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Quantum computing technologies promise to revolutionize calculations in many areas of physics, chemistry,
and data science. Their power is expected to be especially pronounced for problems where direct analogs of
a quantum system under study can be encoded coherently within a quantum computer. A first step toward
harnessing this power is to express the building blocks of known physical systems within the language of
quantum gates and circuits. In this paper we present a quantum calculation of an archetypal quantum system:
neutrino oscillations. We define gate arrangements that implement the neutral lepton mixing operation and
neutrino time evolution in two-, three-, and four-flavor systems. We then calculate oscillation probabilities
by coherently preparing quantum states within the processor, time evolving them unitarily, and performing
measurements in the flavor basis, with close analogy to the physical processes realized in neutrino oscillation
experiments. Evaluations on publicly available quantum processors obtain excellent agreement with classical
calculations. We provide recipes for modeling oscillation in the standard three-flavor paradigm as well as
beyond-standard-model scenarios, including systems with sterile neutrinos, nonstandard interactions, Lorentz
symmetry violation, and anomalous decoherence.
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I. INTRODUCTION

The unexpected and Nobel Prize–winning discovery of
neutrino oscillations [1] has led to a program of experiment
and theory that has shaped the understanding of the role
of neutrinos in the Universe. The spontaneous transition of
neutrino flavor over macroscopic distances, a phenomenon
known as neutrino oscillations due to its periodic behavior,
demonstrates that neutrinos have masses that are nonzero but
uniquely small. This smallness suggests connections to high-
scale physics [2–4] and may be related directly to the predom-
inance of matter over antimatter abundances in the Universe
[5]. Studies of neutrino oscillations have thus contributed and
will continue to contribute greatly to our understanding of
nature.

Experiments measure neutrino oscillations by studying a
neutrino beam’s flavor composition at different energies E and
baselines L [6]. Oscillation refers to spontaneous transforma-
tion between the three neutrino flavors νe, νμ, and ντ during
flight. This is due to dephasing of the neutrino wave functions
during propagation arising from a misalignment between the
flavor and mass bases. In the absence of strong matter in-
teractions, and when two neutrino mass states dominate the
oscillation, a sinusoidal flavor variation as a function of L/E
is characteristic. For oscillations in matter [7,8] and with three
neutrinos participating, more complex functional forms are
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observed [9]. Well-studied neutrino sources, in which neutrino
flavor changing has been observed, include νμ and ν̄μ produc-
tion by decays of charged pions from accelerators [10,11] or
in cosmic-ray air showers [12,13], production of ν̄e by fission
in nuclear reactors [14,15], and production of νe by nuclear
fusion in the Sun [16]. Neutrino oscillations have been shown
to violate the Leggett-Garg inequality [17], a time domain
version of Bell’s classic argument [18], which illustrates that
they are a truly quantum mechanical phenomenon with no
possible description in terms of hidden classical variables.

For neutrino oscillations to be observable, quantum coher-
ence between the neutrino mass basis states must be main-
tained over the flight distance of the neutrino [19], which
in some experiments is thousands of kilometers. Neutrinos
are thus very-long-baseline quantum interferometers and they
have been used as such to perform fundamental tests of
quantum mechanics [20,21] and Lorentz invariance [22–24],
in order to search for evidence of quantum gravity [25,26] and
violations of the equivalence principle [27]. The expected de-
coherence of oscillating neutrinos via wave-packet separation
has been studied theoretically [28], but not yet observed in
experiments.

Although quantum computing has been predominantly
associated with extensive database queries [29] or number
factorization [30], it was realized early in its conceptual
development that a natural connection between simulation of
quantum systems and quantum computers exists [31] (see [32]
for a recent review on quantum simulation). An advantage of
quantum computers over classical systems is the ability to per-
form actual Hamiltonian evolution rather than emulate it. In
particle physics we often deal with high-particle multiplicity
processes; for example, in high-energy collider experiments
quantum computers have been noted to be advantageous in the
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simulation [33] and reconstruction [34] of hadronic showers.
Other examples of physics frontiers that may be substantially
advanced by quantum computation include modeling in nu-
clear physics [35], many-body effects in condensed matter
systems [36], and quantum chromodynamics [37], among
others.

This work demonstrates the processing of three-neutrino
flavor information in a quantum simulation, executing an
analogous Hamiltonian evolution to generate neutrino flavor
oscillations. Such encoding and evolution is a vital building
block on which more advanced quantum simulations involv-
ing neutrino flavor can be constructed. Systems that could
particularly benefit from a quantum algorithmic approach to
neutrino flavor evolution include those where collective neu-
trino oscillations [38,39] are relevant, such as in supernovae or
the early Universe [40]. In these cases the quantum Boltzmann
equations that yield the evolution of the neutrino population
can only be solved approximately [41] or by specialized
numerical techniques [42,43]. This work demonstrating en-
coding of neutrino flavor structure and oscillation represents
an important step toward addressing such problems using
quantum processors.

Recently, publicly accessible quantum processors were
made available online as part of the IBM Q project and these
can be used for novel research into quantum processing [44].
Although the technology remains imperfect, with error rates
per gate operation of O(0.1%) and per qubit read of O(5%)
prohibiting very lengthy calculations, the platform provides
a test bed for exploring quantum solutions to computational
problems and finding ways to reexpress calculations in the
language of quantum circuits.

In this paper, we present a quantum simulation of neutrino
flavor oscillations. After illustrating how to encode the two-
neutrino system evolution in a quantum computer with a
single qubit, we proceed to implement the less intuitive three-
neutrino system realized on a subspace of a two-qubit Hilbert
space. The primary challenges involved are the implementa-
tion of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [6]
operation, which relates the flavor and mass neutrino eigen-
states, and the time-evolution operator of the system in the
computational basis. After testing that our quantum circuit
reproduces the quantum neutrino oscillation probability on
the IBM Q public quantum computer, we conclude with a
brief discussion of how to include more complex phenomena
including sterile neutrinos, matter effects, nonstandard inter-
actions, Lorentz symmetry violation, and decoherence within
the quantum algorithm.

II. TWO-FLAVOR NEUTRINO OSCILLATION

Two-flavor neutrino oscillations involve a Hilbert space of
two dimensions. This can be represented on a single qubit, via
the basis choice

|0〉 = |ν1〉 =
(

1
0

)
, |1〉 = |ν2〉 =

(
0
1

)
. (1)

The rotation into the flavor basis requires a unitary operation
via the two-dimensional PMNS matrix. The reduced PMNS
operation is defined such that |νe〉 = U 2x2†

PMNS|0〉 and |νμ〉 =
U 2x2†

PMNS|1〉. The most general unitary transformation applicable

to a single-qubit system, which must be able to support the
2 × 2 PMNS operation, is encoded in the IBM quantum
computer by the three-parameter U3 gate

U3(�,φ, λ) =
(

cos �
2 − sin �

2 eiλ

sin �
2 eiφ cos �

2 ei(λ+φ)

)
. (2)

For the two-neutrino system, oscillation probabilities depend
only on one of the parameters of U3, for the following
reasons [9].

(i) The parameter φ can be removed by a redefinition of
the |νμ〉 basis state via |νμ〉 → e−iφ |νμ〉. This corresponds to
rephasing the charged muon field, under which the standard
model Lagrangian is invariant. Without loss of generality, we
can set φ = 0.

(ii) The parameter λ could similarly be removed by rephas-
ing the |ν2〉 field |ν2〉 → eiλ|ν2〉. The Lagrangian is only
invariant under this redefinition if the neutrinos are Dirac
particles. If they are Majorana particles, on the other hand, this
phase is physical and must be maintained in the Lagrangian.
However, it can be shown the Majorana phase λ does not
influence neutrino oscillations [45] and general oscillation
probabilities can be calculated under the assumption λ = 0.

We thus connect to the conventionally defined 2 × 2 neu-
trino PMNS matrix via the definition

U 2x2
PMNS = U3(2θ, 0, 0) =

(
cos θ − sin θ

sin θ cos θ

)
. (3)

The IBM Q U3 gate used in this way has a simple
interpretation, as a rotation around the Y axis in the Pauli
representation. To prepare a neutrino flavor state, we can
apply the PMNS operation either to the |0〉 state to prepare
|νe〉 or to the |1〉 state to prepare |νμ〉. The input qubits in a
quantum computation conventionally initialize to |0〉, and the
|1〉 state can be prepared by application of the Pauli-X gate,
|1〉 = X |0〉. The preparation of electron and muon neutrino
flavor states, as well as m1 and m2 mass states in the two-flavor
basis, is shown in terms of quantum circuit elements in Fig. 1.

Oscillation probabilities can be calculated by time evolving
the initial flavor state vector in with the appropriate time-
evolution operator U and then measuring in the flavor basis.
Only relative phases between mass states are relevant for
oscillations, and so without loss of generality we can measure
all phases relative to the m1 basis state. The time-evolution
operation can thus be encoded in an S gate

U (t ) = S(φ) =
(

1 0
0 eiφ

)
, (4)

where φ = �m2t/2Eh̄. In the two-flavor system, we thus
find a particularly simple representation of the PMNS and
time-evolution gates, shown in Figs. 1(b) and 1(c). Examples
of circuits that realize various two-flavor oscillation scenarios
are given in Fig. 2. With the quantum circuit defined, we can
proceed to evaluate oscillation probabilities on the quantum
processor. We run 1024 trials and count flavor measurement
outcomes to establish oscillation probabilities in the two-
flavor system. Figure 3 shows the comparison of the quantum
calculation to the theoretical expectation for parameters rel-
evant to the νe disappearance in the KamLAND experiment
[14] as an example. The figure compares actual quantum
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FIG. 1. (a) Preparation of neutrino flavor and mass basis states in the 2 × 2 quantum computation, (b) PMNS gate, and (c) time-evolution
gates. (d) PMNS gate and (c) time-evolution gate in the 3 × 3 quantum computation.

computations, calculated on the IBM quantum processor
(squares); simulated runs of the quantum computer, which
represent the same operations performed without decoherence
or errors (circles); and the standard two-flavor oscillation
formula (lines). The quantum evolution matches very well
with expectations from both theory and quantum simulation.

For this circuit and others described in this paper we
have chosen gate arrangements that are simple and intuitive,
mirroring the quantum operations involved in physical neu-
trino oscillations. It is however clear that this physically
motivated sequence is not necessarily the most efficient way

FIG. 2. Quantum circuits embodying two-flavor neutrino oscilla-
tion for (a) νe disappearance, (b) νμ → νe, and (c) νμ → ντ .

of performing the relevant unitary operation on a quantum
computer. The three gates of Fig. 1 that represent flavor
rotation, time evolution, and inverse flavor rotation could,
for example, be combined into a single U (3) gate. Similar
simplifications are possible for the other circuits presented
in this paper. Since our goal in this work is to illustrate the
physical encoding of the neutrino oscillations system into
a quantum computer, we have opted for the more intuitive,
physically motivated circuit layouts throughout.

FIG. 3. Two-flavor electron-neutrino survival probability as a
function of the neutrino energy. The green line shows the theoretical
calculation using a classical computer. The black circle markers in-
dicate a quantum computer simulation and the black square markers
are the output of the IBM Q quantum computer.
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III. THREE-FLAVOR NEUTRINO OSCILLATION

A three-flavor neutrino oscillation involves a Hilbert space
of dimension 3, requiring more than one qubit. The minimal
representation can be encoded on two qubits, via a basis
definition such as

|00〉 → |ν1〉 = (1, 0, 0, 0), |01〉 → |ν2〉 = (0, 1, 0, 0),

|10〉 → |ν3〉 = (0, 0, 1, 0), |11〉 → |νX 〉 = (0, 0, 0, 1).
(5)

There is one redundant basis state |νX 〉 in this representation.
This could represent a fourth neutrino flavor in models with
sterile neutrinos, but for the present example we will consider
it as physically decoupled, and thus unphysical. As in the
two-flavor case, to prepare a flavor state, we must apply the
PMNS operation to an initial state in the computational basis.
Unlike in the two-neutrino example, however, creating a set
of quantum gates to implement the PMNS operation on two
entangled qubits is nontrivial. A real unitary two-qubit gate
requires at least two CNOT and 12 elementary gates [46] for
an entirely general representation. Constraints on the PMNS
matrix due to rephasing invariance may be expected to allow
for a more compact representation. Following exploration of
several possibilities, we constructed a parametrizable set of
six real U3 gates acting on two qubits A and B, with two
interspersed CNOT gates to reproduce the PMNS operation.
To fix the free parameters of this arrangement, we map the
circuit onto matrix multiplication in the computational basis
and perform a numerical fit to match its entries to the exper-
imentally determined PMNS matrix elements [47]. We fit for
the PMNS matrix and invert the gate arrangement for PMNS†.
The PMNS and PMNS† operations are thus constructed as

PMNS = U3A(ε)U3B(ζ )CNOTAB

× U3A(γ )U3(δ)BCNOTABU3A(α)U3(β )B, (6)

PMNS† = U3A(−α)U3B(−β )CNOTAB

× U3A(−γ )U3B(−δ)CNOTABU3A(−ε)U3(−ζ )B.

(7)

The best-fit parameters α, β, γ , δ, ε, and ζ (primed and
unprimed) reproduce the measured PMNS and PMNS† ele-
ments within one part in 106 when no CP violating phase
is present, comfortably within experimental uncertainty. This
parametrization can be extended with two additional U3
gates and a CNOT in order to incorporate a Dirac CP phase
with similar accuracy. These parameters are tabulated in
Appendix B. The PMNS gate decomposition in terms of
component gates is shown diagrammatically in Fig. 1(d).

Once the initial flavor state is prepared, the time-evolution
operation U must be implemented. This is represented in the
computational basis by

U (t ) = exp

[
i diag

(
0,�m2

12
t

2Eh̄
,�m2

13
t

2Eh̄
,�

)]
, (8)

where � is an arbitrary phase that can be picked for con-
venience, since the fourth basis state is unobservable. A
straightforward choice that can be implemented as one-qubit

gates acting on A and B is

U (t ) = SA

(
i�m2

13
t

2Eh̄

)
SB

(
i�m2

12
t

2Eh̄

)
, (9)

where SA and SB are the S gates for qubits A and B, respec-
tively.

The complete quantum circuit for the oscillation calcula-
tion in the three-neutrino space comprises state preparation,
time evolution, and flavor measurement and is shown in
Appendix A, Fig. 6. This circuit can be run repeatedly to
prepare qubits in flavor eigenstates, time evolve them, and
measure their flavor after propagation in order to establish
oscillation probabilities. Since this is a substantially more
complex circuit than the two-flavor case, gate errors and read
errors are expected to be more prevalent. We correct for the
effects of read errors in the final oscillation probability by
applying an inverted error matrix in the computational basis,
which accounts for decoherence and read errors in a statistical
manner, based on qubit readout accuracy measured using runs
with L/E = 0. More details on this procedure can be found in
Appendix C.

Figure 4 shows two example calculations of three-flavor
oscillation probabilities given an initial muon neutrino beam.
Figure 4(a) shows calculations at smaller L/E where the os-
cillation is effectively a two-flavor system. Figure 4(b) shows
the behavior near the first oscillation maximum where three
flavors νe, νμ, and ντ are participating strongly. Good agree-
ment with theory is observed in both regimes. In both cases,
the electron flavor is slightly overrepresented, potentially due
to read and gate errors that are not entirely symmetrically dis-
tributed between flavors. The size of the effect is comparable
to the statistical and systematic uncertainty, which receives
contributions from (i) accumulated gate errors, based on the
ibmqx2 spec of ∼10−3 per gate added in quadrature over 50
gates, and (ii) statistical uncertainty, from the finite number of
evolutions (1024) used to establish the oscillation probability.
After running the simulation and applying a statistical readout
error mitigation tuned on zero-time simulations (explained
in Appendix C), strong agreement between the quantum and
classical computations are obtained.

IV. NEUTRINO OSCILLATIONS WITH NEW PHYSICS

In addition to standard neutrino oscillations, beyond-
standard-model (BSM) effects that have been sought in neu-
trino oscillation experiments can be incorporated into the
quantum circuit straightforwardly either by (a) extending the
PMNS matrix and time-evolution operator to higher dimen-
sionality or (b) introducing new effects in the time-evolution
term. Here we briefly review a few of these scenarios.

A. Sterile neutrinos

As we have seen, the incorporation of at least one addi-
tional basis state within the Hilbert space is mandatory, given
a two-qubit realization. To use this state to represent an oscil-
lating forth neutrino, as suggested by short baseline neutrino
anomalies [48–51], two adjustments are required: (i) exten-
sion of the PMNS matrix to mixing in four dimensions, which
is already achievable in our present parametrization, given
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FIG. 4. Calculations of three-flavor neutrino oscillations evalu-
ated using a quantum computer (squares), quantum computer simu-
lator (circles), and theory (lines). The quantum computer results have
been corrected for gate read errors based on the matrix M described
in the text. The two plots (a) and (b) show three-flavor oscillation
probabilities calculated in two characteristic L/E ranges.

appropriate gate coefficients, and (ii) independent control of
the phase of the |ν4〉 = |11〉 mass state in the time-evolution
operator. This is necessarily an operation that involves entan-
gling the two qubits and so cannot be implemented on single-
qubit gates only. A circuit that produces the required time
evolution (an independently specified phase on each of |01〉,

FIG. 5. Quantum circuits for two BSM oscillation scenarios:
(a) sterile neutrino oscillations and (b) anomalous decoherence in
the mass basis.

|10〉, and |11〉) is shown in Fig. 5(a). This circuit, configured
with the parameters

φ1 = 1

4Eh̄

(
�m2

12 − �m2
13 + �m2

14

)
, (10)

φ2 = 1

4Eh̄

(
�m2

12 + �m2
13 − �m2

14

)
, (11)

φ3 = 1

4Eh̄

(−�m2
12 + �m2

13 + �m2
14

)
, (12)

will achieve the necessary four-state time evolution needed
to implement quantum simulations of the four-flavor neutrino
system extended for a single sterile neutrino.

B. Nonstandard interactions and matter effects

The modeling of either standard [7,8] or nonstandard
[52,53] matter effects, with or without violations of Lorentz
symmetry, can be incorporated without changing the three-
flavor oscillation quantum circuit by adjustment of the in-
put parameters that describe the PMNS and time-evolution
operations in the modified matter basis. A discussion of the
parametrizations that incorporate these effects is given in
Appendixes D and E.

C. Decoherence

Decoherence is a nonstandard neutrino oscillation effect
[20,54,55] that is often considered in connection with quan-
tum gravity or space-time foam models [56]. In decoherence
scenarios, development of entanglements between parts of
the neutrino wave function and an external environment lead
to partial collapse of the wave function and suppression of
oscillations. Decoherence can be manifest in various bases,
depending on the degrees of freedom within the neutrino
subsystem that the environment entangles. Figure 5(b) il-
lustrates a quantum circuit that implements decoherence in
neutrino oscillations via generation of entanglements in the
mass basis for small dt . In this circuit, an auxiliary qubit rep-
resenting the environment is initialized to zero and acquires
a small and time-dependent admixture of the |1〉 basis state,
if and only if the second neutrino qubit is in a |1〉 state.
This entanglement between the system and the ancilla qubit
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acts to suppress coherence in the off-diagonal elements of the
neutrino system density matrix. The process of continuous
measurement during evolution for large dt is approximated by
repeated units of time evolution, entanglement, and measure-
ment, resetting the ancilla to zero after each time step. In such
a scheme, entanglement is developed between the system and
ancilla, suppressing the off-diagonal system density matrix
elements. This entanglement is then conveyed to the outside
world via measurement. The process of measurement does not
itself generate decoherence, but allows the ancilla to be disen-
tangled and reset to zero for the next block of time evolution
and further suppression of the off-diagonal system density
matrix elements. Such a scheme could model gravitational
decoherence, or flavor change through wave-packet separation
given a normal ordering of neutrino masses (with one mass
state much heavier than the others).

V. CONCLUSION

We have demonstrated a quantum mechanical simulation
of neutrino oscillations on a quantum computer, using both
two-flavor and three-flavor systems. The two-flavor system
has an almost trivial realization in the two-dimensional Hilbert
space of a single qubit, with implementation of PMNS and
time-evolution gates using individual single-qubit gates. The
three-neutrino system, on the other hand, requires a more
complicated quantum circuit, involving the entanglement of
two qubits to produce a Hilbert space of four dimensions. A
subspace of three of these states is used for the calculation.
Our implementation of the 3 × 3 PMNS matrix on the two-
qubit space in terms of six general rotation gates and two
CNOT gates provides an accurate and economical realization of
the PMNS operation within a quantum circuit. By choosing a
phase convention such that phases are measured relative to ν1

and allowing for phase freedom in the unphysical fourth basis
state, the time-evolution operator can be implemented using
two single-qubit gates.

Quantum calculations using both the two- and three-flavor
systems agree with theoretical expectations for the neutrino
oscillation probability within systematic and statistical uncer-
tainty. Although in agreement, the calculation presented here
is characteristically different from the classical computation
of oscillation probabilities, since the qubits act as direct quan-
tum analogs to the evolving neutrino flavor wave function.
The system is prepared coherently, evolves forward in time
unitarily, and has its wave function collapsed to measure
the final flavor oscillations, just as in a neutrino oscillation
experiment.

Analogs of real quantum systems inside quantum proces-
sors such as the one presented in this paper may eventually
enable computations that surpass the capabilities of their
classical counterparts. This is especially likely for strongly
coupled or highly entangled systems, such as collectively
oscillating neutrinos in supernovae. Understanding how to
translate simple and well-understood calculations into quan-
tum circuits is a necessary step toward realizing this goal. In
this work, we have presented one such example, creating an
analog to two- and three-flavor neutrino oscillations inside a
publicly accessible quantum processor.
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APPENDIX A: RUNNING QUANTUM
COMPUTATION ON IBM Q

Computations were run on two IBM publicly accessible
quantum computers ibmqx2 (Yorktown). The two least-read-
error-prone qubits on this five-qubit machine that could be
connected by the appropriate logic gates within the allowable
topology were chosen to support the computational basis. At
the time of writing these were qubits 0 and 2, with reported
gate errors of 0.77 × 10−3 and 1.03 × 10−3 and read errors
of 7.6% and 2.9%, respectively, and a multiqubit read error
of 2.21%. Some supplementary calculations were also run on
IBM Q ourense.

It is difficult to convert such gatewise error specifications
into an expected calculational accuracy, so we instead opted
to measure the accuracy directly by running L/E = 0 simula-
tions. Some contribution to the error budget is expected from
errors that accumulate only when the time evolves a finite
amount, so we conservatively associate an additional contri-
bution for gate error on top of that measured from unoscillated
points. The complete quantum circuit as implemented on
ibmqx2 is shown in Fig. 6. This was run with 1024 shots to
establish the survival probability, and the statistical error as-
sociated with this count is included in our uncertainty budget.

As well as access to the quantum processor, the IBM
website offers a quantum simulator tool to simulate the cir-
cuit before running it. In all cases, simulations agreed near
perfectly with theoretical expectations. This suggests that
wherever the data show small differences from theoretical
expectations, these are to be attributed to the imperfections
of the quantum processor.

APPENDIX B: FITTING THE PMNS MATRIX
GATE PARAMETERS

The fit to the PMNS matrix is made by gradient minimiza-
tion over six parameters. We minimize the sum of squared
residuals of each of the elements of the matrix. The final fit
converges to the true PMNS matrix within one part in 106 for
every element, comfortably within experimental uncertainty.
The input values of the PMNS matrix used in the fit are from
[47] and are
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FIG. 6. Three-flavor neutrino oscillation experiment as run on the IBM quantum computer.

UPMNS =

⎛
⎜⎜⎝

0.821427 0.550313 0.149708 0
−0.481513 0.528538 0.699138 0
0.305618 −0.646377 0.699138 0

0 0 0 1

⎞
⎟⎟⎠. (B1)

The bottom row represents a decoupled unphysical state, but is necessary to span the four-dimensional Hilbert space represented
by two qubits. The best-fit parameters from fitting the PMNS and PMNS† matrices in the computational basis are

α = −0.6031, β = −2.0125, γ = 0.7966,

δ = 1.0139, ε = 0.7053, ζ = 1.3599.
(B2)

This gate configuration will apply the PMNS rotation to any state prepared in the mass basis, as defined in this work:

M =

⎛
⎜⎜⎝

(1− f1)(1 − f2) + f 2
1 + f 2

2 (1 − f1) f2 − f 2
2 (1 − f2) f1 − f 2

1 f1 f2

(1 − f1) f2 − f 2
2 (1− f1)(1− f2) + f 2

1 + f 2
2 f1 f2 (1 − f2) f1 − f 2

1
(1 − f2) f1 − f 2

1 f1 f2 (1 − f1)(1 − f2) + f 2
1 + f 2

2 (1 − f1) f2 − f 2
2

f1 f2 (1 − f2) f1 − f 2
1 (1 − f1) f2 − f 2

2 (1 − f1)(1 − f2) + f 2
1 + f 2

2

⎞
⎟⎟⎠.

APPENDIX C: CORRECTING FOR BIT FLIPS
AND DECOHERENCE

Some random qubit readout errors are naturally expected
for any quantum computation. However, we can correct our
final distributions against some of these information losses
statistically. We consider that there is some average proba-
bility f1 or f2 for either of the qubits to be flipped leading
to an incorrect flavor measurement, which is approximately
uniform across circuits. Then the effect on the final distribu-
tion of events in (νe, νμ, ντ , νX ) space is to multiply final-state
distributions by a matrix M, given in Appendix B.

The form of M can be understood by considering that
spurious transitions νμ ↔ νe, ντ ↔ νe, ντ ↔ νs, and νμ ↔ νs

require only one qubit flip in the final read, whereas spurious
transitions νe ↔ νs and νμ ↔ ντ require two. Here f1 and
f2, the rates of bit flips in qubits 1 and 2, can be measured
by examining the rate of spurious transitions at L/E = 0,
where no physical oscillation effects are expected, and any

transformation must be associated with spurious bit flips. The
quantum simulator predicts zero transformation at L/E = 0,
whereas we find that the quantum computer gives some ran-
dom transformations, consistent with f1 ∼ 13% and f2 ∼ 3%.
With f measured, we can invert M and apply this inverted
matrix to correct the final probability distributions. This cor-
rection is applied in order to obtain our final comparison of
the data and theory.

APPENDIX D: INCORPORATION OF MATTER
POTENTIALS AND NONSTANDARD INTERACTIONS

When neutrinos travel through a medium they experience
a potential produced by coherent forward scattering with
electrons, protons, and neutrons. The potential sourced by
protons and neutrons is the same for all neutrino flavors and
thus induces an overall phase in the neutrino system evolution.
The electron charged-current potential is flavor asymmet-
ric, producing an observable modification in the neutrino

033176-7



C. A. ARGÜELLES AND B. J. P. JONES PHYSICAL REVIEW RESEARCH 1, 033176 (2019)

oscillation probability. The matter potential can be written in
the flavor basis as

Vm =
√

2GF

⎛
⎝Ne 0 0

0 0 0
0 0 0

⎞
⎠, (D1)

where GF is the Fermi constant and Ne is the electron number
density. Then the total neutrino Hamiltonian can be written as

H = Hvac + Vm = U †
m�Um. (D2)

The Hamiltonian can be diagonalized by a unitary transfor-
mation Um that relates the flavor basis to the Hamiltonian
eigenstates and a diagonal matrix �, which contains the
energy eigenvalues. In a two-flavor system, Um can be written
as a 2 × 2 rotation matrix analogous to vacuum case 3, where
the rotation angle is given by

θm = arctan
� sin2 2θ

� cos 2θ0 − √
2GF Ne

, (D3)

where � = �m2/2E and θ0 is the vacuum mixing angle. The
relevant Hamiltonian eigenvalue difference is given by

λ =
√

(� cos 2θ0 −
√

2GF Ne)2 + �2 sin2 2θ0. (D4)

Thus the matter modification does not require a new quantum
circuit; we can simply replace the vacuum mixing angle and
eigenvalue for the expressions given above. For the case of
the three-neutrino scenario, exact expressions for the effective
mixing angles and eigenvalues are lengthy, but can be readily
found by numerical diagonalization.

Effects of the standard neutrino matter potential have been
observed with natural sources, e.g., in solar neutrino exper-
iments, and with human-made sources, e.g., in accelerator
neutrinos experiments. Deviations from the standard potential
can be due to new forces that manifest themselves as vector or
scalar interactions. These have been constrained by searches
of anomalous neutrino flavor changing and more recently
in coherent-scattering neutrino experiments. The status of

recent constraint on nonstandard interactions can be found
in Ref. [57], where the constraints are given relative to the
weak-force strength GF and flavor-dependent coefficients εαβ .
Depending on the target and the flavor structure these are con-
strained from O(1%) to O(10%). The effects of nonstandard
vector interactions can also be calculated using a quantum
processor by using the PMNS gate with effective matter
potential mixing angles. The appropriate angles and eigenval-
ues can be determined by diagonalizing the Hamiltonian in
Eq. (D2) where one ought to replace Vm by

V nsi
m =

√
2GF Ne

⎛
⎝1 + εee 0 0

0 0 0
0 0 0

⎞
⎠. (D5)

APPENDIX E: INCORPORATION
OF LORENTZ VIOLATION

The standard model (SM) of particle physics [58] can be
thought as an effective field theory towards a grand unified
theory of nature [59]. In many extensions of the SM, Lorentz
symmetry is broken. Neutrinos, as natural interferometers, are
extremely sensitive to high-scales where Lorentz violation
(LV) may be manifest. In fact, neutrinos have some of the
strongest constraints on LV nonrenormalizable operators [24].
Calculations of oscillation probabilities in the presence of LV
can be performed using the quantum circuits presented in this
paper. Lorentz violation can be incorporated in the neutrino
Hamiltonian as

H = Hvac + ã3 + c̃4E + ã5E2 + c̃6E3 + · · · , (E1)

where ãd (c̃d ) is a matrix that contains the strength of inter-
action between the neutrino and a Lorentz violating field pro-
duced by a CPT even (odd) effective operator of dimension d .
Similarly to the case of matter interactions, this Hamiltonian
can be diagonalized numerically in order to obtain appropriate
effective mixing angles and frequencies. One can then use the
PMNS quantum gate and evolution operators discussed in the
main text.
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