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Abstract

The Monte Carlo (MC) method is the most accurate method for resolving radiative heat transfer

in participating media. However, it is also computationally prohibitive in large-scale simulations.

To alleviate this, this study proposes a quasi-Monte Carlo (QMC) method for thermal radiation

in participating media with a focus on combustion-related problems. The QMC method employs

low-discrepancy sequences (LDS) in place of the traditional random numbers. Three different low-

discrepancy sequences – Sobol, Halton, and Niederreiter – were examined as part of this work. The

developed QMC method was first validated against analytical solutions of radiative heat transfer

in several one-dimensional configurations. Then it was extended to three-dimensional practical

combustion configurations. The results from QMC and traditional Monte Carlo are compared

against benchmark solutions for each cases. It is shown that the error of the predicted radiation

field from QMC is lower than an equivalent MC simulation. The computational cost of QMC

was also found lower than MC due to the avoidance of requirement of several statistical runs

for traditional Monte Carlo methods alongside achieving the reduction in error. In conclusion,

significant improvements in computational costs and accuracy seen in the QMC method makes it

an attractive alternative to traditional Monte Carlo methods in high-fidelity simulations.
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1. Introduction

Radiative transfer through participating media is a complex problem because of the non-local,

non-linear nature of the transport. This is further complicated by the nongray properties of the

participating media. The spectral radiative transfer equation (RTE), shown in Eqn. 1, governs

radiative heat transfer in nongray participating media.

dIη
ds

= ŝ · ∇Iη = κηIbη − βηIη +
σsη

4π

∫
4π

Iη(ŝ)Φη(ŝi, ŝ)dΩi, (1)

The spectral RTE is a five-dimensional (three spatial, two directional) integro-differential equation

for radiative intensity, Iη, that includes influence from emission, absorption, and scattering. Here

the subscript η denotes the spectral nature of the equation, i.e., it is valid for one single wavenum-

ber η; Ib is blackbody radiative intensity (Planck function), κ is absorptivity of the medium, β is5

extinction coefficient, σs is scattering coefficient, Φ(ŝi, ŝ) is the scattering phase function between

ray directions ŝi and ŝ, and Ωi represents solid angle. Radiative properties of the medium (κ, σ, β

and Φ) vary with wavenumber (η) and thermodynamic states in a highly nonlinear manner.

The difficulty to resolve the RTE exactly led to the development of many approximations for

thermal radiation and to the RTE. The simplest approximation is the optically thin (OT) assump-10

tion, which does not require to solve the RTE and considers that the media only emits radiation

but does not absorb or scatter. Among the more rigorous approximate RTE solution approaches

arguably the two most popular methods – the discrete ordinate method (DOM) and the spherical

harmonics method (PN) – approximate the RTE to a set of partial differential equations (PDEs).

In the DOM, the radiative intensity over the entire solid angle is discretized directionally to pro-15

duce a set of simultaneous first-order PDEs from the RTE. In the spherical harmonics method, the

intensity is represented in terms of a two-dimensional Fourier series made of position-dependent

intensity coefficients and spherical harmonics represented in terms of associated Legendre poly-

nomial. The order N of the spherical harmonics (and hence PN) represents how many terms of the

Fourier series is retained in the numerical solution. Further details of these methods can be found20

in radiation textbooks [e.g., 1, 2, etc.]. The DOM suffers from some numerical issues, such as

ray effect and false scattering, that makes use of DOM in arbitrarily fine resolution numerically
2
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expensive [3, 4]. On the other hand, PN methods becomes numerically very involved very quickly

with the increase in the order (N). Lower-order PN methods, while computationally cheap, can be

grossly inaccurate, specifically in presence of strong intensity gradients. Additionally, complex25

boundaries are difficult to handle in both methods.

Monte Carlo-based methods, on the other hand, are the most accurate and robust solution

methods for RTE. The family of Monte Carlo methods used to solve thermal radiation problems

are often referred as photon Monte Carlo (PMC) because the radiative transport is accounted by

tracking emission and absorption of photon bundles (sometimes also called “rays”) containing a30

finite amount of energy. As with any Monte Carlo methods, the statistical solution approaches to

the exact solution of RTE when sufficiently large number of photons are tracked. However, this

comes with a heavy penalty of computational cost. Computational cost of PMC scales almost lin-

early with the number of rays used in the simulation, whereas the statistical error scales inversely

with the square root of the number of rays. Typically a PMC simulation can take orders of magni-35

tude more computational effort than a lower order PN or DOM calculation [5]. Therefore, Monte

Carlo solvers are impractical to use in large-scale simulations, and often only used to generate

benchmark solution.

A complete solution of RTE requires supplementary models to tackle the spectral nature of

the RTE. This necessitates use of spectral models. Development of accurate and efficient spectral40

model is an active field of research. Some commonly available spectral models include weighted

sum of grey gas (WSGG), full-spectrum k-distribution (FSK), multiscale/multigroup FSK model,

spectral line weighted-sum-of-gray-gases (SLW) models, l-distribution model, statistical narrow

band (SNB) methods, absorption distribution function model with fictitious gases (ADFFG), mul-

tiscale Malkmus model (MSM), line-by-line model (LBL) model, etc [e.g., 6, 7, 8, 9, 10, 11, 12,45

13, 14, 15, 16, 17, 18, 19, 20, 21]. The accuracy and complexity of spectral models vary signif-

icantly. The accuracy of an RTE solver is affected by accuracy of spectral model used with it.

Several studies have compared accuracy and efficiency of different spectral models with different

RTE solvers in various contexts [e.g., 22, 23, 24, 25, 26].

Due to the stochastic nature, the complexity of spectral model does not significantly affect the50

computational efficiency of PMC. Therefore, considering the high computational cost, an accurate
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spectral model is often preferred in PMC. In the context of the RTE in a combustion system, a

solution using a line-by-line spectral model with Monte Carlo solver (PMC/LBL) is generally

considered one of the most accurate solution approaches. However, it is possible to use PMC with

any other sufficiently accurate (e.g., FSK or SLW models, or l-distribution models, etc.) spectral55

model. For example, PMC has been used with variants of FSK model with good accuracy and

efficiency [27, 28]. There has also been some recent developments in calculating radiative transfer

directly from spectroscopic databases via a line-sampling Monte Carlo approach [29]. It is noted

here that the scope of the current work is not to explore different spectral models and their impacts

on PMC, rather to propose a new variant of Monte Carlo-based RTE solver. For this reason, in this60

work, we only use LBL spectral model.

The current work proposes an approach of utilizing low-discrepancy sequences to develop

a more efficient Monte Carlo method without sacrificing any accuracy. The idea of using low-

discrepancy sequence in Monte Carlo methods has been used in different domains of computations

from financial applications [30] to computer graphics [31]. These methods are termed as quasi-65

Monte Carlo (QMC) [32]. The use of QMC in thermal radiation problem, however, is very limited

and mostly restricted to surface transfer and atmospheric radiation [e.g., 33, 34, 35, 36, 37, etc.].

In this work we extend this approach to thermal radiation in participating media. Very recently

researchers have compared various Monte Carlo methods including a QMC for combustion simu-

lations [38]. To the best knowledge of the authors, other than the few works cited above, there has70

not been many work in exploring and systematically validating and verifying efficacies of QMC

in solving radiation in participating media.

In computational simulations, the choice of RTE solver is dictated by the importance of ther-

mal radiation in the problem under consideration. Typically, thermal radiation is important in most

high temperature applications. The use case considered in this study is that of combustion, which75

contains highly nonuniform distribution of nongray participating media. In combustion applica-

tions, the effect of radiation comes in terms of a source term in the energy conservation equation

and in the heat loss at the boundary. Although considerable development has taken place on DOM

and PN methods with combustion simulation in mind, thermal radiation is often either neglected

or oversimplified in combustion applications mainly because of the added computational expense80
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despite the importance thermal radiation in combustion applications [e.g., see 39, and references

therein]. Although the configurations discussed in this work is relevant for combustion, the ap-

proach presented here can be easily extended to other application domains involving participating

media such as biomedical imaging, photodynamic therapy, radiation therapy, etc. [40, 41].

In the next section a brief overview of conventional Monte Carlo method of thermal radiation is85

presented followed by a section on the description of the proposed quasi-Monte Carlo method. The

results section first reports validation of QMC followed by its comparison with conventional Monte

Carlo method in different combustion configurations. Finally the key findings are summarized in

the conclusion. In the rest of the document the words photon Monte Carlo (PMC) and Monte

Carlo (MC) are used interchangeably to represent conventional Monte Carlo method for radiation.90

2. Monte Carlo method for radiation in participating media

In the photon Monte Carlo (PMC) method the radiative transport is accounted for by emitting

and tracing a statistically meaningful sample of representative photons (rays). Each ray starts

with a finite amount of energy, has a specific wavenumber and assumed to propagate along a line

in a specific direction. A ray’s (denoted by its index j) origin (x j, y j, z j), propagation direction95

(θ j, φ j), and the wavenumber (η j) are determined via importance sampling of independent random

numbers according to probability distributions [1]. In the conventional approach, six independent,

uniformly distributed, random numbers are used to find emission origin (Rx
j ,R

y
j ,R

z
j), propagation

direction (Rθj,R
φ
j ), and the wavenumber (Rηj) for ray j. The random number relations for origin

location and propagation direction can be found in [1], whereas the wavenumber selection scheme100

is discussed in [42]. When implemented on a finite volume computational mesh, the initial energy

E0 of each ray is obtained by relating the total energy content (Ei) and number of rays to be emitted

(Ni) in each computational cell i by E0 = Ei/Ni. Total number of rays in the entire simulation is then

N =
∑

i

Ni. In practice, however, the desired total number of rays N is prescribed and number of

rays to be emitted from each cell is calculated based on the ratio of local emission from a given105

cell (i) and the total emission from the entire domain. This adaptive scheme ensures that the initial

energy of all rays are within a narrow range making each ray almost equally important. It should

5
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be noted here that number of rays emitted from one cell to another can be different and the actual

total number of rays obtained this way is slightly (usually < 1%) different than prescribed. This

strategy has been discussed in details in [1]. Energy attenuation of rays during tracing can follow110

either a ballistic scheme (where a rays travels a randomly arbitrary distance determined by optical

thickness of the medium and gets its energy is completely dumped only in the last computational

cell) or an energy partitioning scheme [1]. In this work we follow the energy partitioning scheme.

In this approach, energy from each ray is absorbed into the medium as it passes through each

computational cell. After a ray containing energy E0 and wavenumber η passes an optical distance115

τη inside a computational cell, its energy is attenuated to E = E0e−τη as it dumps an amount of

energy ∆E = E0(1−e−τη) in to the local medium. The ray is traced until all its energy is attenuated

completely (i.e., its energy becomes less than 0.1% of its original energy) or it moves outside the

domain. The radiative source term for the medium is then determined as the difference between

the energy gained from all rays passing through a computational cell and energy lost due to rays120

emitted from the cell.

With a sufficiently large number of rays, PMC methods can produce the exact solution re-

gardless of the complexity of the problem. The accuracy of the PMC method is determined by

either the actual error (from an ‘exact’ solution) of the mean solution or the standard deviation of

an evaluated variable over multiple statistical iterations (i.e., it’s statistical error). The statistical125

error of a Monte Carlo simulation is represented by O(N−0.5) where N refers to the number of rays

sampled in the simulation.

3. Quasi-Monte Carlo method

The Monte Carlo methods rely on good random number generation schemes. In general, true

random numbers can be generated by harvesting measurements related to some physical phenom-130

ena (e.g., thermal noise, atmospheric noise, shot noise, etc.) using a dedicated hardware-based

random number generator. However, for most computing purposes, where fast generation of ran-

dom number is critical, users often resort to deterministic algorithm-based random numbers termed

as pseudorandom numbers. The algorithms used to generate pseudorandom numbers are usually

referred to as pseudorandom number generators (PRNGs). Since these pseudorandom numbers135
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are calculated using a deterministic algorithm, care needs to be taken so that the numbers gener-

ated from PRNGs show approximate characteristics of a true random distribution [43, 44]. It is

desirable for pseudorandom numbers to have good unbiased distribution (i.e., randomness), a long

period (i.e., the point at which the sequence starts to repeat), and repeatability [44]. The quality

of “randomness” for a PRNG is, by design, dependent on the starting point or the pseudorandom140

sequence or ‘seed.’ For robustness often a physically-derived randomness (e.g., thermal noise of

a processor) is used to generate the seed. In most Unix-like systems a file /dev/random (or its

variant) provides access to the noise collected from device driver and other sources [45] that can

be used as a seed for a PRNG.

Quasi-Monte Carlo methods replace the PRNGs in favor of low-discrepancy sequences (LDS).145

An LDS distributes quasi-random samples in some self-avoiding fashion based upon a determin-

istic algorithm. The distribution of an LDS favors uniformity over randomness. Notably, the

distribution of random samples will asymptotically reach uniformity with increase in number of

samples. With equal subintervals, a PRNG produces outputs that have equal probability of an out-

put landing in a given subinterval which can lead to clustering or gaps within the set. An LDS tries150

to eliminate these phenomena by generating points in a correlated manner, i.e., filling the domain

with n-tuples more quickly and evenly than PNRGs [46]. Low-discrepancy sequences can be iden-

tified visually by a set of points tending towards equidistance for any subset within the sequence;

typically better spacing refers to lower discrepancy. For example, Fig. 1 shows the progression of

distribution of random numbers obtained from a PRNG and a low-discrepancy sequence (Sobol155

sequence, in this case) for different sample sizes.

There are several LDS available in literature [47]. In this work, we use Sobol, Halton, and

Niederreiter sequences based on recommendations from the literature [48, 49]. Sobol sequences

are generated from a set of binary fractions called direction numbers [50]. Developing a Sobol

sequence has been extensively discussed and the reader is recommended to the respective litera-160

ture [e.g., 48, 47, 51, etc.]. The efficient “gray code” algorithm by Antonov and Saleev is used

this work to calculate multidimensional Sobol’s sequence [48]. A Halton quasi-random number is

generated by rewriting an integer j in base b, reversing the digits, and adding a preceding decimal

point [52, 53]. The result is a fraction in base b. Niederreiter’s quasi-random sequence based on
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(f) 5000 samples from an LDS

Figure 1: Samples obtained in two-dimensional space from a PRNG and an LDS (Sobol)

the theory of (t,s)-nets in base b was introduced by Niederreiter [54, 55]. Sobol’s sequence can be165

thought of as a generalized Niederreiter sequence in base 2. The calculation of Niederreiter’s se-

quence is similar to Sobol’s sequence with the exception of how direction numbers are generated.

A more detailed review of these sequences can be found in [32, 47, 55].

As discussed earlier, PMC method requires emitting and tracing a statistically meaningful

number of rays. The proposed quasi-Monte Carlo (QMC) method for thermal radiation does the170

same, but instead of use pseudorandom numbers to define each ray, quasi-random numbers from

a six dimensional LDS is used. Therefore for ray j, the six random numbers corresponding to its

emission origin (Rx
j ,R

y
j ,R

z
j), propagation direction (Rθj,R

φ
j ), and wavenumber (Rηj), are substituted

with S1
j ,S

2
j , . . . ,S

6
j . Here Sn

j indicates jth number in nth dimension of the six-dimensional low-

discrepancy sequence. Therefore, S1
j ,S

2
j and S3

j correspond to the emission origin, S4
j ,S

5
j to the175

propagation direction, and S6
j is for the wavenumbers.
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4. Results and discussion

In this section we first present validation of the quasi-Monte Carlo (QMC) method for ther-

mal radiation followed by a systematic performance comparison of the QMC and conventional

Monte Carlo (MC) in multiple combustion-related configurations. The QMC scheme is validated180

against exact analytical solutions which are only available in simple configurations such as a one-

dimensional plane-parallel media. Then we present three distinct, nongray combustion configu-

rations followed by a discussion on the effect of emitting/reflective walls in the dimensionality of

QMC. Finally the computational cost and efficiency of QMC is discussed.

As mentioned earlier, the accuracy of a Monte Carlo solver can be measured in terms of the185

actual error (ε) of the solution from the exact or benchmark solution or in terms of the standard

deviation (σ) of the solution. The standard deviation and actual error for a good Monte Carlo

simulation that uses unbiased and independent random samples follow each other. For example,

there is a 95% probability that the actual statistical mean solution is within two standard devia-

tions of the Monte Carlo mean. But if the random samples are not independent, this one-to-one190

relationship may not be true. Low-discrepancy sequence, by design provides equidistant samples,

thereby is expected to reduce standard deviation compared to corresponding random samples [32].

In this work, we will evaluate the accuracy of the Monte Carlo and quasi-Monte Carlo methods

in terms of actual error for two reasons. First, the actual error is a stronger indicator of accuracy.

Second, QMC uses a deterministic sequence therefore different statistical runs will provide the195

same sequence making standard deviation an ambiguous measure for QMC. A short discussion on

probabilistic bounds of standard deviation and error in QMC is presented in Appendix A.

Since this implementation is based on a finite volume framework, the local root-mean-square

(RMS) relative error is defined at each computational finite volume cell (index i) as

εi =

 1
S

S∑
s=1

(
qs

i

qo
i
− 1

)21/2

, (2)

where q refers to the target variable for solution, S refers to the number of statistical runs, qs
i is the

solution from the Monte Carlo simulation, and qo
i is the solution from the analytical or benchmark
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solution. All configurations with the MC method use S = 10 statistical runs, whereas QMC is run

only once. The target variable for accuracy estimation in this work is either local radiative heat

source (i.e., divergence of local radiative heat flux, ∇·Q [W/m3]), local radiative absorption per unit

volume (Qabs [W/m3]), or wall heat flux (Q′′wall [W/m2]) as appropriate for each test configuration.

Additionally, as done in [56], comparison of “efficiency” of Monte Carlo schemes are done via a

“figure of merit” (FoM) which also takes into account computational time. In this work, FoM is

calculated based on spatially-averaged RMS relative error (ε̄)

FoM =
1
ε̄2t
, (3)

where t is the simulation time. A high FoM score is indicative of a good Monte Carlo simulation

i.e., low error at low computational cost.

4.1. Validation in one-dimensional plane-parallel media200

The configuration used for validation is a one-dimensional gas slab bound by two parallel,

black walls separated by 0.1 m. Several combinations of temperature and absorption coefficient

profiles were tested for validation and only three representative cases are presented for brevity.

These cases are listed in Table 1. The gray participating media was defined by imposing a

specific profile of Planck-mean absorption coefficient (κP). The nongray medium consisted of205

20% (by mole) CO2 and rest of the medium was radiatively non-participating. A line-by-line

(LBL) database obtained from HITEMP spectroscopic database [57] was used to evaluate then

nongray radiative properties of CO2.

Table 1: One-dimensional validation cases. In case (2) the x [m] is the distance from one wall.

Case (1) (2) (3)
Abs. Coeff. gray, κP = 1 m−1 gray, κP(x) = 1 + 750x m−1 nongray LBL
Tmedium 1200 K T (x) = 1700 − 5000x K 2000 K
Walls 800 K, black 800 K, black cold, black

The results for the three cases are shown in Figs. 2–4. Figures 2(a), 3(a), and 4(a) show the

comparison of ∇·Q calculated from the MC and QMC with three different LDS (Sobol, Halton, and210
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(c) ε̄ vs N (Case 1)

Figure 2: Accuracy and convergence of MC and QMC using Sobol, Halton, and Niederreiter sequences in Case 1
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(c) ε̄ vs N (Case 2)

Figure 3: Accuracy and convergence of MC and QMC using Sobol, Halton, and Niederreiter sequences in Case 2
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Figure 4: Accuracy and convergence of MC and QMC using Sobol, Halton, and Niederreiter sequences in Case 3
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Niederreiter), along with the analytical solution [1]. Both MC and QMC show good agreement

with the analytical solution in all cases. The variations in local RMS error (εi) can be seen in

Figs. 2(b), 3(b), and 4(b). In all three cases, local errors from QMC are generally lower than that

from MC. Finally, Figs. 2(c), 3(c), and 4(c) show the “convergence rate” of QMC and MC. The

convergence rate is defined as how fast the average relative RMS error (ε̄) decrease with increase in215

the number of rays. It can be seen from Figs. 2(c), 3(c), and 4(c) that QMC converges quicker than

MC. A further discussion on convergence rate can be found in Appendix A. It is also evident that

all three low-discrepancy sequences produce same levels of error and neither shows any advantage

over another.

4.2. Three-dimensional combustion simulations220

The three combustion configurations chosen in this study are a high-pressure gas turbine, a

constant-volume spray combustion chamber, and a turbulent pool fire. The choice of these cases

are to include a diverse set of configurations as possibly encountered in combustion simulations.

The first two configurations involve hot emitting walls, whereas the third one involves open bound-

aries. The second and third configurations include nongray soot along with nongray gases. Addi-225

tionally, the first two configurations are based on a Reynolds-averaged simulation (RAS) whereas

the third one is based on a large eddy simulation (LES). In all simulations CO2, H2O, CO, and

soot (when present) are used as participating media. The spectral properties of gases are modeled

by line-by-line (LBL) databases constructed from HITEMP spectroscopic data [57].

An analytical solution is impossible to obtain for these configurations. Therefore, solutions230

calculated from a significantly large number of rays (the actual number varies from one config-

uration to another as discussed later) with 50 statistical iterations of a MC simulation are treated

as the benchmark solutions for the purpose of evaluating RMS error as shown in Eqn. 2. Further-

more, local error is calculated in terms of volumetric absorption in these cases. This choice is

made because of the presence of locally strong optically thick regions, which lead to a near-zero235

value of ∇ · Q in some locations. Therefore calculation of relative error based on ∇ · Q can be

misleading. Moreover, local emission can be determined analytically and the uncertainty of the
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radiative transfer in MC/QMC essentially comes from the randomness in resolving the absorption

term.

4.2.1. A high-pressure gas turbine240

The first three-dimensional configuration is based on the SGT-100 industrial gas turbine com-

bustor with an output of approximately 5 MW and pressure ratio of approximately 15:1 [58].

Snapshots of the scalar fields are taken from a numerical simulation done by Ren et al [59]. The

simulations were performed in a Reynolds averaged simulation (RAS) framework with standard

k-ε turbulent model and GRI-Mech 2.11 chemical mechanism [see 59, for details]. The computa-245

tional domain is shown in Fig. 5, and the scalar fields of the snapshot used in this study are shown

in Fig. 6. The gas turbine, referred to as the GT configuration, has 15,718 finite volume cells

for the three-dimensional wedge domain as shown in Fig. 5. The walls are considered black and

emitting at a temperature 673 K. As before, CO2, CO, and H2O are treated as participating media.

Figure 5: GT configuration

The benchmark solution for the GT case was run with 107 rays and 50 statistical Monte Carlo250

simulations. For accuracy comparison, both MC and QMC was run with 1.6 × 106 rays. We per-

formed S = 10 statistical simulations of MC to obtain statistical mean and RMS error. The actual

scalar field for radiative source term and absorption are indistinguishable between benchmark,

MC, and QMC runs and hence are not shown here. Instead, we show one axial (at r = 0.03 m)

and one radial (at z = 0.1 m) profile of the absorption as marked in Fig. 6. Figure 7 shows the255

local radiative absorption along these lines. Both the MC and QMC methods are in very good

agreement with the benchmark solution and the results from QMC fall within the error bars of the

MC method throughout. As in the case of one-dimensional configuration, QMC converges faster
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(a) T (K) (b) CO2 mass fraction

(c) H2O mass fraction (d) CO mass fraction

Figure 6: Scalar field contours for GT configuration
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(a) Axial profile along r = 0.03 m
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(b) Radial profile along z = 0.1 m
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(c) Convergence along r = 0.03 m
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(d) Convergence along z = 0.1 m

Figure 7: Profiles of radiative absorption from MC and QMC with different LDS (with 1,600,000 rays) along two
lines (see Fig. 6) in GT configuration
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than MC with increase in number of rays (further discussion in Appendix A). It can be seen that

the error of MC and QMC from the benchmark solution is higher near the centerline. It is because260

the volume of computational cells near the centerline is much smaller and radiation being a vol-

umetric phenomena, the number of rays passing through a cell is also proportional to its volume.

Therefore, smaller cells near centerline lead to slightly degraded statistics in MC/QMC.
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(a) Wall 4
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(b) Wall 5

Figure 8: Wall heat flux profiles from MC and QMC with different LDS (with 1,600,000 rays) along two walls (see
Fig. 5) in GT configuration

The GT configuration has five walls around the combustion domain. Radiative heat loss to

walls is an important quantity. Figure 8 shows the wall heat flux of the benchmark, MC, and265

QMC simulations along walls 4 and 5 shown in Fig. 5. It is interesting to see that although the

absorption in the media is predicted well by QMC, the wall heat flux from QMC shows larger

error than MC at some locations. However, the average relative error (not shown) in wall heat flux

from QMC still remains lower than MC, albeit with a more scattered pattern (i.e., a larger range)

in error distribution in QMC. Another point of note that as seen in Sec. 4.1, there is no noticeable270

difference between the three low-discrepancy sequences. Therefore, for clarity, we will use only

Sobol’s sequence for the rest of the study.

4.2.2. Constant-volume spray combustion chamber (Spray-A)

The second case considered is from the Engine Combustion Network’s (ECN) Spray-A con-

figuration [see 60, for details]. This configuration, referred to as Spray-A, is a constant-volume275

combustion chamber where liquid n-dodecane is injected as high-pressure spray. The snapshot is
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taken from the RAS results presented in [61, 62] at a time when all spray has evaporated. The

computational configuration is a three-dimensional wedge mesh with 12,800 finite volume com-

putational cells as shown in Fig. 9. The walls are hot at 850 K and emits as black surfaces. The

peak soot volume fraction in the domain is 7.7 ppm. Along with the LBL data for the participating280

gases (CO2, CO, and H2O) soot is also treated as participating media. Radiative properties of soot

is modeled based on a wavelength-dependent correlation [63]. Nature of radiative properties of

soot is much closer to black body than the gases, hence we chose a case where there is a significant

amount soot. The scalar fields of this case are shown in Fig. 10.

Figure 9: Spray-A configuration geometry

The benchmark solution for this case was based on 50 statistical runs of conventional MC with285

107 rays. The MC and QMC runs for performance comparison were done using 1.6 × 106 rays.

As before, S = 10 statistical runs were used for MC and only one deterministic run for QMC.

Similar to GT case, we present profiles of radiative absorption along two lines for better clarity.

Radiative absorption is compared in Fig. 11 along the axial r = 0.004 m, and radial z = 0.105 m

lines marked in Fig. 10. Both QMC and MC show good agreement with the benchmark solution290

and the QMC method is within one standard deviation throughout the lines. As before larger error

can be observed near the centerline.

Figure 12 shows the wall heat flux results from MC and QMC. While the results at the Wall 1

matches well with the benchmark solution, the Wall 2 results vary wildly. In fact, along Wall 2

not only the standard deviation from the MC is quite large, but also at several locations the QMC295
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(a) T (K) (b) CO2 mass fraction

(c) H2O mass fraction (d) CO mass fraction

(e) Soot volume fraction

Figure 10: Scalar field contours for Spray-A configuration
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Figure 11: Profiles of radiative absorption from MC and QMC (with 1,600,000 rays) along two lines (see Fig. 10) in
Spray-A configuration
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(b) Wall 2
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(c) Wall 1 RMS relative error
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Figure 12: Wall heat flux profiles from MC and QMC (with 1,600,000 rays) along two walls (see Fig. 9) in Spray-A
configuration

20

Acc
ep

ted
 M

an
us

cri
pt



results lie beyond one standard deviation from the MC. A point of note here is that the actual value

of wall heat flux at Wall 2 is considerably smaller than Wall 1. The comparison of relative error

in Fig. 12(c) and 12(d) indicate that both QMC and MC predict the solution well in regions of

higher wall flux (Fig. 12(c) r = 0 to 0.03 m) and the statistics degrades where the heat flux is

small. A factor contributing to higher relative error in lower heat flux regions is the fact that for300

computational efficiency, the number of rays emitted from a location is proportional to the energy

content of the location (importance sampling) [1]. Since the region near Wall 2 is comparatively

cooler than the core regions (Fig. 6), the total number of rays in the region near Wall 2 is less than

other parts (e.g., near the flame). This leads to higher statistical error near Wall 2.

4.2.3. A laboratory-scale turbulent pool fire305

The final case is an n-heptane turbulent pool fire experimentally studied by Klassen and Gore [64].

The diameter of the pool is 7.1 cm and measured flame height is 34.5 cm. The radiant fraction of

this case is approximately 29%. The pool fire was simulated using a large eddy simulation (LES)

approach with detailed chemistry and a semi-empirical soot model [see 65, 66, for further details].

The snapshot used in this study is scaled from a snapshot of the flame reported in [65, 66]. The310

computational mesh, shown in Fig. 13, contains roughly 400,000 cells with a radius of 0.4 m and

height of 0.6 m. All boundaries except the bottom pool surface are open boundaries. The ambient

temperature and pressure are 300 K and 1 atm, respectively. The temperature at the fuel inlet is

constant at 371.6 K (the boiling point of n-heptane).

Figure 14 shows contours of instantaneous flame structure and Fig. 15 shows contours of radia-315

tive absorption and errors along a vertical plane. The benchmark solution, shown in Fig. 15(a), was

obtained using 108 rays with 50 statistical analyses of MC. Contours of volumetric absorption for

MC and QMC with 4 × 107 rays are shown in Figs. 15(b) and 15(c). As before, S = 10 statistical

runs of MC was conducted to evaluate mean values shown in Fig. 15(b). Figures 15(d) and 15(e)

show the absolute error for MC and QMC throughout the computational domain when compared320

with the benchmark solution. Radiative absorption with QMC is shown to have better agreement

with the benchmark solution throughout the computational domain, albeit with a few locally high-
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(a) Computational domain (b) Pool surface

Figure 13: Computational geometry for the pool fire case

error locations. Profiles of radiative absorption along a line shows similar trends as seen in other

cases and are not shown here for brevity.

4.3. Effect of emitting/reflecting walls on the dimensionality of QMC325

The presence of emitting/reflecting walls changes the dimensionality of Monte Carlo solution.

The wall faces are planar faces. Therefore one needs only two, instead of three, parameters to

characterize origin of wall-emitted rays (say, Rx
j ,R

y
j for MC and S1

j ,S
2
j for QMC). In the context

of QMC, since only five numbers from a six-dimensional sequence are utilized in some rays, there

is an expected global loss of “uniformity” within the sequence. However, the effect of this loss of330

uniformity is likely negligible, for two reasons. First, usually energy content, and hence number of

rays emitted from walls are much less compared to the combustion medium. For example, in the

GT simulations more than 1.5 × 106 rays were emitted from the participating medium (i.e., internal

cells) while approximately 2.5 × 104 rays were emitted from walls. Second, any subset of an LDS

will also tend to be an LDS by design. Therefore, overall loss of uniformity is expected to be small335

because of this dimensional discrepancy between wall-emitted and medium-emitted rays.
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(a) T (K) (b) CO2 mass fraction (c) H2O mass fraction

(d) CO mass fraction (e) Soot volume fraction

Figure 14: Contours of the scalar fields along a vertical plane of the pool fire.

Reflective walls, on the other hand, poses a more severe loss of dimensionality. Diffuse reflec-

tion requires generation of two new random numbers for determining the direction of the reflected

ray every time a reflection event occurs. If one chooses to use the same six-dimensional LDS for

reflection events (i.e., only uses S4
j and S5

j and discards all others), a large number of reflection340

events could considerably affect the uniformity of a the sequence and degrade the statistics of the

simulation. This phenomenon is shown in Fig. 16. Here we modified the GT case discussed ear-

lier and made the walls 50% reflective keeping everything else same as before. Using the same

original six-dimensional Sobol sequence the results from QMC shows noticeable under-prediction

of absorption. In this case, as before, 1,600,000 rays were used in MC and QMC simulations.345
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(a) Benchmark solution
(W/m3)

(b) From MC solution
(W/m3)

(c) From QMC solution
(W/m3)

(d) Mean absolute error
from MC (W/m3)

(e) Absolute error from
QMC (W/m3)

Figure 15: Contours of radiative absorption and absolute error in radiative absorption calculations along a vertical
plane in the pool fire case. Both MC and QMC were run with with 4 × 107 rays.

And total reflection events in this case was found to be approximately 1,200,000. This means that

approximately a total of 2,800,000 sets from a single Sobol sequence were sampled, but in 40%

of times only S4
j and S5

j were utilized discarding other dimensions. This increases discrepancy in

the simulation.

Therefore, it is proposed that two independent low-discrepancy sequences are used to accom-350

modate simulations where reflection is present. The first sequence is the six-dimensional as before,

and a second two-dimensional sequence is used only to determine the direction of reflected rays

in reflection events. For example, S1
j ,S

2
j , . . . ,S

6
j would be used initially to emit jth ray, then a
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separate, independent two-dimensional sequence S
′1
k ,S

′2
k would handle the kth reflection event.

Here S′ indicates a two-dimensional Sobol sequence independent of the original six-dimensional355

S. The results from the two independent sequences improves greatly as seen in Fig. 17. While

it is not shown here, in a similar way, two independent sequences can be used in QMC to tackle

scattering events as well.
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Figure 16: Radiative absorption profiles for GT with reflective walls from MC and QMC with single six-dimensional
Sobol sequence
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Figure 17: Radiative absorption profiles for GT with reflective walls from MC and QMC with two independent Sobol
sequences
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4.4. Computational efficiency and Figure of Merit

Typically in a Monte Carlo solver for thermal radiation most of the computational effort is360

spent in tracing the rays as tracing requires an exhaustive face-line intersection search at every

computational cell each ray goes through. Whereas the generation of random numbers and the

estimation of origin, direction, and wavenumber of a ray is needed to be done only once in a

ray’s lifetime. Re-generation of random numbers for a ray is required only when a reflection or

a scattering event is encountered. The base Monte Carlo code used in this study spends roughly365

90% time in tracing and only 10% in generation of random numbers and calculation of origin,

direction, and wavenumber of the rays. The computational overhead of Sobol sequence is very

similar to that of PRNG algorithm used in the MC simulations in this study [67]. However, the total

computational effort of S = 10 MC simulations is slightly higher than ten times the corresponding

QMC run with same number of rays as shown in Table 2, possibly due to the different overheads.370

Table 2: Computational cost of QMC and PMC in 3D cases. Each simulation was performed on a single Intel Xeon
E5-2687Wv4 processor.

Case
No. of
cells

No. of
rays per
run

Computational cost (s)
QMC MC
one run 10 runs

GT 15,718 1.6 × 106 32.2 429
Spray-A 12,800 1.6 × 106 18.6 275
Pool Fire 392,000 4.0 × 107 4,853 48,751

The advantage of QMC is further amplified when the computational cost is considered along

with the statistical accuracy of the simulation by using a Figure of Merit (FOM). The FoM metric

as shown in Eqn. 3 gives an idea of this cost-accuracy benefit of QMC. Figure 18 shows the FoM

based on average RMS relative error along the two lines for each combustion simulation (GT

and Spray A). Since there were 10 statistical simulations of MC as opposed to one deterministic375

simulation of QMC, the computational run time is expected to be approximately 10 times more for

the MC. This would indicate a factor of S = 10 increase in FoM for QMC over MC. However, it

should be noted here that the in a MC simulation error reduces with the square-root of the number

of samples, whereas computational cost increases almost linearly. Therefore, the FoM of a MC

simulation is expected to vary only slightly with the change in number of rays (N) or statistical380
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runs (S ). Nevertheless, Fig. 18 shows that in all three cases the increase in FoM due to QMC is

more than a factor of S = 10 and somewhere closer to a factor of 30 to 50. This indicates that QMC

not only provides a way to eliminate several statistical runs required for MC, but it can produce a

lower statistical error than a single MC simulation. Similar results can be seen in Fig. 19, where

the FoM is calculated based on the wall heat flux for both the GT and Spray-A configurations. As385

seen in the wall heat flux comparisons (Figs. 8 and 12, the error margin for QMC is larger in terms

of wall heat flux. This is reflected in reduction of relative advantage in the FoM plots in Fig. 19.

Nevertheless, even with higher variation in error for the wall heat flux, the FoM of QMC is more

than an order of magnitude higher than that of MC.
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Figure 18: Figure of Merit (FoM) along two different lines of MC and QMC simulations for GT and Spray-A config-
urations
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Figure 19: Figure of Merit (FoM) for both walls (see Fig. 8 and 12) in the GT and Spray-A configurations in MC and
QMC simulations.
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5. Conclusion390

Monte Carlo ray tracing schemes for radiative heat transfer are the most accurate and robust

solvers for thermal radiation but the high computational costs make them impractical for large

scale simulations. The Quasi-Monte Carlo (QMC) method presented in this work addresses this

bottleneck by replacing the random number sampling mechanism in traditional MC methods with

a low-discrepancy sequence (LDS). A systematic performance comparison was done with both395

MC and QMC methods. First, the QMC method was validated in several one-dimensional config-

urations where it was shown that QMC has better accuracy at lower costs compared to MC. Then,

QMC was extended to relevant three-dimensional combustion simulations. In terms of local and

averaged RMS relative error, the QMC had lower error in these simulations as well. Three LDS –

Sobol, Halton, and Niederrieter sequences – were used in the QMC and it was found that all three400

sequences produce same quality results. It was advantageous to define a figure of merit (FoM) to

show the coupled nature of accuracy and computational costs for QMC, where a high FoM was

indicative a good Monte Carlo simulation. For any given simulation the FoM for QMC was greater

than MC. Because QMC required just one simulation, while MC algorithm used here (as proposed

in [1]) requires a statistically significant number (S ) of simulations (here, S = 10), the computa-405

tional costs of QMC is reduced S -fold. In practice the gain in FoM was found to be greater than

S -fold due to reduced error from QMC. Although the current study was done using frozen-field

configurations, the similar advantage is expected to hold true for QMC in coupled simulations by

restarting the LDS every timestep whenever the RTE solver is invoked. In conclusion, QMC is an

attractive alternative to traditional MC methods for radiative heat transfer calculations due to its410

computational cost and accuracy advantages.
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Appendix A. Error bounds and standard deviation from MC and QMC560

As discussed in Sec. 4, because QMC is based on a deterministic sequence (i.e., an LDS will

always produce the same sequence), calculation of standard deviation has so far been avoided. In

order to estimate standard deviation one needs to make sure that the actual sequence of samples

used in each QMC simulation is different. This is achieved, in a somewhat adhoc manner, by

creating a six-dimensional Sobol sequence with S × N samples denoted as

S6 = [(S1
1,S

2
1, . . . ,S

6
1), (S1

2,S
2
2, . . . ,S

6
2), . . . , (S1

S N ,S
2
S N , . . . ,S

6
S N)] (A.1)

Then mth instance of QMC with N rays is run by using rays generated from the subset

[(S1
(m−1)N+1,S

2
(m−1)N+1, . . . ,S

6
(m−1)N+1), . . . , (S1

mN ,S
2
mN , . . . ,S

6
mN)],

m = [1, 2, . . . , S ] (A.2)

Since any subset of an LDS is also LDS by definition, this mth subset acts as a different (although

not independent) LDS. It is possible to develop a more rigorous methodology of randomizing the

LDS from one instance to another, but that has been left for future. This is somewhat similar to

generating statistics from S different statistical iterations of PMC with N rays.

(a) Relative RMS error (b) Standard Deviation

Figure A.20: Convergence rate of RMS error and standard deviation for one-dimensional plane-parallel media
(Case 3). Both MC and QMC (using Sobol) was run for 10 statistical iterations. The dimension for Sobol sequence is
m = 6.
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Figure A.20 shows the results from series of such simulations with different number of rays565

per statistical iteration (N = [5000, 100000]) for the one-dimensional nongray case (Case 3 in

Tab. 1). Here only results from Sobol sequence is shown. Both MC and QMC were run for

S = 10. As before the relative RMS error is calculated from the analytical solution. Both the

relative RMS error (Fig. 20(a)) and absolute value of standard deviation (Fig. 20(b)) are shown

here. It is evident that both the standard deviation and error reduces faster for QMC than MC. It570

can be shown that the probabilistic error bound for a Monte Carlo solution is expected to vary

with number of samples as O
(
N−0.5

)
, whereas that for QMC varies as O

(
N−1 (

log N
)m−1

)
, where

m is the dimension of the LDS (i.e., in current case, m = 6) [32]. The lines corresponding these

error bounds are also shown in corresponding figures. Clearly the error as well as the standard

deviation of MC decreases as per O
(
N−0.5

)
. However, it is interesting to observe that both the575

error and standard deviation from QMC decreases faster than O
(
N−1 (

log N
)m−1

)
. As expected,

both the error and standard deviation show the same rate of decrease with sample size in either

MC or QMC. Therefore, either of these two metric can be used to define a “convergence rate.” It is

noted here that the error bound of QMC is dependent on the dimensionality of the problem. If one

can reduce the dimensionality, it is expected the QMC may lead to an even faster convergence rate.580

Therefore, combination QMC with a reasonably accurate spectral model such as FSK or SLW or

l-distribution may lead to further speed-up of QMC because of the elimination of the need for a

quasirandom number for wavenumber selection.

Finally, Fig. A.21 shows the comparison of RMS relative error and standard deviation from MC

and QMC (with Sobol sequence) for the gas turbine case. MC was run for S = 10 independent585

statistical iterations with N = 1, 600, 000 rays in each iteration and QMC were run with S = 10

different sub-intervals with N = 1, 600, 000 rays in each interval. Only the results along the

r = 0.03 m line is shown here and the error is calculated based on the benchmark run as discussed

in Sec. 4.2.1. Both the error and standard deviation is much lower from QMC than MC. The

computational time for both MC and QMC is similar (as both cases use a total of 1.6 × 107 rays590

split in 10 iterations). This comparison shows why FoM benefit from QMC is always more than

S -fold from MC with S statistical iterations.
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Figure A.21: Relative RMS error and standard deviation for radiative absorption along r = 0.03 m in the gas turbine
case. Both MC and QMC (using Sobol) was run 10 statistical iterations with 1,600,000 rays in each iterations.
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