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Humans are adept in simultaneously following multiple goals, but the neural mechanisms for maintaining specific
goals and distinguishing them from other goals are incompletely understood. For short time scales, working
memory studies suggest that multiple mental contents are maintained by theta-coupled reactivation, but evidence
for similar mechanisms during complex behaviors such as goal-directed navigation is scarce. We examined intra-
cranial electroencephalography recordings of epilepsy patients performing an object-location memory task in a
virtual environment. We report that large-scale electrophysiological representations of objects that cue for specific
goal locations are dynamically reactivated during goal-directed navigation. Reactivation of different cue represen-
tations occurred at stimulus-specific hippocampal theta phases. Locking to more distinct theta phases predicted
better memory performance, identifying hippocampal theta phase coding as a mechanism for separating competing
goals. Our findings suggest shared neural mechanisms between working memory and goal-directed navigation
and provide new insights into the functions of the hippocampal theta rhythm.

INTRODUCTION

Purposefully and persistently following goals over long spatial and
temporal distances is at the heart of human behavior. Achieving a
goal often entails navigation to the goal, rendering goal-directed
navigation an essential basis of everyday life (1). However, the neural
basis underlying this complex behavior is incompletely understood
in humans.

Phenomenologically, goal-directed navigation exhibits similari-
ties with working memory, because the initially defined goal that
shall be achieved has to be maintained throughout the entire navi-
gation period—similar to working memory tasks in which items
have to be maintained over a short period of time (2). In addition,
the current goal has to be protected from interference with other
goals that require navigation to different goal locations, a cognitive
function that resembles the simultaneous but separate maintenance
of different mental contents during working memory. Hence, we
hypothesized that neural mechanisms similar to the ones underlying
working memory may be recruited to accomplish the complex
behavioral capacity of goal-directed navigation.
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More specifically, both theoretical and empirical working memory
studies suggest that different working memory items are represented
via distinct patterns of brain activity that are dynamically reactivated
during the maintenance period (3, 4). To keep different working
memory items apart from each other and to preserve their serial
order during the encoding period, the reactivation of item-specific
brain activity patterns during maintenance has been theoretically
suggested and empirically reported to occur at different phases of a
low-frequency oscillation in the theta/alpha frequency range (3, 5, 6).

Here, we hypothesized that a similar mechanism of theta-coupled
replay [here in the sense of repeated reactivation following (4)] holds
true for goal-directed navigation, although the exact implementation
of this principle might differ. Specifically, following previous studies
in rodents, goal-specific representations might be widely distributed
across the brain (7) with a focus on prefrontal regions that represent
future paths (8) and spatial goals (9, 10). In addition, the coordinat-
ing phases of the low-frequency oscillation may stem from the
hippocampal theta rhythm, which dominates the local field potential
in both rodents and humans during (virtual) spatial navigation
(11-14) and is therefore a promising candidate for organizing
multiple competing goals during goal-directed navigation (15).

Hence, in the present study, we hypothesized that periods of
goal-directed navigation require dynamic reactivation of the desired
object that cues for an associated goal location. To this end, we
examined intracranial electroencephalography (iEEG) recordings
from epilepsy patients performing an object-location memory task
in a virtual environment. We used representational similarity analysis
(RSA) to identify large-scale electrophysiological representations of
different objects that cued for associated goal locations. We then
tracked their dynamic reactivation over time-varying periods of
goal-directed navigation and related this dynamic reactivation to
the hippocampal theta rhythm, which could be directly observed via
hippocampal depth electrodes in a subset of our patients. We found
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that electrophysiological representations of different cues locked to
different hippocampal theta phases, suggesting that the hippocam-
pal theta cycle enables the separation of competing goals in a given
context. Our results identify similarities between working memory
and goal-directed navigation and suggest hippocampal theta phase
coding as a neural component underlying goal-directed navigation.

RESULTS

Behavioral data

We examined brain-wide iEEG recordings from N = 22 presurgical
epilepsy patients performing an object-location memory task in a
virtual environment adapted from a previous study (16) (Fig. 1A,
fig. S1, Materials and Methods, and table S1). Briefly, during an ini-
tial learning phase (that was excluded from all analyses), patients
were asked to navigate toward eight visible objects and memorize
their locations. Subsequently, patients completed variable numbers
of retrieval trials, depending on compliance. At the beginning of
each retrieval trial, patients were cued with an image of one of the
eight objects. Goal-directed navigation occurred after cue presentation
while patients approached the remembered location (Fig. 1B).
Patients then made a response indicating their decision and received
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Fig. 1. Virtual navigation task and behavioral data. (A) Associative object-location
memory task during virtual spatial navigation. At the beginning of the experiment,
patients collected eight different objects from eight different locations within the
virtual environment. Afterward, patients completed variable numbers of re-
trieval trials, during which they were first presented with one of the eight objects
serving as cue (“cue presentation”). Patients then navigated to the remembered
location of that object (“retrieval”) and made a response. Following this response,
patients received feedback via an emoticon (“feedback”) and had to collect the
object from its correct location (“re-encoding”). (B) Overhead view of the virtual
environment (diameter, 9500 vu). Goal-directed navigation occurred after cue pre-
sentation, when patients started (“S”) navigating to the assumed object location.
Starting locations were identical with ending locations from preceding trials and
thus varied from trial to trial. The trial-wise drop error was calculated as the Euclid-
ean distance between the response location (“R”) and the correct location (“C”).
(€) Histogram of drop errors across all trials and all patients. Red dashed line, over-
all chance performance. (D) Change in mean drop error across objects between the
first and the last trial. Gray lines, patient-wise data; thick red line, average.
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feedback via different emoticons. Afterward, the object appeared in
its correct location from where it had to be collected by the patients,
allowing further learning. In each trial, spatial memory performance
was assessed as the Euclidean distance between the response loca-
tion and the correct location (“drop error”).

Patients completed between 40 and 160 trials (mean + SD, 102 + 38
trials) within a time period of 36 to 105 min (mean * SD, 54 + 14 min).
The mean drop error was 2456.8 + 709.9 (mean * SD) virtual units (vu),
which is better than patient-wise chance performance (mean + SD,
3250.2 + 258.9 vu; paired ¢ test: t; = —5.22, P < 0.001). Most of the
trials (collapsed across patients) showed a drop error better than over-
all chance performance (70.8%; patient-wise range, 43.0 to 97.6%;
Fig. 1C). Furthermore, there was a significant reduction in drop errors
(averaged across objects) between the first and the last trial (paired
ttest: ) =4.63, P < 0.001) (Fig. 1D). Retrieval and re-encoding periods
had an average duration of 18.6 + 16.1 sand 14.7 £ 13.1 s (mean + SD),
respectively. The navigation speed was 609 + 62 vu/s (mean + SD), on
average. These results indicate that patients could successfully perform
the task and built reliable associations between the cues and their cor-
responding goal locations.

Detection of large-scale electrophysiological

cue representations

As a precondition for examining the relationship of dynamically
reactivated cue representations and hippocampal theta phases
during goal-directed navigation, we first had to establish reliable
cue representations from the brain-wide iEEG data.

To this end, we used time-resolved spatial RSA (tr-sRSA), which
allows the identification of stimulus-specific iEEG patterns in brain-
wide activity distributions. That is, we used tr-sRSA to identify a time
period during cue presentation for which identical cues exhibited
higher neural similarity than different cues (Materials and Methods).
Our procedure was grounded in recent advances in decoding approaches
for time series data (17) and in previous studies using similar types of
SRSA (18, 19). Briefly, acquired iEEG data were first low-pass—filtered
at 30 Hz, epoched around cue presentation, and converted into inde-
pendent components (20). Our decision to use low-pass—filtered time
series data as input to the RSA was motivated by the fact that raw time
series data preserve the rich information content of the original signal,
including both the power and phase of low-frequency activity (21), and
have recently been shown to perform well in decoding analyses (17).
Next, trials were randomly distributed onto two data halves. Within
each data half, we calculated one neural vector (NV) across indepen-
dent components (which is why our RSA approach was labeled
“spatial”) per cue by averaging across trials of the same cue, separately
for each time point within the epoch (which is why our RSA approach
was labeled “time-resolved”). Afterward, neural similarity was assessed
by calculating the Fisher-z-transformed Spearman correlation co-
efficient between all combinations of NV; and NV;, where i is the cue
index of the first data half and j is the cue index of the second data half.
Separately for each time point during the epoch, this resulted in an 8 x 8
confusion matrix of neural similarities between identical (on-diagonal)
and different (off-diagonal) cues. Using cluster-based permutation
testing (22), we then identified a time period during cue presentation,
during which identical cues elicited higher neural similarity than
different cues, suggesting that this time period contained cue-specific
information.

In total, patients contributed recordings from 2330 channels
widely distributed across the brain (Fig. 2A). tr-sRSA was applied as
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described above to extract neural cue representations. Using cluster-
based permutation testing, we found that, during a time period of
256 to 530 ms after cue onset, RSA similarity values were higher for
representations of identical cues as compared to different cues
(cluster-based permutation testing: fcjyster = 799.66, P = 0.019;
Fig. 2, B and C). This significant difference allowed us to define
neural cue representations whose dynamic reactivation could be
examined during subsequent goal-directed navigation (see below).
That is, the significant temporal window between 256 and 530 ms
after cue onset provided us with a temporal region of interest (tROI)
for defining the neural cue representations: Each neural cue repre-
sentation was obtained by averaging the component-wise iEEG
data within the tROI and across trials of the same cue, separately for
each patient and each cue.

To corroborate the specificity of identified neural cue represen-
tations, we extracted them for both data halves and calculated the

Data half #1
Cue representation

similarity of all possible pairs of neural cue representations from the
two data halves [following (23)], separately for each patient (Materials
and Methods). Neural similarity values of identical cues were con-
sistently higher than neural similarity values of different cues (averaged
across patients; fig. S2, A and B). Similarly, patient-wise percentage
values (assessing how often neural similarity values of identical cues
were higher than neural similarity values of different cues) were
above 50% chance level for each cue (all t,; > 2.28, all P < 0.033).
Furthermore, we performed time-resolved spatial multivariate pattern
analysis (tr-sMVPA; Materials and Methods) designed to decode
the eight different cues from the large-scale electrophysiological pat-
terns. Empirical classifier accuracies were higher as compared to
surrogate classifier values during a time period of 402 to 625 ms
after cue onset (cluster-based permutation testing: fyster = 817.70,
P =0.001; fig. S2C). Besides, we observed a strong correlation
between classifier accuracy values (empirical minus surrogate;
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Fig. 2. Identification of large-scale electrophysiological cue representations using tr-sRSA. (A) Colored brain surfaces showing the number of channels for each
Montreal Neurological Institute (MNI) coordinate. Black coloring, no coverage. (B) Analysis principle (illustration). In both data halves, we obtained one cue representation
(across channels) per time point (t=x) during cue presentation (each small brain, one cue representation). We estimated neural similarity between each pair of cue
representations, giving an 8 x 8 confusion matrix. On-diagonal (green squares) and an equal number of off-diagonal values (blue squares; randomly chosen) were extracted,
resulting in a time point-specific measure of neural similarity between identical and different cues. (C) Higher similarity values for identical as compared to different cue
representations between 256 and 530 ms after cue onset (red shaded area). Multivariate iEEG activity contains cue-specific information during this time window, constituting
a tROI for subsequent analyses. (D) More distinct neural representations of cues with subjectively more similar goal locations (left bar plot), driven by the second data
half (right bar plot). Error bars represent SEM. (E) Contribution of brain regions to the cue representations (“relative engagement”). Light blue bars, number of implanted
channels. *Po < 0.05 (Bonferroni-corrected for 29 regions).
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averaged during the tROI) and neural similarity values (identical
minus different; averaged during the tROI) [Spearman’s correlation:
rho(22) = 0.64, P = 0.002], further supporting our conclusion that
tr-sRSA enabled the detection of cue-specific neural representations.
Because previous studies revealed stimulus-specific representa-
tions based on gamma power [e.g., (6, 19)], we sought to establish a
link between the neural cue representations obtained via the filtered
raw data (see above) and neural cue representations based on gamma
power patterns. To this end, we performed tr-sRSA based on frequency-
resolved gamma power (frequencies of 30 to 90 Hz with steps of 4 Hz;
Materials and Methods). This analysis revealed a significant cluster
ranging from 300 to 410 ms after cue onset within a frequency range
of 66 to 82 Hz (cluster-based permutation testing within the tROI:
foluster = 125.24, P = 0.029; fig. S3). Correlating the patient-wise
difference of RSA;dentical and RSA gifferent Of the tr-sRSA based on the
raw data (i.e., RSAigentical — RSAdifferent; averaged during the tROI) with the
patient-wise difference of RSAigentical a1d RSA gifferent Obtained from the
tr-sRSA based on gamma power (i.e., RSAidentical — RSAdiferent; averaged
within the significant cluster) revealed a strong positive correlation
[Spearman’s correlation: rho(22) = 0.68, P < 0.001], demonstrating a link
between both types of neural cue representations. This suggests that
both types of tr-sRSA capture the activity of widespread neuronal assem-
blies that exhibit differential responses to the eight different cues.

Inverse relationship between similarity of neural cue
representations and similarity of associated subjective

goal locations

We next sought to understand the information content of the large-
scale electrophysiological cue representations in greater detail.
Because patients associated each cue with a unique location in the
virtual environment, we hypothesized that the neural cue represen-
tations contained spatial information resulting from the associated
goal locations. Hence, we analyzed whether pairs of cue representations
whose associated goal locations were spatially closer to each other
(high similarity of goal locations) exhibited higher or lower neural
representational similarity than pairs of cue representations whose
associated goal locations were further apart from each other (low
similarity of goal locations). We termed the resulting metric “higher-
order similarity,” because it assessed the correspondence of neural
similarity and spatial similarity between pairs of cues and their
associated goal locations [fig. S4; see also (24)]. Both possibilities
(higher versus lower representational similarity) appeared a priori
plausible to us: On the one hand, it seems natural that spatially closer
goal locations could lead to more similar neural representations of
the associated cues (25), but on the other hand, recent evidence shows
that representations of overlapping routes diverge with learning
(26, 27), suggesting inverse relationships between features of the
external world and their neural representations. Crucially, the simi-
larity of neural representations may actually be related to assumed
(“subjective”) rather than objective similarity of goal locations,
because neural representations may be more related to their mental
content as compared to their corresponding objects in the external
world (25). Analytically, we thus calculated Spearman correlations
between the pairwise similarities of neural cue representations and
objective/subjective similarities of goal locations, separately for each
patient (Materials and Methods). These analyses revealed that pairs
of neural cue representations with subjectively similar goal locations
were more distinct from each other than neural cue representations
with subjectively dissimilar goal locations (one-sample ¢ test of
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z-transformed Spearman correlation values against 0: f,; = —2.09,
P =0.049; Fig. 2D). This inverse relationship was particularly present
during the second half of the data (t,; = —2.33, P = 0.030; Fig. 2D),
suggesting that learning induced the segregation of neural cue rep-
resentations whose associated goal locations were spatially close to
each other, providing further support for the hypothesis that event
overlap triggers repulsion of neural representations (26, 27). On a
more general level, we also observed that cue representations were
more distinct from each other at the end as compared to the begin-
ning of the task (last trial chunk versus first trial chunk, paired t test:
ty1 = 2.10, P = 0.048; Materials and Methods), which is in line with
theoretical accounts suggesting that learning induces refinement of
neural representations (28).

Following up on this result, we performed several control analyses
to detect potential confounding or additional factors determining
the information content of the neural cue representations (Materials
and Methods). First, we assessed whether basic behavioral charac-
teristics (direction, speed, and acceleration) associated with each
cue could account for the pairwise similarity of neural cue represen-
tations. We found that none of these three metrics showed a consistent
pattern of higher-order similarity: Spearman correlations between
the pairwise similarity of neural cue representations and the pairwise
similarity of cue-specific direction, speed, or acceleration patterns
were not consistently above or below zero (one-sample ¢ tests: all
ty; < 1.11,all P> 0.282). Assessing visual similarity of the cue objects
via a deep neural net (DNN) did not reveal a consistent relationship
between the pairwise similarity of neural cue representations and the
pairwise visual similarity of the cue representations at any DNN layer
either (all f;; < 2.12, all Py > 0.366, Bonferroni-corrected for eight
DNN layers). Furthermore, specific reward patterns associated with
each cue over the course of the experiment only accounted for a small
(nonsignificant) amount of the similarity relationships between neural
cue representations (one-sample ¢ test: £; = 1.96, P= 0.064). In summary,
these results reveal that the neural cue representations preferentially
contained information about the subjective spatial relationship between
cue-associated goal locations.

Large-scale electrophysiological cue representations
particularly rely on prefrontal regions

To elucidate which brain regions contribute to the cue representa-
tions, we performed a jackknife resampling procedure. Specifically,
each of the patients’ channels was omitted once from the tr-sRSA
procedure. For each channel, we then tested whether the area under
the curve (AUC) of the tr-sRSA result for identical cues (Fig. 2C,
green line) increased or decreased during the tROI when omitting
this channel, reflecting a negative (Con < 0) or positive (Copn > 0)
contribution of a given channel, respectively. Collapsing across
patients, we found that 1200 of the 2330 channels (51.5%) contributed
positively to the RSA results (i.e., they increased the neural similarity
of identical cues from both data halves), roughly comparable to pre-
vious findings (19). Of all regions, lateral orbitofrontal cortex
(n =11 implanted patients with a total of 65 channels) and rostral
middle frontal gyrus (n = 12 implanted patients with a total of 216
channels) showed the highest percentages of positively contributing
channels (69.8 and 63.4%, respectively). Only the contribution of
these two regions exceeded chance level that was estimated by shuffling
the channel-wise C,,, values with respect to the channel labels multiple
times, each time calculating the percentage of positively contributing
channels for a given region (permutation test, both Pc,r < 0.05,
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Bonferroni-corrected for 29 regions; Fig. 2E and Materials and
Methods). This result is in accordance with the relevance of these
areas for representing goals in rodents and monkeys (9, 10, 29).
Additional analyses showed, however, that the information provided
by these prefrontal areas was neither necessary nor sufficient for
cue-specific neural representations: Reperforming the tr-sRSA with-
out any channel located in these two regions still revealed higher
similarity values for representations of identical cues as compared
to different cues within a time period of 305 to 525 ms after cue
onset (cluster-based permutation testing: tcjyster = 644.00, P = 0.027).
Reversely, performing tr-sRSA based only on activity from these
channels did not provide significant cue-specific information (cluster-
based permutation testing, P = 0.400). Furthermore, iteratively adding
channels to those located in lateral orbitofrontal cortex and rostral
middle frontal gyrus lead to a clear increase in the difference between
Sidentical and Sgifferent during the tROI. Together, these results demon-
strate that neural cue representations relied on large-scale electro-
physiological patterns and not exclusively on lateral orbitofrontal
cortex and rostral middle frontal gyrus (fig. S5).

In addition to analyzing which brain regions increased the neural
similarity of identical cues, we also examined which brain regions
decreased the neural similarity of different cues from both data
halves, thus also contributing to a significant difference between the
neural similarity of identical and different cues. Again, we performed
a jackknife resampling procedure in which each of the channels was
omitted once from the tr-sRSA procedure. For each channel, we
then tested whether the AUC of the tr-sRSA result for different cues
(Fig. 2C, blue line) increased or decreased during the tROI when
omitting this channel, reflecting a negative (Cof < 0) or positive
(Cof > 0) contribution to the neural similarity of different cues. For
each brain region, we then calculated the percentage of positively
contributing channels (Cog > 0), where a low percentage value
means that a given brain region decreases the similarity of different
cue representations and is thus beneficial for our tr-sRSA results. Of
all regions, lateral orbitofrontal cortex, middle temporal gyrus,
medial orbitofrontal cortex, and lingual gyrus exceeded chance level
(permutation test, all Py, < 0.05; however, no region survived
Bonferroni correction for 29 regions; fig. S6).
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Furthermore, we computed second-level statistics across all
patients examining which brain regions simultaneously increased
the neural similarity of identical cues and decreased the neural simi-
larity of different cues (i.e., exhibiting a positive difference between
Con and Cof values). This analysis revealed a prefrontal cluster
extending into rostral middle frontal gyrus (cluster-based permutation
testing, P = 0.038; fig. S7). In summary, these findings demonstrate
that neural cue representations relied on large-scale electrophysio-
logical signals with a focus on prefrontal regions.

Human hippocampal theta oscillations
during goal-directed navigation
Since our main goal was to examine the relationship of dynamically
reactivated cue representations and the hippocampal theta rhythm
during goal-directed navigation, we next sought to characterize
hippocampal activity during periods of goal-directed navigation.
Because not all patients were implanted with hippocampal channels,
analyses focusing on the hippocampus were restricted to a subset of
n = 16 patients. In each of these 16 patients, we selected one hippo-
campal channel that showed the clearest event-related potential
(ERP) during cue presentation (Materials and Methods, table S2,
and Fig. 3A). The average ERP during cue presentation from these
channels peaked at 458.1 + 56.4 ms (mean + SEM; Fig. 3B). Note
that this selection procedure is orthogonal to any analysis focusing
on the period of goal-directed navigation after cue presentation.
Theta oscillations in humans during virtual navigation were pre-
viously shown to oscillate at a lower frequency than during real-
world navigation in rodents and were also shown to occur in bursts
rather than continuously during movement (11-14). To account for
these characteristics of human theta oscillations, we applied a recently
developed algorithm [termed “MODAL?; for a detailed description,
see (30)] to the hippocampal recordings of our remaining 16 patients
to (i) identify the prevailing theta frequency in our virtual naviga-
tion task and (ii) define periods of goal-directed navigation when
oscillatory activity in the theta frequency range was present (for three
examples, see Fig. 3C). MODAL thus outputs, for a given data
segment, frequency bands whose power exceeds the background
spectrum during specific time periods. Accordingly, we applied
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Fig. 3. Hippocampal theta oscillations during goal-directed navigation. (A) Depiction of selected hippocampal electrode channels, which were located in the anteri-
or hippocampus. Each white dot represents one channel from a separate patient (n = 16). (B) Hippocampal ERP during cue presentation. (C) Exemplary time periods with
theta oscillations during goal-directed navigation from different patients. Black, raw signal; red, low-frequency component of the raw signal (passband, 1 to 10 Hz); green
shading, time periods with theta oscillations as detected by MODAL (see Materials and Methods). (D) Summary of frequency bands detected by MODAL, across patients,
showing that they preferentially occurred at a frequency of 3 to 4 Hz. Dots represent mean, and vertical lines represent SEM.
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MODAL to each trial of each patient and kept the frequency band  and across trials of the same cue, separately for each patient. Thus,
that fell within a frequency range of 1 to 10 Hz (11). Across patients, each prototypal neural cue representation consisted of a ¢ x 1 brain-
we then calculated the percentage of trials in which a given frequency ~ wide spatial pattern of voltage values, where ¢ refers to the number of
was contained in the extracted band. This revealed a prevailing theta  independent components in a given patient (no independent compo-
frequency of 3 to 4 Hz, strongly resembling previous findings (13)  nents were excluded before this analysis; see Fig. 4A for a schematic
(Fig. 3D). Instantaneous theta frequencies did not vary as a function  illustration of a prototypal neural cue representation).

of retrieved cue [patient-wise one-way analysis of variance (ANOVA) For a given trial, we then slid the prototypal cue representation
across cues: all F < 1.63, all P > 0.132; Materials and Methods]. In  whose associated goal location had to be retrieved during this trial
addition, MODAL allowed us to define periods of goal-directed  across all instantaneous NV of the retrieval period (Fig. 4A). NVs
navigation with theta oscillations that were then recruited for our  are the brain-wide iEEG patterns at time point ¢ during retrieval
analysis of dynamic reactivation of large-scale electrophysiological  [after converting the channel-wise time series data into independent
cue representations at specific hippocampal theta phases (see below). components using the independent component analysis (ICA)
As in previous studies [e.g., (14)], these periods occurred in bursts  unmixing matrix described in the “Detection of large-scale electrophysio-
with a mean duration of 364 + 36 ms (mean + SEM). On average, logical cue representations” section]. This procedure resulted in a
62.6 + 3.2% (mean = SEM) of the retrieval periods contained theta  “sliding RSA” time course of similarity values depicting dynamic

oscillations as defined by MODAL. reactivation of the cue representation over the course of goal-directed

navigation (Fig. 4B). A high sliding RSA value means that the corre-
Dynamic reactivation of large-scale electrophysiological sponding NV (NV,)—i.e., the brain-wide iEEG activity pattern at
cue representations at specific hippocampal theta phases time point ¢ during the retrieval period—resembles the cue repre-

We were now in the position to examine the dynamic reactivation of ~ sentation extracted from the tROI during cue presentation. As can
large-scale electrophysiological cue representations and their relation-  be seen from the example in Fig. 4B, sliding RSA values fluctuated
ship to hippocampal theta phases during goal-directed navigation.  between states of high and low resemblance.

To this end, we first extracted one prototypal neural representation The dynamically changing similarity values were then related to
for each of the eight cues by averaging across time within the tROI  the concurrent hippocampal theta rhythm to determine the preferred
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Fig. 4. Dynamic reactivation of cue representations at distinct hippocampal theta phases during goal-directed navigation. (A) Analysis procedure of representation-
to-theta-phase-clustering. For each cue, we extracted one neural representation vector (NRV;) within the tROI during cue presentation. For each trial, we then calculated
the dynamically changing similarity between NRV; (i.e., the NRV of cue i whose goal location had to be retrieved during this trial) and all NVs (NV;_,) during the retrieval
period. (B) This resulted in a sliding RSA time course (top subplot). In addition, we obtained one hippocampal (HC) theta phase for each time point during retrieval where
power exceeded the background 1/f spectrum (bottom subplot). For each trial, the preferred theta phase of the sliding RSA values was extracted via the nonparametric
Moore-Rayleigh test. (C) We assessed the significance of representation-to-theta-phase-clustering by comparing against a surrogate distribution that was obtained by
circularly shifting the sliding RSA values against the hippocampal theta phases. Red dot and red line, empirical mean. (D) Preferred theta phases of one patient. Bold lines,
preferred theta phases; shaded areas, circular SEM. (E) Stability of preferred theta phases across trials (within-stability). (F) Distinctiveness of preferred theta phases
(between-similarity). (G) Lower between-similarity values are associated with better spatial memory performance.
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theta phase of a given trial. In detail, we estimated the preferred
theta phase of an individual trial via the Moore-Rayleigh test, which
is a nonparametric extension of the Rayleigh test (31) that weights
the input phases by a ranked factor (i.e., the sliding RSA values in
our case), resulting in the preferred phase and a strength estimation
r* of our “representation-to-theta-phase-clustering.” To confirm that
we captured representation-to-theta-phase-clustering, we compared
the empirical r* value to surrogate r* values created by circularly
shifting the dynamically changing similarity values with respect to
the concurrent theta phases (permutation test, P = 0.004; Fig. 4C).
For each patient (for an example, see Fig. 4D), we evaluated whether
the preferred theta phases of individual cue representations were
stable across trials (“within-stability”). We also tested whether the
preferred phases of different cue representations were similar to each
other (“between-similarity”). We found that individual cue represen-
tations clustered at specific theta phases (permutation test, P = 0.003;
Fig. 4E) and different cue representations clustered at different theta
phases (permutation test, P = 0.012; Fig. 4F), suggesting that the
hippocampal theta cycle provides a means to coherently represent
different (competing) goals via phase coding.

Next, we examined the functional relevance of hippocampal theta
phase coding for spatial memory performance. We found that lower
Rayleigh’s Zyetween-similarity Values were associated with lower mean
drop errors [Spearman’s correlation: rho(16) = 0.52, P = 0.042; non-
parametric partial correlation controlling for the number of trials:
rho(16) = 0.53, P = 0.044; nonparametric partial correlation con-
trolling for subject-specific average movement speed: rho(16) = 0.53,
P =0.043; Fig. 4G], indicating that patients performed better when
the preferred theta phases of the eight cue representations were
more distinct from each other. By contrast, zyithin-stability Values were
not related to mean drop errors [Spearman’s correlation: rho(16) = 0.01,
P =0.969; nonparametric partial correlation controlling for the num-
ber of trials: rho(16) = —-0.01, P = 0.999].

The finding of representation-to-theta-phase-clustering is illus-
trated in depth for eight trials of one patient (Fig. 5), showing that
the eight different cue representations are reactivated at different
hippocampal theta phases. The separate reactivation of the eight
different cues and their associated goal locations is thus achieved
via clustering to different phase ranges of the theta cycle.

As a control, we also analyzed the dynamic reactivation of large-
scale electrophysiological cue representations at specific hippocam-
pal theta phases using a subset of n = 12 patients. Here, four patients
were excluded because of relatively higher levels of epileptic ac-
tivity in their hippocampal channels (Materials and Methods).
This subset of patients showed qualitatively identical results:
Representation-to-theta-phase-clustering was significant (permu-
tation test, P = 0.017), preferred theta phases of individual cue repre-
sentations were stable across trials (permutation test, P = 0.001),
different cue representations clustered at different theta phases
(permutation test, P = 0.027), and there was a significant relation-
ship between Zpetween-similarity Values and mean drop errors [Spearman’s
correlation: rho(12) = 0.71, P = 0.012; nonparametric partial cor-
relation controlling for the number of trials: rho(12) = 0.65, P=0.031]
but not between Zyithin-stability values and mean drop errors [Spearman’s
correlation: rho(12) = 0.24, P = 0.457; nonparametric partial cor-
relation controlling for the number of trials: rho(12) = 0.21,
P =0.543].

In favor of the specificity of this finding, representation-to-theta-
phase-clustering was not observed when analyzing time periods
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during which MODAL did not detect hippocampal theta oscillations
(permutation test, P = 0.414). Furthermore, representation-to-theta-
phase-clustering was not observed at 3 to 4 Hz in the entorhinal
cortex as a control region (permutation test, P = 0.123; subset of
n = 10 patients with electrode channels in entorhinal cortex).

Dynamic reactivation of large-scale electrophysiological
cue representations at specific prefrontal theta phases
Because previous work in rodents revealed a close relationship be-
tween hippocampal and prefrontal theta oscillations (32), we finally
aimed at extending our findings of a dynamic reactivation of large-
scale electrophysiological cue representations at specific hippocam-
pal theta phases to the prefrontal theta rhythm. To do so, we first
selected one prefrontal channel in each patient who was implanted
in the prefrontal cortex (n = 13) (Fig. 6A and Materials and Methods).
Parallel to hippocampal channels, exemplary time periods with theta
oscillations as defined by MODAL (30) are shown in Fig. 6B. Pre-
frontal theta oscillations occurred in significant temporal association
with hippocampal theta oscillations, as revealed by an increased
percentage of time in which prefrontal theta oscillations occurred
when hippocampal theta oscillations were present as compared to
when they were not present (subset of n = 8 patients with both hippo-
campal and prefrontal channels; 67.1% versus 62.2%; paired f test:
t; = 2.53, P = 0.039; Fig. 6C). Furthermore, we found increased 3.5-Hz
phase coupling (33) between prefrontal cortex and hippocampus
for good as compared to bad performance trials at the end of
goal-directed navigation when decision-making load presumably was
highest (last 1.5 s of the retrieval period; paired ¢ test: t; = 5.36,
P =0.019, Bonferroni-corrected for 18 frequencies; Materials and
Methods and fig. S8). This result is in line with findings in rodents
showing enhanced coupling between hippocampus and prefrontal
cortex during task periods associated with peak mnemonic and
decision-makingload (32). Control analyses showed that phase locking
values (PLVs) at 3.5 Hz during good performance trials were also
significantly higher than surrogate PLVs during good performance
trials (paired ¢ test: t; = 2.70, P = 0.030), whereas PLVs at 3.5 Hz
during bad performance trials were not higher than surrogate PLV's
during bad performance trials (paired t test: t; = —=1.95, P = 0.092).
To reveal a dynamic reactivation of large-scale electrophysiological
cue representations at specific prefrontal theta phases, we proceeded as
described above for the hippocampal theta rhythm. Using MODAL (30),
we first determined the prevailing theta frequency in the selected
prefrontal channels, which showed a peak at 5.5 Hz (Fig. 6D), being sig-
nificantly faster than in the hippocampus (paired ¢ test: t; = -2.42,
P =0.046). Hence, when subsequently analyzing representation-
to-theta-phase-clustering, sliding RSA values were associated with
prefrontal theta phases at 5 to 6 Hz during time periods in which
MODAL detected prefrontal theta oscillations. We found signifi-
cant representation-to-theta-phase-clustering (permutation test,
P =0.003; Fig. 6E); within-stability values were significantly higher
than surrogates (permutation test, P = 0.006; Fig. 6F), and between-
similarity values were significantly lower than surrogate between-
similarity values (permutation test, P = 0.031; Fig. 6G). Again, we
found a positive relationship between between-similarity values and
mean drop errors, meaning that patients with more distinct prefrontal
theta phases performed better [Spearman’s correlation: rho(13) = 0.63,
P = 0.025; Fig. 6H; nonparametric partial correlation controlling
for the number of trials: rho(13) = 0.73, P = 0.007]. Representation-
to-theta-phase-clustering was not observed at 3 to 4 Hz (permutation
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Fig. 5. Exemplary trials of one patient depicting representation-to-theta-phase-clustering. The circle on the top left depicts the preferred theta phases from eight
different trials (one for each cue representation). This circle is unfolded on the top right. Color coding corresponds to Fig. 4D. The eight subplots on the left side show
sliding RSA time courses (white) and concurrent hippocampal theta phases (colored) during a 1-s time interval of each of the eight trials (corresponding to three to four
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were concatenated). The eight right-hand subplots depict the averaged sliding RSA values (separately for each phase bin) from the entire trial. Colored bold lines depict
preferred theta phases. r* values obtained from the Moore-Rayleigh test indicate the strength of representation-to-theta-phase-clustering for the given trial. The eight
subplots on the right and left side were ordered according to the preferred theta phase of the dynamically reactivating cue representations. sRS, sliding representational
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test, P = 0.071) and was not observed when analyzing time periods
during which MODAL did not detect prefrontal theta oscillations
(permutation test, P = 0.299).

DISCUSSION
The main finding of the current study is that large-scale electro-
physiological cue representations dynamically reactivate at specific

Kunzetal., Sci. Adv. 2019; 5 : eaav8192 3 July 2019

hippocampal theta phases during goal-directed navigation. In the
following, we will discuss our findings with respect to (i) the broader
role of hippocampal theta during spatial navigation, (ii) the relation-
ship between our findings and previous working memory studies,
and (iii) the function of the prefrontal cortex during goal-directed
navigation as revealed in previous rodent studies.

Theta oscillations have been extensively studied during real-
world and virtual spatial navigation in both rodents and humans.
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Fig. 6. Dynamic reactivation of cue representations at distinct prefrontal theta phases during goal-directed navigation. (A) Prefrontal electrode channels. Each
white dot, one channel from a separate patient (n = 13). Blue, lateral orbitofrontal cortex; red, rostral middle frontal gyrus. (B) Exemplary time periods with theta oscilla-
tions during goal-directed navigation from different patients. Black, raw signal; red, low-frequency component of the raw signal (passband, 1 to 10 Hz); green shading,
time periods with theta oscillations as detected by MODAL. (C) Prefrontal (“PFC”) theta oscillations occurred in temporal proximity to hippocampal theta oscillations as
shown by an increased percentage of time with prefrontal theta oscillations when hippocampal theta oscillations were present as compared to when they were not
present. (D) Prefrontal theta oscillations preferentially occurred at a frequency of 5 to 6 Hz. Dots represent mean, and vertical lines represent SEM. (E) We assessed the
significance of representation-to-theta-phase-clustering by comparing against a surrogate distribution that was obtained by circularly shifting the sliding RSA values
against the concurrent prefrontal theta phases. Red dot and red line, empirical t statistic. (F) Stability of preferred theta phases across trials (within-stability). (G) Distinc-
tiveness of preferred theta phases (between-similarity). (H) Lower between-similarity values are associated with better spatial memory performance.

In rodents, they appear as trains of rhythmical waves at around 4 to
10 Hz during movement in spatial environments. Both theta power
and theta frequency are positively correlated with running speed
(14), this relationship being diminished in virtual reality (34). In
contrast to theta oscillations in rodents, human hippocampal theta
oscillations typically occur in bursts lasting only a few cycles (11).
Furthermore, they seem to occur at lower frequencies than in rodents
(13), although this discrepancy might be attributable to virtual versus
real-world navigation (14). The power of human hippocampal theta
oscillations increases particularly during movement-onset periods
and reflects the duration of the upcoming path, indicating their role
in movement planning and execution (11, 35). Theta oscillations do
not only seem to be related to specific movement characteristics but
may also reflect or even encode more complex features of the spatial
environment. For example, theta oscillations in the human subiculum
are increased during encoding of locations near boundaries (36),
and theta oscillations in human entorhinal cortex exhibit charac-
teristics of grid cells (i.e., sixfold rotational symmetry) (37, 38). Beyond
spatial navigation, theta oscillations play an important role during
mnemonic processing (39). For example, 3-Hz “slow-theta” exhibits
higher power and increased phase-amplitude coupling with gamma
band activity during successful memory encoding (40).

Kunzetal., Sci. Adv. 2019; 5 : eaav8192 3 July 2019

The current study focused on hippocampal theta phases rather
than on power and examined their relationship to large-scale neural
representations of different mental contents. This framework is
motivated by recent advances in identifying phase-dependent repre-
sentations as a component of the human neural code (21, 30). With
this mechanism, a separation of otherwise interfering mental contents
may be achieved, an idea that prompts discussion of the relation-
ship between our findings and previous working memory studies.

As pointed out in the Introduction, goal-directed navigation shares
commonalities with multi-item short-term memory tasks, in which
different mental contents have to be separately maintained over a
short period of time. A similar neural mechanism of theta-coupled
reactivation of stimulus-specific neural representations (4) may
underlie both cognitive functions. The allocation of neural represen-
tations to different subparts of a theta cycle has previously been sug-
gested theoretically (3, 5), and new evidence supports this theory,
empirically showing that letter-selective broadband gamma activity
sequentially occurs at different phases of the theta/alpha cycle (6). A
similar finding was revealed during episodic sequence memory for-
mation, showing that items at different sequence positions exhibit
greater gamma power along distinct phases of a theta oscillation (41).
Our study extends the coupling of different neural representations to
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distinct theta phases to the complex behavior of goal-directed naviga-
tion and suggests that competing goals of a given context can be
organized and separated within a theta cycle. Several previous short-
term memory studies revealed a link between theta/gamma fre-
quency ratio during phase-amplitude coupling and the individual
short-term memory capacity (42). Similarly, future studies could
examine the capacity of the hippocampal theta cycle during goal-
directed navigation, i.e., how many different goals within a given
context can be coded onto the theta cycle.

A difference of our study to these previous working memory studies
is the theta frequency at which we observed behaviorally relevant
locking of neural representations: Whereas working memory studies
focused on frequencies in the theta/alpha frequency range (6) and
6 Hz in the classical theta frequency range (4), our study targeted
lower theta frequencies at 3 to 4 Hz. Our approach was driven by
the prevailing theta frequency during virtual navigation in our data
and similar theta frequencies during virtual navigation in previous
studies (13). Phase coding of neural representations to slow oscilla-
tions may thus be task specific, in turn explaining the difference
between working memory capacity and the cognitive capacity of memo-
rizing mental contents from larger temporal windows. An addition-
al difference of our study to previous working memory studies is the
specific way of extracting stimulus-specific neural representations.
Whereas these previous studies obtained stimulus-specific neural
representations from patterns of gamma power—e.g,, at letter-selective
cortical sites (6)—we detected cue-specific neural representations
from large-scale electrophysiological time series data dominated by
activity below 30 Hz. This analysis was motivated by recent advances
in decoding stimuli from time series data (17) and the fact that time
series data retain the rich information content of the original signal
(21). Nevertheless, detailed analyses showed that neural cue repre-
sentations could also be observed from gamma power patterns in
our study and that their strength was correlated with the strength of
neural cue representations based on the time domain data.

As revealed by our analysis relating the similarity of cue-specific
neural representations to the subjective Euclidean distance between
cue-associated goal locations, we find subtle evidence for spatial
information content in these large-scale electrophysiological repre-
sentations. Moreover, when we assessed the relevance of specific
electrode channels to the overall representations via a jackknife
procedure, lateral orbitofrontal cortex and rostral middle frontal
gyrus particularly contributed to the representations. In combina-
tion, these two results parallel rodent and monkey studies, in which
goals were represented in prefrontal cortex. For example, it has
been shown that the rodent orbitofrontal cortex not only encodes
information relating to abstract incentive value or general motiva-
tional significance but also codes for spatial goals defined as the
concrete locations to which goal-directed navigation is directed (9).
In a different study, prefrontal spiking activity patterns were identi-
fied to represent behavioral goals during spatial navigation strategies
(10). Our results are in line with these findings and underline the
importance of prefrontal cortices in goal-directed navigation. Notably,
these regions—and particularly the lateral orbitofrontal cortex—
were also found to be implicated in coding for stimulus-reward rep-
resentations in previous studies (43). For example, lesions to the
lateral orbitofrontal cortex lead to impairments in reward-credit
assignment in macaques (44). More specifically, the lateral orbito-
frontal cortex may be especially involved with assigning specific
stimuli (or choices) to distinct types of reward, as demonstrated via
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functional magnetic resonance imaging (fMRI) in humans (45).
Hence, the neural cue representations identified in our study may at
least partially contain information about the reward pattern associ-
ated with each cue (although we only found a statistical trend in
favor of this assumption in our data), in addition to information
about the subjective distance between associated goal locations.
Furthermore, it should be noted that the design of our task (being
an associative cue-location memory task in which a given cue was
always paired with the same goal location) did not allow us to disen-
tangle neural representations that purely reflected spatial informa-
tion of the associated goal locations from representations that purely
reflected visual object properties of the cues. Future studies should
thus further clarify the role of prefrontal regions during goal-directed
navigation in humans.

In summary, our study identified large-scale electrophysiologi-
cal representations of different objects that cued for associated goal
locations. When tracking their reactivation during periods of goal-
directed navigation, we found that representations of different cues
locked to different hippocampal theta phases. Crucially, locking to
more distinct theta phases was associated with better spatial memo-
ry performance. Our results therefore suggest that the hippocampal
theta cycle provides a means to coherently represent different goals
of a given context while preventing interference between them, thus
shedding new light on the functional significance of theta oscillations
(46). More generally, our results identify hippocampal theta phase
coding as a neural mechanism underlying goal-directed navigation
and open up new explanations for spatial disorientation as a symp-
tom in neurological and psychiatric diseases.

MATERIALS AND METHODS

Experimental design

The objective of the current study was to evaluate the hypothesis
that theta-coupled reactivation is a mechanism underlying goal-
directed navigation in humans. To this end, we recorded iEEG from
N =22 epilepsy patients performing an object-location memory task
navigating freely in a virtual environment. Cue-specific neural rep-
resentations were extracted from the acquired brain-wide iEEG
activity and, in a next step, related to the hippocampal theta rhythm
that could be directly observed via hippocampal depth electrodes in
a subset of our patients (n = 16).

Patients

Patients with medically intractable epilepsy (N = 22) participated
in the current study (10 females; mean age + SD, 29 + 10 years;
table S1). Patients underwent a surgical procedure in which elec-
trodes were implanted subdurally on the cortical surface and/or
stereotactically deep within the brain parenchyma. Electrode place-
ments were determined solely on the basis of clinical considerations
so as to best localize epileptogenic regions to guide respective treat-
ment. Each patient had a unique implantation scheme with a
unique anatomical distribution of electrode channels in various
brain regions.

Recordings

iEEG recordings were performed at the Department of Epileptology,
University of Freiburg, Freiburg im Breisgau, Germany; at the Epi-
lepsy Centre Bethel, Bielefeld, Germany; at the Yuquan Hospital,
Tsinghua University, Beijing, China; and at the First Affiliated Hospital
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of PLA General Hospital, Beijing, China. Our research protocol was
approved by the appropriate institutional review boards at each of
the four hospital sites. Written informed consent was obtained from
all patients. During recordings, all patients had normal or corrected-to-
normal vision.

At the recording site in Freiburg, iEEG data were acquired using
a Compumedics system (Compumedics, Abbotsford, Victoria,
Australia) at a sampling rate of 2000 Hz. At the recording site in
Bielefeld, iEEG data were acquired using a Nihon-Kohden system at
a sampling rate of 1000 or 2000 Hz. At the recording sites in Beijing,
iEEG data were acquired using a Nihon-Kohden system (Yuquan
Hospital) and a Blackrock NeuroPort system (First Affiliated Hospital
of PLA General Hospital) at a sampling rate of 2000 Hz. Electrodes
were provided by Ad-Tech (Ad-Tech, Racine, WI, USA) at the re-
cording sites in Freiburg and Bielefeld and by HKHS Beijing Health
(HKHS Beijing Health Co., Ltd., Beijing, China) at the recording
sites in Beijing. Signals were referenced to Cz (Freiburg), to linked
mastoids (Bielefeld), or to one electrode contact located in white
matter (Beijing). Regarding the latter, candidate reference electrode
contacts located in white matter were chosen by visual inspection
of the post-implantation computed tomography (CT) images coregis-
tered onto the preimplantation MR images. Then, iEEG traces from
each candidate reference electrode were visually inspected, and
contacts with little or no apparent EEG activity were chosen as the
reference for all subsequent recordings [see (11) for a similar pro-
cedure]. In total, signals from 2417 electrode channels distributed
across varied brain regions were recorded.

Paradigm

The paradigm was adapted from a previous study (16). While being
under continuous video EEG monitoring for diagnostic purposes,
patients performed an object-location memory task navigating free-
ly in a circular virtual environment. The environment comprised a
grassy plane (diameter of 9500 vu) bounded by a cylindrical cliff.
Two mountains, a sun, and several clouds provided patients with
distal orientation cues rendered at infinity (fig. S1). No intramaze
landmark was shown. Patients completed the task on a laptop using
the arrow keys for moving forward and turning left and right and
the spacebar or backward key to indicate their response. Patients
were asked to complete up to 160 trials but were instructed to pause
or quit the task whenever they wanted. At the very beginning, patients
collected eight everyday objects (randomly drawn from a total number
of 12 potential objects) from different locations in the arena (“initial
learning phase”). Objects appeared one after the other. This time
period (variable duration of approximately 2 min, as the whole task
was self-paced) was excluded from all analyses. Afterward, patients
completed variable numbers of trials, depending on compliance.
Each trial consisted of four different phases (Fig. 1A). First, one of
the eight objects was presented for 2 s (cue presentation). After-
ward, patients were asked to navigate to the associated goal location
within the virtual environment (retrieval). During the retrieval
period, the cue image was not present anymore. There was no delay
period between cue presentation and the retrieval period. After
patients had indicated their response via a button press at the assumed
goal location, they received feedback depending on response accu-
racy (feedback; fixed duration of 1.5 s). Response accuracy was
measured as the distance between the assumed goal location and
the correct goal location (drop error). Last, the object was presented
in the correct location, and patients had to collect the object to further
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improve their associative memory between the object and its goal
location (re-encoding). After each trial, a fixation crosshair was shown
for a variable duration of 3 to 5 s (uniformly distributed). Across
trials, patients had to retrieve the cue objects in random order, pre-
venting them from using a sequential learning strategy. Furthermore,
starting locations were identical with ending locations from preceding
trials and thus varied from trial to trial, preventing patients from
using a response-based navigation strategy. Chance performance of
drop errors was determined by randomly assigning response locations
to correct goal locations 50,000 times per patient and averaging
across trials, surrogate repetitions, and patients afterward to obtain
one overall chance level value. Experimental events were written to
a log file (temporal resolution of 20 ms). Speed was calculated as
v =d/t, where d is the distance between consecutive locations within
the virtual environment and ¢ is the duration between corresponding
time stamps. Triggers were either detected using a phototransistor
attached to the screen marking onsets and offsets of the cue presen-
tation phase or using an independent custom MATLAB (2017b,
The MathWorks, Massachusetts) program that sent triggers both to
the paradigm and to the iEEG recording software with randomly
jittered intervals between 0.5 and 5 s. All of our analyses focused on
the cue presentation and the retrieval period.

Identification of channel locations

For patients from Freiburg and Bielefeld, for whom one preimplan-
tation and one post-implantation MRI were available, electrode
localization was performed using FSL (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FSL) and PyLocator (http://pylocator.thorstenkranz.de/).
The post-implantation MR image was coregistered with the pre-
implantation MR image. Next, the preimplantation MR image was
skull-stripped and normalized to MNI space, and the same normaliza-
tion matrix was applied to the post-implantation MR image. Normal-
ized post-implantation images were visually inspected using PyLocator,
and channel locations were manually identified. For patients from
Beijing, for whom one preimplantation MR image and one post-
implantation CT scan were available, electrode localization in MNI
space was performed using a custom toolbox (47).

To assign electrode channel MNI coordinates to brain regions,
we first subjected the average structural template image from FSL to
the FreeSurfer pipeline (https://surfer.nmr.mgh.harvard.edu/), pro-
viding one cortical/subcortical label for each MNI coordinate. Next,
we went through each electrode channel and assigned the closest
cortical/subcortical label. This procedure then allowed us to select
electrode channels from specific regions of interest and to assign
the jackknife resampling results (see below) to different cortical/
subcortical regions.

Preprocessing

Channels containing obvious artifacts were excluded based on visual
inspection, leading to a final number of 2330 usable recording channels
(dropout of 3.6%). With obvious artifacts, we refer to implausibly
high absolute voltages or implausibly high-voltage gradients that are
present in electrode channels presumably located outside the brain.
Because trial numbers per patient were limited to 40 to 160 (5 to 20 per
individual cue), we dealt with potential epileptic activity using the
following two strategies. First, regarding RSA, we did not exclude
any trials, because artifact correction is less critical when applying
multivariate analyses (17). To attenuate the impact of potential out-
liers, we applied nonparametric Spearman correlations throughout
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(both for measuring neural similarity and for second-level statistics).
Second, we reperformed the hippocampal representation-to-theta-
phase-clustering analysis using a restricted subset of n = 12 patients
(excluding 4 of the 16 patients because of potentially higher levels of
epileptic activity in their hippocampal channels, as revealed by visual
inspection of the hippocampal ERPs) to underscore that our results
were not critically influenced by epileptic activity.

Preprocessing was performed on the entire original data using
FieldTrip (22) (www.ru.nl/neuroimaging/fieldtrip) and included
filtering (high-pass filtering with a frequency of 0.1 Hz; low-pass
filtering with a frequency of 200 Hz; band-stop filtering with fre-
quencies of 50, 100, and 150 Hz) and resampling to 1000 Hz.

Time-resolved sRSA

Time-specific decoding is becoming increasingly popular for mag-
netencephalography (MEG) and EEG analyses (17). Here, we used
tr-sRSA as the decoding approach. The principal assumption that
underlies this RSA approach is that identical stimuli show stronger
neural similarity (as measured by Spearman correlations) than dif-
ferent stimuli. RSA (24) is well suited in cases when only relatively
few samples per category are available (because no training data are
needed). In our case, only two samples per cue were available because
we increased the signal-to-noise ratio (SNR) before RSA by time point-
specific averaging across repetitions of the same cue after randomly
distributing trials onto two different data halves.

Preprocessed data were low-pass—filtered at 30 Hz and epoched
using a time window of —2 to +2 s with respect to cue presentation
onset. ICA (using FieldTrip’s runica implementation with default
settings) was then run on the epoched data to enhance local infor-
mation, similar or superior to bipolar referencing (20). Roughly
speaking, ICA demixes the channel data into information sources.
Because each patient had a unique implantation scheme and was
thus implanted with a unique number n; of channels, the number of
independent components ¢; also varied between patients. Next, we
baseline-corrected the epoched components by subtracting the mean
of the period between —0.2 and 0 s relative to cue presentation onset.
Trials were then randomly distributed onto two data halves. Within
each data half, we calculated one NV per cue by averaging across
trials of the same cue, separately for each time point within the epoch.
Averaging across trials was done to increase the SNR, as suggested
previously (17). Hence, separately for each time point during the
epoch, we obtained one component x 1 NV for each cue. Afterward,
neural similarity was assessed by calculating the Fisher-z-transformed
Spearman correlation coefficient between all combinations of NV;
and NV, where i is the cue index of the first data half and j is the cue
index of the second data half. Separately for each time point during
the epoch, this resulted in an 8 x 8 confusion matrix of neural simi-
larities between identical (on-diagonal) and different (off-diagonal)
cues. We chose nonparametric Spearman correlations over para-
metric Pearson correlations to attenuate the potential influence of
outliers consistent with previous RSA studies [e.g., (19, 48)]. To
decrease a potential influence of the random assignment to the two
different data halves, we repeated the procedure of calculating the
confusion matrices 10 times and averaged over repetitions to obtain
a final confusion matrix. The eight on-diagonal values of the final
confusion matrix containing the neural similarity values of identical
cues were averaged, providing a time point-specific measure of
neural similarity for identical cues (Sigentical)- From each row of the
confusion matrix, we then randomly selected one neural similarity
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value representing the similarity between different cues. Again, these
eight values were averaged, now providing a time point-specific
measure of neural similarity between different cues (Sgifferent). A
similar number of on- and off-diagonal values were used to avoid
effects of regression toward the mean. Hence, for each patient, we
obtained one Sigentical and one Sg;fferent time course between —2
and +2 s relative to cue presentation onset.

Statistical differences between the time courses of Sigentical (One€
time course per patient) and Sgifferent (One time course per patient)
were assessed using cluster-based permutation testing (22). In
detail, we calculated a paired ¢ test across patients between Sigentical
and Sifferent, Separately for each time point. Contiguous clusters of
significant ¢ values at an uncorrected P value of <0.05 were identi-
fied and summed up, resulting in one sum ¢ value per cluster. Only
the highest sum ¢ value was kept (fempirical). T0 create surrogate sum
t values (fsurrogate), We randomly switched Sidentical and Saifferent Per
patient and applied the identical statistical procedure, as described
above. One thousand ferrogate Values were created and compared to
tempirical DY assessing the percentile of fempirical Within #surrogate. The
95th percentile was defined as statistically significant at an alpha
level of P < 0.05. The significant time period defined a tROI for
subsequent analyses (see below). This tROI was determined across
patients (revealing during which time period identical cues generally
elicited higher neural similarity values than different cues), but proto-
typal neural cue representations were specific to each patient, because
they were determined separately for each patient by averaging the
voltage values of the ¢; independent components across trials of the
same cue and across the tROI, resulting in a unique 1 x ¢; voltage
vector per prototypal neural cue representation per patient.

To demonstrate the specificity of neural cue representations, we
calculated neural cue representations separately for both data halves
(i.e., we averaged the voltage values of the ¢; independent compo-
nents across trials of the same cue—after distributing trials onto the
two data halves—and across the tROI). Neural cue representations
were ordered as a function of the associated subjective goal location
(see the “Information content of large-scale electrophysiological
cue representations” section and fig. S2). For each patient, we then
calculated the neural similarity (Spearman correlation) between all
pairs of neural cue representations from both data halves, resulting
in an 8 x 8 neural similarity matrix, where on-diagonal values contain
neural similarities of identical cues from both data halves (SIM;gentical)
and off-diagonal values contain neural similarities of different cues
from both data halves (SIMifferent). For graphical depiction, we aver-
aged neural similarity values across subjects [following (23)]. For
statistical evaluation, we calculated the percentage of SIMigentical
being higher than SIMgiferent, Separately for each patient and each
cue. Using one-sample ¢ tests across subjects, we evaluated whether
percentage values were above chance level (50%) for each cue.

Time-resolved spatial multivariate pattern analysis

Parallel to our tr-sRSA procedure, preprocessed data were low-pass—
filtered (30 Hz) and epoched using a time window of -2 to +2 s with
respect to cue presentation onset. Epoched data were subjected to
ICA and baseline-corrected. For each time point, we then constructed
a component x 1 NV across ICA components for each trial, giving
a t x fmatrix, where t is the number of trials and fis the number of
features (i.e., ICA components), separately for each time point
during cue presentation. A 10-fold cross-validation regime was
then used to decode the eight different cues based on their associated
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NVs. In detail, during each of the cross-validation runs, 90% of the
trials were used to train a 10-nearest neighbor classifier (MATLAB’s
fitcknn; distance metric, Spearman’s rho), whose classification model
was then used to predict the cue labels in the remaining 10% of trials
based on the associated NVs. This procedure resulted in a time
course of empirical classifier accuracy values (CAcmpirical). In addi-
tion, a time course of surrogate classifier values (CAsurrogate) Was
created by circularly shifting cue labels across trials by a random
integer. Statistical differences between the time courses of CAcmpirical
(one time course per patient) and CAgyrrogate (One time course per
patient) were assessed using cluster-based permutation testing.

tr-sRSA based on gamma power

We epoched the data from 2 s before cue onset until 2 s after cue
offset and converted the channel-wise data into independent com-
ponents (a larger time window was chosen to exclude edge artifacts,
resulting from time-frequency decomposition). Next, we extracted
gamma power via Morlet wavelets (seven cycles) from 30 to 90 Hz,
in steps of 4 Hz. Trial epochs were then reduced to 0.1 s before cue
onset until 0.1 s after cue offset. Gamma power values were z-scored
(i.e., normalized by first subtracting the average value and then
dividing by the standard deviation across all trials), separately for
each frequency and each independent component. Next, tr-sRSA
was performed as described above, resulting in a time point- and
frequency-specific measure of neural similarity for identical cues
(Sidentical) and a time point- and frequency-specific measure of neural
similarity between different cues (Sgifferent). Hence, for each patient,
we obtained one Sidentical and one Sgifferent frequency by time matrix
between —0.1 and +2.1 s relative to cue presentation onset. Statisti-
cal differences between Sidentical and Saifferent Were assessed using
cluster-based permutation testing.

Information content of large-scale electrophysiological
cue representations
To understand the information content of the large-scale electro-
physiological cue representations in greater detail, we tested the hy-
pothesis that the pairwise similarity between cue representations is
related to the pairwise similarity of objective/subjective goal loca-
tions (objective goal locations are the true goal locations; subjective
goal locations are the average response location of each cue). To this
end, we first calculated the neural similarity matrix between all pos-
sible pairs of cue representations (for an example, see fig. S4A) and
the goal-location similarity matrix between all possible pairs of
objective/subjective goal locations (for an example, see fig. S4, B and
C). Goal-location similarity is estimated via a linear transformation
of the Euclidean distance between a given pair of cue-specific goal
locations: goal-location similarity (cues;) = 1 — Dj/max(D), where
Djjis the distance between the goal locations of cue i and cue j. Next,
we computed the higher-order similarity by correlating the neural
similarity values with the goal-location similarity values (Spearman
correlation). This resulted in one Spearman’s rho value per subject
evaluating whether pairs of cues with similar neural representations
exhibited more (or less) similar objective/subjective goal locations
(for an example, see fig. S4D). Subject-specific higher-order rho values
were then Fisher-z-transformed and fed into a one-sample t test
across subjects to test for a consistent relationship between neural
similarity matrices and goal-location similarity matrices across subjects.
An analogous procedure was chosen to test for other factors
potentially contributing additional information content to the cue
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representations or potentially constituting confounding variables:
cue-specific (i) movement direction patterns, (ii) speed patterns,
(iii) acceleration patterns, (iv) visual properties of the cue objects,
and (v) reward patterns. For the cue-specific movement direction
patterns, we calculated the pairwise similarities via Kuiper’s tests.
For the cue-specific speed patterns, acceleration patterns, and reward
patterns, we calculated the pairwise similarities via two-sample
Kolmogorov-Smirnov tests. Test statistics were linearly transformed
into similarity values via k" = 1 — k/max(k). Higher-order similarity
between neural similarity values and similarity values k" was then
computed as outlined above. Regarding visual properties of the cue
objects, we evaluated each cue object at different levels of visual
complexity via the DNN “AlexNet” (49) with eight layers (five convo-
lutional layers and three fully connected layers). The DNN was im-
plemented using the Caffe framework in Python and pretrained on
the ImageNet dataset. For example, the first layer represents basic
visual properties of the cue objects such as colors and edges. Next,
we calculated the pairwise visual similarity of the cue objects at each
DNN layer (Spearman correlations) to finally compute higher-order
similarities with the neural similarity matrices as outlined above.

To examine whether cue representations underwent general
changes due to learning, we tested whether cue representations were
more distinct from each other at the end (last trial chunk) as com-
pared to the beginning of the task (first trial chunk). With “trial
chunk,” we refer to the collection of eight consecutive trials, in
which each cue has to be retrieved once. Hence, for both the first
and the last trial chunk, we extracted neural cue representations (i.e.,
we averaged NVs within the tROI from Fig. 2C) and correlated
them with each other (separately for the two trial chunks), resulting
in two neural similarity matrices. In these similarity matrices, the
lower triangle contains the similarity values between different cue
representations. We averaged the lower triangle of each similarity
matrix, giving one average neural similarity value for both trial
chunks and for each patient. We tested across patients whether neural
similarity values were lower in the last trial chunk than in the first
trial chunk.

Contribution of different brain regions to the neural

cue representations

To assess the contribution of single channels to the RSA results,
we calculated two “contribution” scores C,, and C,g for each
channel c¢. Whereas C,, quantifies how much a given channel
increases the neural similarity of identical cues from both data
halves (“on” standing for “on-diagonal values,” reflecting the neu-
ral similarity of identical cues), Cor quantifies how much a given
channel increases the neural similarity of different cues from both
data halves (“off” standing for “off-diagonal values,” reflecting the
neural similarity of different cues). Co, and Coff values were ob-
tained by performing a jackknife resampling procedure during
which the identical RSA procedure (including the ICA transfor-
mation from iEEG channel space into ICA component space) as
explained above was completed # times, where n refers to the number
of channels. During each round, one channel ¢ was left out.

To compute C,, for a given channel ¢, the AUC (AUC,) of Sigentical
(i.e., the area between Sigentical and the x axis) during the tROI was
calculated. This AUC, was then subtracted from the original AUCyy
that was determined during the tROI using all channels. A positive
difference between AUC,; and AUC, (i.e., AUC,; — AUC, > 0)
indicates that channel ¢ contributed positively to the original RSA
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result (with Cop = AUC,; — AUC,). For each brain region (as given
by FreeSurfer’s cortical parcellation output), we determined the
percentage of channels with a positive C,, value (termed “relative
engagement”; Fig. 2E). Note that during this analysis, contribution
scores C,, were concatenated across patients, resulting in a statistical
evaluation across channels. To assess the significance of region-specific
relative engagement, we shuffled the contribution scores Co, rela-
tive to the region labels 2000 times, each time obtaining one surro-
gate relative engagement value per brain region. Empirical relative
engagement values were then compared against the surrogate rela-
tive engagement values. Brain regions whose empirical relative
engagement values exceeded the 95th percentile of surrogate rela-
tive engagement values were considered significant after correcting
for 29 different brain regions (Bonferroni correction).

To compute Cog for a given channel ¢, the AUC (AUC,) of Sqifferent
(i.e., the area between Sgiferent and the x axis) during the tROI was
calculated. This AUC, was then subtracted from the original AUC,;
that was determined during the tROI using all channels. A positive
difference between AUC,; and AUC, (i.e., AUC,; — AUC, > 0)
indicates that channel ¢ contributed positively to the neural similarity
of different cues from both data halves (thus reducing the strength
of the tr-sRSA result). For each brain region, we determined the
percentage of channels with a positive Cof value, where a low per-
centage value represents a beneficial contribution to discriminate
between the neural representations of different cues. Statistical evalu-
ation proceeded as described for C,,, with the difference that brain
regions whose empirical proportion fell below the fifth percentile of
surrogate proportions (because brain regions reducing the neural
similarity of different cues were of interest) were considered signifi-
cant after correcting for 29 different brain regions (Bonferroni correc-
tion). Because no brain region fulfilled this strict statistical criterion,
we plot the result at an uncorrected statistical threshold of P < 0.05
for illustrative purposes only (fig. S6).

To statistically evaluate the contribution of different brain regions
to the significant difference between Sigentical and Sifferent in the tr-sRSA
across patients, we first calculated the contribution score C,,, and the
contribution score Cy for each channel (see above). Both C,, and
Cofr are relevant for establishing a significant difference in our tr-sRSA:
A strong positive difference between C,, and Cog (i.€., Cop — Cofi > 0)
means that a given channel strongly contributes to a significant dif-
ference between Sigentical a0 Sifferent- Next, we tagged each voxel
within a radius of 12.5 mm around a given channel MNI coordinate
with the channel-specific (Cop — Coff) value. For each patient, we
averaged across values if multiple channels contributed to a given
MNI coordinate. This gave one three-dimensional (Cop, — Coff) map
in MNI space per patient. Across patients, we then performed a ¢ test
against zero, separately for each voxel (fig. S7). Statistical evaluation
of the t map was performed via cluster-based permutation testing (22).
Contiguous three-dimensional clusters of significant ¢ values at Py, <0.05
were identified and summed up, resulting in a cluster ¢ value for each
cluster. Empirical cluster ¢ values were compared against 1000 surro-
gate cluster ¢ values obtained by randomly flipping C,,, and Cogrvolumes
(separately for each patient) before identifying contiguous clusters of
significant ¢ values at Pypc. < 0.05. In each surrogate round, the cluster
with the highest cluster t value was kept. Empirical cluster ¢ values
were then ranked within the 1000 surrogate cluster ¢ values (a rank
of >950 designates an empirical cluster t value as significant). The
identified cluster in prefrontal cortex served as an anatomical crite-
rion for the selection of prefrontal channels in subsequent analyses.
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Hippocampal ERP analysis

Preprocessed iEEG data were low-pass—filtered at 30 Hz. Data
epochs between —0.5 and 2 s with respect to cue presentation onset
were extracted for each trial. Trial-wise baseline correction was per-
formed by subtracting the mean during a prestimulus interval from —0.2
to 0 s with respect to cue presentation onset. For all patients who
had at least one hippocampal channel (n = 16), grand-average ERPs
across all trials from all hippocampal channels were visually inspected,
and the channel with the clearest ERP was selected. More detailed,
electrode channels were selected based on several criteria that were
applied in consecutive steps. First, we selected channels that were
located in the anterior hippocampus. Second, we only included
channels that showed a negative main deflection. Third, we identi-
fied the channel with the ERP showing the highest SNR, which was
computed as follows: SNR = max(abs(Vcye))/std(Vpaseline)> Where
Ve are the voltage values during cue presentation and Vipaseline are
the voltage values during the baseline period. Fourth, when two
channels had a similar SNR, their grand-average ERPs were visually
inspected, and the one with the higher signal quality (i.e., a lower
amount of super-imposed high-frequency artifacts) was selected.
Notably, these criteria were all applied before the consecutive anal-
ysis steps, avoiding any bias in the selection of electrodes. Because
iEEG data from epilepsy patients can be distorted by epileptic activ-
ity, we also performed the analysis of the dynamic reactivation of
large-scale electrophysiological cue representations at specific hip-
pocampal theta phases using a restricted subset of patients (n = 12)
who showed the clearest ERPs during cue presentation in comparison
to the other patients as a control analysis.

Analysis of representation-to-theta-phase-clustering
during retrieval periods
For each cue, we extracted a prototypal neural representation by
averaging the component-wise iEEG signal within the tROI and
then across trials, resulting in one component x 1 prototypal neural
representation per cue, separately for each patient. The number of
components varied between patients due to the fact that each patient
had a unique implantation scheme. Hence, cue-specific prototypal
neural representations also varied between patients with respect to
the anatomical distribution of their neural sources. The number of
components is identical with the number of electrode channels, and
no components were excluded before the analysis of representation-
to-theta-phase-clustering. The entire preprocessed data were then
subjected to the previously calculated ICA unmixing matrix convert-
ing the original channel-wise data into component-wise data.
Component-wise data were epoched into trials and baseline-corrected.
We then slid the prototypal cue representation whose goal location
had to be retrieved during a given trial across all NVs during the
retrieval period of this trial, resulting in a time series of sliding RSA
values for each trial presumably representing dynamic reactivation
of the prototypal cue representation (Fig. 4, A and B). This dynamic
reactivation is specific to each patient and each trial and depicts how
much the patient’s current brain state resembles the prototypal neural
cue representation formed during the tROI of the cue presentation
period whose associated goal location shall be retrieved in this trial.
Hippocampal theta phases were extracted from the preprocessed
iEEG data of the hippocampal channel that was selected during the
ERP analysis (see above). To define the exact frequency from which
to extract theta phase information, we opted for a data-driven
method using MODAL (30) that dynamically detects narrow-band
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oscillations exceeding the background 1/f spectrum. Only bands
with a lower border of >1 Hz and an upper border of <10 Hz based
on previous results (11) were kept, and a summary plot of the ex-
tracted theta bands that showed a peak at 3.5 Hz, which occurred in
61.3% of the extracted bands [similar to (13, 30)], was created
(Fig. 3D). For subsequent analyses, we then focused on the oscilla-
tory phase around this predominant frequency of 3.5 Hz. In greater
detail, during all epochs that were identified by MODAL to contain
oscillatory activity in the theta range, we bandpass-filtered the data
between 3 and 4 Hz and extracted the instantaneous phase via a
Hilbert transformation. This target frequency range of 3 to 4 Hz is
part of “slow” theta oscillations that have been shown to exhibit
increased power during successful memory encoding (40) and seem
to be particularly prevalent during (virtual) spatial navigation in
humans (11, 13, 14).

For each patient, we then assessed the cue representation-specific
clustering of preferred phases across trials. To this end, we related
the cue representation-specific time series of dynamically changing
RSA values to the phases of the hippocampal theta oscillation via
the Moore-Rayleigh test (which is a nonparametric extension of the
Rayleigh test weighting the input phases by a ranked factor, i.e., the
sliding RSA values in our case) (31). This results in one preferred
theta phase per trial. We tested the significance of the representation-
to-theta-phase-clustering by comparing the Moore-Rayleigh’s r* values
obtained with the original data with surrogate Moore-Rayleigh’s
r* values obtained by circularly shifting the RSA values in relation
to the concurrent hippocampal theta phases. In detail, we obtained one
empirical Moore-Rayleigh’s r* value and 1000 surrogate Moore-Rayleigh’s
r* values for each trial of each patient. Empirical r* values were then
averaged across trials, resulting in one mean empirical 7* value per
patient. With respect to surrogate r* values, one surrogate r* value
was randomly selected per trial (we did not average across all 1000
surrogate values in order to avoid regression toward the mean). These
randomly selected r* values were then averaged across trials, resulting
in one mean surrogate r* value per patient. Using a paired t test, we
evaluated whether mean empirical 7* values were higher than mean
surrogate r* values, resulting in an empirical ¢ statistic fempirical. TO
assess the significance of this t value, we compared it to a surrogate
distribution of t values that were created by randomly swapping
mean empirical r* values and mean surrogate r* values 1000 times
and recomputing the paired ¢ test in each round. This procedure
results in a distribution of surrogate t values fsurrogate> in Which the
rank of fempirical can be determined. The corresponding P value can be
computed as P = 1 — rank/1000. Then, for each trial, we extracted the
preferred phase for the cue whose goal location had to be retrieved
during this trial. Consistency of preferred phases across trials (within-
stability) was assessed separately for each of the eight cue represen-
tations using Rayleigh’s tests, leading to one empirical z value per cue
that indicates the circular clustering of preferred phases for the cor-
responding cue representation. Rayleigh’s z values were averaged
afterward, resulting in one zyjthin-stability value per patient. The higher
Zyithin-stability> the more consistent the preferred theta phases were across
trials of the same cue. Statistical significance was assessed by comparing
Zyithin-stability With surrogate zyithin-stability values that were obtained
by randomly shuffling which cue was shown during a given trial. In
detail, we obtained one empirical Zyjthin-stability Value per patient (cor-
rect assignment which cue had to be retrieved during a given trial)
and 1000 surrogate Zyithin-stability values per patient (random as-
signment which cue had to be retrieved during a given trial in each
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round). For each patient, one surrogate value was randomly selected (we
did not average across all 1000 surrogate values to avoid regression toward
the mean). Using a paired ¢ test, we then evaluated whether empirical
Zyithin-stability Values were higher than surrogate Zyjthin-stability values,
resulting in an empirical ¢ statistic fempirical. T0 assess the significance
of this  value, we compared it to a surrogate distribution of ¢ values
that were created by randomly swapping empirical and surrogate
Zyithin-stability Values 1000 times and recomputing the paired ¢ test in
each round. This procedure results in a distribution of surrogate ¢ values
tsurrogates in Which the rank of fempirical can be determined. Again, the
corresponding P value can be computed as P = 1 — rank/1000.

In addition to the cue-specific clustering across trials, we also
assessed the clustering of preferred phases between different cue
representations (between-similarity), asking whether different cue
representations clustered at different theta phases. To this end, the
eight mean preferred theta phases (one for each cue representation)
were subjected to a Rayleigh test separately for each patient, result-
ing in Zbetween-similarity- The lower Zbetween-similarity> the more different
the representation-specific preferred theta phases. Empirical
Zpetween-similarity Values were compared with surrogate Zuetween-similarity
values obtained by randomly assigning cues to trials. Statistical
evaluation proceeded exactly as described for the zyjthin-stability Values.
Because we tested whether empirical Zyetween-similarity Values were sig-
nificantly smaller than surrogate Zpetween-similarity Values, the final
P value was calculated as P = rank/1000. To assess a behavioral rele-
vance of representation-to-theta-phase-clustering, we calculated
Spearman correlations between the mean drop error and, on the one
hand, Zyithin-stability and, on the other hand, Zyetween-similarity 2Cross patients.

To present evidence that our results of representation-to-theta-
phase-clustering were not due to trial-by-trial variations of the pre-
dominant theta frequencies, we examined whether instantaneous
theta frequencies varied as a function of retrieved cue. Instanta-
neous theta frequencies were determined via the “frequency sliding”
approach (50): We bandpass-filtered the raw signal from the hippo-
campal channel within 1 to 10 Hz and calculated instantaneous
phases via Hilbert transformation. We then extracted instantaneous
frequencies following Cohen (50) and averaged instantaneous fre-
quencies within trials. For each patient, we then tested whether average
theta frequencies varied as a function of retrieved cue using one-
way ANOVAs across cues.

The analysis of representation-to-theta-phase-clustering during
retrieval periods with respect to prefrontal cortex theta oscillations
proceeded exactly as described above with the difference that pre-
frontal theta oscillations exhibited a higher peak frequency (5.5 Hz).
Thus, during all epochs that were identified by MODAL to contain
oscillatory activity in the theta range, we bandpass-filtered the data
between 5 and 6 Hz and extracted the instantaneous phase via Hilbert
transformation to associate the cue representation-specific time
series of dynamically changing RSA values to the phases of the pre-
frontal theta oscillations.

Phase coupling between hippocampus and prefrontal cortex
Because previous work in rodents showed enhanced coupling be-
tween hippocampus and prefrontal cortex during task periods
associated with peak mnemonic and decision-making load, we ex-
amined phase coupling between hippocampus and prefrontal
cortex at the end of goal-directed navigation when decision-making
load presumably was highest (last 1.5 s of the retrieval period). The
time window of 1.5 s was chosen as a good balance between the
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specificity of the ongoing behavior and the number of theta cycles
contained in this period (more than two full cycles at the lowest
frequency). Phase coupling was computed via the PLV across time,
separately for each trial (33). Trial-wise PLVs were estimated for a
range of frequencies (1.5 to 10 Hz, in steps of 0.5 Hz) after extracting
hippocampal and prefrontal phase values via Hilbert transforma-
tion (including 1-Hz bandpass filtering using MATLAB’s firls). For
each patient, we computed the average PLV during good and during
bad trials and compared the two conditions across patients via a
paired f test. P values were Bonferroni-corrected for the number of
frequencies. As a control analysis, we compared empirical PLVs
against surrogate PLVs that were obtained by randomly assigning
prefrontal phase time series to trials.

Statistical analysis

All analyses were performed in MATLAB 2017b using custom
MATLARB scripts and toolboxes, as outlined above. Inference statistics
across patients were performed using MATLAB or SPSS (version
24.0, IBM, NY). Types of statistical tests used are specified where
the test statistics are reported. Statistical analyses were performed
using a significance threshold of P < 0.05. All analyses were two-
tailed, if not otherwise specified. If appropriate, Bonferroni correc-
tion for multiple comparisons was applied by multiplying the output
P value of the test statistic by the number of tests performed. Error
bars in figures are defined in the corresponding figure legends. We
report degrees of freedom in f tests and the number of subjects in
correlation analyses. All statistical analyses are described in detail in
Results and Materials and Methods.
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