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ABSTRACT. Monte Carlo-based radiation solvers can provide an accurate solution to,thermal radi-
ation transfer in nongray participating media. Unfortunately, the computational.cost of/Monte Carlo
solvers is an impediment to their use in large-scale simulations. A deterministic sampling-based
quasi-Monte Carlo (QMC) method is proposed in this work as an efficiént alternative to conven-
tional Monte Carlo solvers. This QMC uses a low discrepancy sequence instead of random sampling
required in Monte Carlo-based approaches. The implementation is validatéd in one-dimensional con-
figurations and is further tested in three-dimensional nonhomogeneoust*eonfigurations. QMC shows
generally better error convergence rates. In three-dimensional cases QMC produces a similar level
of error compared to a conventional Monte Carlo solver without having to run multiple statistical
instances. This leads to significant computational cost benefits, from QMC as seen in the Figure of
Merit comparison between QMC and conventional'Monté¢ Carlo.

1. INTRODUCTION

Thermal radiation can play a significant role in heat transfer especially in combustion applications.
Several researchers have pointed 6ut the/importance of accurate radiative solution for combustion
systems [e.g., see 1, and refereniees therein]. Radiative heat transfer in participating media is gov-
erned by the spectral radiative transfer equation (RTE) [2]. The RTE, which is shown in Eqn. 1, is
a five-dimensional integro-differential equation for radiative intensity and includes influence from
emission, absorption,and seattering.
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where the subscript n denotes the equation is valid for one single wavenumber 1. Here [/ stands for
radiative intensity, [ is blackbody radiative intensity, k is absorptivity of the medium, f3 is extinction
coefficient, o is scattering coefficient, ®($;, ) is the scattering phase function between ray directions
s; and s, and €); represents solid angle. Radiative properties of the medium (k, o, 3 and ®) vary with
wavenumber and thermodynamic states in a highly nonlinear manner. This makes direct solution of
the RTE over all spectral wavenumbers a complex problem.

The available solution methodologies for the RTE can be categorized as deterministic and stochastic.
Deterministic RTE solvers essentially transform the integro-differential equation into a set of par-
tial differential equations (PDEs) by performing a variety of discretization [see e.g., 2,3, etc.]. The
stochastic approach to RTE has lead to a series of Monte Carlo based solvers. All of which essen-
tially solves the radiative transfer process by tracing a large number of photon bundles or rays. This
category of solvers are often referred as photon Monte Carlo (PMC) solvers [4]. With sufficiently
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large number of rays these solvers can reproduce the exact solution to the RTE. The main advan-
tage of PMC solvers are their accuracy, apparent simplicity, and robustness. The complexity of the
solver is not affected by presence of scattering or reflection, or complex geometry. However, the main
bottleneck is the computational cost. For an accurate PMC solution, these methods require multiple
statistical analyses over a very large number of rays. Therefore, although PMC can produce the exact
solution to the radiation transfer problem, it is impractical to use in routine large-scale simulations.

This work presents a detailed validation study of an efficient alternative to PMC solvers by using
low-discrepancy sequences (LDS). This approach leads to a quasi-Monte Carlo (QMC) solver for
radiation. It is shown in the current study that QMC can lead to same level of accuracy at a fraction of
cost of PMC both in simple one-dimensional canonical configuration as well as in three-dimensional
configurations.

2. MONTE CARLO-BASED RTE SOLVERS
2.1 Standard Monte Carlo Ray Tracing

The Monte Carlo (MC) ray tracing or photon Monte Carlo (PMC) method-accounts for radiative trans-
fer by mimicking the process of energy transfer via electromagnetic'tadiation by emitting and tracing
a large number of rays or photon bundles. Each ray has a finitetamount of energy and as it passes
through the participating medium, the medium absorbs somé of‘its energy according to the radiative
properties of the medium. Each ray (denoted by index j)asidefined by the origin (z}, y;, 2;), propaga-
tion direction (0, ¢;), wavenumber (11;) and initial energy content (Ej‘.’). The first six parameters are
obtained by sampling six independent, uniformly distributed random numbers (1., Ry, R., Rg, Ry,
and Ry). Initial energy of the ray is calculated from,total energy of the origin location and number
of rays emitted from the location as E}) =\Ei/N;, where F; is the energy of the computational cell i
which contains the location of origin of the ray, and /N, is the number of rays emitted from cell 7. The
details of these processes are discussed-in detail in the literature [e.g. 2,4-7, etc.].

Typically, the accuracy of Monte Carlo(MC) methods are estimated by the statistical error — the
standard deviation of an evaluatedwariable over multiple statistical iterations. Theoretically, the error
limit of Monte Carlo methods\with N samples (in this case, N rays), is represented by O(N~%%).
The computational cost of MCanethods, on the other hand, usually increases linearly with the number
of samples. Thereforg; the rate of increase of computational cost supersedes the rate of decrease of
standard deviation«This has been a serious bottleneck for PMC to be useful in large-scale simulations.
Therefore the use of BMC is commonly restricted as a benchmark RTE solver and validation tool in
complex radiative he€at transfer problems. In this document we use the abbreviation MC and PMC
interchangeably to represent the standard Monte Carlo-based RTE solver.

2.2 Quasi-Monte Carlo

The term quasi-Monte Carlo refers to MC methods that use quasi-random sampling in lieu of true
random or pseudorandom sampling [8]. A good random number generating algorithm is deceptively
complex. Often in numerical applications a pseudorandom generator is used to generate random
samples. Pseudorandom numbers are not truly stochastic; they are generated using a deterministic
algorithms, but still satisfy the statistical properties of a uniform random distribution reasonably
well [9]. To increase robustness, the pseudorandom numbers are sometime used with a true-random
seed harvested from physical environment, such as a time counter or thermal noise. Quasi-Monte
Carlo, on the other hand, does not use a random sampling at all. Instead, it uses a low-discrepancy
sequence (LDS) to generate samples [8]. A low-discrepancy sequence is multidimensional sequence



designed to reduce variance.

An LDS has an advantage over random/pseudorandom numbers in that it “covers” the entire domain
quickly and more evenly. Although these sequences share properties with pseudorandom numbers, an
LDS is a deterministic routine specifically designed to have equidistant points in a plane. The use of
LDS in Monte Carlo-based solvers have been in development for many years [8]. Such applications
have shown great promise in other fields such as financial modeling [10], computer graphics [11], etc.
QMC has shown preliminary success in simple RTE problems [12,13]. More recently, a QMC-based
approach has also been used in the context of combustion simulation [14].

In this work, Sobol’s sequence was chosen as the target LDS based on empirical study of the com-
putational expense and the recommendations of [15,16]. In the QMC using Sobol’s sequence, a six-
dimensional Sobol sequence is used to replace the six random numbers from the standard PMC
method. So R, Ry, R., Re, R¢, I,y required to define ray j in MC are replaced with Sjl, SJZ, ey ng
in QMC, where 57 indicates 4" number in n'* dimension of the Sobol sequence. Inicase of rays
emitted from wall surface, the dimensionality of the problem is reduced as ray origin-on a wall face
can be identified by only two coordinates. For such cases we simply ignore the correésponding S?.
Further investigations are needed if this may affect efficiency of QMC.(It isgnoted here, that to in
presence of scattering and reflective surfaces, more than six random nimbers‘are needed in MC and
therefore additional dimensions of LDS need to be investigated. This stady, however, does not include
scattering and reflection, which are left for future work. For more details on LDS, Sobol’s sequence,

and QMC the reader is directed to respective literature [e.g. 817, 8y€tc.].

3. RESULTS
3.1 Target configurations

In this work, we propose an implementation.of QMC as an efficient alternative to MC (aka PMC). To
that end, we first present validation of QMC in a one-dimensional configuration where an analytical
solution is available, followed by aperformance comparison of MC and QMC in a couple of three-
dimensional configurations relevant to combustion. It is noted here that several gray and nongray
one-dimensional cases weresused<for validation but only one representative configuration is shown
here for brevity. All configurations presented here contains nongray media, and CO2, HyO, and CO
are treated as the participating species. The spectral radiative properties are obtained using a line-by-
line (LBL) databaSe constructed from the HITEMP spectroscopic database [19]. The target variables
that are comparedyare local divergence of the radiative heat flux (V- (@) or local radiative absorption
as suited for eachiease.

For both MC"and QMC, the accuracy of each method is shown in terms of the root mean square
(RMS) relative error at each computational cell ¢ and the variation of averaged RMS relative error
with number of rays used in each simulation. The RMS relative error at computational cell ¢ is defined
by
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where S is the number of statistical runs, ¢; is the simulation result from one run, and ¢ is the
exact/benchmark solution at the cell . For Monte Carlo simulations S = 10 statistical runs were
performed. Since QMC uses a deterministic sequence, and two independent runs will always generate
same sequence, only one run is required for QMC. Average RMS relative error € is calculated as
spatial average of local RMS relative error €;.



3.2 One-Dimensional Plane-parallel Medium

For the one-dimensional case, a nonscattering, nongray, gaseous, plane parallel medium, with cold
(non-emitting) and black walls is used. The temperature of the medium is uniform at 2000 K, the
distance between the walls are 0.1 m, and the medium was composed of HyO with a mole fraction
of 0.25.
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Figure 1. Accuracy and convergence rates for 1D case

Figure 1 presents the results for the MC, and QMC methods. Both methods show excellent agreement
with the analytical solution as seen in Fig 1(a). Figure 1(b) demenstzates the variation of RMS relative
error (€;) with location and it can be seen that error from QMC is'generally lower than that from MC.
Figure 1(c) shows the ‘convergence rate’ of the solvers{ The convergence rate is defined as the rate
at which the averaged RMS relative error (€) decreases(with number of rays used in a simulation.
These figures show that the performance of QMC is better than MC in terms of accuracy for any
given number of rays. A point to note here, the ertors'are obtained from only one run of QMC with N
rays and S = 10 statistical runs of MC with N rays. This alludes to the fact, that QMC can achieve
significant accuracy vs. cost advantage of MCiin one-dimensional configuration.

3.3 Combustion-Relevant Simulations

Two combustion-relevant cases are considered here. The first case is a snapshot of scalar fields from
an artificial flame based on'the turbulent nonpremixed Sandia-D flame [20]. This flame was artificially
scaled up by quadrupling the dimensions and reducing the velocities appropriately to maintain the
same Reynolds number [21,22]. A snapshot of the scalar field of this flame is shown in Fig. 2 and is
referred as SandiaDx4 configuration. This configuration has 3,325 computational cells. The second
configuration,is based on the combustion chamber of an industrial gas turbine with approximately
5 MW output anda pressure ratio of approximately 15:1 [23]. A snapshot taken from the numerical
simulation of this gas turbine by Ren et al [24] is shown in Fig. 3. This configuration is referred as
GT configuration and has 15,718 computational cells with five, black walls emitting at 673 K. Effect
of wall emission and reflection on the uniformity of LDS in thermal radiation will be the topic of
future discussions. Although the configurations are axisymmetric, the actual simulations are done
in three-dimensional meshes. Both the flow/combustion solver (OpenFOAM, in this case) and the
Monte Carlo solver solve full three-dimensional set of equations.

Unlike one-dimensional configurations, an analytical solution is impossible to obtain for three-di-
mensional non-homogeneous non-gray media. Solutions calculated from 50 statistical runs of a MC
simulation with 5 x 106 rays for the SandiaDx4 configuration and 107 rays for the gas turbine (GT)
configuration are treated as the benchmark solutions for the purpose of evaluating RMS error as
shown in Eqn. 2. It should be noted here that the benchmark solution is not expected to be “exactly”
the correct solution but instead thought of as “close enough,” and probably favors the MC method in



terms of relative error, anyway.
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Figure 2. Scalar field contours for SandiaDx4 configuration
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Figure 3. Scalar field contours for GT configuration

Instead of the.divergence of radiative heat flux the comparison of different solvers are made in terms
of absorption_in thése cases. This choice is made because of the presence of locally strong optically
thick regions. Optically thick regions will show strong emission and absorption leading to a near-zero
value of V - (). Therefore calculation of relative error based on V - () can be misleading. Moreover,
local emission can be determined completely based on Planck-mean absorption coefficient and tem-
perature and the uncertainty of the radiative transfer in MC/QMC comes from the randomness in
resolving the absorption term.

Figure 4 shows radial profiles of absorption at two different axial locations of the SandiaDx4 con-
figuration. The axial locations are marked in Fig. 2 at, respectively, z = 1.0 m, and 1.43 m where
the results were taken. Figure 5 shows similar radial and axial profiles for the GT configurations and
Fig. 3 show the marked axial profile at » = 0.03 m and radial profile at z = 0.1 m locations. In both
Figs. 4 and 5 an error bar based on one standard deviation is added to the MC results. It is evident
from Fig. 4 and 5 that results from QMC agrees well with the benchmark solution and within one
standard deviation of corresponding MC result.
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As discussed earlier, one key advantage of QMC s its ‘deterministic sampling requires only one
statistical run to estimate error. This can lead toysignificant computational savings. To quantify this,
a “figure of merit” (FoM) can be used to‘evaluatesand compare the performance of a Monte Carlo
simulation [4]. FoM can be defined as .

FoM = = 3)
where ¢ is the computational time. In this'work, FoM is calculated based on spatially-averaged RMS
relative error (€). A high FoM/score indicates low error at low computational cost, i.e., a good Monte
Carlo simulation. Figure 6=shows<the FoM along a line for each line marked in Figs. 2 and 3 for
SandiaDx4 and GT, respectivély. Figure 6 shows consistent positive results in each case for QMC.
This can be attributed to thefact that for a given number of rays, QMC and MC have similar level of
accuracy but MCsimulations require several statistical runs while the QMC needs to run only once
due to deterministic sampling, effectively creating an order of magnitude difference in FoM. It is
noted here that between one single MC run and a QMC run there is no significant computational cost
difference.

Figure 7 shows how the FoM varies with number of rays for both QMC and MC simulations. For
MC simulations it is found that the FoM remains almost constant as the number of rays is increased.
This outcome is expected due to the statistical error limit being O(N~"2) and computational cost of
ray tracing being approximately proportional to number of rays, N. Interestingly, QMC also shows
similar trends in these cases. Further investigations of this is left for future.

4. CONCLUSION

Monte Carlo-based radiation solvers are accurate, robust, but computationally costly. In this work an
implementation of quasi-Monte Carlo using a low-discrepancy Sobol’s sequence was validated and
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tested first in canonical one-dimensional configuration and then in combustion-relevant configura-
tions. QMC shows similar and often lowés level of error than MC in the cases studied. Because of
the deterministic sampling, QMC also eliminates the requirement of statistically significant number
of MC simulations to obtain an error.estimate. The combined effect of this can be clearly seen in
significantly higher Figure of Merit of . QMC solver than MC solver particularly in combustion sim-
ulations. This preliminary study Shews€lear benefits of QMC. Further investigations on advantages
and limitations of QMC in different combustion configurations are being left for future.
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