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Abstract. Tau neutrinos are unique cosmic messengers, especially at extreme energies. When
they undergo a charged-current interaction, the short lifetime of the produced tau gives rise
to secondary tau neutrinos that carry a significant fraction of the primary neutrino energy.
Here we apply this effect, known as tau neutrino regeneration, to extremely high energy
neutrinos passing through Earth. We find that for most column depths, with the exception
of propagation through the core, Earth-traversing tau neutrinos emerge at O(PeV) energies.
We use these secondaries to estimate the expected signal from cosmogenic fluxes at IceCube
and find a non-negligible contribution to the astrophysical component above 1 PeV. We also
constrain the anomalous ANITA observations via the accompanying secondaries expected
at IceCube. We calculate that ANITA should see fewer than 10~7 events in the reported
direction, regardless of assumed source energy spectrum, ruling out the possibility that these
events are astrophysical in origin under Standard Model assumptions.
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1 Introduction

Neutrinos provide the opportunity to probe the most cataclysmic and energetic processes in
the universe. As they are immune to magnetic fields, and their interactions with matter are
extremely feeble, high-energy neutrinos may reach us unscathed from the edge of the universe.
However, as pointed out since the neutrino’s inception [1], the smallness of the neutrino
cross section is a double-edged sword: the remarkable ability of neutrinos to escape dense
astrophysical environments goes hand in hand with the ability to pass unobserved through
detectors. The neutrino detection problem becomes even more challenging for rare neutrino
production processes. The two most elusive predicted neutrino fluxes are the cosmic neutrino
background (CvB) and the cosmogenic flux. The former is the largest flux of naturally
produced neutrinos. Unfortunately, it peaks at meV energies, where its cross section has left
it undetectable to date. The latter is a guaranteed but yet to be detected flux of extremely
high energy (EHE) neutrinos produced in weak decays of particles from the interactions of
ultra-high-energy cosmic rays (UHECR) with the cosmic microwave background (CMB) [2—
4]. The cross section around these energies reduces the interaction length of neutrinos to
O(100) km in rock, but the flux is ~50 orders of magnitude smaller than the CvB, making it
equally elusive. Soon after the prediction of the cosmogenic neutrino flux, it became evident
that cubic kilometer detectors were required to observe this flux at high energies [5, 6]. Later
estimates for observing potential cosmic accelerators such as Galactic supernova remnants
and gamma-ray bursts pointed to a similar requirement [7-9].

The discovery of astrophysical neutrinos by IceCube marked the beginning of high-
energy neutrino astroparticle physics [10]. It was followed by the detection of an excess of a
high-energy astrophysical muon-neutrino flux component above the atmospheric background
in the northern sky [11]. These initial measurements have been confirmed recently with 9.5
years of northern sky muon-neutrino data [12] and 7.5 years of all-sky starting event data [13].
The astrophysical flux observed by IceCube saturates the theoretical flux expectations [14]
and is predominantly extragalactic [15]. Intriguingly, the total energy density in high-energy
neutrinos is similar to the energy density of the UHECRs, which hints at a common origin.



This observed flux, however, is not the cosmogenic neutrino flux, and the predominant sources
are yet to be identified.

In the search for cosmogenic neutrinos, IceCube selects the highest energy depositions
corresponding to ~EeV events. The main backgrounds in this region are the astrophysical
flux and muons produced in cosmic-ray showers. To reject the latter, a zenith-angle dependent
cut on the deposited energy is applied, resulting in the largest sensitivity near the horizon.
Additionally, Earth shields the detector from a large fraction of the primary cosmogenic
flux in the northern sky due to the increasing neutrino cross section [16-18]. Therefore, the
search is eventually limited to a region near the horizon; a sliver of the full sky. Similarly,
neutrino detectors sensitive to higher energies compared to IceCube have typically limited
searches to Earth-skimming or downgoing trajectories, where the column depth is optimal
for detecting EHE neutrinos after a single interaction [19]. Experiments such as ANITA,
ARA, ARITANNA, and the Pierre Auger Observatory have set limits on the cosmogenic flux
taking advantage of the Earth-skimming technique [20-27].

Proposed experiments such as RNO, GRAND, CHANT, POEMMA, and IceCube Gen-
2 [28-32] rely on the Earth-skimming technique for detection of EeV neutrinos. However,
tau neutrinos offer a unique opportunity to detect those neutrinos that prematurely interact
in Earth prior to reaching the detector. When an incident tau neutrino undergoes a charged-
current (CC) interaction, the subsequent decay of the produced tau will yield another tau
neutrino at a lower energy. Although this process is not unique to the tau channel, the energy
distribution of the secondary neutrinos peaks at much higher energies for tau neutrinos than
for muon or electron neutrinos. This effect was first suggested in [33] and has been named
“tau neutrino regeneration.” It was followed by further calculations of expected rates from
astrophysical sources in [34-38] as well as a prediction of non-negligible muon and electron
neutrino secondaries from tau-neutrino interactions [39].

In this paper, we explore a new avenue taking advantage of tau neutrino regeneration;
mainly, we study EHE neutrino fluxes by looking at their resultant secondaries. Numerous
calculations have been performed with different approximations to solve the tau neutrino
transport problem, including analytic and semi-analytic approximations [34-37, 39-41] as
well as Monte Carlo simulations [38, 42, 43]. In our treatment of tau neutrino propagation,
we include tau energy losses and show that signatures of Earth-traversing neutrinos provide
an opportunity to infer a neutrino flux at EeV energies through its secondaries. Using this
technique, we extend the parameter space to a previously neglected region below the horizon
and discuss the prospects of detecting cascaded neutrino fluxes, or Earth-traversing EHE
neutrinos. For this purpose, we have developed a Monte Carlo software package, TauRunner,
described in section 2.2.

In section 3 we show that Earth-traversing EeV neutrinos emerge at O(PeV) energies,
a region where IceCube has already performed measurements. We further highlight the
connection between EeV and PeV regions by investigating the recent anomalous EeV events
reported by ANITA. ANITA is a radio-balloon experiment that flies over the Antarctic ice
in search of cosmogenic neutrinos. During the third flight of ANITA in 2014, an event
(AAE141220) was detected that appeared to be an upgoing tau shower initiated by a tau
neutrino interaction in the ice. The reconstructed direction, however, implied a column depth
through Earth corresponding to ~20 interaction lengths for an EeV neutrino. The implied
survival probability coupled with an isotropic emission assumption requires a flux that is
in tension with cosmogenic neutrino limits [44-46]. But, discrete source emission can evade
these bounds. In section 4.1, we prove for the first time that any localized emission that



would result in AAE141220 is in severe tension with IceCube measurements at PeV energies,
closing the last loophole in the neutrino interpretation of the ANITA events.

In section 4.2, we propagate cosmogenic neutrino fluxes through Earth. We find that
the rate of Earth-traversing tau neutrinos expected at IceCube is twice the rate of Earth-
skimming events, with energy and zenith distributions that are both well-understood and
unique. These handles will allow separation from atmospheric and astrophysical backgrounds
in future dedicated analyses. Finally, we discuss the current strengths and limitations of this
approach as well as future prospects for IceCube-Gen2 in section 5.

2 Leptons through Earth

The propagation of a flux of neutrinos through a medium can be described by the following
cascade equation [47]

do(E, )
dx

where F is the neutrino energy, x is the target column density, o(FE) the total neutrino cross
section per target nucleon, f (E , ) is a function that encodes the migration from larger to
smaller neutrino energies, and ¢(FE, x) is the neutrino spectrum. The first term on the right
hand side accounts for the loss of flux at energy E due to charged-current (CC) and neutral-
current (NC) interactions, whereas the second term is the added contribution from neutrinos
at higher energy, E, to E through NC interactions of Ve, and CC interactions in the v,
channel. In Earth, where the column density can be on the order of 1033 nucleons/cm?,
neutrino attenuation is important for 100 TeV energies and higher [16]. In the Sun, where
the column density is, on average, 1037 nucleons/cm?, attenuation is relevant for energies
greater than 100 GeV [48, 49]. For dense astrophysical environments capable of producing
high-energy neutrinos — one of the denser ones being radio galaxies — the column density
is around 10%* nucleons/cm? [50]. Given that the column density required for a neutrino
to undergo a single interaction is, on average, 1029 nucleons/cm?, astrophysical sources are
thus transparent even to neutrinos of EeV energies and higher. In this work, the secondaries
produced in CC interactions of other flavors are neglected due to the fact that the electrons
and muons lose energy rapidly. On the other hand, taus produced in CC tau neutrino
interactions have a much higher probability of decaying yielding high-energy neutrinos. This
is due to the fact that weak decays scale as m® and that the tau mass is significantly larger
than that of the muon, allowing for more decay modes, which results in a ratio of lifetimes
between muons and taus of approximately 107. While the lifetimes are drastically different,
the energy losses above ~1 PeV, where stochastic losses are dominant, are only a factor of 10
smaller for taus than for muons. These two facts set the critical energy in ice — the energy
at which the decay and interaction lengths are equal — to be approximately ~10° GeV for
taus, while for muons it is ~10GeV [51]. This implies that tau energy losses can be safely
neglected below 10 PeV and the decay-on-the-spot approximation is a good one, see e.g., [18].
However, in this work we consider neutrino propagation at EeV energies and higher, where
this approximation no longer holds and careful treatment of tau energy losses is required;
see [37, 52] for recent implementations and discussions.

= —o(E)p(E,z) + /EOO dE f(E,E)¢(E, ), (2.1)

2.1 Lepton behavior at extremely high energies

Measurements of neutrino cross sections have been performed at energies below GeV up to
a few PeV [53]. This includes a multitude of results using human-made neutrinos in accel-
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Figure 1. The neutrino-proton cross section as a function of the neutrino energy. Solid (dashed)
lines correspond to charged-current (neutral-current) cross sections. Blue lines [75] correspond to the
model used for this work. Orange lines [66] are also implemented in the software and can be chosen
by the user.

erator [54, 55] and reactor [56, 57] experiments as well as natural sources such as solar [58],
atmospheric [59], and astrophysical neutrinos [60, 61]; for recent reviews, see [62, 63]. In the
future, measurements of high-energy neutrinos from collider experiments will be available in
the TeV range [64, 65].

Unfortunately, these measurements stop short of the region of interest for this work, and
predictions of the very high energy neutrino cross sections disagree at the highest energies;
see figure 1. The main issue driving these uncertainties is that the nucleon structure functions
cannot be derived from first principles, which causes us to instead rely on empirical mea-
surements. Perturbative QCD calculations of the high-energy neutrino cross section are in
good agreement with each other when physical consistency requirements are imposed on the
PDF's used [16, 17, 66, 67]. However, they grow at a rate (EB'3) that will eventually violate
the Froissart bound [68-70]. This unphysical growth is due to extrapolation of the PDFs to
unmeasured phase space. A phenomenological approach [71, 72] to address this issue relies
on an 1n2(5) extrapolation of low-energy measurements using a dipole model of the nucleon.
Calculations using this approach were shown to be in good agreement with the total proton-
proton cross section measurements from Auger [73] and TOTEM at LHC [74] data. In this
work, we use the dipole model calculation given in [75] as our model for neutrino-nucleon
interactions; this results in structure functions compatible with [72].

As discussed earlier, tau energy losses are negligible below 10 PeV and decay-on-the-spot
is usually a good approximation. Above the critical energy, taus lose energy through ioniza-
tion, bremsstrahlung, pair production, and photo-nuclear interactions. Ionization grows as
In(E;), and its contribution is minimal at the highest energies. Bremsstrahlung and pair-
production have virtually no energy dependence above 1 PeV for taus and are subdominant,
but they are included in our treatment nonetheless. The photo-nuclear cross section grows
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Figure 2. Distribution of final tau energies and total distance traveled before decay for several
initial tau energies. At 10 PeV (upper left) and below, taus lose little energy before decay, while at 1
EeV (upper right) taus reach the critical energy and losses become appreciable. In this regime, the
median range increases linearly as the tau becomes more boosted. At 1 ZeV (bottom left) and above
(bottom right), these distributions show asymptotic behavior, with taus decaying around 100 PeV
and traveling, on average, tens of kilometers.

with energy and dominates the losses for taus above ~1 EeV [76]. This cross section de-
pends on the nucleon structure function, and thus it has the same source of uncertainty as
the neutrino-nucleon cross section. For consistency, we use the same model of the nucleon
structure function implemented for the neutrino-nucleon cross section. We incorporate it
by modifying the publicly available Muon Monte Carlo (MMC) tool [77], which we use to
propagate taus. Figure 2 shows distributions of final tau energies and total distance traveled
before decay for several initial tau energies.

2.2 TauRunner

TauRunner is a Python package introduced for this analysis that propagates taus and neu-
trinos through a given medium and is available at [78]. It begins by calculating the neutrino
mean-free-path according to the total cross section and medium properties, followed by a
random sampling to obtain the free-streaming distance. We use the Preliminary Reference
Earth Model (PREM) [79] for the density profile of Earth and compute the target number
density using the isoscalar approximation. At the point of interaction, the specific process
(NC or CC) is chosen via the accept or reject procedure. If the neutrino experiences an
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Figure 3. Schematic of lepton propagation through Earth followed by a measurement with the
IceCube detector. There are three possible signatures from EeV tau-neutrino secondaries, described
here from left to right. Left: a throughgoing tau track, which is possible for taus at or above
10 PeV. Center: the interaction vertex is contained in the fiducial volume of the detector in this
case, producing a cascade from the charged-current interaction, along with an outgoing tau track.
Right: the tau decays before reaching the detector, producing a muon in ~18% of the cases, which
subsequently enters the detector. For clarity, not all particles involved in the interaction are shown.
An additional contribution included in the results but not shown here is an NC interaction inside the
detection volume.

NC interaction, its energy loss is sampled from the differential cross section, and a new free-
streaming distance is sampled. For CC interactions, a tau is created with an energy sampled
from the corresponding differential cross sections. Tau energy losses, which include stochastic
processes, are then calculated through a modified version of MMC. Tau final energy and dis-
tance traveled before decay are recorded. The tau-decay distribution for different modes has
been parameterized in [34], from which we sample the energy of the daughter tau neutrino.
The neutrino distributions described in [34] depend on the polarization of the decaying tau.
Taus produced in CC neutrino interactions are highly polarized [80]. However, above 1 EeV,
they undergo several interactions before decaying. As discussed earlier, the dominant inter-
actions allowed before decaying are pair production [51] and photo-hadronic interactions [81].
These interactions are implemented in MMC [77] by calculating the total cross section to all
possible final states, which include those that change the tau polarization. This allows for the
loss of the tau polarization after multiple scatterings. In order to take this into account, we
take the simplifying assumption of considering taus produced above 1 EeV to be unpolarized
at the point of decay. Below that energy, we average the negative and positive tau polariza-
tion distributions to account for neutrino and anti-neutrino propagation, respectively. From



the tau decay, only the leading tau neutrino is tracked, and the process repeats. Propagation
continues until the leading particle emerges, at which point the particle’s identity and final
energy are recorded, along with a detailed history of losses and interactions. A schematic
showing the relevant outcomes of this process is shown in figure 3.

3 Expected secondary neutrino distributions

We calculate the tau and neutrino energy distributions after traversing Earth. We choose one
energy value per decade, from 100 GeV to 1 ZeV, and test a range of incident angles. Energy
distributions from 1TeV to 100 PeV are shown in figure 4, and an angular distribution for
1 EeV neutrinos is shown in figure 5. We find that for angles greater than 20 degrees below
the horizon and energies above ~1 EeV, the secondary neutrino spectra are nearly identical.
The reason for this primary energy degeneracy stems from the tau losses. As described in
section 2.1, the dominant energy losses grow with energy, which effectively means the tau
loses more energy per column density traveled. This results in a flattening of the tau range,
corresponding to the asymptotic behavior in figure 2. This effect, coupled with the short
tau lifetime, causes the tau to travel roughly the same distance and decay around the same
energy (10-100 PeV) regardless of its initial energy. We note this is counterintuitive since one
would expect (incorrectly) that a higher energy incoming neutrino creates a higher energy
tau in a CC interaction, which would result in emerging neutrinos at higher energies.

Therefore, the only differences in the secondary neutrino distributions are due to the
variation of the first interaction length of the initial tau neutrino. For large enough column
depths, this difference is negligible. For Earth-skimming neutrinos, however, the width of the
distribution of the first interaction point is comparable to the corresponding column depth.
An extended discussion of Earth-skimming neutrinos and their interactions can be found
in [34-37, 76, 82].

Figure 4 shows the secondary neutrino energy distributions after propagation through
Earth for a fixed angle of 30 degrees below the horizon. The gray line is the survival prob-
ability given by an exponential whose exponent is the ratio of the propagated distance to
the neutrino mean interaction length. Thus, the rightmost bins in the distributions of fig-
ure 4 indicate the fraction of surviving primary neutrinos and, as expected, match the sur-
vival probability.

The most relevant feature of EeV tau neutrinos traversing Earth are the energies with
which they emerge. Figure 5 shows the distribution of outgoing events for an injected flux at
1 EeV, for several incident angles. Near the horizon, one can see the motivation for Earth-
skimming detectors. These detectors are most sensitive to neutrinos that undergo a single
CC interaction, which is inferred through the detection of the subsequent tau decay shower
in the atmosphere. However, at steeper angles, it becomes less likely for a tau to exit the
Earth. It’s much more likely that the tau will instead decay in the Earth, producing a tau
neutrino with energy between 100 TeV and 10 PeV. This is the regime where cubic-kilometer
neutrino detectors such as IceCube effectively operate. Thus, there is an opportunity to study
cosmogenic fluxes via the detection of cascaded daughter particles. This will be discussed in
further detail in section 4.2.

4 Applications and implications

IceCube has measured the diffuse neutrino flux at energies extending to ~10 PeV and has
placed upper limits at higher energies [83-86]. Although IceCube is sensitive to EHE fluxes
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Figure 5. Tau neutrinos with an initial energy of 1 EeV with different incident angles are propagated
through Earth, resulting in the cascaded tau neutrino spectra shown in red. At steep incident angles,
exiting tau neutrino energies are centered around 100 TeV, while for shallower incidence, this peak is
much higher in energy. The emergence angle 6 is with respect to the nadir.

directly and has set limits in that range, these searches are limited to a small region near
the horizon since most of the primary flux is lost beyond that. As was discussed previously,
radio detectors were developed to look for downgoing as well as near-horizon EeV neutrinos
as they skim the Earth, yet no claim of cosmogenic neutrino detection has been made. Two
exceptions are the anomalous ANITA events, which were detected at much steeper angles



than would be expected from an isotropic neutrino flux. We discuss one of these events
here in the context of its predicted PeV counterparts at IceCube. We then study the PeV
counterparts of neutrinos from a diffuse cosmogenic flux and show the expected signal in ten
years of IceCube data.

4.1 ANITA and its anomalous events

The ANITA collaboration has reported the detection of two events whose signatures are
consistent with upgoing air showers produced by a tau [87, 88]. This interpretation requires
the decay of a tau (from a tau neutrino CC interaction) to occur in the atmosphere, producing
an extensive air shower (EAS). This is distinguishable from a reflected EAS initiated by a
cosmic ray, in which the radio signal acquires a phase reversal from reflection off of the
Antarctic ice, while an upgoing EAS does not display such a phase reversal. However, this
interpretation is problematic as tau neutrinos with energies to which ANITA is sensitive are
not likely to travel through the large Earth column depths required for these events. While it
has been noted that these events are unlikely to be caused by an isotropic neutrino flux [44—
46], discrete-source emission could evade these constraints. Beyond the Standard Model
(BSM) explanations have also been proposed. This includes axion-photon conversion [89],
sterile neutrinos [46, 90-92], and heavy SUSY partners or dark matter particle decays [93—
101]. Here, we examine the discrete-source emission hypothesis and show that any detection
of EeV neutrinos from steep incident angles at ANITA can be ruled out by the nonobservation
of TeV-PeV neutrinos with other neutrino telescopes, such as IceCube.

The number of events detected by ANITA due to tau showers in the atmosphere from
a primary neutrino flux, ® (E),), is given by

dN,
dE),

N, = / dE,dE,, & (E,) "~ (El; B,) €uce (EL) AT | (4.1)

where E, and FE/ are the primary and secondary neutrino energies, respectively,
dN, (E; E,) /dE! is the energy distribution of secondary tau neutrinos near the ice sur-
face, AT is the duration of observation, and ... (E,) is the ANITA acceptance [44] in units
of cm?sr. The acceptance incorporates the probability of neutrinos interacting in the ice as
well as the probability of a tau decay shower occurring in the atmosphere. Given that the
reported acceptance in [44] includes neutrino propagation through Earth, we set the accep-
tance at all angles to be that near the horizon to remove the Earth absorption effects, which
we account for separately with TauRunner. For the incoming flux, we take the minimalistic
assumption of a delta function in energy, ® (E,) = % = &0 (E, — Ey), where @ is

the normalization with units cm 2

s~!. Probabilities of tau neutrinos exiting the Earth with
energies greater than 0.1 EeV are shown in figure 6 for the chord lengths corresponding to
AAFE141220. For both taus and tau neutrinos, the probability of exiting the Earth with an
energy larger than 0.1 EeV seems to be fairly independent of energy, for initial tau neutrino
energies above 1 EeV. Therefore, in what follows, we choose Fg = 1 EeV as the primary
energy. Details of this primary energy degeneracy are discussed in more detail in section 3.

As was discussed above, this primary flux of EeV neutrinos is guaranteed to be associ-
ated with a secondary flux of TeV to PeV neutrinos. Such a large rate of TeV muons simulta-
neously crossing the IceCube volume would deposit a large amount of charge. Large-charge

events are promptly reported by IceCube via the EHE and HESE streams.! For example,

"https://gen.gsfc.nasa.gov/amon.html
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Figure 6. Probability for a tau neutrino to exit the Earth with a minimum energy of 0.1 EeV (approx-
imate ANITA threshold), after Earth propagation (based on inferred chord length for AAE141220),
assuming v, incidence at a particular initial energy. Errors are statistical only.

the EHE stream requires three thousand photoelectrons and thirty channels to trigger an
alert. A ~1 PeV muon typically deposits ~200 TeV, which on average results in over four
thousand photoelectrons in more than 40 channels, when crossing the full detector [102]. In
fact, the largest energy deposit reported in these streams? corresponds to 5 PeV, but it’s for
a downgoing event; horizontal and upgoing events have not had multi-PeV announcements
in these streams. Thus, we conclude that IceCube has not observed catastrophic events that
would be produced by bundles of TeV-neutrino-induced muons. In what follows, we then
take the conservative assumption that a single muon makes it through. Such events have
been observed, and we can compare this expected yield to IceCube’s measurement of the
high-energy events. We find the maximum allowed normalization of the incident flux by
comparing the secondary neutrino distribution with the measured IceCube astrophysical flux
from the high-energy starting event selection (HESE) [83]. Results for AAE141220 are shown
in figure 7. The unfolded HESE spectrum is folded back to the detector using TauRunner as
discussed in section 2.2.

The 90% C.L. upper limit on the EeV primary flux normalization is set by comparing
both secondary distributions and requiring that the secondaries produced by the primary
EeV flux do not exceed those of HESE at 90% C.L. Given that the time profile of the
intrinsic flux is unknown, we place limits on the time-integrated flux. We take the duration
to be 22 days (AT in eq. (4.1)), corresponding to the entire ANITA-III flight. We find the
maximum allowed time-integrated flux to be E?®AT ~ 102 GeV cm~2. Using the maximum
allowed time-integrated flux, we calculate the expected number of events from ANITA. This
yields a maximum expected number of neutrinos of fewer than O (10_7) in 22 days. This is
illustrated in figure 7 where we show the flux required to produce one event from ANITA as a
reference. It is therefore highly unlikely for the reported event to be caused by a high-energy
tau neutrino.

https://gen.gsfc.nasa.gov/gen3/24028.gen3
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Figure 7. Maximum allowed flux of EeV neutrinos (maroon arrow), given an injected mono-energetic
neutrino flux at or above the detected ANITA event (AAE141220) energy. The normalization of the
secondary flux is set to the maximum that does not exceed IceCube’s diffuse astrophysical flux (black
bins). The flux needed to produce one event in the third flight of ANITA (blue marker) exceeds
the upper limit by many orders of magnitude. We use the published spectrum based on six years of
high-energy starting events.

In this analysis, we integrate the IceCube measurement of the astrophysical flux over
22 days. However, as this measurement was made over six years, we are working under
the assumption that the astrophysical flux has no large dependence on time. It is worth
noting, however, that short-timescale transients are allowed to overproduce the measured
astrophysical flux as long as they do not overproduce the astrophysical flux integrated over
the duration of the measurement. For this reason, a dedicated analysis by IceCube searching
for short-timescale emission around the time of the ANITA event should be performed.

4.2 Cosmogenic flux

At energies beyond the so-called Greisen-Zatsepin-Kuzmin (GZK) cutoff (E > 40 EeV),
proton interactions with the CMB restrict the mean free path of cosmic-ray nuclei primaries
to less than a few hundred Mpc from sites of cosmic acceleration. A suppression compatible
with the GZK cutoff has indeed been observed in cosmic-ray experiments [103—106]. The
subsequent decay of the mesons from these interactions leads to an observable, yet currently
undetected, flux of cosmogenic neutrinos.

Although the cosmogenic flux should be isotropic at Earth, searches for this flux have
been limited to either half of the sky (downgoing) or small solid angles, specifically looking
for Earth-skimming neutrinos, where the probability of detecting a tau in the atmosphere
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Figure 8. Per flavor neutrino fluxes from 1 TeV to 10 EeV, integrated over the northern sky. Primary
fluxes are shown as solid lines, and fluxes present at the IceCube detector are shown in dashed-dotted
lines and hatches. The v, components for various models of the cosmogenic flux are shown in red and
orange [107]. These spectra are compared to models of both the conventional [108] and prompt [109]
components of the atmospheric flux as well as measurements of the diffuse astrophysical flux [110].
Secondary v, spectra peak at PeV energies, a region of parameter space optimal for neutrino telescopes
such as IceCube.

after a single neutrino interaction in Earth is optimized [19-27]. Here, we show how using
the secondary flux will extend this search to the entire sky. Specifically, we look for neutrinos
after several interactions in Earth, which we have shown emerge at O(PeV) energies. We
also show that the rate from Earth-traversing neutrinos is not negligible.

Figure 8 displays the secondary tau neutrino flux of cosmogenic neutrinos compared to
atmospheric and diffuse astrophysical per-flavor neutrino fluxes in the northern sky. For a
cosmogenic flux, we choose a model produced from a fit to HiRes data [107]. We have also
considered other fluxes in the literature [19, 111, 112] and find that the shape of the secondary
flux at the detector is roughly consistent and differences manifest mostly in the overall nor-
malization. Predictions of number of events varied from 1 to 18 for the proton-dominated
fluxes considered. In the figures, we show our benchmark flux [107] as an example, as it
provides a picture of the average expectation for proton-dominated fluxes. The conventional
component in figure 8 shows the v, flux produced in cosmic-ray showers in the atmosphere,
using the model in [108]. The prompt component is the expected muon neutrino flux aris-
ing from atmospheric charm production in cosmic-ray showers; we use the model in [109].
Although there is a predicted tau neutrino component of this prompt flux, predominantly
from D-meson decays, the level of this flux is much smaller compared to the prompt electon-
and muon-neutrino components. The astrophysical muon neutrino flux we use is based on
eight years of northern sky muon track data from IceCube [110]. All of these primary fluxes
are propagated to the detector. The fluxes arriving at the detector are then compared to
the secondary flux from cosmogenic neutrinos. The spectrum of the secondary cosmogenic
flux is much harder and strongly dependent on declination, providing additional handles to

- 12 —



distinguish cosmogenic secondaries from other astrophysical or atmospheric events. The tau
neutrino component of the astrophysical neutrino flux (produced directly at cosmic accelera-
tors and not from proton interactions with the CMB) could also contribute to the secondary
neutrino flux in the northern sky. This contribution, and its relation to the GZK secondaries,
depends on the spectral index and maximum energy of the primary astrophysical flux. If the
primary astrophysical flux is assumed to be a hard power law (such as that of the through
going muon neutrino sample [12]) and unbroken out to energies exceeding 10° GeV, then the
secondary rate from such a flux would be comparable to or higher than that of the GZK
flux up to O(10 PeV). However, if the primary flux is softer (such as the measurement
from the high energy starting events sample [13]) or if the energy spectrum cuts off below
10 GeV, then the secondary rate would be lower than that from the GZK flux at energies
above ~ 3 PeV.

To further highlight the expected signal shape, we show the resulting expected signal
distribution of this benchmark model in figure 9. The number of expected signal events at
IceCube is calculated by propagating a v, flux isotropically over the Northern Hemisphere
from incidence on the Earth to a few kilometers away from IceCube. The number of events
expected at IceCube is then given by

r,
= NGOUE) + o) (E,) - NNC|,  (4.2)

v
1—\total

NEZK — / dE'dQ ®,(E)AT |oSC(E!) -
where @, (FE],) is the emerging flux near the detector, afjg and o N is the neutrino-nucleon
isoscalar cross section for CC and NC, respectively, I';_,,, /T'total is the tau to muon branching
fraction, and Ny is the effective number of isoscalar targets. This number is fixed to be IV
targets in 1 km? of ice for the NC channel, but has an energy dependence for the CC channel
due to the extended muon range, and is given by,

dNy,
dE,

In eq. 4.3, the first and second terms are the tau and muon energy distributions, respectively,
R, (E,) is the average muon range calculated with MMC, A& is the geometrical transverse
area (1 km? in this case), ,0ice is the density of ice, and Mig, is the isoscalar nucleon mass.
Figure 9 shows the expected number of events at IceCube binned in true neutrino energy
and declination. We find that, assuming a proton-dominated UHECR flux with a minimum
crossover energy of 1017?eV (105 eV), IceCube should see 2.70 (1.25) upgoing neutrinos
with a hard energy spectrum, peaking at 10 PeV, in ten years of data taking. These events
are dominated by the CC channel, with only around 10% of the signal coming from NC
interactions in the fiducial volume of the detector. Of all of the events, we find that only
~0.8 (0.5) would be Earth-skimming, where we have defined Earth-skimming to be up to
5 degrees below the horizon. Therefore, in total, we expect the rate from Earth-traversing
neutrinos to be at least twice that from Earth-skimming neutrinos.

Figure 10 further demonstrates the declination dependence of this flux through com-
parison to atmospheric backgrounds, and shows that in certain zenith angle bands with large
enough column depth through Earth, the flux arriving at IceCube is higher than the atmo-
spheric background at and above 2 PeV. Given that the event expectation is dominated by
the composition of the primary cosmic rays, searching for neutrino secondaries can provide
constraints on the composition of primary nuclei, independent of measurements performed
by direct cosmic-ray experiments such as the Pierre Auger Observatory and Telescope Ar-
ray [106, 113].

(E E)R (E M)Age‘)]\’f. (4.3)

iso

NSC (B, = /dE dE, Zg (ET,E’)
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Figure 9. Expected signal of cosmogenic neutrinos at IceCube, assuming the model from [107] and
assuming a cosmic-ray composition that is dominated by protons above energies of 1017-? eV, after 10
years of data collection. The Earth-skimming contribution represents only about one third of the total
expectation, and the majority of events are expected to peak around 10 PeV in true neutrino energy.

5 Discussion and conclusion

In this work we have introduced a new Monte Carlo package, TauRunner, to propagate EHE
neutrinos and taus, including updated cross section models and tau energy losses. We apply
this calculation to two interesting cases. In the first case, we consider the anomalous ANITA
events and find that the maximum allowed secondary neutrino flux constrained by IceCube
measurements implies a primary flux that is inconsistent with a Standard Model neutrino
explanation of AAE141220. We calculate that ANITA should see fewer than O (10_7) events
in the reported direction during the entire third flight, requiring a significant over-fluctuation
to detect one event. This conclusion is independent of the incident spectral shape and
time profile.

In the second case, we propagate GZK neutrino fluxes through Earth and find that
the secondary flux of TeV-PeV neutrinos from cascaded GZK fluxes is a non-negligible con-
tribution to the total astrophysical flux at IceCube. In fact, GZK secondaries are higher
than the astrophysical background above 10 PeV for most column depths. We calculate
the expected number of events from secondary GZK neutrinos as well as their energy and
zenith distributions. We find that the expected rate at IceCube from secondary neutrinos
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Figure 10. Per flavor neutrino fluxes from 1TeV to 10 EeV, integrated over various zenith bands in
the Northern Sky. Solid lines are primary fluxes, while secondary fluxes are represented by dashed-
dotted lines and hatches. The secondary cosmogenic tau neutrino spectrum is strongly dependent on
the incoming zenith angle. For arrival directions towards Earth’s core, it contributes equally to the
astrophysical flux at IceCube above 2 PeV.

is twice the rate at the horizon, albeit at lower energies where the astrophysical background
is higher. In the future, the larger effective area of IceCube-Gen2 will allow a dedicated
IceCube analysis to fit for this signal using its joint spectral and angular distribution and
provide a complementary measurement to detectors optimized for the EeV scale, most of
which are not sensitive to secondaries. POEMMA, for example, is sensitive to Cherenkov
and fluorescence emission of tau leptons created in tau neutrino CC interactions [31]. Their
detection threshold is estimated to be ~ 30 PeV, well above the relevant secondary energies
discussed in this paper. GRAND is a radio array which detects neutrinos via air showers
created by decaying taus [29]. Therefore, they require a highly boosted tau to emerge from
the nearby mountains. The Pierre Auger Observatory is also sensitive to that channel and
can additionally measure downgoing neutrinos interacting in the atmosphere [114, 115]. Our
calculations, however, show that the spectral distribution of taus emerging from the Earth
greater than 5 degrees below the horizon peaks at 1-10 PeV, well below both the GRAND
and Pierre Auger thresholds for such a channel. Therefore, indirect detection of the cosmo-
genic flux through secondaries is a unique advantage to detectors optimized for neutrinos at
~PeV energies. Currently, this is only accessible to IceCube, and in the future will be to
KM3NeT [116], Baikal-GVD [117], and IceCube-Gen2 [32].
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