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Abstract

Background aims: Autologous cell therapy (AuCT) is an emerging therapeutic treatment that is undergoing transformation
from laboratory- to industry-scale manufacturing with recent regulatory approvals. Various challenges facing the complex
AuCT manufacturing and supply chain process hinder the scale out and broader application of this highly potent treatment.
Methods: We present a multiscale logistics simulation framework, AuCT-Sim, that integrates novel supply chain system
modeling algorithms, methods, and tools. AuCT-Sim includes a single facility model and a system-wide network model.
Unique challenges of the AuCT industry are analyzed and addressed in AuCT-Sim. Decision-supporting tools can be devel-
oped based on this framework to explore “what-if” manufacturing and supply chain scenarios of importance to various cell
therapy stakeholder groups. Results: Two case studies demonstrate the decision-supporting capability of AuCT-Sim where
one investigates the optimal reagent base stocking level, and the other one simulates a reagent supply disruption event. These
case studies serve as guidelines for designing computational experiments with AuCT-Sim to solve specific problems in
AuCT manufacturing and supply chain. Discussion: This simulation framework will be useful in understanding the impact of
possible manufacturing and supply chain strategies, policies, regulations, and standards informing strategies to increase
patient access to AuCT.
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Introduction therapies and tissue engineering products worldwide,

with a total of 1028 clinical trials as of the end of

Autologous cell therapy (AuCT) is an emerging ther-
apeutic method that uses a patient’s own cellular
material to treat disease. AuCT has demonstrated
appropriate safety and efficacy and received regula-
tory approval in a small number of cancers [1,2] and
shown promising results in clinical trials for a num-
ber of other indications, including blood disorders
[3,4] and autoimmune diseases [5,6]. The transition
from clinical trials to commercial products in the
field of AuCT is evolving rapidly because of its tre-
mendous potential benefits for patients. There are
currently 906 companies developing cell and gene

2018 [7].

The use of autologous cells can significantly reduce
the risk of immune rejection and disease transmission
[8] but at the cost of increasing the complexity of the
manufacturing and supply chain process. As the
AuCT product is patient-specific, a separate batch of
cells is manufactured for each patient. A typical
manufacturing process for AuCT starts by taking a cell
sample from the patient in the clinic, then transporting
these cells to a central manufacturing facility for
manipulation. At the manufacturing facility, these cells
undergo isolation, purification, expansion, harvest and
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formulation. For a genetically modified cell product
such as chimeric antigen receptor T cells (CAR-T),
the cells will also undergo activation and gene delivery
through viral transduction or electroporation before
expansion. After formulation, these cells are tested and
then released back to the clinic for administration to
the same donor patient [9,10].

Unlike the scalable allogeneic therapies, which can
be modeled after therapeutic monoclonal antibodies
(mAbs) production with established business models
and robust supply chains, ideal manufacturing and dis-
tribution approaches have not yet been fully deter-
mined for AuCT. Many current manufacturing
facilities for autologous therapies are designed or tuned
to deliver innovative products that will be used in care-
fully controlled clinical trials. Notably, the facilities
that are affiliated with universities or research centers
usually have responsibilities other than manufacturing
autologous therapies. For example, it is common that
a production facility of an academic medical center
supports several clinical trials, including investigator-
initiated clinical trials. These academic production
facilities (APFs) have the flexibility to reconfigure
manufacturing space to produce different types of cell
products. However, a significant challenge is respond-
ing to changes with real-time information in industrial
production scenarios. Everything in every process,
including machine schedules, personnel allocations,
and reagent usage, is scheduled significantly before the
actual production starts. Pre-deployment planning is a
strategy that helps accomplish multiple types of tasks
on time, rather than an efficient, low-cost, consistent
strategy for accomplishing the same type of task. Con-
sidering that AuCT is an entirely patient-specific prod-
uct and the patient’s condition is likely to change at
any time, this strategy, which relies on pre-planned
production and distribution, is even less flexible in an
industry setting.

The few companies that produce Food and Drug
Administration—approved commercial AuCT prod-
ucts, such as Novartis Pharmaceuticals Corporation,
Gilead Sciences and Dendreon, use their own dedi-
cated manufacturing facilities. Unlike academic pro-
duction facilities, where different types of products
keep the production process open for adjustment at
any time, these industrial production facilities (IPFs)
need to optimize the production process for a single
or several similar products. At a much larger
manufacturing scale, IPFs also need to develop a
sophisticated supply chain network that can ensure
reliable and on time deliveries to treatment facilities
across the country or the globe. In addition, the diffi-
culty of many operational aspects in AuCT produc-
tion facilities drastically increase with scaling up,
such as production scheduling, prioritization, inven-
tory management and workforce management.

Many unique challenges exist in scaling up AuCT
manufacturing (Box 1). At present, there are not
many IPFs for AuCT, and there is thus still much
room for exploration on the optimal configuration
strategy. In this article, we propose the development
of a simulation platform as the factory’s digital twin
to experiment with new configurations to help tackle
these challenges.

Box 1. A list of challenges that differentiate AuCT manufacturing
from conventional manufacturing problems. QC, quality control.

Unique Challenges in Scaling AuCT Manufacturing
1. Evolving manufacturing/QC procedures
2. Large intrinsic uncertainties and complex propagation
of variability
3. Real-time interaction between patient status and
production/distribution
4. Time-dependent product quality
. Highly-personalized manufacturing process
6. Young industry (a few dominant suppliers, labor
scarcity, heavy regulatory restrictions, etc.)

ul

Challenges in scaling up AuCT manufacturing

The AuCT supply chain network is composed of
manufacturing facilities, suppliers, clinics, transport
of specimens from clinics to facilities and transport
of therapies from facilities to clinics. Each facility
comprises bioreactors (the manufacturing capacity),
AuCT orders assigned to the facility, reagent and
supply inventory and the skilled workforce. Schedul-
ing and coordinating patients with spare production
capacity at the manufacturing facility within the
product shelf life can significantly increase the com-
plexity for scaling out commercial production. As the
production ramps up to meet national or even global
demand, manufacturers must choose between a cen-
tralized or more decentralized manufacturing net-
work to determine the optimal number and locations
of the manufacturing facilities, as well as the func-
tions and operations conducted at each facility [11].
A simulation platform could be a valuable support
tool to understand how these decisions will affect the
manufacturing capacity, which in turn affects the
cost of these cell products. In addition, a simulation
platform could be used to study how delays affect the
quality of the cells and optimize the scheduling of
these manufacturing and quality testing steps.

There is a need for real-time and efficient com-
munication among clinics, manufacturers and
reagent suppliers. Real-time interaction between the
manufacturing facility and the health care staff will
allow better prediction of product delivery date based
on the current manufacturing capacity. For example,



if a patient’s condition suddenly becomes unsuitable
for AuCT, the clinic should immediately notify the
manufacturer to cancel subsequent production to
reduce the loss in terms of cost and manufacturing
capacity, and the cancellation of this order may also
result in subsequent changes in reagent require-
ments. Similarly, if the reagent supplier foresees a
disruption, the manufacturer should be notified
immediately to take appropriate action, which in
turn will cause the clinic to adjust the patient’s
AuCT injection schedule. The complexity of interac-
tion between parties in the AuCT supply chain net-
work exceeds the interactions in supply chain
networks of other existing industries. Although no
analytic tool is available to address the complexity at
this high level, it is feasible to capture this complex
interaction with a multiscale simulation with built-in
stochastic algorithms.

Currently, the critical reagents in the manufactur-
ing process of AuCT rely on only a few or, in many
cases, the high-risk situation of a single supplier.
Other high-risk situations include a reagent supply
disruption, which could result in reagent shortages
or stock outs in all IPFs, significantly reducing yield
and hence significantly reducing patient benefit. A
simulation platform could assist in the evaluation of
“what-if” scenarios and the preparation of risk miti-
gation strategies. The efficiency and cost of deploy-
ing any risk mitigation strategy can also be estimated
by running computational experiments on the supply
chain simulation.

According to the Regenerative Medicine Stand-
ards Landscape published by Nexight Group and
Standards Coordinating Body, 60 existing standards
were relevant for cell therapy process as of February
2018 [12]. However, many of these relevant stand-
ards lack a sufficiently specific or useful guide for
AuCT commercial development. The lack of stand-
ards can create significant difficulties in converting
clinical trial manufacturing process into a full-scale
commercial manufacturing process [13]. A simula-
tion platform for planning AuCT production will
need to be flexible and have a high degree of freedom
to allow the manufacturer to explore the impact of
different standards on their manufacturing process.
A simulation platform can support a policy-maker
with information such as how a policy affects the effi-
ciency and the robustness of the supply chain.

Currently, there exist a few studies on analytic or
empirical modeling for the cost of cell therapy
manufacturing [11,14—20]. Although these studies
provide valuable information regarding the econom-
ics of cell manufacturing process, none of them pro-
vide information detailed enough to address issues
specific to a single AuCT facility, let alone the inter-
actions between multiple facilities and different
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stakeholders. A simulation-based tool may serve bet-
ter than oversimplified models in most decision-mak-
ing scenarios. However, no such simulation tool can
be found in the current literature. We developed a
three-level (clinics, manufacturing facilities, and sup-
pliers), two-scale (facility and supply chain network),
stochastic simulation model. This model may be
used as a decision support system (DSS) for the
AuCT supply chain in service to manufacturers,
health care providers, and ultimately patients.

Digital simulation framework for AuCT
manufacturing (AuCT-Sim)

The proposed simulation framework has an array of
key features to address the wunique challenges
expounded in the previous section. These features
include a multiscale structure, multiple key perfor-
mance indicators (KPIs), stochasticity when appro-
priate and a highly customizable framework. These
features reflect the minimum requirements to cap-
ture the complexity of the AuCT supply chain prob-
lem. Sophisticated functions can be built on the
basic framework to solve specific cases. The design
of the computational experiment depends on the spe-
cific users’ considerations of pinch points in sourc-
ing, production, and delivery.

Multiscale structure

The most fundamental difference between the AuCT
supply chain problem and conventional supply chain
problems is that the AuCT supply chain model must
include both the “microscale” activities inside a cell
manufacturing facility and the “macroscale” interac-
tions at the supply chain network level. In a conven-
tional supply chain problem, the manufacturing
facility and the supply chain network can be modeled
separately because the products produced in the
manufacturing facilities are interchangeable. There-
fore, the manufacturing nodes in a conventional sup-
ply chain network model can be treated as “black
boxes” where the detailed manufacturing procedures
can be modeled with a separated simulation. How-
ever, in the AuCT supply chain problem, each prod-
uct is linked with an individual patient. It is a truly
build-to-order supply chain for a bespoke product.
The patient’s condition can influence timing of pro-
duction and quality control procedures. Moreover,
the patient is not only the consumer of the product
but also the supplier of the raw material. If the
manufacturing process of any product fails due to
any reason, a request for a new specimen may be
issued from the manufacturing facility to the clinic.
Therefore, in a simulation run, it is essential to
ensure real-time communication between the
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manufacturing facility level and the supply chain
level, which requires the model to contain both the
micro and the macro scales.

Microscale simulation

The microscale simulation reflects any activities inside
a manufacturing facility. The primary subsystems in a
cell manufacturing facility include manufacturing pro-
cedures (Figure 1la), quality control procedures,
inventory management and resource management.
Figure 1b shows the interface of the microscale simu-
lation platform. The specimens from clinics arrive at
the top-left corner and go through the acceptance
check and the upstream processing. Then the speci-
mens enter a queue, waiting for bioreactors, operators
and reagents to be assigned by the resource manage-
ment subsystem. After the necessary resources are
allocated, the specimens come to the expansion stage,
where several quality control tests will be performed
at different time points over the entire course.

After the expansion, the products go through the
downstream processing and release check subse-
quently. Qualified products are packed and distrib-
uted to the clinics for administration, which can be
the same or different clinics from the ones where the
specimens were collected. If the product fails any of
the acceptance check, quality control tests, or the
release check, the facility may request a new specimen
to be sent from the patient. If the patient becomes
unsuitable for treatment, a signal will be triggered and
abort/pause the corresponding manufacturing pro-
cess. The inventory management subsystem governs
the replenishment of reagents and supplies.

Many communication ports exist at various com-
ponents in this facility to ensure timely interactions
with events at the macroscale level. The primary inlet
port is at the arrival dock where the requests and
specimens sent from clinic nodes are accepted. The
primary outlet port is at the pack and distribution
dock where the products are sent back to the request-
ing clinics. Every specimen in the facility also has a
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Figure 1. (a) The flow chart of activities inside a typical autologous cell therapy (AuCT) manufacturing facility. There are several windows
for intermediate quality assessments (QAs). The manufacturing stages in this chart are groups of events in the manufacturing process sepa-
rated by the intermediate QAs. They are not necessarily corresponding to actual manufacturing steps. (a) The simulation interface that
monitors the internal activities of an AuCT manufacturing facility. After each manufacturing stage, a portion of the product is collected as
samples for the QA. The rest will enter the subsequent manufacturing stages.



categorical variable, “Patient Status,” that links to the
status of the patient. Our framework handles a variety
of specimens with patient categories using different
actions regarding to their manufacturing process. A
full list of “Patient Status™ is included in the supple-
mental material. Our modeling framework (AuCT-
Sim) models real-time patients’ status changes using a
state transition dynamic mechanism with a Markovian
property. This structure assumes that patients’ state
changes are mutually independent, and patients
would transit to states that are highly correlated with
their health status. In this way, AuCT-Sim simulates
real-time changes of patients whose specimens have
arrived in the facility for production uses.

Beyond the dynamic of “Patient Status,” AuCT-
Sim also models the dynamic of specimen quality.
Each specimen also has its own “Quality Check” cate-
gorical variable that may take a value among “Pass,”
“Fail” and “Pre-certified.” A full list of these values as
well as operations associated with specimens in such
categories are summarized in the supplemental mate-
rial. Any product that fails a quality check cannot be
replaced by another product, a new request for the
patient’s specimen is necessary whenever the value of
this variable changes to “Fail.” The change happens
when a quality control procedure is performed.

Justifications of quality failure in AuCT-Sim rely
on a “Quality” index valued as real numbers between
0 and 1, where 1 indicates that the product is in its
“perfect” state and O indicates the product is totally
unusable. We assume that the initial quality of the
specimen follows a predefined distribution upon its
arrival. As the quality of the specimen may deteriorate
over time (e.g., the viability of the cells may decrease
overtime during production), the “Quality” index of
the specimen will decrease at a random rate. The
exact decreasing value at each time step is sampled
from a distribution that can be deduced from empiri-
cal knowledge. This deterioration can be the result of
cells failing to expand, or the loss of sterility, viability
and potency during production. For example, when-
ever the product is exposed with the outer environ-
ment (e.g., to take samples for quality control tests or
to be transferred from one container to another), there
is a small chance that contamination may happen, and
hence “Quality” will be set to 0. The probabilities of
contamination at each manufacturing and quality
control procedure preset based on empirical data. In
any quality control test, the value of “Quality” will be
compared against a preset criterion of that test. Once
the “Quality” index is lower than required, the value
of “Quality Check” changes to “Fail”; otherwise, the
“Quality Check” stays the same.

The inventory management subsystem has a
communication port that links to supplier nodes in
the supply chain network. Multiple inventory
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replenishment policies can be pre-programmed. The
subsystem can switch between different policies
based on a certain global event. For example, the
reagent suppliers may forecast a supply change. The
manufacturing facilities in the affected distribution
region may switch to a more conservative reagent
replenishment policy.

Similarly, the resource management subsystem
can also communicate with events outside of the
facility. In a case of demand surge (which may be
caused by a new indication approval or reimburse-
ment allowance, for example), the facility may ask
the operators to work overtime until more operators
are recruited. There are also communication ports at
each quality control step, as they could be out-
sourced under certain circumstances.

It should be noted that the microscale simulation
of a single manufacturing facility can be packaged into
a standalone tool. For example, the demand from clin-
ics can be simulated by a Poisson process or extracted
from historical data. Similarly, other communication
ports can be fed by random number generators or his-
torical data. The standalone manufacturing facility
tool could be used to support decision-making at the
microscale. Examples of such decisions include the
following:

e What is the bottleneck of the production capacity?

e What is the relationship between manufacturing
configurations and batch capacity and turnaround
time?

e How does a manufacturing innovation impact
patient benefit?

Macroscale simulation

The macroscale simulation is designed to model the
allocation of multiple manufacturing facilities, which
can have different configurations at the microscale
level, and the connection with clinics and suppliers as a
supply chain network. Figure 2 shows the three arche-
types of the supply chain network designs: the central-
ized production model, the regional manufacturing
hubs model, and the ’point of care” production model.
There can also be hybrid solutions that use more than
one basic design type in different regions or under dif-
ferent situations.

The macroscale simulation for supply chain can
generate valuable information related to the entire
AuCT industry or the entire AuCT supply chain net-
work. A few typical questions that could be answered
by this tool are the following:

e What are the strengths and weaknesses of each of
the three supply chain network designs?
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Figure 2. Three supply chain network designs: the selection of network design depends on many factors, including the distribution of
demands and resources, the costs to ensure the quality consistency at different manufacturing sites, and patient accessibility, among others.

e What are the optimal number and placement of
manufacturing facilities given specific demand
distribution over the country or globally?

e What are the risk mitigation strategies to counter
an unexpected event, such as a reagent supply dis-
ruption, and what are the costs and performance
of these strategies?

e How will policies and regulations affect the effi-
ciency and the robustness of the supply network?

Multidimensional key performance indicators

The AuCT-Sim generates and records comprehen-
sive manufacturing and distribution data from each
simulation run. The statistical indicators output can
be divided into three subgroups: time, efficiency and
cost. Different stakeholders may have different
weighting factors assigning to these indicators when
evaluating the overall performance.

Time-related indicators
The fulfillment time is composed of manufacturing
time and distribution time, each indicates the

performance of the manufacturing facility and the
supply chain network, respectively. The manufactur-
ing time is the time between when the specimen
arrives the manufacturing facility and when the prod-
uct leaves the facility for delivery. It can be further
divided into four components: processing time, qual-
ity control time, queue time and outage time.

The processing time is the necessary time to pro-
duce the AuCT product, including upstream process-
ing, cell expansion, and downstream processing. This
component is insensitive to operational decisions.

The quality control time is the time spent on
actions to ensure the quality of the product, includ-
ing the acceptance check, the releasing check and the
intermediate quality control assays. The acceptance
check and the releasing check are done before and
after the production process. The intermediate qual-
ity control steps are distributed at different time
points during the production to prevent the risk of
wasting resources on continuing processing products
that have fallen below the necessary quality require-
ments. Figure 3 shows three strategies to arrange the
in process quality control steps. On the basis of the
relative importance of reducing production time and
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manufacturing lead time and the risk of wasting resources on products that have already failed in the preceding manufacturing stage.

reducing waste risk, decision-makers can make qual-
ity control steps and production steps overlap in time
at different degrees. Therefore, the overall quality
control time is partially controllable by the manufac-
turer depending on the configuration.

The queue time is primarily determined by the
demand and the manufacturing capability of the
facility. Different queuing policies can also have
impacts on the average queue time. The goal of any
manufacturing facility should be making the queue
time as short as possible without reducing the utility
of resources.

The outage time is the wasted time caused by
various unexpected events, such as machine break-
down, power outage, reagent supply disruption, and
so forth. One special case in cell manufacturing is
contamination. Any operation involving the interac-
tion of the product and the environment will bring
the risk of contamination. The time previously spent
on contaminated products is wasted. A new speci-
men must be requested, and the production must
start over.

The distribution time is determined by the design
of the supply chain network, which has different
aspects including the amount and placement of
manufacturing facilities, the methods and routes of
delivery and the real-time conditions of transporta-
tion. The goal of optimization is to minimize the dis-
tribution time within the constraint of the total cost.
Note that the total cost is affected by the cost of
transportation and additional factors. For example,
the location of a manufacturing facility determines
the rent, tax and salary criteria of its employees. In
practice, the location of a manufacturing facility is
usually assessed by factors including the cost, patient
accessibility, the demand distribution.

Efficiency-related indicators

The efficiency of the microscale model refers to the
utility of machines, reagents, labor and spaces. Any
idle resource implies a fraction of the cost that can be
potentially reduced. However, because there is intrin-
sic uncertainty of the AuCT industry and the product
is for therapeutic use, it is necessary to reserve some
resources for contingencies. The optimal ratio of
reserved resources is difficult to determine solely via
use of the simulation model. Decision-makers can
preset various scenarios to find the balance between
reserved resources and uncertainty handling. Once
the balance point is determined, the manufacturer can
use the model to find a facility setting that can achieve
the desired utility of different resources. The effects of
various disaster scenarios can also be verified using
the simulation model.

At macroscale, the efficiency refers to the fulfill-
ment rate of a facility and the marginal utility of a new
manufacturing facility at a specified location. Specifi-
cally, it measures the increase in the patient benefit,
especially patient accessibility, caused by adding a
new manufacturing facility. The efficiency of the sup-
ply chain network is low if the service areas of many
manufacturing facilities substantially overlap.

Cost-related indicators
The AuCT-Sim collects cost data for each product
during the simulation run and uses the data to calcu-
late two cost indicators: “cost per batch” and “cost
per year.” A detailed breakdown of the cost tracked
in the model can be located in the supplementary
material.

Table 1 is a summary of all indicators that com-
pose the output of the AuCT-Sim. Because different
users may have different emphasis on these indicators,
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2. Validate model assumptions: All key assumptions
must be revealed to review by subject matter
experts for a validation check. For assumptions
related to input data/distribution(s), implement-
ers should collect related data for statistical tests.

3. Output analysis: Output from the system was
compared with model outputs with an identical
set of input conditions. Given the validated input
parameter(s)/distribution(s), the simulation out-
put should not be significantly different from
physical system output. With data collected from
both the simulated and the physical production
systems, the implementers should conduct a non-
parametric statistical test to examine the similarity
between the two systems. Wilcoxon signed rank
test and Mann-Whitney U tests are two com-
monly used methods to investigate statistical simi-
larity or significant difference.

We note that we do not have data access to an
AuCT commercial production system, in part
because that the industry is in an early phase of
development. However, once real production data
become available, researchers and engineers will be
able to validate a simulation model of their system,
following the three-step validation guideline pre-
sented above. An example of a simulation model vali-
dation with a hypothetical facility is included in the
case study section.

Demonstrative case studies

A virtual CAR-T manufacture facility was built
based on system specifications collected from an con-
ceptual AuCT production facility that is in the phase
of designing. Detailed parameters of the simulation
can be found in the supplementary material.

Case 1: Choose an appropriate reagent base stock level

The objective of this case study was to determine a
good periodic reagent replenishment policy to reduce
the possibility of a stock-out while also reducing the
likelihood of having excess reagent in inventory. We
restricted our interest to a base-stock replenishment
policy (or order-up-to policy), where periodically we
place an order for reagent units that equals the base-
stock level (the design parameter), minus the number
of units of reagent in inventory. For example, for
base-stock level B and current reagent inventory level
R, the amount of reagent to orderis B — R, if B — R
is non-negative (otherwise, do not order). Base-stock
replenishment policies are optimal for a large class of
nonperishable inventory systems and usually are
excellent suboptimal policies for perishable inventory
systems.
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Figure 4. Base stock level versus average production lead time.
The average production lead time is monotonically decreasing as
the base stock level increases. Typically, the decrease becomes
modest once the base stock level exceeds certain threshold amount
(120, in this case).

In the simulation, we treat the batch of all needed
reagents as a single unit of reagents. All other system
specifications were fixed, while the base stock level
was varied from 10 to 150 in 10 step increments.
Each base stock level is tested 10 times with randomly
generated starting seeds. To ensure appropriate com-
parison across different base stock levels, we group
each of the 10 times of simulations with different base
stock levels as a master replication. The starting seed
of each master replication must be kept identical to
ensure that all event scenarios are the same except the
variable of our interest (base stock level). One hun-
dred and ten data points collected from AuCT-Sim
are scattered in Figure 4. The figure shows that the
average production lead time is monotonically
decreasing as the base stock level increases and that
this decrease becomes quite modest once the base
stock level exceeds 120. Our interpretation of these
data is as follows: (i) there is little value in a base stock
level greater than 120 to decrease the average produc-
tion lead time, (ii) there is little reason to have a base
stock level greater than 120 to reduce the possibility of
an excess(and expensive) amount of reagent units in
inventory, and hence (iii) 120 appears to be a reason-
able choice for a base stock level.

Case 2: Mitigating the risk and impact of supplier
disruption

The target of this research case study was to investi-
gate several system performances when a supplier
disruption occurred and later recovered, with differ-
ent combinations of the bioreactor and technical
operator quantities. The system can then assist the
designer in determining how many bioreactors and
operators are needed to mitigate the risk of supplier
disruption. Supplier disruption is a likely and severe
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Figure 5. Trends of queue lengths for different facility designs: for
each facility, the queue length of the facility increases after the sup-
plier disruption occurred on day 200; and the queue length dimin-
ishes after resuming the reagent supply on day 260.

risk for biomanufacturers. In 2017 alone, the cell
therapy industry witnessed a saline shortage due to
Hurricane Maria and a severe flu season [23,24], as
well as the shutdown of a major cell therapy supplier

due to sterility issues [25]. We are interested in how
the system performance recovers after the occurrence
of supplier disruption.

Figure 5 depicts queueing lengths of different
facility designs over the horizon of 500 days. Queue
lengths of every facility increased after the supplier
disruption occurred on day 200; and queue lengths
diminish after resuming the reagent supply on day
260. The facilities with 20 bioreactors and 12 opera-
tors (black line) and with 15 bioreactors and 9 opera-
tors (red dotted line) are able to recover to the normal
state within 42 and 64 days, respectively. In contrast,
the facilities with 11 bioreactors and 7 operators (pur-
ple line) and with 11 bioreactors and 6 operators
(blue dotted line) fail to recover after the reagent dis-
ruption. Moreover, facilities with an insufficient num-
ber of bioreactors or operators would also lead to
further increases in specimen queue lengths after the
disruption ended since the constrained number of bio-
reactors would not able to clear the requests accumu-
lated during the disruption period.

Figure 6 summarizes a few of the KPIs used to
evaluate system performances for cases with 11
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Figure 6. System performance under selected equipment and labor force specification: two configurations are selected for the comparison.
Additional testing details are included in the supplementary material. (a) Eleven bioreactors and six operators. (b) Twenty bioreactors and

twelve operators.



bioreactors and 7 operators (6A) and 20 bioreactors
and 12 operators (6B). Additional testing details are
included in the supplementary material. As shown in
Figure 6a, when 11 bioreactors and 7 operators are
equipped, the supply chain fails to recover after the
supplier disruption from Day 200; the bioreactor uti-
lization is kept at 100%; and the proportion of
patients who canceled their production increases
eventually to nearly 20%. The proportion of patient
queued also increases to 37% by the end of Day 500.

For the system equipped with sufficient bioreac-
tors and operators (20 bioreactor and 12 operators in
Figure 6b), bioreactor use rate recovers to normal on
Day 334. The proportion of patients who canceled
their production increased only by 3% and then
mildly recovers to normal by the end of the testing
period. The proportion of patients in the queue
increases to 29% after the disruption occurred but
then recovers quickly to normal by day 320.

By carefully tuning bioreactor and operator quan-
tities, the decision maker can visualize the recovery
ability under given system specifications and design
strategies to mitigate the risk to process disruption.

Testbed validation

Step 1: Check face validiry

The simulation tool we developed compiles a system
animation automatically for expert review. This sys-
tem animation demonstrates manufacturing details,
including the production flow from specimen arrival
to final shipment, the consuming/replenishing of
reagent inventory, the utilization of bioreactors and
technical operators, the failure and repair of bioreac-
tors, and all quality control sampling and testing.
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An expert team is involved to validate the logistics of
the simulation animation to check face validity.

Step 2: Validate model assumptions

We list the following key assumptions of the simula-
tion model produced by AuCT-Sim framework: (i)
Patient specimens are independent (i.e., specimen
occurrence, specimen pollution and patient mortality
are not correlated); (ii) bioreactors’ operations are
independent (i.e., bioreactor failures are indepen-
dent, and bioreactor recoveries are independent);
and (iii) therapy requests occurred according to a
Poisson process.

All key assumptions are revealed to the expert
review team for validation check to make sure that
none of the assumptions violate expert intuitions or
practical wisdoms.

Step 3: Output analysis

For the conceptual system, the only data we have
confirms with system experts is that the production
failure rate is roughly 5%. We collect failure rates of
the simulation model from 100 simulation tests (see
Figure 7 for the empirical distribution of the simula-
tion system’s production failure rate).

One sample Wilcoxon signed rank test is per-
formed to test if the failure rate yielded by our simu-
lation model equals 5%. The P value of Wilcoxon
signed rank test is 0.7027, which indicates that the
output of the simulated system has no significant dif-
ference with the system specifications provided by
the facility expert. We have thus statistically validated
that the simulation system produced by our frame-
work is a good representative of the conceptual facil-
ity having similar input—output relation.

(5.758, 6.258]
(6.258, 6.758]
(6.758, 7.258]
(7.258, 7.758]
(7.758, 8.258)
(8.258, 8.758]

Figure 7. Histogram of production failure rates (100 tests).
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Discussion

As an emerging industry, AuCT manufacturers must
engage in data-driven planning before expansion.
However, high uncertainty, the steep upfront invest-
ment and the lengthy trial duration make practical veri-
fication of planning scenarios impractical. Running
computational experiments with a simulation model
becomes an economical alternative for several reasons.

First, the AuCT-Sim generates and records
data comprehensively with perfect repeatability. In
real-life experiments, some critical data could be
overlooked at the beginning due to the lack of funda-
mental knowledge. With computational experiments,
all data are stored and can be regenerated. Although
some parameters are stochastic, recording the seed
of the random number generator ensures that repeats
generate the same “random” values.

Second, factors in the AuCT-Sim are controlla-
ble. In real-world manufacturing demonstrations, it
is challenging, if not impossible, to isolate one partic-
ular factor from numerous factors in an AuCT
manufacturing facility to test its effect. The effect
can be confounded with the considerable variability
in other factors. With simulation, it is easy to vary
one factor in multiple computational experiments to
evaluate its actual effect.

Third, the AuCT-Sim can be used to investigate
hypothetical scenarios. The simulation can provide
insights into events that are too large in scale to set
up a real-life experiment, such as a hurricane-caused
reagent supply disruption that affects the entire east
coast of the United States. Decision-makers can use
this DSS to test different risk mitigation strategies
and be prepared to counter similar events in the
future.

Fourth, the AuCT-Sim can highlight and clarify
ethical trade-offs inherent in the complex CAR-T
cell manufacturing processes. The focus of supply
chain optimization is typically and understandably
meeting anticipated demand while minimizing the
cost of goods. Decisions about the number of
manufacturing facilities to use, their locations and
their capacity, among many other factors also affect
the extent to patients or subsets of patients can access
a specific therapy safely, reliably and in a timely man-
ner. Such information is critical to firms developing
strategies to scale their production and incorporating
potential contingencies into their planning processes.
Supply chain simulation, combined with information
on the possible size, location and prognosis of patient
populations, in particular, may offer a uniquely pow-
erful approach to identify proactively concerns rele-
vant to the commercialization of novel cell therapies

early in the development process and proactively
address them.

Because the framework is highly customizable, it
is a versatile tool that can help with the study of vari-
ous subjects. Future research directions following
this work include the following:

e What is the optimal patient priority policy for
compassionate care cases?

¢ What is the best transshipment strategy for the
robustness of the supply chain network?

e Which inventory replenishing policy is the most
suitable for an AuCT facility, considering the pos-
sibility of supply disruptions?

¢ How to make policies to encourage manufacturers
to expand into regions with low patient accessibil-
ity?

e What are the marginal effects of technical innova-
tions in different manufacturing and quality con-
trol procedures?
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