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ABSTRACT

As reported in 1954, more than a half century ago, C. Cox and W. Munk developed an empirical model
of the slope distribution of ocean surface waves that has been widely used ever since to model the optical
properties of the sea surface and is of particular importance to the satellite remote sensing community.
In that work, the reflectance of sunlight was photographed from a Boeing B-17G bomber and was then
analyzed. In this paper, surface slope statistics are investigated from airborne scanning topographic lidar
data collected during a series of field experiments off the coast of California and in the Gulf of Mexico,
over a broad range of environmental conditions, with wind speeds ranging from approximately 2 to
13 ms ™. Unlike the reflectance-based approach of Cox and Munk, the slope distribution is computed by
counting laser glints produced by specular reflections as the lidar is scanned over the surface of the
ocean. We find good agreement with their measurements for the mean-square slope and with more
recent (2006) results from Bréon and Henriot that were based on satellite remote sensing. Significant
discrepancies for the higher-order statistics are found and discussed. We also demonstrate here that
airborne scanning lidar technology offers a viable means of remotely estimating surface wind speed and
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momentum flux.

1. Introduction’

Better understanding and modeling of the sea sur-
face roughness are of critical importance for remote
sensing studies and measurements of air-sea fluxes.
Wind roughens the ocean surface, producing short
gravity—capillary waves, breaking waves, and foam.
When combined with accurate surface slope models,
the scattering of microwave radar signals over these
complex surfaces provides a way to estimate surface
wind speed remotely and globally (e.g., Fung et al. 2010).
Sun glints, caused by the specular reflections of direct
solar radiance from the sea surface, have a significant
impact on remotely sensed ocean color, reflectance, and
surface temperature observations and need to be cor-
rectly accounted for (e.g., Gordon and Wang 1992, 1994).

! This paper is dedicated to the memory of our Scripps colleagues
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The seminal work of Cox and Munk (1954) was the first
attempt to derive an ocean surface slope distribution
model, based on a limited number of sun-glitter photo-
graphs collected from a U.S. Air Force Boeing B-17G
aircraft off the coast of Maui, Hawaii, to estimate surface
slope probability density functions (pdfs). Their empirical
approach consisted of fitting their optical measurements
of sun-glitter patterns to a Gram—Charlier series and re-
lating their statistics to in situ measurements of wind
speed collected from the 58-ft-long (1 ft = 30.5cm)
schooner Reverie, positioned at the experiment site. This
work found renewed interest several decades later with
the development of scatterometers and microwave ra-
dars that were used to estimate the surface wind speed,
where the modeling of the ocean surface slope dis-
tribution is an essential component of the measure-
ment technique.

Surprisingly, in part because of the complexity and
observational challenges characterizing surface slope
distributions, only a few studies attempted to revisit
these results since then. Several authors (Hughes et al.
1977; Haimbach and Wu 1985; Hwang and Shemdin
1988; Shaw and Churnside 1997) used field observa-
tions from a refractive laser slope gauge and a reflective
scanning laser to compute slope statistics and found
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a linear relationship between the mean-square slope and
wind speed, as in Cox and Munk (1954). Su et al. (2002)
used a scanning spectral photometer from a coastal
ocean platform and Gatebe et al. (2005) used the Cloud
Absorption Radiometer (CAR) from a research aircraft
to investigate sun glint and its relation to slope distri-
bution. Some of these studies hinted at the role played
by atmospheric stability (e.g., Shaw and Churnside 1997,
Haimbach and Wu 1985) in modeling surface slope
distributions, based on limited datasets, which therefore
restricted their range of applicability.

Bréon and Henriot (2006) used satellite remote
sensing products from the U.S. National Aeronautics
and Space Administration (NASA) Scatterometer
(NSCAT) and the Polarization and Directionality of
the Earth’s Reflectances (POLDER) to compute slope
pdfs using the same approach developed by Cox and
Munk (1954). They found a remarkable agreement with
their results, especially for the mean-square slope, as
highlighted in the Munk (2009) review.

Recently, the development of polarimetric imaging
technology (Zappa et al. 2008, 2012; Laxague et al. 2015;
Kiefhaber et al. 2015) has provided a new method to
characterize slope distributions. The measurement tech-
nique itself is particularly challenging, because the in-
coming light polarization has to be accurately known to
obtain valid slope measurements. All of these studies
show mean-square slopes of lower magnitude than the
Cox and Munk (1954) model, explained at times by
the possible presence of surfactants at the experiment
site where the polarimetric measurements were col-
lected. Surfactant layers are known to have a dra-
matic impact on the surface wave properties. These
layers reduce surface roughness” and are therefore of
importance for air-sea interaction processes, because
shorter waves support most of the momentum flux
between the ocean and the atmosphere.

It is remarkable that, in the latter part of their in-
credible scientific careers, and more than 50 years
after their original study was published, both Cox and
Munk had returned to the study of the slope statistics
of the sea surface, also referred to as the “‘sun-glitter
problem.” Cox’s interest was geared toward a better
understanding of the underlying physics of wave-
surfactant interactions. In a 2015 maritime history
research note, he recounted the rescue of the crew of a
sinking ship in the early 1880s (the Grecian) that used
fish oil to suppress breaking waves during a severe
storm and enabled the crew to transfer to the rescue

% Surface roughness is mostly produced by very short, gravity—
capillary waves.
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ship Martha Cobb (Cox 2015). These historical rec-
ords provided the basis for a wave energy model that
incorporates the reduced roughness caused by the oily
surface film (Cox et al. 2017).

For the last decade Munk was revisiting the topic,
leading to a review paper on sea surface slope statis-
tics (Munk 2009), comparing the mean-square slope
results of Cox and Munk (1954) with the satellite-
derived results of Bréon and Henriot (2006). The lack
of existing theory that would explain the linear wind
dependence of the mean-square slope and its un-
expectedly large crosswind component was of partic-
ular interest to him, and he proposed that such
directional spreading could be produced by localized
sources that could generate obliquely propagating
‘“ship wake’’-like waves. He concluded his review by
recalling earlier discussions on the topic and provided
some insight:

At the 1955 celebration of the 25th birthday of the
Woods Hole Oceanographic Institution, I was given the
opportunity to review what was then known about our
subject (Munk 1955). After referring to the Cox and
Munk result of a linear wind dependence of the mean-
square slope and its large crosswind component, I spoke
of the need for “‘a respectable theory’’ of wind drag,
and, referring to a recent photograph, mentioned ‘“how
important it is to look at the raw data before deciding on
pertinent statistical parameters.” How slow progress
has been in the past fifty years!

But there is hope. I surmise that the key contributing
wave scales range from millimeters to a meter. These
are the very scales that will be the subject during
the next few years of extensive sea-going experi-
ments, which will use powerful new optical tools. If
the time for review is when a subject is under active
development, with new solutions being found and old
solutions being demolished, not when it is to be tidied
and put to rest, then this is indeed the right time
for review.

To this end, no theory has been brought forward that
would explain such surface slope statistics.

In the current study, we characterize and investigate
the properties of ocean surface slopes measured during
a series of experiments off the coast of California and
the Gulf of Mexico from an airborne scanning lidar
installed on a research aircraft. The experiment, in-
strumentation, environmental conditions, and pro-
cessing techniques are presented in section 2. Section
3 describes the results in the context of the work of
Cox and Munk (1954) and discusses the potential
application of this technique for airborne remote
sensing of surface wind speed and momentum flux.
The findings are summarized in section 4.
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2. Experiments

Data presented here were collected during multiple
experiments: the Office of Naval Research (ONR)
Departmental Research Initiative (DRI) Radiance
in a Dynamic Ocean 2008 (RaDy0O2008) project
(Dickey et al. 2012); the Gulf of Mexico 2011
(GoMEX2011; Romero et al. 2017) experiment; South-
ern California 2013 (SOCAL2013), one of the High
Resolution (HIRES, or HiRes) ONR DRI field efforts
(Lenain and Melville 2017; Grare et al. 2018); the
recent Langmuir Circulation and Inner Shelf ONR
DRI field efforts (LCDRI2017 and ISDRI2017, re-
spectively); and a NASA-JPL-funded project to col-
lect airborne lidar altimetry data under ‘“AltiKa” (a
Ka-band altimeter) satellite tracks off the coast of
Monterey, California, to validate the NASA-JPL Air
Surface Water and Ocean Topography (AirSWOT)
instrument (April 2015).

Note that the present study is primarily based on the
SOCAL2013 and LCDRI2017 projects in which phase-
resolved measurements of wind and waves over a broad
range of environmental conditions were collected. Both
of these experiments were located between San Cle-
mente and San Nicholas Islands (vicinity of 33°13.202'N,
118°58.767'W) where the floating ocean research plat-
form R/P Floating Instrument Platform (FLIP) was
moored, from 7 to 22 November 2013 and 16 March to
10 April 2017, for the SOCAL2013 and LCDRI2017
experiments, respectively. The R/P FLIP was in-
strumented with a suite of sensors described below to
characterize the atmospheric, surface, and subsurface
conditions at the experiment site. A combined total of
18 research flights are considered in the analysis, cor-
responding to 51.7 h of on-station flight in the vicinity of
the in situ measurements.

a. The Modular Aerial Sensing System

Spatiotemporal measurements of the sea surface to-
pography and surface kinematics were collected from a
Partenavia P68 aircraft that was instrumented with the
Modular Aerial Sensing System (MASS), an instrument
package developed at Scripps Institution of Oceanog-
raphy (Melville et al. 2016).

At the heart of the system, and of specific interest for
this study, a Riegl Laser Measurement Systems GmbH
model Q680i waveform scanning lidar is used to make
spatiotemporal measurements of the sea surface. The
sensor has a maximum pulse repetition rate of 400 kHz
and a maximum line scan rate of 200 Hz, and it has been
used at altitudes up to 1500 m with sufficient returns for
surface-wave measurements. Because of a +30° cross-
heading scan-angle envelope, the theoretical swath
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width over water is proportional to the altitude of the
aircraft,® with its effective width being dependent on
the wind speed and sea state. More details are avail-
able in Melville et al. (2016).

The MASS is also equipped with a 14-bit, 640 X
512 pixel-resolution quantum well infrared photode-
tector (QWIP) forward-looking infrared (FLIR) FLIR
Systems, Inc., model SC6000 infrared camera operating
at up to a 126-Hz frame rate in the 8.0-9.2-um spectral
band range, to measure the ocean surface temperature
field including modulations and gradients due to fronts,
surface signatures of Langmuir circulation and wave
breaking (Sutherland and Melville 2013). A hyper-
spectral camera [Spectral Imaging, Ltd. (SPECIM)
model AISAEagle] operating in the 400-990-nm
spectral band (from visible to near-IR) and a Jai,
Ltd./Pulnix Sensors, Inc., model AM-800CL (3296 X
2472 pixel resolution) monochrome (12 bit) video
camera that operates at a frame rate of up to 17 Hz are
used to provide visible imagery of the kinematics of
whitecaps (Melville and Matusov 2002; Kleiss and
Melville 2010, 2011; Sutherland and Melville 2013).

All data collected are carefully georeferenced from
the aircraft to an Earth coordinate frame using a
NovAtel, Inc., model SPAN-LN200, a very accurate
GPS-inertial measurement unit (IMU) system com-
bining GPS technology with an IMU using fiber-optic
gyroscopes and solid-state accelerometers to provide
position and attitude data at up to 200 Hz. After dif-
ferential GPS processing, using NovAtel Waypoint
Inertial Explorer software, the stated accuracy for the
instrument position is 0.01 m in the horizontal plane
and 0.015m in the vertical direction, with attitude
accuracies of 0.005°, 0.005°, and 0.008° for roll, pitch,
and heading, respectively. A calibration—validation
flight over stationary targets is conducted prior to and
after each campaign to minimize boresight errors that
are due to the misalignment between the GPS-IMU
system and the lidar (Melville et al. 2016). Once
calibrated, we typically find absolute vertical errors of
2-4cm (per lidar pulse) for the final topographic
product, estimated at 2.3 and 2.1 cm in this study from
the calibration flight conducted prior to and after each
experiment.

Note that an earlier version of the MASS was used
during the RADYO2009 experiment. The instrument
package was built around a Riegl LMS Q240i air-
borne scanning lidar. This system uses a 905-nm class-
I laser, with a beam divergence of 2.7 mrad and an 80°
field of view. The laser has a pulse repetition rate of

3 The swath width is close in value to the aircraft altitude.
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FI1G. 1. Measured along-wind slope pdf (black circles); shown are
data collected during the SOCAL2013 experiment and the corre-
sponding fit (blue line) using a Gram—Charlier series.

30kHz and a line scan rate of 30 Hz. The instrument
is collocated with a Coda Octopus Products, Ltd.,
F180 dual-antennae GPS-IMU to provide position
and attitude information. Detailed performance and
specification information are presented in Reineman
et al. (2009).

b. Environmental conditions

A suite of atmospheric sensors was installed on R/P
FLIP’s port boom to characterize the marine atmo-
spheric boundary layer variables used in the analysis.
During SOCAL2013, the wind speed and direction were
measured from a sonic anemometer (Gill Instruments,
Ltd., model R3-50) mounted on a vertically oriented
telescopic mast that was deployed from the end of the
horizontally extended 20-m-long port boom of FLIP,
at a height ranging from approximately 5 down to 2.65 m
above mean sea level (MSL), and from two Campbell
Scientific, Inc., model CSAT3 anemometers installed at
fixed heights of 8.5 and 14.5m MSL. The height of the
anemometers above mean sea level varied during the
course of the experiment depending on environmental
conditions (Grare et al. 2018) but was typically in the
range of 2.6-4m MSL for the lowest sensor, the Gill
R3-50. During LCDRI2017, two ultrasonic anemome-
ters (Gill R3-50) were installed at fixed heights of
8.3 and 14m MSL.

The friction velocity u in the air is given by

——2 | =2
s = Ww" +vw )", 1)
where u, v, and w represent the three components of

the wind vector in the along, cross, and vertical di-
rections, respectively, and the prime denotes that
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FIG. 2. (a) Lidar-measured along-wind slope color coded for in
situ wind speed data U, from the SOCAL2013 and LCDRI2017
experiments. (b) The same data, but scaled by the standard de-
viation and mean of the pdfs.

component quantities have had their mean removed.
The covariances uw'w’ and v'w’ are computed over
30-min records from the average cospectra for (u/, w')
and (v, w').

The wind speed U, at 10-m height above the ocean
surface was interpolated between the data collected at
the measurement heights closest to the ocean surface,
approximately 8.5 and 14.5 m MSL, assuming a constant
flux layer with a logarithmic wind profile.

c. Satellite remote sensing

In addition to the in situ atmospheric data collection
from R/P FLIP, remotely sensed wind from two sat-
ellite altimeters are considered here. The first one, the
Satellite with Argos and AltiKa (SARAL/AltiKa), which
is a cooperative mission between the Indian Space Re-
search Organization (ISRO) and Centre National d’Etudes
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FIG. 3. Mean-square slope o> computed from the airborne lidar during four distinct exper-
iments (RADYO02009, GOMEX2011, SOCAL2013, and LCDRI2017), color coded for their
heading relative to the mean wind direction, along with the data from Cox and Munk (1954,
1956) (label CM56), and Bréon and Henriot (2006) (label BH2006) as a function of wind speed

Uy . Fits are shown with solid and dashed lines.

Spatiales (CNES), is equipped with a Ka-band radar
altimeter operating at 35.75 GHz and a two-channel
microwave radiometer operating at 23.8 and 37.0 GHz.
The wind speed is computed from the Ka-band re-
flected power, or backscatter coefficient, combined
with an empirical wind model (Lillibridge et al. 2014).
The second satellite considered here is Jason-1, a joint
mission between CNES and NASA. The approach is
the same to derive the wind speed, although this time
Ku- and C-band frequencies are used (see, e.g., Ménard
et al. 2003; Abdalla 2012).

d. Using lidar to measure surface slope statistics

Shaw and Churnside (1997) first introduce the concept
of using the “laser-glint-meter technique” to compute
slope statistics. The basic idea is to count laser glints
from specular reflections as a laser or lidar is scanned
over the surface of the ocean. In the context of using an
airborne lidar to measure sea surface slope statistics,
the issue of interpreting the return signals from the li-
dar pulses arises.

Assuming for the present an idealized 1D case in
which the scattering of the lidar pulse from the surface is
specular, the footprint size of the emitted lidar pulse on
the surface is sufficiently small, and the range of sea
surface slopes is *. 7, then the probability that the slope
is in the range from —.# to .Z is unity. In one data
record i (say for a constant wind speed) assume that 7,
pulses are transmitted in the angle increment m; = Am/2,
resulting in n,; received return signals. We define N,
and N, as the total number of pulses transmitted and
received, respectively, such that

N

M=;%am ()
N

N =2n_. 3)
i=1

Here N is defined such that NAm = 2.7.
The probability that the slope is in m; = Am/2 is
given by
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where p(m;) is the discrete pdf. As required for a pdf,

Zp(m)Am—NLZ,nﬂ=1, 5)

and in the continuous limit we have

J+"jp(m) dm=1. ©6)

The ratio n,;/N, is a tunable constant of the lidar as
well as Am, and the ratio N,/N, is a measurable in-
tegral parameter for each data record. Therefore, we
can write Eq. (5) as

p(m,)Am = C(n”./npi) , (7)

where
cC= i Ny 8
NN, ®)

is a measurable parameter for each environmental
state.

3. Results
a. Slope probability density functions

A representative example of along-wind slope pdf
p(m) computed from the MASS lidar data is shown in
Fig. 1. The data used to estimate the pdf were collected
during the SOCAL2013 experiment; 10-km-long swaths
flown in a cross-wave direction are considered. An
empirical altitude correction is applied to the mea-
surements to account for changes in laser footprint
and associated multipath returns that are not consid-
ered in the specular reflection assumption described
above. This correction is described in the appendix.

Also shown in Fig. 1 is a fit to a Gram—Charlier series,
as suggested by Cox and Munk (1954), and defined as

P =3 G, (PG (M ) )

(o (o

where p and o represent the mean and standard de-
viation of the measured pdf, respectively; G() is a
zero-mean unit-variance Gaussian distribution; H,()
are the nth-order Hermite polynomials (Papoulis and Pillai
2002), and c,, are expansion coefficients obtained by fitting
the measured distribution. Here the expansion series to
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FIG. 4. The ratio of crosswind to upwind mean-square slope
v=0?/02 as a function of Uy, using both linear [Eq. (13)] and
quadratic fits for the crosswind direction. Note that this ratio is only
valid for winds that are larger than approximately 2ms ™!, repre-
sented by a vertical gray dotted line.

N = 4 was used because the higher-order terms were
found to be statistically insignificant.

b. Mean-square slope

Figure 2a shows all along-wind slope pdf p collected
during the SOCAL2013 and LCDRI2017 experiments,
color coded for wind speed Uy measured from R/P
FLIP. The maximum value of the pdfs, near nadir
(where m =~ 0), is found to be inversely proportional to
the value of Uy, and the distribution widths of the pdfs
get broader for higher wind speeds. The same pdfs
are presented in Fig. 2b, this time as a function of
nondimensionalized slope (m — w)/o. These scaled
pdfs generally collapse onto a single pdf curve, with
more variability closer to nadir and with a maxi-
mum magnitude that is inversely proportional to
wind speed. The range of nondimensionalized slope
(m — p)lo that we are able to characterize extends
from —5 to 5.

The mean-square slope o” is shown in Fig. 3, plotted
against wind speed U;y and color coded for the
heading relative to the measured wind direction .
Dark-red points represent upwind components, and
blue points represent crosswind ones. Also shown are
the airborne measurements from Cox and Munk
(1954, 1956) and parameterizations derived from
satellite remote sensing products (POLDER mis-
sion; Deschamps et al. 1994) analyzed in Bréon and
Henriot (2006). Here B is computed using the wind
direction measured on FLIP and the mean heading of
the lidar swath over the segment considered in the
computation, and not the aircraft heading, since at
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FIG. 5. Mean-square slope o> computed from the airborne lidar during four distinct exper-
iments (RADYO02009, GOMEX2011, SOCAL2013, and LCDRI2017), color coded for their
heading relative to the mean wind direction, as a function of friction velocity ux. Fits are shown

with solid and dashed lines.

times—especially during crosswind flights—the air-
craft experienced significant ““crab” angles (differ-
ence between aircraft heading and course angles; up
to 35° in this study). The upwind mean-square slope o
is taken as all of the measurements collected within
+30° of the wind direction, and the crosswind coun-
terparts o2 correspond to all of the measurements
collected within *30° of the crosswind direction.
Linear fits are computed for both upwind and crosswind
components, giving

0% =313x1073U,, +1.1x10* and  (10)

(11)

Note that for low values of U,y the crosswind
measurements appear to converge toward zero and
are therefore better represented by the following
quadratic fit

o?=18X1073U,, +42x107.

0% =-76X107U% +2.84x 107U, + 143X 1073,
(12)

Overall, we find a good agreement with the estimates
of Bréon and Henriot (2006) and measurements of
Cox and Munk (1954) from these lidar-based esti-
mates of mean-square slope.

The ratio y = o?/o2, which is a measure of the di-
rectionality of the total surface slope, is shown in Fig. 4
using both linear and quadratic fits described above.
Assuming a linear fit for the crosswind component, we
find, for wind speeds ranging from 2 to 13ms ™!, that

0N

— 05752 + 122008
UlO

Ul 0

y= (13)

:qm| S

Above 2-3ms~ ! wind speeds, the ratiois less than 1,
suggesting anisotropy in the directionality of the mean-
square slope once the wind starts picking up. We find
v = 0.71 for Uy = 10ms™ %, consistent with Cox and
Munk (1954) and Bréon and Henriot (2006), who found
v = 0.8 and y = 0.66, respectively, for the same wind
speed.

Figure 5 shows the mean-square slope o as a function
of friction velocity uy for three experiments in which
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FIG. 6. The same data as in Fig. 3, but this time color coded for the nondimensional reduced
Richardson number Ri.

detailed characterization of the atmospheric bound-
ary layer was conducted from R/P FLIP, moored
within 10km of the data considered here. We find
more scatter in the data plotted against us as com-
pared with Uy, shown in Fig. 3. One would have an-
ticipated more scatter with U;( caused by atmospheric
stability variations that are not accounted for in the
computation (Shaw and Churnside, 1997); however, ux
is a noisier measurement than Uy, and therefore perhaps
this is not completely unexpected. Linear fits are com-
puted for both upwind and crosswind components, giving

02 =792X102u; +9.02x107* and  (14)

a2 =486 X 10 2u, +3.77 X 1073, (15)

From these relationships, the slope distribution
statistic computed from the airborne lidar instru-
ment can be used to estimate Uj;o and us. This ap-
plication is described in the appendix, along with a
surface-wave spectrum-based technique to compute
the wind direction.

c. Atmospheric stability

For consistency with past studies, we use here a
reduced Richardson number Ri to characterize the
atmospheric stability, given by

(T,- T,z

Ri =g7T T
w ¥4

(16)

where g is the gravitational acceleration, 7, is the
atmospheric temperature at the anemometer height z,
T,, is the water temperature at the surface, and U, is
the horizontal wind speed. Figure 6 shows the mean-
square slope results plotted against wind speed,
similar to Fig. 3, but this time color coded for Ri. The
bulk of the measurements considered here corre-
spond to conditions from neutral to unstable (nega-
tive Ri), with very few instances of stable conditions
(positive Ri).

Following the Shaw and Churnside (1997) ap-
proach, the ratio of the measured mean-square slope
and the Cox and Munk (1954) modeled mean-square
slope, or o?/d2_, is shown in Fig. 7 plotted against Ri,

cm?
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FIG. 7. Measured mean-square slope normalized by the model of
Cox and Munk (1954) against Ri, which is a measure of atmo-
spheric stability. No clear effects from the atmospheric stability
are found.

for both cross- and upwind cases to highlight any
stability dependence. Here o2, is calculated for each
sample based on its heading information and the
appropriate cross- or upwind model from Cox and
Munk (1954). While Shaw and Churnside (1997) had
identified a relationship between mean-square slope
and stability, no clear trend is found in the present

study.
d. Higher-order statistics

The normalized skewness y is computed from the
third moment of the discrete distribution p, defined as

X= )(5/0'3 , 17)

where

N
X, = 121 (m, = p)’p(m,)Am. (18)

The normalized skewness y is also equivalent to
the expansion coefficients of a Gram—Charlier dis-
tribution c¢y3 and ¢,; for upwind and crosswind com-
ponents, respectively (Papoulis and Pillai, 2002;
Munk, 2009). Figure 8 shows y plotted against Uy,
color coded for heading relative to the mean wind
direction, along with the expansion coefficients cos
and ¢, from Cox and Munk (1954) and Bréon and
Henriot (2006). Unlike these prior studies, we do not
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find significant skewness of the measured slope pdfs.
The magnitude of y is generally smaller than 0.1, with
no clear relationship with wind speed, as previously
found in other studies.

The excess kurtosis ¢ is computed from the fourth
moment of the discrete distribution p, defined as

p=(plo*) -3, (19)
where
= ; (m; — u)’p(m,)Am. (20)

For comparison purposes, the excess kurtosis is
equivalent to the expansion coefficients of a Gram—
Charlier series c49 and co4 for upwind and crosswind
components, respectively. Figure 9 shows ¢ plotted
against wind speed Uy, color coded for heading rel-
ative to the mean wind direction, along with the ex-
pansion coefficients c49 and co4 from Cox and Munk
(1954) and Bréon and Henriot (2006). Although the
magnitude of ¢ is not consistent with these studies, we
find ¢ to decrease with wind speed, at different slopes
for crosswind (blue points) and upwind (red points)
directions.

It is intriguing to find such discrepancies among
these three studies for the higher-order statistics
presented here while the agreement for the mean-
square slope is very good. Looking closely at the data
from Figs. 8 and 9, we find some agreement, in mag-
nitude and sign, among Cox and Munk (1954), Bréon
and Henriot (2006), and the current study for wind
speeds lower than approximately 4-5ms ™', Interestingly,
this is also the wind speed at which aerated wave breaking
is often considered to begin. An important assumption
in the derivation of the slope statistics from reflectance
measurements is the need to filter out all foam and
breaking waves from the collected data. This was a known
challenge in Cox and Munk’s (1954) seminal work
(C. Cox 2014, personal communication), in which
whitecaps were removed manually, where possible. The
Bréon and Henriot (2006) approach consisted of removing
data for which contributions from foam and aerosols
were found to be larger than an empirical threshold,
based on the off-glint measurements (reflectance greater
than 10~%). Removing the whitecaps and foam contri-
bution to the reflectance is particularly challenging with
the POLDER dataset, because the ground size of a
measured pixel is large—for example, 6 X 7km? at
nadir (Deschamps et al. 1994).

The obvious question that arises then is whether the
relationship between wind speed and skewness, and to
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FIG. 8. Normalized skewness y computed from the airborne lidar during four distinct ex-
periments (RADYO02009, GOMEX2011, SOCAL2013, and LCDRI2017), color coded for
their heading relative to the mean wind direction, along with the data from Cox and Munk
(1954) and Bréon and Henriot (2006), as a function of Uj.

some extent kurtosis, found in the reflectance-based
retrieval technique is a measurement artifact, resulting
from inhomogeneities in the properties of the whitecap
and foam spatial coverage, such as variation in whitecap
fraction on the forward and rear face of breaking sur-
face waves or modulation of shorter breaking waves by
longer waves. This is a research topic we are actively
pursuing but is not within the scope of the work
presented here.

4. Discussion and summary

In this study, surface slope statistics were computed
from airborne scanning topographic lidar data that were
collected during a series of field experiments off the
coast of California and in the Gulf of Mexico over a
broad range of environmental conditions, with wind
speeds ranging from approximately 1-2 up to 13ms™ ..
The technique used here differs from the reflectance-
based approach of Cox and Munk (1954) and instead

derives the slope distribution by counting laser glints

produced by specular reflections as the lidar is scanned
over the surface of the ocean. Overall, we find good
agreement with the results of Cox and Munk (1954) and
the more recent results of Bréon and Henriot (2006) that
are based on satellite remote sensing products for the
mean-square slope. Unlike Shaw and Churnside (1997)
or Hwang and Shemdin (1988), we do not find any ob-
vious correlations between the mean-square slope and
the atmospheric stability, at least for the neutral and
unstable conditions experienced during the experiments
considered here.

Significant discrepancies with past studies (Cox and
Munk, 1954; Bréon and Henriot, 2006) are found for
the higher-order statistics and remain to be explained.
These are particularly difficult measurements to ob-
tain through remote sensing techniques; in particular,
the reflectance-based approach used by Cox and
Munk (1954) and Bréon and Henriot (2006) requires
filtering out the portion of the data that is contami-
nated by whitecap coverage, which is a challeng-
ing operation, especially for high wind cases. If not
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filtered out correctly (or completely), any skewness
or excess kurtosis in the spatial properties of the
whitecap coverage could lead to an erroneous slope
distribution computation. This is not within the
scope of this work but is a topic that we are actively
pursuing.

As first identified more than 60 years ago by Cox and
Munk in their seminal work, we find a linear wind de-
pendence of the mean-square slope, with a large cross-
wind component of the slope observed for winds greater
than 34 ms ™! that corresponds to approximately 70%—
90% of the upwind component, depending on the wind
speed. To this end, no theory has been brought forward
that would explain such surface slope statistics, and in
particular such a large crosswind component. Munk
proposed that localized sources, such as pressure points,
could generate obliquely propagating waves (cf. Kelvin
ship waves).

Recent progress in our understanding of the di-
rectionality of the surface wave spectrum, highlighting
the transition from unimodal to bimodal spectral dis-
tribution in wind-generated surface waves (Banner and
Young 1994; Leckler et al. 2015; Lenain and Melville
2017; Peureux et al. 2018), is now bringing us a step

closer to solving this problem. The mechanisms that lead
to a wide bimodal surface wave spectrum remain un-
clear; standard gravity wave modeling using four-
wave resonance is just an asymptotic model, and for
larger times and larger slopes five-and-higher-wave
resonances are possible. Su et al. (1982) and Melville
(1982) showed direct evidence of the growth of crescent-
shaped waves in laboratory experiments, for larger wave
slopes, as the result of five-wave interactions that lead to
three-dimensional instabilities that are stronger than
the two-dimensional Benjamin—Feir instabilities (McLean
etal. 1981). Wave breaking also needs to be considered
as a source of wave components traveling in almost
transverse or even upstream directions (Rapp and
Melville 1990). As far as we are aware, there has not
been any modeling of the effects of the directional
distribution of wave breaking on surface slope sta-
tistics. The source of the large crosswind component
of the mean-square slope therefore remains elusive,
but the evidences presented here calls for more spa-
tiotemporal measurements of surface waves and wave
breaking, at very small scales, from O(1 mm) to O(10m)
in particular, and modeling of higher-order wave-wave
interactions.
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We also demonstrate here that airborne scanning lidar
technology is a viable tool to measure mean-square
slope and to estimate surface wind speed and momen-
tum flux remotely. This is of importance, because the
availability of surface wind measurements is often lim-
ited to buoys or vessel-mounted instrumentation that
usually provides poor spatial coverage and satellite re-
mote sensing products do not have the flexibility or the
spatial and temporal resolution needed for studies on
submesoscales and smaller. This approach, along with
the development of new technology (Rodriguez et al.
2018a,b) that is capable of significantly better spatial
resolution, can further enhance our understanding of the
underlying physical processes driving the spatiotemporal
variability of surface winds from submesoscale to ki-
lometer scale. This is particularly relevant for wave
forecasting, because it is now well accepted that the
largest errors in wave predictions are often caused
by a lack of accurate momentum flux estimates
(Janssen 2004). The measurement approach proposed
here provides a means of improving local measure-
ments of wind variability and, in turn, wave prediction
capabilities, in areas ranging from coastal to open
ocean waters.
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APPENDIX

Altitude Correction, Wind Speed Validation, and
Wind Direction Retrieval

a. Altitude correction

All lidar measurements presented here are initially
range corrected to take into account any changes in the
received laser signal amplitude . Z, that are associated
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FIG. Al. (a) Backscattered laser amplitude . 7, as a function of
altitude r, at nadir, for a range of targets. (b) The same data, but
now scaled by the mean amplitude (.Z,) computed for » > 100 m.

with variations in the distance between the instrument
and the measurement target within a single scan, and
between flights that are conducted at different altitudes.
The MASS lidar, a Riegl Q6801 instrument, was range-
calibrated during a series of flights on 31 July 2015, in
Oxnard, California. The MASS was installed on a Bell
206-L III Long Ranger helicopter operated by Aspen
Helicopter. Stationary flights were conducted at alti-
tudes ranging from 30 to 1000m over a variety of
targets (e.g., runway markings and grassy areas) to
cover a broad range of backscatter amplitudes, cor-
responding to the known range of amplitude .7, that
has been measured over the ocean surface in this
study. Figure A1l shows the received laser amplitude
%, as a function of altitude r, at nadir, for these tar-
gets. We find a clear r~* power law for r > 100 m, the
lowest altitude from which we typically collect data,
such that

A= (rref/r)z./;r ,

(A1)
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FIG. A2. Fraction of the surface area of the laser footprint
S normalized by the surface area of the footprint at nadir Sy as a
function of viewing angle m, in radians. We find an increase in
the area of the footprint of up to 30% at the edges of the lidar
swath, which ranges here over =30° from nadir (m = 0) in the
cross-track direction.

where the reference altitude r.¢ is arbitrarily set to
300m. In addition, the received amplitude is also cor-
rected for changes in the ellipsoidal area S of the laser
footprint as a function of scanning angle, for a given
scan, as illustrated in Fig. A2:

r(0)

A = .
“re2 I"Z(O) cos. 7 rc

(A2)

Last, to account for a remaining altitude dependence
in our measurements that is likely associated with mul-
tipath returns within the footprint of the lidar for which
we cannot formally account, a final correction is applied
by only considering in the analysis backscattered lidar
returns of amplitude

‘%702 > a() <"%r62> ’ (AS)

where « is a threshold coefficient that is estimated it-
eratively by minimizing the scatter obtained in the slope
variance measurements. Figure A3 shows the residual of
the minimization process as a function of the threshold
coefficient. Here « is set to the value at the 95 percentile
of the residual.

b. Lidar-derived wind speed validation

We can use the slope distribution statistics computed
from the airborne lidar instrument to derive the wind
speed U;g and friction velocity u. This is of significance
because in situ surface wind measurements are usually
very sparse, being collected from a limited number of
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FIG. A3. Residuals 7 from the scatter minimization process plotted
against the amplitude threshold value a.

meteorological buoys, and satellite remote sensing
products do not have the spatial resolution needed for
studies on scales that are submesoscale and smaller.
This technique was tested during a series of experi-
ments: the ONR funded Innershelf DRI program
(2017), off Point Sal, California, the GoMEX experi-
ment in the Gulf of Mexico (2011) and a SARAL/AltiKa
overflight off the coast of central California (2015).
None of the data from these experiments were included
in the fitting of the mean-square slope and atmospheric
forcing presented earlier, but they are used here.
Figure A4 shows the lidar estimates of wind speed Uy
against coincident (within 10 min), collocated (within
2.5km), independent measurements, either from in situ
or satellite remote sensing products. Here the mean-
square slope o that is computed from a 2.5-km airborne
lidar transect is used to derive U;o. We find an RMS
error ranging from 0.96 to 1.45ms ™" for the upwind and
crosswind directions, respectively, for each individual
measurement. The black circles represent lidar-derived
wind estimates plotted against in situ wind records col-
lected during the Innershelf DRI program. Here the
in situ data are based on a combination of three research
vessels, each instrumented with a meteorological mast
(R/V Sally Ride, RIV Oceanus, and R/V Sproul) and a
nearshore surface buoy located southeast of Point Sal.
The colored circles correspond to lidar-derived wind
estimates plotted against surface wind data collected
from two satellites, Jason-1 and SARAL/AltiKa. The
agreement is good with the satellite products, but we
find some deviations between our estimate of U;y and
the in situ measurements collected during the Innershelf
DRI experiment described above. These might have
been caused by errors in the in situ wind measurements
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that can be associated with the flow distortion around the
vessel, exacerbated by the low vessel speed (from sta-
tionary to 1-2ms ') imposed by the in-water component
of ship operations for data collection, and repeated ship
heading changes. This also highlights the challenges of
collecting science-grade wind measurements from
research vessels, despite various attempts to account
for the flow distortion (e.g., Miller et al. 2008; Landwehr
et al. 2015), and the scientific need for other means of
obtaining surface wind measurements. Overall we find a
small bias of +0.3ms ' for a 1:1 slope and a coeffi-
cient of determination R* = 0.82. This value goes up
to 0.95 when only the satellite remote sensing products
are considered, with a similar bias (+0.35ms ™).

Figure A5 shows the lidar estimates of us against the
same coincident (within 10min), collocated (within
2.5km), independent measurements that were pre-
sented in Fig. A4. Here the friction velocity is computed
iteratively using the Tropical Ocean and Global Atmo-
sphere Coupled Ocean—Atmosphere Response Experi-
ment 3.0 (TOGA COARE 3.0) algorithm assuming a
constant flux layer with a logarithmic wind profile
(Fairall et al. 2003). We find a small bias between the
two estimates, +0.035ms ', showing a slightly larger
value of us with the lidar-based measurements, and a
coefficient of determination R* = 0.8.

c. Wind direction retrieval

Because the wind direction cannot be retrieved from
the lidar return statistics without conducting dedicated
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FIG. AS. As in Fig. A4, but for friction velocity ux and based
on wind speed measurements and bulk formulation (TOGA
COARE 3.0).

flights, for example, a star pattern over a short period of
time to quantify the variability of mean-square slope o
as a function of heading to relate it to the mean wind
direction, here we utilize the directional spectral prop-
erties of the measured wind-generated surface waves.
Note that this approach is only valid for wind speeds of
greater than 2-3ms ! to ensure sufficient density of Ii-
dar returns required to compute the directional wave
spectra.

Ten-kilometer-long swaths of georeferenced ocean
surface topography data centered on R/P FLIP were in-
terpolated on a regular grid, with the horizontal spatial
resolution being a function of the flight altitude (Lenain
and Melville 2017). Two-dimensional fast Fourier trans-
forms were computed over 5-km segments with 50%
overlap. All segments were first detrended, tapered
with a two-dimensional Hanning window, and padded
with zeros (25%). The obtained 2D spectra were cor-
rected for Doppler shift induced by the relative mo-
tion between the phase speed of the waves and the
aircraft velocity, using the method developed by
Walsh et al. (1985).

Lenain and Melville (2017) highlighted the transition
from unimodal to bimodal directional distribution found
in wind-generated surface wave spectra [see Figs. 3 and 4
of Lenain and Melville (2017) and the related discussion
therein]. The wind direction is taken here as the di-
rection of highest spectral density in the directional
spectrum at the measured wavenumber correspond-
ing to this transition. Figure A6 shows the comparison
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FIG. A6. Comparison between independent wind direction mea-
surements and estimates derived from the directional wavenumber
spectra. The open circles correspond to the LCDRI2017 experiment
results, and the plus signs represent data collected during an AltiKa
overflight off the coast of Monterey in April 2015.

between independent wind direction measurements and
estimates derived from directional surface wavenumber
spectra collected during the LCDRI2017 experiment,
along with results from an AltiKa overflight in April
2015 off the coast of Monterey. In that latter case we
used the standard wind direction product provided in
the L2 level of the AltiKa dataset (AVISO; note that
acronyms that are not defined in this paper may be found
at https://PubsAcronymList). We find good agreement
between in situ and lidar-based wind direction values,
with an rms error of approximately 10°.
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