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Focusing deep-water surface gravity wave
packets: wave breaking criterion in a
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Geometric, kinematic and dynamic properties of focusing deep-water surface gravity
wave packets are examined in a simplified model with the intent of deriving a
wave breaking threshold parameter. The model is based on the spatial modified
nonlinear Schrödinger equation of Dysthe (Proc. R. Soc. Lond. A, vol. 369 (1736),
1979, pp. 105–114). The evolution of initially narrow-banded and weakly nonlinear
chirped Gaussian wave packets are examined, by means of a trial function and a
variational procedure, yielding analytic solutions describing the approximate evolution
of the packet width, amplitude, asymmetry and phase during focusing. A model
for the maximum free surface gradient, as a function of ε and ∆, for ε the linear
prediction of the maximum slope at focusing and ∆ the non-dimensional packet
bandwidth, is proposed and numerically examined, indicating a quasi-self-similarity
of these focusing events. The equations of motion for the fully nonlinear potential
flow equations are then integrated to further investigate these predictions. It is found
that a model of this form can characterize the bulk partitioning of ε − ∆ phase
space, between non-breaking and breaking waves, serving as a breaking criterion.
Application of this result to better understanding air–sea interaction processes is
discussed.

Key words: surface gravity waves, wave breaking

1. Introduction
This investigation is concerned with initially narrow-banded and weakly nonlinear

chirped compact deep-water wave groups and their evolution towards wave breaking.
A distinguishing characteristic of these focusing packets is shown in figure 1, where
packet asymmetry is manifest, and the packet slope reaches large negative values,
resulting in wave breaking. The central question of this study is, which mechanisms
control this behaviour in focusing nonlinear wave packets? To quantify this a
dimensionless parameter, T = T (ε, ∆), for ε a measure of the linear prediction
of the maximum wave slope at focusing and ∆ the dimensionless packet bandwidth,
is proposed as a prediction of the local wave slope. When this parameter exceeds a
certain threshold, wave breaking is expected.

† Email address for correspondence: npizzo@ucsd.edu
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FIGURE 1. (Colour online) Two laboratory examples of deep-water breaking waves.
(a) Laboratory data from Drazen, Melville & Lenain (2008). A dispersive focusing
technique is employed to create breaking around k0(x − xb) = 0. The wave envelope
is shown in blue, while the free surface displacement is given in black. Notice the
strong asymmetry in the packet as breaking is approached. (b) The evolution of
an initially uniform train of finite amplitude waves, from the laboratory experiments
of Melville (1983). The initially uniform wave train experiences the Benjamin–Feir
instability (Benjamin & Feir 1967), leading to large modulations to the wave amplitude
and phase, eventually leading to wave breaking around k0x= 251.

Recently, physically motivated scaling arguments have been successful in describing
bulk scale properties of the flow induced by deep-water wave breaking. For example,
consider the energy dissipation rate due to deep-water breaking waves (Duncan 1981;
Phillips 1985; Drazen et al. 2008; Romero, Melville & Kleiss 2012; Sutherland
& Melville 2013; Deike, Popinet & Melville 2015). Drazen et al. (2008) found
that the dissipation rate per unit length of length of breaking crest is given by
b0(S− S0)

5/2ρc5/g for b0 a scaling constant, S the linear prediction of the maximum
wave slope at focusing, ρ the density of water, c the phase velocity, g the acceleration
due to gravity and S0 is the breaking threshold. Part of the motivation of this
manuscript is to better understand this threshold quantity S0. For instance, does it
depend on other quantities characterizing the wave packet such as the bandwidth?
Improved understanding of the behaviour of this threshold may then be used to further
constrain the scaling arguments that are used to close energy budgets between the
atmosphere and ocean (Cavaleri, Fox-Kemper & Hemer 2012; Sutherland & Melville
2015), and may be incorporated into wave models to parametrize the wave breaking
statistics (Phillips 1985) in studies of air–sea interaction (Sullivan, McWilliams &
Melville 2007).

In this paper we employ the spatial modified nonlinear Schrödinger equation
(hereinafter referred to as the MNLSE; Dysthe 1979; Lo & Mei 1985). The model is
weakly nonlinear and narrow banded. How then may it be useful in describing
wave breaking, which is a process that is very nonlinear (with the local free
surface slope potentially going to negative infinity) and varies rapidly in space
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240 N. Pizzo and W. Kendall Melville

and time? Our approach is to distinguish physical mechanisms, and in particular
bulk scale non-dimensional quantities describing these mechanisms, that characterize
the magnitude of the gradients of the free surface displacement generated from
initially narrow-banded weakly nonlinear wave packets. Here, using the variational
method (Chandrasekhar 2013, §17) for an asymmetric trial function following Pizzo
& Melville (2016, see also Anderson 1983), solutions for the packet amplitude,
asymmetry, width and phase are found. A condition is derived, as a function
of a non-dimensional number, under which the packet slope experiences large
amplifications, implying its potential usefulness in quantifying the strength of packet
focusing. Furthermore, the analysis hints at a quasi-self-similarity in the behaviour of
the maximum slope in these focusing wave packets. Note, the mechanisms generating
these large free surface displacement gradients are not directly responsible for wave
breaking but may instead trigger higher-order local crest instabilities (e.g. the five
wave resonance of steep waves (discussed in more detail below), see Longuet-Higgins
1978; McLean et al. 1981; Longuet-Higgins & Dommermuth 1997). Subsequently,
this analysis is examined by integrating the fully nonlinear potential flow equations.
Despite the limitations of the MNLSE (which have been elucidated in a number of
laboratory and numerical experiments, see for instance Lo & Mei (1985), Shemer,
Kit & Jiao (2002), Clamond et al. (2006)), due to the complexity of the full problem
(Perlin, Choi & Tian 2013), there is insight gained by examining a minimal model that
reproduces features that are observed in laboratory, numerical, and field observations
of breaking waves.

Wave breaking in deep water may occur due to wave–wave interactions, wave–
current interactions and wind–wave interactions (Melville 1996). In this study, we
are particularly interested in wave breaking due to wave–wave interactions so that
we do not consider the effects of winds or external currents. Wave breaking has
been studied theoretically since Stokes proposed the limiting form of permanent
progressive waves (Stokes 1880, see also Craik 2005). Mathematically, breaking is
often identified with shock formation (Seliger 1968; Whitham 1974) or divergences
in measures of the packet variance, as is common in virial theorem arguments for
the nonlinear Schrödinger equation and its variants (Sulem & Sulem 1999). For
permanent progressive waves, five wave and higher resonances of very steep Stokes
waves may rapidly lead to wave overturning (Longuet-Higgins & Dommermuth
1997), corresponding to a homoclinic bifurcation (Bridges 2004), but these waves
tend to be of limited interest in practice due to their restriction to infinitesimal
bandwidth. Although there has been significant theoretical and practical advances in
our understanding of deep-water wave breaking, the principles guiding breaking are
not fully known, making diagnostic and predictive modelling of a breaking threshold
difficult (Perlin et al. 2013). Furthermore, it is not clear which variables describing
the wave field are needed to characterize this behaviour.

Laboratory observations have been particularly successful in advancing our
understanding of wave breaking. Two different generation mechanisms that lead to
breaking are the evolution of an initially permanent progressive finite amplitude wave
train to breaking (Melville 1982, 1983) and a dispersive focusing technique (Melville
& Rapp 1985; Rapp & Melville 1990) originally proposed by Longuet-Higgins (1974).
Breaking in both instances is shown in figure 1, where both amplitude amplification
and a strong asymmetry in the packet envelope is evident.

Next, Dyachenko & Zakharov (2011) derived an equation that is accurate to fourth
order in wave slope, under the additional constraint that waves are travelling in
one direction. Under these conditions, they derived a compact equation that is not
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Focusing deep-water surface gravity wave packets 241

limited by bandwidth constraints. Fedele (2014) then used this equation to examine
the evolution of an initially uniform very steep wave train (there the slope exceeds
0.577, while we recall the limiting Stokes wave has slope of around 0.443 (Stokes
1880)), where the envelope amplitude and wavenumber evolution was hyperbolic, and
derived a modified Camassa–Holm equation (Camassa & Holm 1993) governing the
envelope evolution, which admits breaking. Dyachenko, Kachulin & Zakharov (2017)
also used this equation to examine steepening waves. However, breaking criterion and
comparisons against the fully nonlinear potential flow equations were not provided,
and it is not clear how accurate these descriptions are when applied so far outside of
their asymptotic region of validity. Furthermore, the canonical transformations of the
Zakharov equation needed to derive these equations (Dyachenko & Zakharov 2011)
partially obscure the physics of these results.

Recently, Barthelemy et al. (2018) proposed, and Saket et al. (2017, see also
Khait & Shemer 2018) provided laboratory support for, a kinematic criterion for
wave breaking (Perlin et al. 2013), providing a diagnostic tool to locally analyse the
likelihood of breaking. The connection between this local kinematic behaviour and
the initial conditions of dispersive focusing packets (which are characterized by linear
predictions of their geometry at focusing) partially motivated this study. Note, power
law behaviour of certain properties of breaking waves, such as length scales near
breaking, have been examined theoretically in Pomeau et al. (2008), but this study
diagnoses the behaviour of the waves once breaking has taken place, and does not
present a criterion nor a mechanism for breaking to occur.

The outline of this paper is as follows. In § 2, the modified nonlinear Schrödinger
equation is reviewed. Next, in § 3, the evolution of initially narrow-banded weakly
nonlinear chirped Gaussian packets is considered. A model is proposed to predict the
maximum wave slope at focusing. The theory is then examined numerically in the
fully nonlinear irrotational inviscid system in § 4. Finally, the results are discussed in
§ 5.

2. The modified nonlinear Schrödinger equation
In this section we review properties of the modified nonlinear Schrödinger equation

(Dysthe 1979), in a spatially mapped reference frame (Lo & Mei 1985). This
follows Pizzo & Melville (2016), and we note that a more general description
of the Hamiltonian form of Dysthe’s equation may be found in Gramstad & Trulsen
(2011, see also Kit & Shemer (2002)).

2.1. Derivation of the MNLSE using Whitham’s method
The governing equation for irrotational inviscid two dimensional surface gravity waves
is (see, for example, Phillips 1977)

∇
′2φ′ = 0, (2.1)

together with boundary conditions

φ′t′ +
1
2(∇

′φ′)2 + gz′ = 0
∣∣

z′=η′ ; η′t′ + φ
′

x′η
′

x′ = φ
′

z′
∣∣

z′=η′ , (2.2a,b)

along with the condition of no flow at the bottom φ′z′→ 0 as z′→−∞, where φ′ is
the velocity potential, η′ is the free surface displacement, ∇

′
= (∂x′, ∂z′) and g is the

acceleration due to gravity. Although the governing equation is linear, the boundary
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242 N. Pizzo and W. Kendall Melville

conditions are nonlinear, and more severely, are evaluated at a dependent variable of
the system, namely η′.

In order to make analytic progress, asymptotic approximations are employed. The
wave slope ε ≡ a0k0 is a measure of the nonlinearity of the system, and is assumed
to be much less than 1. Furthermore, if δk is a perturbation to the characteristic
wavenumber k0, then we define the bandwidth as ∆ ≡ |δk|/k0. Now, unlike the
canonical approach where ∆ ∼ ε, we instead leave the exact relationship between
the two parameters general (see also the discussion in Phillips (1981)). Finally, the
characteristic angular frequency, ω0, is related to the wavenumber by the linear
dispersion relation for deep water surface gravity waves, i.e. ω2

0 = gk0.
Following (Lo & Mei 1985), we non-dimensionalize our system as follows:

φ = (a2
0ω0)

−1φ′, η= a−1
0 η
′,

x= k0x′, t=ω0t′, z= k0z′.

}
(2.3)

Expanding the velocity potential and free surface displacement as a series, we have
(Chu & Mei 1970)

φ = φ(X, T; ε, ∆)+
M∑

l=1

M∑
m=1

N∑
n>m

εn−1∆l−1φlmn(X, T, Z)eimθemz
+ c.c., (2.4)

η= η(X, T; ε, ∆)+
M∑

l=1

M∑
m=1

N∑
n>m

εn−1∆l−1ηlmn(X, T)eimθ
+ c.c., (2.5)

where X = 1x, Z = 1z, T = 1t, θ = x − t and c.c. means complex conjugate; φ
and η are the mean (phase-averaged) velocity potential and free surface displacement,
respectively, with their scale to be determined. Finally, we take the complex valued
coefficient φ111 ≡ B as our dependent variable. This has important implications for
the structure of the resulting governing equation (see the discussion in Kit & Shemer
(2002) and Trulsen (2006)).

The expansions of the dependent variables to third order in ε and second order in
∆, appropriate for the MNLSE, are (Trulsen & Dysthe 1997; Trulsen 2006; Pizzo &
Melville 2016)

φ = εφ +
1
2

([
B− i1zBX −

∆2

2
z2BXX

]
ezeiθ
+ c.c.

)
, (2.6)

η = ε∆η+
1
2

([
iB+

∆

2
BX +

i∆2

8
BXX +

iε2

8
|B|2B

]
eiθ

+

[
−
ε

2
B2
+ iε1BBX

]
e2iθ
+

3iε2

8
B3e3iθ

+ c.c.
)
. (2.7)

Recall, equations (2.1), (2.2) can be reformulated in terms of a variational principle
through the action (Luke 1967; Zakharov 1968; Miles 1977)∫

L dx dt=
∫ {

εψηt − ε

(∫ εη

−∞

1
2
(∇φ)2 dz+

1
2
η2

)}
dx dt, (2.8)

where ψ = φ(x, z= εη, t) is the velocity potential evaluated at the free surface.
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Focusing deep-water surface gravity wave packets 243

Next, we substitute the form of the velocity potential and free surface displacement
into (2.8). Furthermore, following Lo & Mei (1985), we map into a spatial reference
frame by introducing the following transformation

(2X − T)= τ ; 1X = χ. (2.9a,b)

This reference frame is travelling at the linear group velocity, and for a fixed position
X, τ is proportional to the negative of the elapsed time, while χ is related to the
fetch (or stretched distance). Finally, for clarity of presentation we transform from the
dependent variable B to the dependent variable in the mapped frame A.

Employing the mapping given by (2.9), the averaged Lagrangian (Whitham 1965,
1974), then becomes

L≡
1

2π

∫ 2π

0
L dθ =

i
2

(
A
∂A∗

∂χ
− A∗

∂A
∂χ

)
−H, (2.10)

where H is defined as (cf. Gramstad & Trulsen 2011, appendix C)

H= |Aτ |2 −
γ0

2
|A|4 −

α0

2
|A|2H(|A|2τ )+ i

β0

4
|A|2(A∗Aτ − AA∗τ ), (2.11)

and γ0 = ε
2/∆2, α0 = 2ε2/∆, β0 = 8ε2/∆, while ∗ denotes the complex conjugate.

Note, γ0 is a measure of the ratio of the O(ε2) nonlinearity to dispersion (this term
has been shown to be important for statistical analogues of the NLSE (Alber 1978;
Onorato et al. 2001; Janssen 2003) as well as the deterministic dynamics of the NLSE
(Anderson 1983)) and the Hilbert transform H is defined as

H(|A|2τ )=
1
π

P.V.
∫
∞

−∞

∂|A(χ, τ ′)|2

∂τ ′

dτ ′

τ − τ ′
, (2.12)

with P.V. meaning we are to take the principal value of the integral (Titchmarsh 1948).
Following Janssen (1983, see also Akylas 1989) we have rewritten our action in terms
of one variable by recognizing that ϕτ and ϕZ are harmonic conjugates, where ϕ is
the velocity potential in this spatial reference frame. That is, these variables are real
and imaginary parts of an analytic function in the lower half plane and hence we can
connect the two variables, evaluated at Z = 0, via the Hilbert transform H.

As the linear dispersion is exactly represented in this spatial reference frame
(Trulsen et al. 2000; Kit & Shemer 2002), only one term is needed to completely
describe it. Besides making this equation more physically accurate, this also offers
numerical advantages (Lo & Mei 1985), and simplifies the equations algebraically.

The action associated with the Lagrangian density in the spatial reference frame, i.e.
equation (2.10), is defined as

S(A, A∗)=
∫ χf

χ0

∫
R
L dτ dχ, (2.13)

which is a functional over all admissible functions satisfying the prescribed conditions
at A(τ , χ0) and A(τ , χf ). Hamilton’s principle states that the governing equations of
the system are found by requiring that S be stationary. That is, we seek solutions
(A, A∗) such that

δS = S(A+ δA, A∗ + δA∗)− S(A, A∗)= 0, (2.14)
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244 N. Pizzo and W. Kendall Melville

for infinitesimal (δA, δA∗). Substituting the Lagrangian density into the action, then
applying Hamilton’s principle, and recalling the anti-self-adjoint nature of the Hilbert
transform (Titchmarsh 1948), gives us (Lo & Mei 1985; Kit & Shemer 2002)

∂A
∂χ
+ i
∂2A
∂τ 2
+ iγ0|A|2A+ iα0AH

(
∂|A|2

∂τ

)
+ β0|A|2

∂A
∂τ
= 0. (2.15)

The constants (α0, β0) also make it easy to track the induced mean flow (which
is related to the term with coefficient α0), and the asymmetric self-steepening term
(which is related to the term with coefficient β0) in the ensuing calculations. Note,
for ∆= ε, we return the standard form of the MNLSE.

This equation is usually written as a set of coupled partial differential equations
(PDEs) in two dependent variables, (A, ϕ|Z=0). The two variables are connected by
the relation

∂ϕ

∂Z

∣∣∣∣
Z=0

=
∂|A|2

∂τ
, (2.16)

which implies that gradients in the radiation stress lead to the generation of a mean
flow (Longuet-Higgins & Stewart 1964; Dysthe 1979; McIntyre 1981).

2.2. Conservation laws
A benefit of the above use of Whitham’s method is that symmetries of the action
(2.13) may be connected with conservation laws using Noether’s theorem. In particular,
Pizzo & Melville (2016) were able to identify several symmetries of the action of the
Lagrangian associated with (2.15). They found that (2.15) conserves wave action,

∂|A|2

∂χ
+
∂

∂τ

(
i(A∗Aτ − AA∗τ )+

β0

2
|A|4
)
= 0, (2.17)

as well as the wave action weighted frequency (Trulsen & Dysthe 1997)

∂

∂χ
(i(A∗Aτ − AA∗τ ))+

∂G
∂τ
+ 2α0|A|2τH(|A|

2
τ )= 0, (2.18)

where

G = 2|Aτ |2 − (AA∗ττ − A∗Aττ )− γ0|A|4 + iβ0|A|2(A∗Aτ − AA∗τ )− 2α0|A|2H(|A|2τ ). (2.19)

As was noted in Pizzo & Melville (2016), equation (2.18) does not take the form of
a local conservation law due to the last term in (2.18), which cannot be written as a
perfect derivative. However, the integral quantity

∫
i(A∗Aτ −AA∗τ ) dτ is still conserved,

as the final term on the left-hand side of (2.18) integrates to zero due to the anti-self-
adjoint nature of the Hilbert transform (Titchmarsh 1948).

3. Focusing wave packets
The goal of this section is to identify non-dimensional parameters that characterize

wave focusing as governed by (2.15). In the absence of a canonical structure to
analyse for focusing wave packets, we must come up with a rational way to
analytically examine the evolution of this system. To this end, following work in
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Focusing deep-water surface gravity wave packets 245

fluid mechanics (Chandrasekhar 2013) and optics (Agrawal 2007), ansätze are made
for a trial function and a variational method is used to determine its evolution.

Theoretically, we consider chirped, initially narrow-banded and weakly nonlinear,
Gaussian wave packets. These waves are similar to the dispersive focusing wave
packets originally proposed by Longuet-Higgins (1974) and used extensively in
laboratory experiments on breaking waves (Melville & Rapp 1985; Rapp & Melville
1990; Tian, Perlin & Choi 2010; Perlin et al. 2013). Longer (faster) waves are
generated after shorter (slower) waves, leading to energy focusing in a region of
space and time, possibly leading to breaking.

Chirped Gaussian wave packets satisfying the linear Schrödinger (i.e. γ0=α0=β0=0)
take the form

A=
h0

√
1− 2iΛχ

e−Λτ
2/2(1−2iΛχ), (3.1)

where Λ= (1+ iC)w−2, for C the packet chirp, and w the packet width. The packet
bandwidth then scales with w|Λ| =

√
1+C2w−1 (Agrawal 2007).

3.1. Variational equations
Following Pizzo & Melville (2016), we use the variational method (Anderson 1983;
Agrawal 2007; Chandrasekhar 2013), to derive approximate analytic forms for the
evolution of physically important packet parameters. This qualifies and quantifies the
packet evolution, and forms a useful tool to understand the bulk scale properties of
the wave envelope during focusing. The success of this approach relies on a trial
function which captures the essence of the phenomenon in question, without being
too algebraically complicated.

To this end, we recall that in the absence of linear dispersion, as was discussed by
Pizzo & Melville (2016), equations (2.17) and (2.18) decouple, and may be solved
using the method of characteristics. For small β0ρ

2χ , solutions to the wave action
equation (i.e. (2.17)) takes the form

ρ ≈ ρ0 + β0ρ
2
0ρ
′

0χ, (3.2)

where the subscript 0 means we are evaluating these functions at χ = 0.
This implies that that for an initially chirped Gaussian wave packet, we should try

a trial function of the form (Anderson 1983)

A= (a(χ)e−τ 2/2w(χ)2
+ β0s(χ)τe−3τ 2/2w(χ)2)ei(C(χ)τ 2/2+G(χ)+β0F(χ)τ), (3.3)

where we are solving for the six real functions (a, s, w, C, F, G), governing the
amplitude of the symmetric component of the packet a, the asymmetric amplitude s,
the packet width w, the chirp C, the mean frequency F and the phase shift G.

To employ the variational technique we then substitute our trial wave function into
the action, i.e. (2.13), so that to the same order of approximation as (2.15), we find

L =

∫
∞

−∞

L dτ =

√
2
π
α0~0a4

−
√

2
a2

w
+ γ0a4w (3.4)

−
√

2a2C2w3
+

a2w3C′
√

2
+ 2
√

2a2wG′, (3.5)
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246 N. Pizzo and W. Kendall Melville

where ~0 is a constant given by

~0 =

∫
∞

−∞

e−(τ/w)
2H((e−(τ/w)2)τ ) dτ = 1, (3.6)

as the Hilbert transform of the Gaussian function may be written in terms of the
Dawson function (Temme 2010), so that this integral may be computed analytically.

We begin by noting that the integral form of conservation of wave action, i.e.
equation (2.17), becomes

E0 =

∫
∞

−∞

|A|2 dτ =
√

πa2w+O(β2
0 ), (3.7)

where E0 is a specified constant (independent of the scales ε and ∆) based on the
initial wave form. Furthermore, conservation of mean frequency, i.e. the integral
of (2.18), gives

P0 =
i

E0

∫
∞

−∞

(A∗Aτ − AA∗τ ) dτ =
awβ0

8

(
aF+

Csw2

2
√

2

)
, (3.8)

which for the initially chirped Gaussian function (3.1) must be taken to be zero, so
that

F=−
1

2
√

2

sw5/2C

E1/2
0

. (3.9)

We can now apply Hamilton’s principle to each of the dependent variables, yielding
a set of coupled ordinary differential equations. Taking variations with respect to w
implies

G′ +
3
4

w2C′ −
3
2

C2w2
+

1
2w2
+
γ0a2

2
√

2
= 0, (3.10)

while variations with respect to G gives

(a2w)′ = 0, (3.11)

which is consistent with equation (3.7).
Next, varying L with respect to a we find

G′ +
1
4

w2C′ −
1
2

C2w2
+
α0a2

√
πw
−

1
2w2
+ γ0

a2

√
2
= 0, (3.12)

while variations with respect to C yields

4a2w3C+ (a2w3)′ = 0. (3.13)

Next, recall Pizzo & Melville (2016) found that the centroid of packets governed
by the MNLSE, in the frame of reference moving at the linear group velocity,
have a finite amplitude correction analogous to the Stokes correction for permanent
progressive waves. There, it was found that (for P0 = 0)

d
dχ

1
E0

∫
∞

−∞

τ |A|2 dτ =
β0

2E0

∫
∞

−∞

|A|4 dτ . (3.14)
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Substituting our trial function into this equation, we find a relationship for s,

s′ +
5
2

w′

w
s=

8E3/2
0

w7/2
. (3.15)

Next, from equation (3.7), equation (3.13) can be rewritten to find

C=−
1
2

w′

w
=−

1
2

d ln w
dχ

. (3.16)

Then, subtracting (3.10) from (3.12) and substituting in (3.16), we have

w′′ + γ0E0

√
2
π

1
w2
+ 4

(
−1+

α0E0

π

)
1

w3
= 0. (3.17)

Multiplying by w′ and integrating once, we find an equation describing a particle
trapped in a potential well,

1
2

(
dw
dχ

)2

+Π(w)= 0, (3.18)

where the potential Π(w) is given by

Π(w)= 2
(

1−
α0E0

π

)
1

w2
−

√
2
π

γ0E0

w
+Π0, (3.19)

and Π0 is an integration constant chosen to satisfy the initial conditions, that is

Π0 =−1/2w
′2
0 − 2

(
1−

α0E0

π

)
1

w2
0
+

√
2
π

γ0E0

w0
. (3.20)

The initial velocity of the particle in the well is set by the chirp of the packet
and the initial width, as is evident by (3.16). Equation (3.19) makes it clear that the
dynamics of w is set by the size of (ε/∆)2 and ε2/∆. Note, throughout the rest of
this discussion we take E0 to be

√
π, so that a2

0w0 = 1.
Examples of potentials for two values of ε2/∆ are shown in figure 2. There, the

black dot represents the initial packet width (taken to be w0 = 1). We take C0 < 0 so
that the packet width w decreases, leading to focusing. For increasing values of ε2/∆,
this focusing event becomes more pronounced as linear dispersion is retarded by the
induced mean flow.

The packet width may be solved for implicitly, as we may rewrite (3.18) as

√
2χ =

∫ w

1

w̃dw̃√
−w̃2Π0 +

√
2γ0w̃− 2(1− α0/

√
π)

. (3.21)

Next, equation (3.15) may be integrated to find

s=
8E3/2

0

w5/2

∫
dχ̃

w(χ̃)
. (3.22)

The solutions to these equations are discussed in more detail below.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

42
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Sa

n 
D

ie
go

 L
ib

ra
ry

, o
n 

13
 Ja

n 
20

20
 a

t 2
1:

59
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.428
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


248 N. Pizzo and W. Kendall Melville

w

´ = Î = 0.1
´ = 0.1, Î = 3´/4

Ô
(w

)
FIGURE 2. (Colour online) The potential well given by (3.19) for ε = ∆ = 0.1 (black
line) and ε = 4∆/3= 0.1 (red line). The dashed lines show the corresponding potentials
for the nonlinear Schrödinger equation. Note, the red line has Π ′(w0 = 1) < 0, implying
the nonlinearity is stronger than the dispersion initially, aiding the chirp in compressing
the packet, i.e. leading to smaller values of w.

3.2. Discussion
The role of the individual terms in the MNLSE in modulating the focusing process
is made clear by analysis done in § 3.1. From (3.19), we see that the role of the
nonlinear term with coefficient γ0 is to increase attraction, leading to larger focusing
than if it were not present. At small w, the term proportional to w−2 dominates.
There, the induced mean flow term, i.e. the term with coefficient α0, counteracts
linear dispersion. Furthermore, the connection between the asymmetric self-steepening
term and the packet width is elucidated by (3.22). For w constant we return the
prediction of Burgers equation, where it is found that for χ small, this asymmetric
term grows linearly in χ . In the MNLSE, the changing packet width greatly modifies
the growth rate of the asymmetric component (see (3.22)), and is extremely sensitive
to this value, leading to large amplifications in this asymmetric amplitude.

The solutions to (3.21) are qualitatively controlled by the sign of Π ′(w0) (which
is evident by looking at the last two terms in (3.17)), which indicates whether
dispersion or nonlinearity is dominant. Focusing is always possible based on the sign
and magnitude of the initial chirp, but for Π ′(w0) < 0, we expect that nonlinearity
is initially stronger than dispersion and this greatly enhances the focusing event.
Figure 2 shows the potential wells for the NLSE and MNLSE for these two cases.

In particular, Π ′(w0 = 1) changes sign when

ε > 2

(√
2

∆2
+

8
√

π∆

)−1/2

=
2π1/4∆√√

2π+ 8∆
. (3.23)

For ε =∆, this occurs when

ε =

√
π

8
(4−
√

2)≈ 0.572. (3.24)

The quantity given by (3.23) is related to the ratio of the nonlinear to dispersive
terms in (2.15). That is, we define the following non-dimensional quantity as a
measure of packet dynamics in the MNLSE,

κ =
ε2(1+ b0∆)

∆2
, (3.25)
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for b0 a scaling constant. This is an extension of the parameter considered in Anderson
(1983), as well as the so-called Benjamin–Feir index used in statistical studies of water
waves (Alber 1978; Onorato et al. 2001; Janssen 2003).

Next, the minimum value of w, which we denote w∗, may be found explicitly by
solving for Π(w∗)= 0, which implies

w∗ =

√
2πγ0 −

√
8πγ 2

0 − 4(4
√

π− 4α0)(4α0 + 2
√

2πγ0 − 4
√

π−C2
√

π)

4α0 −
√

π(4+C2 − 2
√

2γ0)
. (3.26)

Furthermore, it may be seen that w→ 0 for finite χ , as Π(w)→−∞ as w→ 0
when ε2/∆>

√
π/2. However, we are not explicitly interested in solutions that ‘blow

up’ (Sulem & Sulem 1999), nor are we implying that these types of solutions exist in
the MNLSE. Instead, we are interested in scenarios where A and its gradients become
large (corresponding to large gradients in the free surface displacement η), hinting at
the possibility of wave breaking in the more general water wave system where higher-
order instabilities (e.g. five wave resonance) become operative and may quickly lead to
wave overturning and breaking. To gain more intuition, we next numerically integrate
the MNLSE.

3.3. Numerical simulations of the MNLSE
To better understand these predictions, we now look at several numerical examples.
The numerical scheme is a split-step pseudo-spectral method, where the step size is
chosen so that the energy is conserved to at least 1 part in 106 and the mean frequency
to 1 part in 104. The number of modes was increased until convergence was found.
In particular, we use 212 modes and step sizes of the order of 10−5.

Note, one of the difficulties in applying ideas from weakly nonlinear narrow
banded theory to areas outside of their strict asymptotic region of validity is the
choice in defining the (small) parameters ε and ∆ (see the discussion in § 2 of Perlin
et al. (2013)). For example, does one define the parameter ε as the initial slope,
or the largest slope, as predicted by some theory? A technique used in laboratory
experiments is to characterize the packet slope S based on the linear prediction of the
maximum slope at focusing. This has been shown to be effective in describing the
strength of breaking waves for laboratory wave packets (Drazen et al. 2008), which,
due to wave channel length limitations, must be broadband in order to start as linear
waves and progress to breaking over a reasonable fetch (usually on the order of
10 m). Based on this, we connect the parameters (ε, ∆) with the predictions of the
maximum modulations to amplitude and spatial/temporal scales according to linear
theory.

Figure 3 shows a comparison of the predictions of the trial functions with the
MNLSE. Here, ε =∆= 0.1. We can see good agreement between the predictions of
the amplitude |A| and the trial function amplitude A = |A|eiϑ , while the frequency
evolution θτ (where we recall A = |A|eiθ ) agrees with trial function predictions until
focusing, when the τ structure is more complicated than the low-order polynomials
we assumed for ϑ . The lowest row shows the predictions of the magnitude of the
envelope slope |Aτ | of the envelope during focusing, and there is relatively good
agreement for small values of χ . However, this simple model is unable to predict the
slope at focusing, as the asymmetric term is not part of the energy balance to this
order and grows secularly.
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FIGURE 3. (Colour online) A comparison between numerical simulations of the MNLSE
and the predictions of the trial function given by (3.3). Here, ε =∆= 0.1. The envelope
amplitude is shown in (a), where we see agreement between the trial function and the
full solutions during focusing, with the agreement breaking down as the packet slope
becomes large. The frequencies are shown in (b), and again the trial functions describe
the bulk scale evolution of the phase but do not capture the higher τ -dependent behaviour.
(c) Compares the predictions of the slope of the trial function and the MNLSE, with good
agreement found for small values of χ , before the approximation breaks down.

3.4. Maximum slope at focusing
In this section we seek to model the maximum slope at focusing, based on the initial
packet parameters (ε,∆). The variational method hinted at the importance of γ0, α0, β0

in describing the focusing event. In particular, the values of w∗, which we recall is
the minimum packet width predicted by the variational method, sets the scale of the
envelope at focusing. These values are not uniquely defined as a function of ε,∆, and
to first order in ε2/∆, it may be seen that when ∆= d0ε+ d1ε

2, then lines of constant
w∗ may be found for d2

0/2=w∗(1−w∗)/(4w2
∗
−2) and d1 a more complicated function

of w∗ which is not presented here as it is not relevant for the ensuing discussion. This
hints at a quasi self-similarity in the focusing event.

Next, the free surface η is given by (2.7). To better understand the dependence
of max(|ηx|) on (ε, ∆), the MNLSE was numerically integrated with the initial
conditions given by (3.1) for 400 values of ε and ∆, and the maximum of the
modulus of the slope is shown in figure 4. Note, the three decibel width of the initial
spectrum is chosen as a measure of the packet bandwidth, ∆. For comparison, the
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FIGURE 4. (Colour online) The maximum of the modulus of the slope, max(|ηx|),
according to the modified nonlinear Schrodinger equation (upper surface) and nonlinear
Schrodinger equation (lower surface) as a function of ε and ∆. Here, 400 runs were
conducted, and the displayed surfaces are interpolated based on these data points.
Note, the MNLSE predicts noticeably larger slopes than its lower-order counterpart, in
accordance with the theoretical considerations of § 3. Slopes are largest for large ε and
small ∆, corresponding to larger values of γ0, α0, β0.

same simulations are conducted for the NLSE and are shown. The slope predictions
are larger for the MNLSE, and this becomes more pronounced with increasing ε and
decreasing ∆ (which corresponds to increasing γ0, α0, β0).

We define the maximum of the modulus of the free surface slope as T , that is

T ≡max(|ηx|). (3.27)

For linear waves, we have T = ε, by definition. From (3.26), the definition of η
(i.e. (2.7)), and the asymptotic self-similarity of w∗ described above, we propose that
for the MNLSE

T = ε(1+ f (κ)), (3.28)

with κ as defined in (3.25) and f a function, to be constrained by the numerical
simulations.

Next, by inspection of figure 4 we expect the growth of the slope to be sensitive
to values of γ0 and α0. To this end, we assume that the function f is exponential, and
find the following fit

T = ε
(

h0 + h1eh2ε
2/∆2(1+h3∆)

)
, (3.29)

with (h0, h1, h2, h3)= (−0.37, 1.18, 0.20, 10.05) given by a least squares fit with the
data. A comparison of this model with the data is shown in figure 5 in the form of a
contour plot. There, bulk scale agreement between this simple model and the data is
shown. Note, these coefficients also have a dependence on the chirp of the packet C.

Finally, note that (3.29) implies

∆=
h2h3ε

2
+
√

h2ε
√

4 ln(T /ε − h0)+ h2h2
3ε

2 − 4 ln(h1)

2 ln(T /ε − h0)− 2 ln(h1)
. (3.30)
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FIGURE 5. (Colour online) A comparison of the contours of max(|ηx|) as a function of
(ε,∆), with the model T (dashed lines) given by (3.29). There is a bulk scale agreement
between this relatively simple model and the numerical simulations.

4. Numerical simulations of the fully nonlinear potential flow equations
Motivated by the quasi-self-similarity of focusing in the MNLSE, as well as the

success of a simple model in predicting the maximum slope, we now investigate
whether or not this may form a breaking criterion. That is, we assume all waves with
a local slope that exceed some threshold T0 break. Specifically, we investigate how
well a model of the form given by (3.30) partitions phase space between breaking
and non-breaking waves.

To this end, we numerically integrate the equations of motion for fully nonlinear
irrotational inviscid deep-water surface gravity waves. The numerical scheme of Dold
& Peregrine (1986) is used (see also Dold 1992) to study focusing wave packets.
This scheme iteratively solves Laplace’s equation by using Cauchy’s integral theorem.
Initially, 211 Lagrangian surface points are distributed along the free surface. Near
the focusing point the system is remapped using a conformal mapping technique
to increase resolution in this region (Boyd 2001), following similar techniques used
in theoretical and numerical studies of Stokes waves (Yamada 1957; Tanaka 1983;
Lushnikov, Dyachenko & Silantyev 2017). In particular, we map our horizontal
domain to a unit circle. Then, if the original unit circle was described by z= eiζ , the
mapped points are given by Z = eiΘ , where

Θ =
ζ + ν0

1+ ν0ζ
; −1< ν0 6 0, (4.1)

where ν0 is a parameter prescribing how much to contract the region near ζ = π
and stretch near ζ = 0. We may shift this region to coincide with areas of maximum
steepness, hence increasing the resolution in this region. We may also apply this
mapping iteratively, to capture the fine scale structure of the free surface geometry
near breaking. An example of this is shown in the inset of figure 6.

Our general numerical program is to run each simulation until the free surface
curvature exceeds a threshold value, which is an indication that breaking might be
occurring. Each simulation, regardless of whether or not breaking was suspected, is
then rerun, starting one wave period before the largest magnitude of the observed
slope. The mapping, i.e. equation (4.1), is then applied. We subsequently examined
whether or not a wave in the packet has broken, where we say a wave has broken if
the free surface becomes multivalued. Furthermore, we ensure that the total energy is
conserved in this mapping to at least one part in 106.
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FIGURE 6. (Colour online) The packet evolution in the numerical simulations of the fully
nonlinear potential flow equations, for ε = 0.18 and ∆ = 0.24. A chirped packet uses
dispersive focusing, so that longer faster waves catch up to shorter slower waves, leading
to energy localization and in this case wave breaking. The free surface displacement
η is shown black, while the packet envelope is shown in red. Note the asymmetric
self-steepening on the forward face of the envelope and the amplitude amplification. The
inset shows the breaking event after the particle locations have been remapped, with the
particle locations shown by the black dots.

This technique allows us to create a numerical wave tank that resolves the jet of
the breaking wave, and gives us the ability to accurately compute the geometry and
kinematics of these waves at breaking. This offers significant advantages over large
eddy simulations (Derakhti & Kirby 2016; Derakhti, Banner & Kirby 2018) which
accurately capture post breaking bulk scale quantities and offer an insightful tool to
study these integral properties, but suffer from poor resolution of the geometry of the
free surface near breaking and hence also the free surface kinematics (Pizzo 2017).

As our initial conditions, following laboratory studies (Longuet-Higgins 1974; Rapp
& Melville 1990), we use a dispersive focusing technique to localize energy density
in space and time, possibly leading to wave breaking. These packets allow for future
comparison with laboratory data, and enables us to test how well the predictions made
in § 3 work for wave packets that are not explicitly chirped Gaussian packets.

The wave packets are of the form

η=

N∑
n=1

an cos(kn(x− xb)−ωn(t− tb)), (4.2)

where N is the number of waves, taken to be 32 here (Drazen et al. 2008), xb and
tb are the distance and time to focusing, with tb = c−1

g xb, while ωn and kn are the
frequency and wavenumber for each component, connected via the linear dispersion
relationship ω2

n = gkn. The wavenumbers are chosen so that kn = k0(1 + δ(n − 1)/N)
for δ a constant related to the packet bandwidth.
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FIGURE 7. (Colour online) (a) The particle locations in the original integration are shown
in red, while the mapped particle locations are shown in black. Here, ν0 = −0.5 in the
conformal mapping given by (4.1)). The distance between adjacent particles in the original
scheme (red) and the mapped coordinates (black). The resolution has been increased by
nearly an order of magnitude near the steepest part of the wave using this technique.

Two parameters describe these wave packets. First, the linear prediction of the
maximum slope at breaking is given by

S=
N∑

n=1

ankn. (4.3)

Next, the packet bandwidth is set by the parameter δ, as well as a windowing
function that ensures that just one (initially compact) wave packet is generated (Rapp
& Melville 1990). The three decibel width of the initial spectrum is chosen as a
measure of the packet bandwidth, ∆. The distance to breaking, xb is chosen so
that xb = 5(δk0)

−1 which ensures that the original packet is linear (and the bound
component contributions are initially negligible) and we take f0 = 1 Hz.

An example of packet evolution in these numerical integrations is shown in figure 6.
The black lines show the free surface elevation, while the red lines show the wave
envelope evolution, found via the Hilbert transform (Melville 1983). The focusing
process is marked by a strong asymmetric self-steepening on the forward face of the
packet, eventually leading to wave breaking, which is shown in the figure inset.

Near focusing, the particle locations are remapped using (4.1), so that they become
more dense in the region of largest slope magnitude. This is shown in figure 7. In
figure 7(a), the original mapping is shown in red, while the re-mapped particles are
shown in black, where ν0 was taken to be −0.5. The distance between adjacent
particles, d`, is then shown in figure 7(b) where it is seen that the resolution is
enhanced by nearly an order of magnitude in this focusing region. This allows us
to accurately capture the free surface geometry, which is crucial for detecting wave
breaking.

We now perform 80 integrations of different initial conditions exploring the (ε, ∆)
phase space, where following the above discussion we take ε to be S, the linear
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FIGURE 8. (Colour online) Top: numerical simulations of various initial bandwidths,
∆, and linear predictions of the maximum slope at focusing, ε. Red circles are wave
packets with breaking, while those in black are wave packets where no breaking was
observed. There is a distinct partitioning of this phase space between these two types of
evolution. The model given by (4.4) is shown by the blue line, and describes the bulk
scale partitioning of phase space between breaking and non-breaking waves, while the
black line is a linear best to the data and the grey line shows the best fit to a quadratic
polynomial in ε.

prediction of the maximum slope at focusing. The phase space is partitioned between
breaking and non-breaking waves, as is shown in figure 8. We plot

∆= ξ0
h3h4ε

2
+
√

h3ε
√

4 ln(T /ε − h0)+ h3h2
4ε

2 − 4 ln(h1)

2 ln(T /ε − h0)− 2 ln(h1)
, (4.4)

where ξ0 is best fit to the data with value 1.28. The blue line shows the prediction of
our model with T = 0.28, while the black dashed line shows a linear best fit to the
data and the grey line shows the best fit of the data to a quadratic function.

We notice bulk scale agreement between the model and the numerical simulations.
For larger values of ε and ∆ the fit breaks down, as higher-order descriptions are
needed to accurately predict the local slope (cf. (2.7)). Furthermore, the fine scale
partitioning is not captured. Nevertheless, the bulk scale behaviour appears to be quasi-
self-similar, and the models serves as a simple coarse description of the partitioning
in phase space of breaking and non-breaking focusing chirped wave packets.

5. Conclusion

Near the peak of the spectrum, it is believed that wave–wave interactions are
an important cause of wave breaking (Rapp & Melville 1990). Therefore, the
chirped packets considered here serve as a model of these types of breaking events,
highlighting the importance of the entire group structure in determining whether or not
a wave breaks. This simple description of breaking may be used in more sophisticated
statistical models of wave field evolution, where a local estimate of wave slope and
bandwidth may be used together with the criterion given by (4.4) to quantify the
breaking statistics. Coupled with recent field measurements of these breaking statistics
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(Sutherland & Melville 2013, 2015), this may serve as an important constraint on
models of the statistics of the surface wave field. Furthermore, this result may then
be included in scaling arguments describing the breaking induced flow (e.g. the
energy dissipation (Drazen et al. 2008), the circulation induced by breaking (Pizzo &
Melville 2013) and the mass transport induced by breaking (Deike, Pizzo & Melville
2017; Pizzo, Melville & Deike 2019) to better describe the observations.

Despite the limitations of using a weakly nonlinear narrow-banded waves to
examine wave breaking in deep-water surface gravity waves, the way to interpret
the model presented in this paper is that it provides a simple qualitative description
of the physics that can lead an initially symmetric wave packet up to the point
where large gradients are expected in the free surface displacement, and breaking is
likely. The results are studied numerically, and there is a bulk scale partitioning of
phase space between non-breaking and breaking waves, which may be described by
a model motivated by analysis of the quasi self-similarity found in focusing wave
packets governed by the MNLSE.
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