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Abstract

The Monte Carlo (MC) method is the most accurate method for resolving tadiative heat transfer
in participating media. However, it is also computationally prohibitive in large-scale simulations.
To alleviate this, this study proposes a quasi-Monte Carlo (QMC) ‘method for thermal radiation
in participating media with a focus on combustion-related problems.*The QMC method employs
low-discrepancy sequences (LDS) in place of the traditional random numbers. Three different low-
discrepancy sequences — Sobol, Halton, and Niederreiter~ were examined as part of this work. The
developed QMC method was first validated against analytical solutions of radiative heat transfer
in several one-dimensional configurations. Theniit was extended to three-dimensional practical
combustion configurations. The results from QMC and traditional Monte Carlo are compared
against benchmark solutions for each’cases. It is shown that the error of the predicted radiation
field from QMC is lower thanwan equivalent MC simulation. The computational cost of QMC
was also found lower than, MC<due to the avoidance of requirement of several statistical runs
for traditional Monte"Carlosmethods alongside achieving the reduction in error. In conclusion,
significant improvements in computational costs and accuracy seen in the QMC method makes it
an attractiveralternative to traditional Monte Carlo methods in high-fidelity simulations.
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1. Introduction

Radiative transfer through participating media is a complex problem because of the non-local,
non-linear nature of the transport. This is further complicated by the nongray properties of the
participating media. The spectral radiative transfer equation (RTE), shown in Eqn. 1, governs

radiative heat transfer in nongray participating media.
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The spectral RTE is a five-dimensional (three spatial, two directional) intégro-differential equation
for radiative intensity, /,, that includes influence from emission, absorption; and scattering. Here
the subscript 7 denotes the spectral nature of the equation, i.e., it is valid for one single wavenum-
ber n; I, is blackbody radiative intensity (Planck function); «'is absorptivity of the medium, S is
extinction coefficient, o is scattering coefficient, O(5;45) is the scattering phase function between
ray directions §; and §, and €Q; represents solid angle., Radiative properties of the medium (x, o, 8
and @) vary with wavenumber (77) and thermodynamic states in a highly nonlinear manner.

The difficulty to resolve the RTE exactly led to the development of many approximations for
thermal radiation and to the RTE. The simplest approximation is the optically thin (OT) assump-
tion, which does not require to solvesthe RTE and considers that the media only emits radiation
but does not absorb or scatter. Among the more rigorous approximate RTE solution approaches
arguably the two most popular methods — the discrete ordinate method (DOM) and the spherical
harmonics method (Py) = approximate the RTE to a set of partial differential equations (PDEs).
In the DOM, the radiative intensity over the entire solid angle is discretized directionally to pro-
duce a set of simultaneous first-order PDEs from the RTE. In the spherical harmonics method, the
intensity is represented in terms of a two-dimensional Fourier series made of position-dependent
intensity coefficients and spherical harmonics represented in terms of associated Legendre poly-
nomial. The order N of the spherical harmonics (and hence Py) represents how many terms of the
Fourier series is retained in the numerical solution. Further details of these methods can be found
in radiation textbooks [e.g., 1, 2, etc.]. The DOM suffers from some numerical issues, such as

ray effect and false scattering, that makes use of DOM in arbitrarily fine resolution numerically
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expensive [3, 4]. On the other hand, Py methods becomes numerically very involved very quickly
with the increase in the order (N). Lower-order Py methods, while computationally cheap, can be
grossly inaccurate, specifically in presence of strong intensity gradients. Additionally, complex
boundaries are difficult to handle in both methods.

Monte Carlo-based methods, on the other hand, are the most accurate and robust solution
methods for RTE. The family of Monte Carlo methods used to solve thermal radiation problems
are often referred as photon Monte Carlo (PMC) because the radiative transport S accounted by
tracking emission and absorption of photon bundles (sometimes also called <‘rays™)-€ontaining a
finite amount of energy. As with any Monte Carlo methods, the statistical Solution approaches to
the exact solution of RTE when sufficiently large number of photons are tracked. However, this
comes with a heavy penalty of computational cost. Computational costof PMC scales almost lin-
early with the number of rays used in the simulation, whereas the statistical error scales inversely
with the square root of the number of rays. Typically aPMC simulation can take orders of magni-
tude more computational effort than a lower order Py, or:DOM calculation [5]. Therefore, Monte
Carlo solvers are impractical to use in large-sealesimulations, and often only used to generate
benchmark solution.

A complete solution of RTE requires supplementary models to tackle the spectral nature of
the RTE. This necessitates use of speetral models. Development of accurate and efficient spectral
model is an active field of research. Some commonly available spectral models include weighted
sum of grey gas (WSGG),full-spectrum k-distribution (FSK), multiscale/multigroup FSK model,
spectral line weighted-sum-of-gray-gases (SLW) models, /-distribution model, statistical narrow
band (SNB) methods, absorption distribution function model with fictitious gases (ADFFG), mul-
tiscale Malkmus ‘model (MSM), line-by-line model (LBL) model, etc [e.g., 6,7, 8,9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21]. The accuracy and complexity of spectral models vary signif-
icantly. The accuracy of an RTE solver is affected by accuracy of spectral model used with it.
Several studies have compared accuracy and efficiency of different spectral models with different
RTE solvers in various contexts [e.g., 22, 23, 24, 25, 26].

Due to the stochastic nature, the complexity of spectral model does not significantly affect the

computational efficiency of PMC. Therefore, considering the high computational cost, an accurate
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spectral model is often preferred in PMC. In the context of the RTE in a combustion system, a
solution using a line-by-line spectral model with Monte Carlo solver (PMC/LBL) is generally
considered one of the most accurate solution approaches. However, it is possible to use PMC with
any other sufficiently accurate (e.g., FSK or SLW models, or /-distribution models, etc.) spectral
model. For example, PMC has been used with variants of FSK model with good accuracy and
efficiency [27, 28]. There has also been some recent developments in calculating radiative transfer
directly from spectroscopic databases via a line-sampling Monte Carlo approach[29]. Ttis noted
here that the scope of the current work is not to explore different spectral models,and their impacts
on PMC, rather to propose a new variant of Monte Carlo-based RTE solver. Forthis reason, in this
work, we only use LBL spectral model.

The current work proposes an approach of utilizing low-discrepancy sequences to develop
a more efficient Monte Carlo method without sacrificing anysaceuaracy. The idea of using low-
discrepancy sequence in Monte Carlo methods has been used in different domains of computations
from financial applications [30] to computer graphies [34]. These methods are termed as quasi-
Monte Carlo (QMC) [32]. The use of QMC in thermal radiation problem, however, is very limited
and mostly restricted to surface transfer and atmospheric radiation [e.g., 33, 34, 35, 36, 37, etc.].
In this work we extend this approach*to thermal radiation in participating media. Very recently
researchers have compared various Mente Carlo methods including a QMC for combustion simu-
lations [38]. To the best knowledge of the authors, other than the few works cited above, there has
not been many work inlexploring and systematically validating and verifying efficacies of QMC
in solving radiation'in participating media.

In computational simulations, the choice of RTE solver is dictated by the importance of ther-
mal radiation‘in the problem under consideration. Typically, thermal radiation is important in most
high temperature applications. The use case considered in this study is that of combustion, which
contains highly nonuniform distribution of nongray participating media. In combustion applica-
tions, the effect of radiation comes in terms of a source term in the energy conservation equation
and in the heat loss at the boundary. Although considerable development has taken place on DOM
and Py methods with combustion simulation in mind, thermal radiation is often either neglected

or oversimplified in combustion applications mainly because of the added computational expense
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despite the importance thermal radiation in combustion applications [e.g., see 39, and references
therein]. Although the configurations discussed in this work is relevant for combustion, the ap-
proach presented here can be easily extended to other application domains involving participating
media such as biomedical imaging, photodynamic therapy, radiation therapy, etc. [40, 41].

In the next section a brief overview of conventional Monte Carlo method of thermal radiation is
presented followed by a section on the description of the proposed quasi-Monte Carlo,method. The
results section first reports validation of QMC followed by its comparison with conventional Monte
Carlo method in different combustion configurations. Finally the key findings are summarized in
the conclusion. In the rest of the document the words photon Monte €arlo (PMC) and Monte

Carlo (MC) are used interchangeably to represent conventional Monte Carlo'method for radiation.

2. Monte Carlo method for radiation in participating media

In the photon Monte Carlo (PMC) method the.radiative transport is accounted for by emitting
and tracing a statistically meaningful sample of reptesentative photons (rays). Each ray starts
with a finite amount of energy, has a specific wavenumber and assumed to propagate along a line
in a specific direction. A ray’s (denoted byyits index j) origin (x;,y;,z;), propagation direction
(8, ¢;), and the wavenumber (77,) aré determined via importance sampling of independent random
numbers according to probability distributions [1]. In the conventional approach, six independent,

uniformly distributed, random numbers are used to find emission origin (R}

, R, R5), propagation
direction (RY, Rf), and thé wavenumber (R'}) for ray j. The random number relations for origin
location and propagation direction can be found in [1], whereas the wavenumber selection scheme
is discussed.in [42].-When implemented on a finite volume computational mesh, the initial energy
E° of each tay is obtained by relating the total energy content (E;) and number of rays to be emitted

(N;) in each computational cell i by E® = Ei/n,. Total number of rays in the entire simulation is then
N = Z N;. In practice, however, the desired total number of rays N is prescribed and number of
rays tol be emitted from each cell is calculated based on the ratio of local emission from a given
cell (i) and the total emission from the entire domain. This adaptive scheme ensures that the initial

energy of all rays are within a narrow range making each ray almost equally important. It should
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be noted here that number of rays emitted from one cell to another can be different and the actual
total number of rays obtained this way is slightly (usually < 1%) different than prescribed. This
strategy has been discussed in details in [1]. Energy attenuation of rays during tracing can follow
either a ballistic scheme (where a rays travels a randomly arbitrary distance determined by optical
thickness of the medium and gets its energy is completely dumped only in the last computational
cell) or an energy partitioning scheme [1]. In this work we follow the energy partitioning scheme.
In this approach, energy from each ray is absorbed into the medium as it passes through each
computational cell. After a ray containing energy E° and wavenumber 7 passes an optical distance
T, inside a computational cell, its energy is attenuated to E = E’e™™ agit dumps an amount of
energy AE = E°(1 —e ™) in to the local medium. The ray is traced until allits energy is attenuated
completely (i.e., its energy becomes less than 0.1% of its original energy) or it moves outside the
domain. The radiative source term for the medium is then‘determined as the difference between
the energy gained from all rays passing through a computational cell and energy lost due to rays
emitted from the cell.

With a sufficiently large number of rays, PMC methods can produce the exact solution re-
gardless of the complexity of the problem:, The accuracy of the PMC method is determined by
either the actual error (from an ‘exact’solution) of the mean solution or the standard deviation of
an evaluated variable over multiple statistical iterations (i.e., it’s statistical error). The statistical
error of a Monte Carlo simulation is represented by O(N ") where N refers to the number of rays

sampled in the simulation.

3. Quasi-Monte Carlo method

The Monte Carlo methods rely on good random number generation schemes. In general, true
random numbers can be generated by harvesting measurements related to some physical phenom-
ena (e.g., thermal noise, atmospheric noise, shot noise, etc.) using a dedicated hardware-based
random number generator. However, for most computing purposes, where fast generation of ran-
dom number is critical, users often resort to deterministic algorithm-based random numbers termed
as pseudorandom numbers. The algorithms used to generate pseudorandom numbers are usually

referred to as pseudorandom number generators (PRNGs). Since these pseudorandom numbers
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are calculated using a deterministic algorithm, care needs to be taken so that the numbers gener-
ated from PRNGs show approximate characteristics of a true random distribution [43, 44]. It is
desirable for pseudorandom numbers to have good unbiased distribution (i.e., randomness), a long
period (i.e., the point at which the sequence starts to repeat), and repeatability [44]. The quality
of “randomness” for a PRNG is, by design, dependent on the starting point or the pseudorandom
sequence or ‘seed.’” For robustness often a physically-derived randomness (e.g., thermal noise of
a processor) is used to generate the seed. In most Unix-like systems a file /dev/random (or its
variant) provides access to the noise collected from device driver and other sources{45] that can
be used as a seed for a PRNG.

Quasi-Monte Carlo methods replace the PRNGs in favor of low-discrepancy sequences (LDS).
An LDS distributes guasi-random samples in some self-avoiding fashion based upon a determin-
istic algorithm. The distribution of an LDS favors uniformity over randomness. Notably, the
distribution of random samples will asymptotically reach,uniformity with increase in number of
samples. With equal subintervals, a PRNG produces outputs that have equal probability of an out-
put landing in a given subinterval which can lead to'clustering or gaps within the set. An LDS tries
to eliminate these phenomena by generating points in a correlated manner, i.e., filling the domain
with n-tuples more quickly and evenlythan.PNRGs [46]. Low-discrepancy sequences can be iden-
tified visually by a set of pointstendingtowards equidistance for any subset within the sequence;
typically better spacing refets to lower discrepancy. For example, Fig. 1 shows the progression of
distribution of random numbers ebtained from a PRNG and a low-discrepancy sequence (Sobol
sequence, in this case) for different sample sizes.

There_are several LDS available in literature [47]. In this work, we use Sobol, Halton, and
Niederreiter sequences based on recommendations from the literature [48, 49]. Sobol sequences
are generated from a set of binary fractions called direction numbers [S0]. Developing a Sobol
sequence has been extensively discussed and the reader is recommended to the respective litera-
ture [e.g., 48, 47, 51, etc.]. The efficient “gray code” algorithm by Antonov and Saleev is used
this work to calculate multidimensional Sobol’s sequence [48]. A Halton quasi-random number is
generated by rewriting an integer j in base b, reversing the digits, and adding a preceding decimal

point [52, 53]. The result is a fraction in base b. Niederreiter’s quasi-random sequence based on
7
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Figure 1: Samples obtained in two-dimensional space from a PRNG and an LDS (Sobol)

the theory of (,s)-nets in base b was introduced by Niederreiter [54, 55]. Sobol’s sequence can be
thought of as a generalized Niederreiter sequence in base 2. The calculation of Niederreiter’s se-
quence is similar to Sobol’s sequénce with the exception of how direction numbers are generated.
A more detailed review of these sequences can be found in [32, 47, 55].

As discussed earlier, PMC method requires emitting and tracing a statistically meaningful
number of rays. The proposed quasi-Monte Carlo (QMC) method for thermal radiation does the
same, but instead ofause pseudorandom numbers to define each ray, quasi-random numbers from
a six dimensional LDS is used. Therefore for ray j, the six random numbers corresponding to its
emission origin (R, 7%? , Rj.), propagation direction (R?, Rf), and wavenumber (R’}), are substituted
with S},S?, . ,S?. Here S? indicates j’h number in n” dimension of the six-dimensional low-
discrepancy sequence. Therefore, S}, S? and S; correspond to the emission origin, S‘}, S? to the

propagation direction, and S? is for the wavenumbers.
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4. Results and discussion

In this section we first present validation of the quasi-Monte Carlo (QMC) method for ther-
mal radiation followed by a systematic performance comparison of the QMC and conventional
Monte Carlo (MC) in multiple combustion-related configurations. The QMC scheme is validated
against exact analytical solutions which are only available in simple configurations such as a one-
dimensional plane-parallel media. Then we present three distinct, nongray combustion configu-
rations followed by a discussion on the effect of emitting/reflective walls in the dimensionality of
QMC. Finally the computational cost and efficiency of QMC is discussed.

As mentioned earlier, the accuracy of a Monte Carlo solver can be ‘measured in terms of the
actual error (€) of the solution from the exact or benchmark solution‘or in terms of the standard
deviation (o) of the solution. The standard deviation and actual error for a good Monte Carlo
simulation that uses unbiased and independent random samples:follow each other. For example,
there is a 95% probability that the actual statistical mean selution is within two standard devia-
tions of the Monte Carlo mean. But if the random samples are not independent, this one-to-one
relationship may not be true. Low-discrepancy sequence, by design provides equidistant samples,
thereby is expected to reduce standard deviation compared to corresponding random samples [32].
In this work, we will evaluate the aceuracy of the Monte Carlo and quasi-Monte Carlo methods
in terms of actual error for twesreasons. First, the actual error is a stronger indicator of accuracy.
Second, QMC uses a deterministic sequence therefore different statistical runs will provide the
same sequence making standard deviation an ambiguous measure for QMC. A short discussion on
probabilistic bounds of standard deviation and error in QMC is presented in Appendix A.

Since' this. implementation is based on a finite volume framework, the local root-mean-square

(RMS) relative error is defined at each computational finite volume cell (index i) as
s 172
1 q;
== < 1 , 2
‘ [S Z‘ (fJ? ) ] @

where ¢ refers to the target variable for solution, S refers to the number of statistical runs, g; is the

solution from the Monte Carlo simulation, and ¢/ is the solution from the analytical or benchmark
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solution. All configurations with the MC method use § = 10 statistical runs, whereas QMC is run
only once. The target variable for accuracy estimation in this work is either local radiative heat
source (i.e., divergence of local radiative heat flux, V-Q [W/ m?]), local radiative absorption per unit
volume (Qgps [W/ m?]), or wall heat flux Q). W/ m?]) as appropriate for each test configuration.
Additionally, as done in [56], comparison of “efficiency” of Monte Carlo schemes are done via a
“figure of merit” (FoM) which also takes into account computational time. In this work, FoM is

calculated based on spatially-averaged RMS relative error (€)

1
FoM = —, 3
© et )
where ¢ is the simulation time. A high FoM score is indicative ofia good Monte Carlo simulation

i.e., low error at low computational cost.

4.1. Validation in one-dimensional plane-parallel media

The configuration used for validation is.a,one-dimensional gas slab bound by two parallel,
black walls separated by 0.1 m. Several,combinations of temperature and absorption coefficient
profiles were tested for validation and only three representative cases are presented for brevity.
These cases are listed in Table 1/ The gray participating media was defined by imposing a
specific profile of Planck-mean absorption coefficient (kp). The nongray medium consisted of
20% (by mole) CO, and.rest,of the medium was radiatively non-participating. A line-by-line
(LBL) database obtained from HITEMP spectroscopic database [57] was used to evaluate then

nongray radiativesproperties of CO,.

Table.1: One-dimensional validation cases. In case (2) the x [m] is the distance from one wall.

Case () 2) 3)

Abs. Coeff. gray,xp = 1 m™' gray, kp(x) = 1 + 750xm~' nongray LBL
T nedium 1200 K T(x) = 1700 — 5000x K 2000 K
Walls 800 K, black 800 K, black cold, black

The results for the three cases are shown in Figs. 2—4. Figures 2(a), 3(a), and 4(a) show the
comparison of V-Q calculated from the MC and QMC with three different LDS (Sobol, Halton, and

10
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Figure 2: Accuracy and convergence of MC and QMC using Sobol, Halton, and Niederreiter sequences in Case 1
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Figure 3: Accuracy and convergence of MC and QMC using Sobol, Halton, and Niederreiter sequences in Case 2
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Niederreiter), along with the analytical solution [1]. Both MC and QMC show good agreement
with the analytical solution in all cases. The variations in local RMS error (¢;) can be seen in
Figs. 2(b), 3(b), and 4(b). In all three cases, local errors from QMC are generally lower than that
from MC. Finally, Figs. 2(c), 3(c), and 4(c) show the “convergence rate” of QMC and MC. The
convergence rate is defined as how fast the average relative RMS error (€) decrease with increase in
the number of rays. It can be seen from Figs. 2(c), 3(c), and 4(c) that QMC converges quicker than
MC. A further discussion on convergence rate can be found in Appendix A. It is also,evident that
all three low-discrepancy sequences produce same levels of error and neither shows'any advantage

over another.

4.2. Three-dimensional combustion simulations

The three combustion configurations chosen in this study ate a high-pressure gas turbine, a
constant-volume spray combustion chamber, and a turbulent pool fire. The choice of these cases
are to include a diverse set of configurations as possibly encountered in combustion simulations.
The first two configurations involve hot emitting walls, whereas the third one involves open bound-
aries. The second and third configurations.include'nongray soot along with nongray gases. Addi-
tionally, the first two configurations are based on a Reynolds-averaged simulation (RAS) whereas
the third one is based on a largeseddy simulation (LES). In all simulations CO,, H,0, CO, and
soot (when present) are used/as participating media. The spectral properties of gases are modeled
by line-by-line (LBL) databases constructed from HITEMP spectroscopic data [57].

An analytical solution*is impossible to obtain for these configurations. Therefore, solutions
calculated from' a significantly large number of rays (the actual number varies from one config-
uration to another as discussed later) with 50 statistical iterations of a MC simulation are treated
as the benchmark solutions for the purpose of evaluating RMS error as shown in Eqn. 2. Further-
more, local error is calculated in terms of volumetric absorption in these cases. This choice is
made because of the presence of locally strong optically thick regions, which lead to a near-zero
value of V - Q in some locations. Therefore calculation of relative error based on V - Q can be

misleading. Moreover, local emission can be determined analytically and the uncertainty of the
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radiative transfer in MC/QMC essentially comes from the randomness in resolving the absorption

term.

4.2.1. A high-pressure gas turbine

The first three-dimensional configuration is based on the SGT-100 industrial gas turbine com-
bustor with an output of approximately 5 MW and pressure ratio of approximately 15:1 [58].
Snapshots of the scalar fields are taken from a numerical simulation done by Ren et al.[59]. The
simulations were performed in a Reynolds averaged simulation (RAS) framework with standard
k-€ turbulent model and GRI-Mech 2.11 chemical mechanism [see 59, for details]> The computa-
tional domain is shown in Fig. 5, and the scalar fields of the snapshot used in this study are shown
in Fig. 6. The gas turbine, referred to as the GT configurationghas 15,718 finite volume cells
for the three-dimensional wedge domain as shown in Fig. 5. The walls are considered black and
emitting at a temperature 673 K. As before, CO,, CO, and H,O are treated as participating media.

50
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Symmetry Axis / Center line

188 mm

Figure 5: GT configuration

The benchmark solutionfor the GT case was run with 107 rays and 50 statistical Monte Carlo
simulations. For'accuracy comparison, both MC and QMC was run with 1.6 x 10° rays. We per-
formed S" ="10 statistical simulations of MC to obtain statistical mean and RMS error. The actual
scalar field for radiative source term and absorption are indistinguishable between benchmark,
MC, and QMC runs and hence are not shown here. Instead, we show one axial (at » = 0.03 m)
and one radial (at z = 0.1 m) profile of the absorption as marked in Fig. 6. Figure 7 shows the
local radiative absorption along these lines. Both the MC and QMC methods are in very good
agreement with the benchmark solution and the results from QMC fall within the error bars of the

MC method throughout. As in the case of one-dimensional configuration, QMC converges faster
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Figure 6: Scalar field contours for GT configuration
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Figure 7: Profiles of radiative absorption from MC and QMC with different LDS (with 1,600,000 rays) along two
lines (see Fig. 6) in GT configuration
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than MC with increase in number of rays (further discussion in Appendix A). It can be seen that
the error of MC and QMC from the benchmark solution is higher near the centerline. It is because
the volume of computational cells near the centerline is much smaller and radiation being a vol-
umetric phenomena, the number of rays passing through a cell is also proportional to its volume.

Therefore, smaller cells near centerline lead to slightly degraded statistics in MC/QMC.
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Figure 8: Wall heat flux profiles from MC and QMC«with different LDS (with 1,600,000 rays) along two walls (see
Fig. 5) in GT configuration

The GT configuration has five walls around the combustion domain. Radiative heat loss to
walls is an important quantity., Figure 8 shows the wall heat flux of the benchmark, MC, and
QMC simulations along walls'4,and*5 shown in Fig. 5. It is interesting to see that although the
absorption in the mediadsipredicted well by QMC, the wall heat flux from QMC shows larger
error than MC at some'locations. However, the average relative error (not shown) in wall heat flux
from QMC stilliremains lower than MC, albeit with a more scattered pattern (i.e., a larger range)
in error distribution'in QMC. Another point of note that as seen in Sec. 4.1, there is no noticeable
difference between the three low-discrepancy sequences. Therefore, for clarity, we will use only

Sobol’s sequence for the rest of the study.

4.2.2. Constant-volume spray combustion chamber (Spray-A)
The second case considered is from the Engine Combustion Network’s (ECN) Spray-A con-
figuration [see 60, for details]. This configuration, referred to as Spray-A, is a constant-volume

combustion chamber where liquid n-dodecane is injected as high-pressure spray. The snapshot is
17
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taken from the RAS results presented in [61, 62] at a time when all spray has evaporated. The
computational configuration is a three-dimensional wedge mesh with 12,800 finite volume com-
putational cells as shown in Fig. 9. The walls are hot at 850 K and emits as black surfaces. The
peak soot volume fraction in the domain is 7.7 ppm. Along with the LBL data for the participating
gases (CO,, CO, and H,0) soot is also treated as participating media. Radiative properties of soot
is modeled based on a wavelength-dependent correlation [63]. Nature of radiative,properties of
soot is much closer to black body than the gases, hence we chose a case where there'isa significant

amount soot. The scalar fields of this case are shown in Fig. 10.

| 108 mm |

Wall 2

Wall 3 Wall 1 54 mm

M r r
Inlet —>» z Symmetry Axis / Center line y
—> ______________________________________________________________________ —1

Figure 9¢ Spray-A configuration geometry

The benchmark solution‘for this case was based on 50 statistical runs of conventional MC with
107 rays. The MC and QMG runs for performance comparison were done using 1.6 x 10° rays.
As before, § = 10 statistical runs were used for MC and only one deterministic run for QMC.
Similar to GT case, we present profiles of radiative absorption along two lines for better clarity.
Radiative absorption is compared in Fig. 11 along the axial r = 0.004 m, and radial z = 0.105 m
lines marked in Fig. 10. Both QMC and MC show good agreement with the benchmark solution
and the QMC method is within one standard deviation throughout the lines. As before larger error
can be observed near the centerline.

Figure 12 shows the wall heat flux results from MC and QMC. While the results at the Wall 1

matches well with the benchmark solution, the Wall 2 results vary wildly. In fact, along Wall 2

2es not only the standard deviation from the MC is quite large, but also at several locations the QMC
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Figure 10: Scalar field contours for Spray-A configuration
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Figure 11: Profiles of radiative absorption from MC and QMC (with 1,600,000 rays) along two lines (see Fig. 10) in
Spray-A configuration
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results lie beyond one standard deviation from the MC. A point of note here is that the actual value
of wall heat flux at Wall 2 is considerably smaller than Wall 1. The comparison of relative error
in Fig. 12(c) and 12(d) indicate that both QMC and MC predict the solution well in regions of
higher wall flux (Fig. 12(c) r = 0 to 0.03 m) and the statistics degrades where the heat flux is
small. A factor contributing to higher relative error in lower heat flux regions is the fact that for
computational efficiency, the number of rays emitted from a location is proportionalito the energy
content of the location (importance sampling) [1]. Since the region near Wall 2 is"comparatively
cooler than the core regions (Fig. 6), the total number of rays in the region near Wall-2 is less than

other parts (e.g., near the flame). This leads to higher statistical error near Wall,2.

4.2.3. A laboratory-scale turbulent pool fire

The final case is an n-heptane turbulent pool fire experimentally studied by Klassen and Gore [64].
The diameter of the pool is 7.1 cm and measured flame height is'34.5 cm. The radiant fraction of
this case is approximately 29%. The pool fire was simulated using a large eddy simulation (LES)
approach with detailed chemistry and a semi-empirical soot model [see 65, 66, for further details].
The snapshot used in this study is scaled\from a snapshot of the flame reported in [65, 66]. The
computational mesh, shown in Fig. 13, contains roughly 400,000 cells with a radius of 0.4 m and
height of 0.6 m. All boundariesiexcept the bottom pool surface are open boundaries. The ambient
temperature and pressure are’300 Kvand 1 atm, respectively. The temperature at the fuel inlet is
constant at 371.6 K (the boilingpoint of n-heptane).

Figure 14 shows«contours of instantaneous flame structure and Fig. 15 shows contours of radia-
tive absorption and errors along a vertical plane. The benchmark solution, shown in Fig. 15(a), was
obtained using,10®Tays with 50 statistical analyses of MC. Contours of volumetric absorption for
MC and QMC with 4 x 107 rays are shown in Figs. 15(b) and 15(c). As before, § = 10 statistical
runs of MC was conducted to evaluate mean values shown in Fig. 15(b). Figures 15(d) and 15(e)
show the absolute error for MC and QMC throughout the computational domain when compared
with the benchmark solution. Radiative absorption with QMC is shown to have better agreement

with the benchmark solution throughout the computational domain, albeit with a few locally high-
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(b)
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Figure 13: Computational geometry for,the pool fire case

error locations. Profiles of radiative absorption along a/line shows similar trends as seen in other

cases and are not shown here for brevity.

4.3. Effect of emitting/reflecting walls on the dimensionality of OMC

The presence of emitting/reflecting walls changes the dimensionality of Monte Carlo solution.
The wall faces are planar faces. Therefore one needs only two, instead of three, parameters to
characterize origin of wall=emitted rays (say, ij, R? for MC and S}, S? for QMC). In the context
of QMC, since only five numbers from a six-dimensional sequence are utilized in some rays, there
is an expected globalless of “uniformity” within the sequence. However, the effect of this loss of
uniformity islikely-negligible, for two reasons. First, usually energy content, and hence number of
rays emitted from walls are much less compared to the combustion medium. For example, in the
GT simulations more than 1.5 x 10° rays were emitted from the participating medium (i.e., internal
cells) while approximately 2.5 x 10 rays were emitted from walls. Second, any subset of an LDS
will also tend to be an LDS by design. Therefore, overall loss of uniformity is expected to be small

because of this dimensional discrepancy between wall-emitted and medium-emitted rays.
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Figure 14: Contours of the scalar fields along a vertical plane of the pool fire.

Reflective wallsy'on thesother hand, poses a more severe loss of dimensionality. Diffuse reflec-
tion requires generation of two new random numbers for determining the direction of the reflected
ray every time.a reflection event occurs. If one chooses to use the same six-dimensional LDS for

a0 reflection events (i.e., only uses S‘} and S; and discards all others), a large number of reflection
events could considerably affect the uniformity of a the sequence and degrade the statistics of the
simulation. This phenomenon is shown in Fig. 16. Here we modified the GT case discussed ear-
lier and made the walls 50% reflective keeping everything else same as before. Using the same
original six-dimensional Sobol sequence the results from QMC shows noticeable under-prediction

us  of absorption. In this case, as before, 1,600,000 rays were used in MC and QMC simulations.
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Figure 15: Contours of radiativesabsorption and absolute error in radiative absorption calculations along a vertical
plane in the pool fire case. Both:-MCiand QMC were run with with 4 x 107 rays.

And total reflection events in this case was found to be approximately 1,200,000. This means that
approximately a total of 2,800,000 sets from a single Sobol sequence were sampled, but in 40%
of times only Sf; and S? were utilized discarding other dimensions. This increases discrepancy in
the simulation.

Therefore, it is proposed that two independent low-discrepancy sequences are used to accom-
modate simulations where reflection is present. The first sequence is the six-dimensional as before,
and a second two-dimensional sequence is used only to determine the direction of reflected rays

in reflection events. For example, S},S?, e Sg? would be used initially to emit jth ray, then a
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separate, independent two-dimensional sequence S;cl, S;f would handle the k™ reflection event.
Here 8’ indicates a two-dimensional Sobol sequence independent of the original six-dimensional
S. The results from the two independent sequences improves greatly as seen in Fig. 17. While

it is not shown here, in a similar way, two independent sequences can be used in QMC to tackle

scattering events as well.
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Figure 16: Radiative absorption profiles for GT with reflective walls from MC and QMC with single six-dimensional

Sobol sequence
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4.4. Computational efficiency and Figure of Merit

Typically in a Monte Carlo solver for thermal radiation most of the computational effort is
spent in tracing the rays as tracing requires an exhaustive face-line intersection search at every
computational cell each ray goes through. Whereas the generation of random numbers and the
estimation of origin, direction, and wavenumber of a ray is needed to be done only once in a
ray’s lifetime. Re-generation of random numbers for a ray is required only when a,reflection or
a scattering event is encountered. The base Monte Carlo code used in this study spends‘roughly
90% time in tracing and only 10% in generation of random numbers and ealculation of origin,
direction, and wavenumber of the rays. The computational overhead of Sobol sequence is very
similar to that of PRNG algorithm used in the MC simulations in this&tudy [67]. However, the total
computational effort of S = 10 MC simulations is slightly higher than tén times the corresponding

QMC run with same number of rays as shown in Table 2, possibly‘due to the different overheads.

Table 2: Computational cost of QMC and PMC in 3D cases. Each simulation was performed on a single Intel Xeon
E5-2687Wv4 processor.

No. of No. of Computational cost (s)
Case ) raysper QMC MC
cells
run one run 10 runs
GT 15,718 1.6 x 10° 32.2 429
Spray-A 12,800 1.6 x 10° 18.6 275
Pool Fire 392,000 4.0x 10’ 4,853 48,751

The advantage of QMC i$ further amplified when the computational cost is considered along
with the statistical accuracy of the simulation by using a Figure of Merit (FOM). The FoM metric
as shown_in Eqn. 3 gives an idea of this cost-accuracy benefit of QMC. Figure 18 shows the FoM
based on average RMS relative error along the two lines for each combustion simulation (GT
and Spray A). Since there were 10 statistical simulations of MC as opposed to one deterministic
simulation of QMC, the computational run time is expected to be approximately 10 times more for
the MC. This would indicate a factor of § = 10 increase in FoM for QMC over MC. However, it
should be noted here that the in a MC simulation error reduces with the square-root of the number
of samples, whereas computational cost increases almost linearly. Therefore, the FoM of a MC

simulation is expected to vary only slightly with the change in number of rays (N) or statistical
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385

runs (§). Nevertheless, Fig. 18 shows that in all three cases the increase in FoM due to QMC is
more than a factor of § = 10 and somewhere closer to a factor of 30 to 50. This indicates that QMC
not only provides a way to eliminate several statistical runs required for MC, but it can produce a
lower statistical error than a single MC simulation. Similar results can be seen in Fig. 19, where
the FoM is calculated based on the wall heat flux for both the GT and Spray-A configurations. As
seen in the wall heat flux comparisons (Figs. 8 and 12, the error margin for QMC is larger in terms
of wall heat flux. This is reflected in reduction of relative advantage in the FoM plets in'Fig. 19.
Nevertheless, even with higher variation in error for the wall heat flux, the FoM, of QMC is more

than an order of magnitude higher than that of MC.
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Figure 18: Figure of Merit (FoM) along two'different’lines of MC and QMC simulations for GT and Spray-A config-
urations
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QMC simulations.
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5. Conclusion

Monte Carlo ray tracing schemes for radiative heat transfer are the most accurate and robust
solvers for thermal radiation but the high computational costs make them impractical for large
scale simulations. The Quasi-Monte Carlo (QMC) method presented in this work addresses this
bottleneck by replacing the random number sampling mechanism in traditional MC methods with
a low-discrepancy sequence (LDS). A systematic performance comparison was done with both
MC and QMC methods. First, the QMC method was validated in several onesdimensional config-
urations where it was shown that QMC has better accuracy at lower costs compared to. MC. Then,
QMC was extended to relevant three-dimensional combustion simulations. In terms of local and
averaged RMS relative error, the QMC had lower error in these simulations as well. Three LDS —
Sobol, Halton, and Niederrieter sequences — were used in the QMC and it was found that all three
sequences produce same quality results. It was advantageous todefine a figure of merit (FoM) to
show the coupled nature of accuracy and computational costs for QMC, where a high FoM was
indicative a good Monte Carlo simulation. Fof-any given simulation the FoM for QMC was greater
than MC. Because QMC required just one simulation, while MC algorithm used here (as proposed
in [1]) requires a statistically significant number (S) of simulations (here, S = 10), the computa-
tional costs of QMC is reduced S -fold. In practice the gain in FoM was found to be greater than
S -fold due to reduced error from QMC. Although the current study was done using frozen-field
configurations, the similaradvantage is expected to hold true for QMC in coupled simulations by
restarting the LDS every timestep whenever the RTE solver is invoked. In conclusion, QMC is an
attractive alternative to.traditional MC methods for radiative heat transfer calculations due to its

computational cost-and accuracy advantages.
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sso  Appendix A. Error bounds and standard deviation from MC and QMC

As discussed in Sec. 4, because QMC is based on a deterministic sequence (i.e., an LDS will
always produce the same sequence), calculation of standard deviation has so far been avoided. In
order to estimate standard deviation one needs to make sure that the actual sequence of samples
used in each QMC simulation is different. This is achieved, in a somewhat adhoc manner, by

creating a six-dimensional Sobol sequence with § X N samples denoted as
Se = [(S],S%,...,89,(8),8%,...,8%, ..., (S, Sins .-, SV (A1)
Then m™ instance of QMC with N rays is run by using rays generated from-the subset

1 2 6 1 2 6
[(S(m—l)NH ) S(m—l)N+1 PERRR S(m—l)N+1)’ oo S Sivs - Sl

m=1[1,2,...,5] (A2)

Since any subset of an LDS is also LDS by definition, this m™ subset acts as a different (although
not independent) LDS. It is possible to develop a more rigorous methodology of randomizing the
LDS from one instance to another, but.that has been left for future. This is somewhat similar to

generating statistics from S diffefent statistical iterations of PMC with N rays.
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Figure A.20: Convergence rate of RMS error and standard deviation for one-dimensional plane-parallel media
(Case 3). Both MC and QMC (using Sobol) was run for 10 statistical iterations. The dimension for Sobol sequence is
m = 6.
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Figure A.20 shows the results from series of such simulations with different number of rays
per statistical iteration (N = [5000, 100000]) for the one-dimensional nongray case (Case 3 in
Tab. 1). Here only results from Sobol sequence is shown. Both MC and QMC were run for
S = 10. As before the relative RMS error is calculated from the analytical solution. Both the
relative RMS error (Fig. 20(a)) and absolute value of standard deviation (Fig. 20(b)) are shown
here. It is evident that both the standard deviation and error reduces faster for QM€ than MC. It
can be shown that the probabilistic error bound for a Monte Carlo solution is expected'to vary
with number of samples as O (N‘O'5 ), whereas that for QMC varies as O (N log N)m_l), where
m is the dimension of the LDS (i.e., in current case, m = 6) [32]. The lines corresponding these
error bounds are also shown in corresponding figures. Clearly theserror as well as the standard
deviation of MC decreases as per O(N =03 ) However, it is interesting to observe that both the
error and standard deviation from QMC decreases faster than O(N ! (log N)m_l). As expected,
both the error and standard deviation show the same sate of'decrease with sample size in either
MC or QMC. Therefore, either of these two metric can be-ised to define a “convergence rate.” It is
noted here that the error bound of QMC is dependent on the dimensionality of the problem. If one
can reduce the dimensionality, it is expected:ithe QMC may lead to an even faster convergence rate.
Therefore, combination QMC with afeasonably accurate spectral model such as FSK or SLW or
[-distribution may lead to further speed<up of QMC because of the elimination of the need for a
quasirandom number for wavenumber selection.

Finally, Fig. A.21 shows the comparison of RMS relative error and standard deviation from MC
and QMC (with Sobol sequence) for the gas turbine case. MC was run for § = 10 independent
statistical iterations with N = 1,600, 000 rays in each iteration and QMC were run with § = 10
different sub<intervals with N = 1,600,000 rays in each interval. Only the results along the
r = 0.03 m line is shown here and the error is calculated based on the benchmark run as discussed
in Sec. 4.2.1. Both the error and standard deviation is much lower from QMC than MC. The
computational time for both MC and QMC is similar (as both cases use a total of 1.6 x 107 rays
split in 10 iterations). This comparison shows why FoM benefit from QMC is always more than

S -fold from MC with S statistical iterations.
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Figure A.21: Relative RMS error and standard deviation for radiative absorption along » = 0.03 m in the gas turbine
case. Both MC and QMC (using Sobol) was run 10 statistical iterations with 1,600,000 rays in each iterations.
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