL-6
and TIMP-1 P < 0.0001, M-CSF P < 0.05 Fig. 3B). We did not find
significant differences in cytokine secretion between conditions
after perfusion of growth media alone for hMSCs isolated from
donor 8011L.

Whereas certain differences were seen when hMSCs were
perfused with growth media, perfusion with media containing
IFN-y and TNF-q, both key pro-inflammatory cytokines secreted
by activated T-cells, caused further differences between hMSCs
in hydrogels and those on glass. Unsupervised hierarchical clus-
tering demonstrates that much of the variability in the data is
described by differences between stimulated and unstimulated
conditions, but also show that samples cluster according to
their microenvironment (results shown for donor 8013L,
Fig. 3C). Specifically, for both donors tested, we found that
hMSCs cultured in the hydrogel displayed significant differ-
ences in their levels of secretion of IL-6, IL-8, monocyte che-
moattractant protein 1 (MCP-1), M-CSF, and IL-1ra compared to
on planar glass controls. IL-6, MCP-1, and IL-8 secretion were
found to decrease (all P < 0.0001 for donor 8013L; IL-6 P < 0.01,
MCP-1 P < 0.05, IL-8 P < 0.001 for donor 8011L, Fig. 3B), while
secretion of IL-1ra was found to increase (P < 0.0001 for both do-
nors, Fig. 3B) when cultured in hydrogels compared to on glass
substrates. No difference was observed in CXCL10 secretion and
in TIMP-1 secretion after stimulation by IFN-y and TNF-a (n.s.
for both donors, Fig. 3B).

Importantly, the influence of donor variability and cell num-
ber on these results, and on the predictive power and reliability
of these assays, was not specifically assessed, and represents a

limitation of these studies. However, these results are consis-
tent with recent reports comparing the secretory activity of
hMSCs in other biomaterials to planar controls [38, 39]. Reduced
IL-6 secretion and minimal change in secretion of M-CSF after
just culturing hMSCs in 3D, for example, was also observed by a
previous study in which hMSCs were cultured in 3D polystyrene
[38]. Similarly, this study also showed reduced secretion of
MCP-1 and IL-6 compared to planar controls after exposure to
inflammatory stimuli via macrophage like cells (dTHP-1), which
is in full agreement with our observations. hMSCs encapsulated
in alginate microspheres also displayed similar results regard-
ing MCP-1 and IL-6 changes after exposure to inflammatory sti-
muli through co-culture with LPS stimulated hippocampal
slices; however, IL-1ra was found to decrease in microspheres
relative to 2D culture [39]. These modulated cytokines include a
range of factors known to be involved in immunomodulation.
M-CSF is involved in regulation of monocyte and macrophage
lineage maturation [40], while IL-8, IL-6 and IL-1ra are known
inflammatory mediators and MCP-1 is a chemokine involved in
recruitment of monocytes. Whereas it is yet unclear whether
these results correlate with hMSC function and further, clinical
outcome, it is worthwhile to consider differences in response
between hMSCs cultured on conventional tissue culture sub-
strates and those cultured within more clinically relevant
environments.

It is well known that properties of the microenvironment,
including porosity, topography, and stiffness among others, can
modulate the function and response of interacting cells.
Specifically, topographical cues have been shown to be impor-
tant regulators of hMSC function, and have been primarily
investigated in the context of promoting differentiation for cell
replacement at the site of injury [41-43]. However, the effects of
these microenvironmental cues on paracrine and immunomod-
ulatory function has yet to be fully explored.

Our results in combination with studies conducted by others
have shown that the hMSC microenvironment can influence
immunomodulatory function, and have demonstrated differ-
ences in secretion profiles between hMSCs cultured on planar
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surfaces and those cultured in scaffold materials as well as in
spheroids. Compared to on planar surfaces, where apical basal
polarity is artificially induced, adhesions are altered, and the
mechanical environment is not representative of what would
be found in vivo, hydrogel matrices can provide a more physio-
logically relevant environment, where gradients of soluble fac-
tors are possible and mechanical properties are tunable.
Pro-inflammatory signaling, specifically IFN-y signaling
through the JAK-STAT pathway, has been shown in other cells to
be regulated by actin cytoskeletal changes as well as by cell adhe-
sion signaling [29, 44], both of which can be modulated by the
microenvironment. The microenvironment may then play an
important role in determining the immunosuppressive function
of hMSCs. Indeed, a recent study found that culture on electro-
spun fibers of differing orientations altered hMSC morphology
and resulted in increased immunosuppressive capacity compared
to those on flat substrates [45]. Cell manufacturing processes
developed in the future to evaluate hMSC immunomodulatory
potency may then need to be performed in more physiologically
relevant environments to obtain accurate evaluations of their

potency.

A concentration gradient of inflammatory stimuli
demonstrates potential for multi-parameter testing

To further demonstrate the feasibility of evaluating hMSC
response while cultured in hydrogels in a high-throughput and
scalable manner, a platform was developed to analyze the
response of encapsulated hMSCs to a range of inflammatory sti-
muli for relative comparison. This type of platform could reduce
the amount of sample required for dose-response testing, and
could enable higher throughput potency analysis.

First, a concentration gradient was generated in the hydrogel
using a system of opposing sources and sinks (Fig. 4A). A fluo-
rescently labeled molecule, similar in size to IFN-y and TNF-q,
(FITC-Dextran, 20 kDa) was used to visualize the temporal evo-
lution of the concentration gradient. Within the time frame of
this study, the gradient was found to be relatively stable and
mirrored computational fluid dynamics modeling results
(Fig. 4B).

The use of this device for potential hMSC potency testing
was then investigated. hMSCs were encapsulated in the PEG-
MAL hydrogel, and loaded into the microfluidic device directly
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after plasma treatment. The inflammatory stimuli IFN-y and
TNF-a in growth media were perfused through one inlet, while
growth media alone was perfused through the others. Given
that the gradient was found to stabilize within 25hours, the
device was perfused for a total of 96 hours to allow for a full
72 hour exposure to the gradient.

hMSCs were then stained for IDO, a tryptophan-catabolizing
enzyme necessary for MSC immunosuppression upon IFN-y
stimulation. IDO is increasingly identified as a key paracrine
factor involved in hMSC immunosuppressive function [5, 9, 30],
and was used here as an example endpoint analysis. Low levels
of IDO are typically expressed in unstimulated MSCs, while IDO
expression increases in hMSCs in response to IFN-y stimulation.
Here, changes in IDO expression were evaluated in response to
a gradient of IFN-y and TNF-a by immunostaining. Linear
regression was performed on the averaged intensity profiles
from each inlet to the middle of the gel. Compared to the inten-
sity profiles from the two growth media inlets (R = 0.32 and
R? = 0.56, respectively), the averaged intensity profile from the
inflammatory stimuli inlet to the middle of the gel was found to
more closely fit a linear profile (R? = 0.85) (Fig. SA and B). The
averaged intensity profile from the inflammatory inlet also dis-
played higher linearity compared to the isotype control profiles
at all three inlets (R? = 0.0006, R? = 0.12, and R? = 0.29, respec-
tively). Moreover, the distribution of the mean IDO intensity per
cell differs when examining cells at the inflammatory stimuli
inlet compared to a distance of 4000 microns away from the
inflammatory stimuli (Fig. 5C). These results thus indicate a
potential for using this platform for multi-parameter analyses,
evaluating response to superimposed concentration profiles of
relevant stimuli and morphogens. Further experiments may
determine to what extent such measurements correlate with
hMSC function.

CONCLUSION

These results further indicate a role for the hMSC microenviron-
ment in determining immunomodulatory function by demon-
strating differences in cytokine secretion between hMSCs
cultured in RGD-presenting PEG hydrogels within tissue-on-a-
chip platforms and those cultured on planar controls. More pre-
dictive assays to evaluate hMSC immunomodulatory potency
may then incorporate 3D hydrogels that recapitulate important
aspects of the in vivo environment. Moreover, we demonstrate
the feasibility of developing platforms that are compatible with
cell manufacturing processes while using cost-effective and
scalable approaches. Future improvement and integration of
these assays could allow for correlation with hMSC function
in vitro and in vivo, comparison of response across different po-
pulations and sample types, increased compatibility with cell
manufacturing processes, and ultimately aid in translation of
MSC based therapies to the clinic.
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