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Abstract—Data visualization provides a powerful way for
analysts to explore and make data-driven discoveries. However,
current visual analytic tools provide only limited support for
hypothesis-driven inquiry, as their built-in interactions and
workflows are primarily intended for exploratory analysis. Visu-
alization tools notably lack capabilities that would allow users to
visually and incrementally test the fit of their conceptual models
and provisional hypotheses against the data. This imbalance
could bias users to overly rely on exploratory analysis as
the principal mode of inquiry, which can be detrimental to
discovery. In this paper, we introduce Visual (dis)Confirmation,
a tool for conducting confirmatory, hypothesis-driven analyses
with visualizations. Users interact by framing hypotheses and
data expectations in natural language. The system then selects
conceptually relevant data features and automatically generates
visualizations to validate the underlying expectations. Distinc-
tively, the resulting visualizations also highlight places where
one’s mental model disagrees with the data, so as to stimulate
reflection. The proposed tool represents a new class of interactive
data systems capable of supporting confirmatory visual analysis,
and responding more intelligently by spotlighting gaps between
one’s knowledge and the data. We describe the algorithmic
techniques behind this workflow. We also demonstrate the utility
of the tool through a case study.

Index Terms—Visual analytics, hypothesis-driven reasoning,
sensemaking

I. INTRODUCTION

Visualization plays an increasingly important role in sup-

porting data-driven science and decision making [1], [2].

Visualization tools enable people to interactively explore large

amounts of information and look for patterns that might sug-

gest new findings. These tools effectively facilitate a bottom-
up discovery process, where apparent signals in the data are

interpreted in a new way yielding unexpected insights.

Yet, in addition to engaging in exploratory analysis (bottom-

up), analysts also conduct confirmatory analyses (top-down),

where they explicitly test their beliefs and predictions against

the data [3]. In fact, analysts often switch between these two

modes of discovery during sensemaking [4]. However, while

current visualization tools have built-in workflows to scaffold

exploratory analysis, they provide no affordances for users

to explicitly test hypotheses and models they have in mind.

Visualization designers almost exclusively focus on supporting

data-driven tasks (e.g., browsing clusters or finding anoma-

lies [5]). The most common visualization design patterns (such

as Shneiderman’s “overview first” paradigm [6]) emphasize

the data as a starting point, but neglect the role that existing

user hypotheses and mental models might play into the anal-

ysis. Accordingly, the prevailing theory of visual analytics is

that of a “model building” activity [7], where mental or formal

models are seen as products that are constructed from data in

an almost purely bottom-up fashion.

The overemphasis on data-driven tasks in visual analytics

serves to privilege exploratory analysis as the principal mode

of discovery, while thoroughly understating the need for

confirmatory analysis. This imbalance can be dangerous to

discovery [8], as it prevents people from explicitly testing

their beliefs, leaving them with potentially faulty models [3].

Crucially, cognitive science shows that it can be difficult for

one to recognize ‘holes’ and deficiencies in their conceptual

models just by looking at data in a bottom-up fashion [9].

Instead, to repair one’s model and ascertain a better under-

standing, one needs to actively test their belief against the
data, and explicitly look for places where their models and

the data disagree [3]. Successful scientists naturally employ

confirmatory workflows [10]. However, techniques for high-

lighting model-data discrepancies—so as to encourage users

to attend to them—are absent from visualizations.

To support a richer and more diverse analytic discourse,

visualization tools must allow analysts to proactively share

and externalize their models. This can be done using natural

language (e.g., by speaking or typing hypotheses and data

expectations directly into the interface). The system can then

interpret these formulations, select relevant data attributes and

features, and visualize the fit of these models to the data.

Such workflow would allow users to interactively test their

predictions, identify deficiencies in their models, and actively

revise those models to reconcile mismatches.

In this paper, we describe an example of such a visualization

tool, which we dub Visual (dis)Confirmation. The tool employs

natural language processing (NLP) to parse hypotheses and

extract the implied data relations, trends, and values. It then

interactively generates pertinent visualizations in the form

of familiar data charts. Encoded in these charts is a visual

representation of the user’s expectation alongside the actual

data. This enables the user to validate or disconfirm hypotheses

they might have, by visually relating the two encodes. We

describe the design and implementation of the system. We

then illustrate through a case study how the system might be

used in a realistic analysis. We conclude with a discussion of

challenges and future research directions.
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II. RELATED WORK

Visual analytics tools are primarily intended to support

sensemaking. Accordingly, these tools are often designed to

mimic the natural workflow of analysts. Several models exist

to explicate how people analyze and make sense of informa-

tion. One of the most popular is Pirolli and Card’s, which

posits that people generally start by filtering the source data

for relevant information, highlighting nuggets of evidence, and

re-expressing that evidence to a way that aids reasoning [4].

In this model, the analysts iteratively funnels the data into

increasingly sparser and more structured representations (re-

ferred to as the ‘Schema’). From the Schema, the analyst can

more easily generate hypotheses or makes decisions. While the

model allows for feedback, it is generally regarded as bottom-

up and data-driven sensemaking.

Pirolli and Card’s model serves as the design basis for

many visualization tools (e.g., Jigsaw [11]). Yet, an equally

important (but less known) model is Klein et al’s Data-

Frame theory, which posits that, when analysts make sense

of data, “they often begin with a perspective, viewpoint,

or framework—however minimal” [3]. This initial “frame”,

which can take the form of a narrative, timeline, or hypothesis,

defines the main relationships one expects to see in the data.

Here, sensemaking is primarily a confirmatory activity: the

analyst iteratively questions his/her frame by testing its fit

against the data. Poor fit can lead one to revise the frame

or, alternatively, adopt an entirely new frame.

It is believed that analysts often mix the two types of

workflows, switching between data-driven (bottom-up) and

confirmatory (top-down) analyses [4]. However, most visual-

ization tools have been designed to solely support the former.

Such designs can be problematic, as they could discourage

analysts from deliberately testing their expectations, which

is essential to refining one’s model [12]. For instance, in

cognitive experiments, subjects who did not explicitly test

their working hypothesis failed to correct their mental model

and missed the chance of discovery [9]. By contrast, those

who frequently tested their predictions against the data were

able to attend to discrepancies and, accordingly, revise their

model to reach the correct conclusion. Unfortunately, no such

confirmatory workflows exist in current visualization tools—a

missed opportunity. Our work aims to fill this gap.

Another area that we build upon is natural language inter-

faces, which represents an emerging method for interacting

with visualizations [13]. There are tools now that allow

users to speak or type their queries and, accordingly, receive

pertinent data plots [14]–[16]. In addition to communicating

queries, natural language interfaces may also allow us to

tap into users’ mental models. Understanding what users are

thinking enables us to create more effective (and potentially

confirmatory) visualizations. We contribute techniques to parse

hypotheses and data expectations, and convert them to concept

graphs so that they can be processed algorithmically. These

techniques are based on an empirical study we conducted to

inform the design of the system [17].

III. SYSTEM DESIGN

In this section, we introduce Visual (dis)Confirmation, an

interactive tool supporting confirmatory visual analysis. The

tool allows users to specify hypotheses and expectations about

data in natural language. It then translates these hypotheses

to concept maps, and generates visualizations to validate (or

disconfirm) the implied data relations. We describe the user

interface and discuss the implementation of the system.

A. User Interface

Fig. 1 illustrates the user interface. The tool allows the user

to “upload” a dataset in CSV format. Alternatively, the user

can choose from two default datasets about world development

and health risk factors in the US (1). The user initiates the anal-

ysis by typing an expectation or hypothesis in natural language

(2). For instance, when analyzing economic development data,

the user can enter “I expect New Business Density in Ireland

to be lower than France, Australia, Netherlands Sweden, and

Spain.” To aid the user in specifying data attributes, the

interface auto-completes words corresponding to attributes

and provides suggestions. Additionally, the interface auto-

completes geographic locations (e.g., country and city names)

and other named entities within the dataset. A map in the form

of a rotating globe is also included to facilitate geo-referencing

(3), enabling the user to easily specify expectations about

localities. The interface also remembers past expectations and

their resulting visualizations (4), giving the user quick access

to his/her analysis history.

The system parses the user’s natural language hypothesis

(see Section III-B for a description of the NLP pipeline),

and generates a corresponding concept map. The concept

map encodes the expected data relations using a node-link

diagram (5); nodes denote attributes, geographic locations

(e.g., countries), temporal features (e.g., years or full dates), or

numeric quantities. Different node shapes (ellipses, rectangles,

or clouds) are used to distinguish between different concept

types (attributes, named entities, or entities that are external to

the dataset). Labeled edges connect the concepts explicating

the relationships expected among them. For instance, in the

above hypothesis, the attribute of interest (“New Business

Density” is depicted with an ellipsoid node, whereas the

different countries (Ireland, France, etc...) are each depicted

with rectangular concept nodes. The implied relationship (in-

equality in this example) is expanded and encoded as edges

between the countries involved. Note that in this particular

example the expected relation is qualified to a single year,

hence the conditional edges in the concept map (labeled ‘in’).

The concept map constitutes a re-expression of the user’s

natural language hypothesis in a non-ambiguous format. While

the two representations (natural language and concept map) are

somewhat synonymous, our goal in including the latter is to

provide feedback to the user on how his/her hypothesis was

interpreted by the system. Moreover, the node-link concept

diagram is editable, allowing the user to revise his/her formu-

lation or correct errors introduced by the NLP process. It is

117



1

2

3

4

5 6

Fig. 1. User interface of the Visual (dis)Confirmation tool showing its various components: Dataset upload and selection (1), a text box for hypothesis/expectation
entry in natural language (2), a map widget to aid the selection of geographic locations (3), history of prior queries (4), a concept map representing the implied
relationship in the entered expectation (5), and a chart area to display the resulting visualization (6).

also possible for the user to specify hypotheses manually by

creating the corresponding concept maps from scratch.

Once the user is finished specifying a hypothesis, he/she

clicks the “Process Graph” to initiate the validation process

(see Section III-C). The result of the validation is a data chart

visualizing the attributes referenced in the expectation (6).
Distinctively, charts generated with Visual (dis)Confirmation
explicitly incorporate what the user expects into the visu-

alization, highlighting the gap between the expectation and

the data. For instance, in the bar chart shown in Fig. 1,

Ireland is highlighted. Furthermore, countries that violate the

expected inequality (France, Spain, and the Netherlands, in

this instance) are spotlighted (see Fig. 1).

B. Expectation Parsing and Concept Map Generation

The first step in validating user’s hypotheses is to parse

their data expectations and generate an equivalent concept

map. We developed an NLP pipeline using the Stanford

CoreNLP toolkit [18]. The pipeline is depicted in Fig. 2 and

illustrated through an example. The first step is cleaning the

provided expectation (Fig. 2-A). This includes expansion of

abbreviated words (“I’d” to “I would”) to ensure grammatical

completeness, removal of special characters (such as quotes),

and transformation of quantitative units (e.g., ‘3 million’) to

their numeric equivalent (e.g., 3,000,000). These steps are

achieved using a Named Entity Recognizer [18].

Second, after basic transformations and cleanups, the text

is parsed using a Stanford Dependency Parser to extract the

relationships among the words. The dependency parser allows

us to find compound nouns, which often correspond to data

attributes or geographic locations. Words belonging to a single

compound noun are concatenated to facilitate matching against

name entities in the dataset (B).

Third, the sequence is tokenized into n-grams. The resulting

tokens are checked for exact match against features in the

dataset, including attributes and geographic locations (C). If

no exact matches are found, cosine and semantic similarity is

performed over all tokens and against all named entities in the

dataset. Matching tokens are added as concept nodes (D).

Using a typology developed from an earlier empirical

study [17], we identify the data model implied by the expec-

tation. The system currently supports 4 major types and 13

subtypes (depicted in Fig. 3). Each model is represented by a

template containing a number of ‘slots’ that can be filled with

specific attributes, locations, time periods, and other qualifiers,

as specified by the user’s hypothesis. For a given expectation,

we identify the most closely related template by inspecting the

stem words along with their position in the sentence (E). For

instance, the expectation in Fig. 2 can be matched against the

V1 template (in Fig. 3). We employ template-specific heuristics

to fill template slots with the corresponding concept nodes.

Here, the X slot in V1 is mapped to ‘total population’, V is

mapped to 3 million, the geographic location is mapped to

Ireland, the time period to 2008—2012, and the inequality

is set to ‘less’. Note that the system does not require user

input to match the exact wording of the template. Rather,

template matching is performed through a process of constraint

satisfaction, which provides verbal flexibility while allowing

the selection of the closest model. Once the template is ‘filled’,

relationship edges are added to the concept map according to

the model implied by the template (F).

The pipeline relies on user hypotheses (partially) matching

one or more predefined templates in our typology (Fig. 3). In

practice, the templates capture over 91% of the expectations

we have observed empirically [17]. Thus, despite the assump-

tions, we expect the pipeline to correctly process a majority

of expectations users may want to test.
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Fig. 2. A pipeline for visual hypothesis validation. Data expectations, specified in natural language, are first translated to concept maps (steps A through F).
The concept maps are then used to filter the dataset for relevant records and features (G). Lastly, the actual and expected data are compared, and discrepancies
are annotated onto the resulting visualization (H).

C. Model Validation and Visual Feedback

The previous part of the pipeline concludes with the gen-

eration of a concept map that encodes the user’s hypothesis.

To test the expectation implied and generate an appropriate

validation chart, the concept map is analyzed as follows:

The concept graph is traversed depth-first starting from

the root node, which by convention corresponds to a data

attribute (e.g., “total population”). Traversal enables the system

to determine the subset of data points that relate to the encoded

expectation. This is achieved by simulating a source-sink flow

model onto the concept graph; root nodes act as data sources

whereas leaf nodes serve as sinks. Intermediate nodes act as

filters (e.g., “Ireland”, “2008-2012”), progressively restricting

the ‘flow’ of data to, for instance, specific countries or time

periods, as indicated by nodes in the graph. Ultimately this

process yields a table of data points (a subset from the full

dataset) comprising records that are necessary to validate

the user’s hypothesis. Concurrent with the traversal process,

the system generates ‘expected’ data values at every step,

comparing them against the actual data. When mismatches

occur, annotations are added to the visualization to highlight

the discrepancy. In the above example, because the actual

population of Ireland is higher than expected, a horizontal line

is added to the chart with its Y value at 3 million, along with

an annotation reading “expected to be less”.

To determine an appropriate output visualization, the system

considers the number of attributes involved and the size of

the resulting data table, employing a rule set of established

practices for chart selection. The system then generates a

visualization specification in the Vega grammar [19]. For

example, the expectation in the example above involves one

location, one attribute, and multiple years. Therefore, the

system chooses a line chart as the most appropriate to represent

the relevant data. The Vega specification includes both the

actual data and the mismatch annotations. The latter are

encoded with a salient color (e.g., bright red) so as to draw

attention to model-data discrepancies.

IV. CASE STUDY

To illustrate the utility of the system for confirmatory visual

analysis, we present the following case study.

A socio-economic researcher is interested in confirming her

hypothesis that life expectancy is linearly associated with eco-

nomic growth indicators. She further believes this correlation

will be strongly pronounced in recent years, following an

economic recovery. But she suspects that this recovery has not

been shared equitably among the developed economies. Based

on her prior experience, she enters the following expectation

into the system: “I expect GDP per capita to be positively

correlated with male life expectancy in 2014”. The system

parses the sentence and produces a concept map along with a

scatterplot showing the two attributes, and annotating a linear

positive expectation for reference (see Fig. 4-A).

From the scatterplot, she finds that, while there is a relation-

ship between the two attributes, it is not strictly linear when

compared to the expectation. She thinks there might be another

economic indicator, Gini, that is better correlated with life

expectancy. Her hypothesis is that Gini, which accounts for the

dispersion of wealth in society, will better reflect her mental

model, although the correlation is expected to be negative this

time (lower Gini index is more equitable distribution). She

writes “I expect Gini index is negatively correlated with male

life expectancy in 2014”.

The system produces a concept map and a corresponding

scatterplot shown in Fig. 4-B. Here, the researcher sees that

the data reasonably fits her revised model. Nevertheless, she

notices that the fit is less satisfying at the upper echelons

of life expectancy, where a number of countries exhibit very

similar expectancy levels despite having different Gini values

(between 25–35). She identifies these countries by hovering

over their respective points in the scatterplot, and selects six

of them: France, Ireland, United States, Australia, Sweden and

Netherlands. She believes the higher life expectancy in these

countries (than can be explained by Gini alone) is partially

driven by a relatively high labor participation. She thus expects

the six countries to have an unemployment level that is well
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Fig. 3. A typology of data models representing commonly occurring expectation types. Each type of expectation is depicted with a template. Color-coded
slots in the templates represent data attributes (purple), geographies (cyan), time periods (green), event sequences (yellow), quantitative data values and trends
(blue), and other qualifiers (grey). ‘Optional’ slots are enclosed in square brackets. The typology categorizes the most common data expectations people tend
to externalize in visual. analytics [17].

below 10%: “I expect the total unemployment in Australia,

France, Ireland, Netherlands, Sweden, and United States to

be lower than 10%”. In response, the system generates a line

graph (Fig. 4-C), showing indeed that her expectation is met

throughout the 9 years.

Observing a downward unemployment trend that accelerates

in 2014, she decides to dig further. She focuses on an attributes

that could indicate investment activities. Believing that Ireland,

in particular, had been struggling to attract new businesses, she

chooses to compare the island nation with the six other coun-

tries, typing: “I expect business density registrations in Ireland

to be lower than France, Australia, Netherlands, Sweden, and

United States in 2014”. A bar graph is generated (Fig. 4-D)

with Ireland highlighted. Additionally, the bar chart contains

annotations where the system found unexpected differences.

Looking at the annotation, she finds that, counter to what she

thought, there were two countries with lower new business

activity (France and the Netherlands in this case). Not sure

what to make of these results, she decides to repeat her

analysis of unemployment, but this time she focuses on women

labor participation. Additionally, she also widens the focus to

include additional countries: “I expect female unemployment

in 2014 in France, Australia, Netherlands, Sweden, United

States, Ireland, and Spain to be less than 10%.” The striking

feature of the resulting chart (Fig. 4-E) is Spain (highlighted

in red), as it significantly exceeded the expectation.

In a final analysis, she wonders whether rural population is

decreasing in the these countries: “I expect the rural population

in Ireland, France, Australia, Netherlands, Sweden, and United

States to be decreasing.” She finds that all countries indeed

have decreasing trends, although Ireland still stands as an

outlier with a higher rural population (Fig. 4-F).

This example case study illustrates how various data models

can be quickly, visually, and interactively validated. Visual

(dis)Confirmation currently supports a variety of data expec-

tations, including trends, inequalities, and correlations. Its key

feature is the ability to highlight counter examples, drawing

more scrutiny to data instances that violate user assumptions.

V. LIMITATIONS AND FUTURE WORK

Visual (dis)Confirmation represents the first attempt at creat-

ing a visual analytics tool that explicitly scaffolds model- and

hypothesis-based reasoning. While the system is functional,

there are a number of limitations that can be addressed

with future research. First, the system relies on a predefined

typology of expectations that we synthesized in a Wizard-of-

Oz study. Although the typology is expansive, it is somewhat

inflexible, and can limit the types of models and hypotheses

that can be validated. Second, the system currently supports a

limited number of charts (bar, line graphs, and scatterplots).

Support for additional visualizations (e.g., node-link diagrams,

parallel coordinates) can improve the utility of the system,

by allowing a wider variety of models to be validated. The

annotation strategy, which is used to highlight model-data

discrepancies can also be improved. For instance, annotations

could be placed considering the emerging visual structure of

the emerging visualization to avoid occlusions, as opposed to

simple superimposition as in the current system. Lastly, while

we have conducted preliminary testing of the tool, there is a

need for formal evaluation to ensure usability and utility.

VI. CONCLUSION

Current visualization tools facilitate exploratory data anal-

ysis, but fall short at fully supporting hypothesis- and model-

based reasoning. We presented Visual (dis)Confirmation, a

tool for confirmatory visual analysis. Users interact with the

system by framing hypotheses and expectations in natural

language, prior to seeing the data. In response, the system

selects conceptually relevant data features and automatically

generates visualizations to validate the underlying hypothe-

ses. The resulting visualizations highlight places where one’s
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Fig. 4. A series of confirmatory visualizations generated in a hypothesis-
driven case study.

model disagrees with the data, so as to stimulate concep-

tual reflection and model revision. We described algorithmic

techniques for parsing expectations and converting them to

meaningful confirmatory visualizations. We also demonstrated

the utility of the system through a case study. Lastly, we

discussed challenges and future research opportunities to en-

able a richer, bidirectional discourse between people and data

through visualization.
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