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Abstract— Robots working in human environments often
encounter a wide range of articulated objects, such as tools,
cabinets, and other jointed objects. Such articulated objects
can take an infinite number of possible poses, as a point in
a potentially high-dimensional continuous space. A robot must
perceive this continuous pose in order to manipulate the object
to a desired pose. This problem of perception and manipulation
of articulated objects remains a challenge due to its high
dimensionality and multi-modal uncertainty. In this paper, we
propose a factored approach to estimate the poses of articulated
objects using an efficient nonparametric belief propagation
algorithm. We consider inputs as geometrical models with artic-
ulation constraints, and observed 3D sensor data. The proposed
framework produces object-part pose beliefs iteratively. The
problem is formulated as a pairwise Markov Random Field
(MRF) where each hidden node (continuous pose variable)
models an observed object-part’s pose and each edge denotes
an articulation constraint between a pair of parts. We propose
articulated pose estimation by a Pull Message Passing algorithm
for Nonparametric Belief Propagation (PMPNBP) and evaluate
its convergence properties over scenes with articulated objects.

I. INTRODUCTION

Robots working in human environments often encounter a
wide range of articulated objects, such as tools, cabinets,
and other kinematically jointed objects. For example, the
cabinet with three drawers shown in Figure 1 functions as a
storage container. To accomplish storage and retrieval tasks
on this container, a robot would need to perform a sequence
of open and close actions on the various drawers. Executing
such tasks involves repeated sense-plan-act phases, which
occur under uncertainty in the robot’s observations and
demand a pose estimation framework capable of tracking
this uncertainty. The presence of observation uncertainty
and environmental occlusions poses a challenge for robots
attempting to model cluttered human environments. Addi-
tionally, the occurrence of partial sensor observation due
to self and environmental occlusions makes the inference
problem multi-modal. Further, as the number of object parts
in the environment grows, the inference problem becomes
high-dimensional.

Pose estimation methods have been proposed that take
a generative approach to this problem [1], [2], [3]. These
methods aim to explain an observed scene as a collection
of object/parts poses using a particle filter formulation to
iteratively maintain belief over possible states. Though these
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(a) Fetch Robot observing a cabinet with three drawers

(b) Point cloud observation (c) Maximum likelihood estimate

Fig. 1: Robot estimating the state of a cabinet with 3 prismatically
articulated drawers from a 3D point cloud.

approaches hold the power of modeling the world genera-
tively, they have an inherent drawback of scaling inefficiently
as the number of rigid bodies being modeled increases.
In this paper, we focus on overcoming this drawback by
factoring the state as individual object parts constrained by
their articulations to create an efficient inference framework
for pose estimation.

Generative methods exploiting articulation constraints are
widely used in human pose estimation problems [4], [5],
[6] where human body parts have constrained articulation.
We take a similar approach and factor the problem using
a Markov Random Field (MRF) formulation where each
hidden node in the probabilistic graphical model represents
an observed object-part’s pose (continuous variable), each
observed node indicates the information observed from a
particular object-part, and each edge in the graph denotes
the articulation constraint between a pair of parts. Inference
on the graph is performed using a message passing algorithm
that shares information between the parts’ pose variables, to
produce pose beliefs for each part, collectively giving the
estimated state of the articulated object.

Existing message passing approaches [7], [8] represent a
message as a mixture of Gaussian components and provide
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Gibbs sampling based techniques to approximate the mes-
sage product and update operations. Their message repre-
sentation and message product techniques limit the number
of samples used for inference and are not applicable to
our application domain that is high-dimensional and multi-
modal. In this paper we provide a more efficient “Pull” Mes-
sage Passing algorithm for Nonparametric Belief Propagation
(PMPNBP). The key idea of pull message updating is to
evaluate samples taken from the belief of the receiving node
with respect to the densities informing the sending node.
The mixture product approximation can then be performed
individually per sample, and later normalized to form a dis-
tribution. This pull updating of message distributions avoids
the computational pitfalls of push updating used in [7], [8].

Our system takes a 3D point cloud from sensor measure-
ment and an object geometry model in the form of a URDF
(Unified Robot Description Format) as input and outputs
belief samples in the continuous pose domain. We use these
belief samples to compute a maximum likelihood estimate
of an object-part’s pose enabling the robot to act on the
object. Contributions of this paper include: a) proposal of an
efficient belief propagation algorithm (PMPNBP) to estimate
articulated object poses, b) articulated object pose estimation
experiments and comparisons with a traditional particle filter
baseline.

II. RELATED WORK

Existing methods in the literature have set out to address
the challenge of manipulating articulated objects by robots
in complex human environments. Particular focus has been
placed on addressing the task of estimating the kinematic
models of articulated objects by a robot through interactive
perception. Hausman et al. [9] propose a particle filtering
approach to estimate articulation models and plan actions
that reduce model uncertainty. In [10], Martin et al. suggest
an online interactive perception technique for estimating
kinematic models by incorporating low-level point tracking
and mid-level rigid body tracking with high-level kinematic
model estimation over time. Sturm et al. [11], [12] addressed
the task of estimating articulation models in a probabilistic
fashion by human demonstration of manipulation examples.

All of these approaches discover the articulated object’s
kinematic model by alternating between action and sensing
and are important methods for a robot to reliably interact
with novel articulated objects. In this paper we assume that
such kinematic models once learned for an object can be
reused to localize their articulated pose under real world
ambiguous observations. The method proposed in this paper
could compliment the existing body of work towards task
completion in unstructured human environments.

Existing filtering based articulated object tracking frame-
works [13], [14], [15] are initialized with ground truth
object poses. Our method could complement these existing
tracking frameworks by providing an initial pose estimate.
Additionally, belief propagation is applied to articulated pose
tracking after initial pose estimation [4], [5]. We consider

Fig. 2: Cabinet with 3 drawers connect to its frame is converted to a
probabilistic graphical model with hidden nodes Xs representing the pose
of the object-parts and observed nodes Ys connected to each of the hidden
nodes.

comparisons with the tracking frameworks as a direction for
future work.

Probabilistic graphical model representations such as
Markov random fields (MRF) are widely used in computer
vision problems where the variables take discrete labels
such as foreground/background. Many algorithms have been
proposed to compute the joint probability of the graphical
model. Belief propagation algorithms are guaranteed to con-
verge on tree-structured graphs. For graph structures with
loops, Loopy Belief Propagation (LBP) [16] is empirically
proven to perform well for discrete variables. The problem
becomes non-trivial when the variables take continuous val-
ues. Sudderth et.al (NBP) [8] and Particle Message Passing
(PAMPAS) by Isard et.al [7] provide sampling approaches
to perform belief propagation with continuous variables.
Both of these approaches approximate a continuous function
as a mixture of weighted Gaussians and use local Gibbs
sampling to approximate the product of mixtures. NBP has
been effectively used in applications such as human pose
estimation [4] and hand tracking [5] by modelling the graph
as a tree structured particle network. Scene understanding
problems where a scene is composed of household objects
with articulations demand a large number of sampled hy-
potheses to infer in the high-dimensional and multi-modal
state space. The algorithm proposed in this paper produces
promising results and shown to handle such demands. We
reported comparisons with an existing NBP algorithm [7] in
[17] with 2D examples.

Model based generative methods [18], [19], [20] are
increasingly being used to solve scene estimation problems
where heuristics from discriminative approaches [21], [22]
are used to infer object poses. These approaches do not
model object-object interactions or articulations and rely
significantly on the effectiveness of the discriminative meth-
ods. Our framework doesn’t rely on any prior detections
but can benefit from them while inherently handling noisy
priors [8], [7], [17]. Chua et. al [23] proposed a scene
grammar representation and belief propagation over factor
graphs, for generating scenes with multiple-objects satisfying
the scene grammars. While their objective is similar to
ours, we specifically deal with 3D observations along with
continuous variables.
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III. PROBLEM STATEMENT

We consider an articulated object O to be comprised of
N object-parts and N − 1 points of articulation. Such an
object description conforms to the Unified Robot Description
Format (URDF) commonly used in the Robot Operating
System (ROS) [24]. A kinematic model of this format can be
represented as an undirected graph G = (V,E) with nodes
V for object-parts and edges E for points of articulation.
If G is a Markov Random Field (MRF), it may contain
two types of variables X and Y , representing hidden and
observed variables respectively. Let Y = {Ys | Ys ∈ V },
where Ys = Ps ⊆ P , with P being a point cloud observed
by the robot’s 3D sensor. Each object-part has an observed
node in the graph G. Ps serves as a region of interest
if a trained object detector is used to find the object in
the scene, but is optional in our current approach. Each
observed node Ys is connected to a hidden node Xs that
represents the pose of the underlying object part. Let X =
{Xs | Xs ∈ V }, where Xs ∈ HD is a dual quaternion
pose of an object-part. Dual quaternions [25], [26] are a
quaternion equivalent to dual numbers representing a 6D
pose Xs = (x, y, z, qw, qx, qy, qz) as Xs = qr + εqd where
qr is the real component and qd is the dual component.
Alternatively it is represented as Xs = [qr][qd]. Constructing
a dual quaternion Xs is similar to rotation matrices, with
a product of dual quaternions representing translation and
orientation as Xs = dqpos ∗ dqori, where ∗ is a dual quater-
nion multiplication. dqori = [qw, qx, qy, qz][0, 0, 0, 0] is the
dual quaternion representation of pure rotation and dqpos =
[1, 0, 0, 0][0, x2 ,

y
2 ,

z
2 ] is the dual quaternion representation

of pure translation. This dual quaternion representation is
widely used for rigid body kinematics, where the ∗ operation
is efficient and elegant compared with matrix multiplication.
In addition to representing the hidden variable Xs, dual
quaternions can capture the constraints in the edges E and
represent articulation types such as prismatic, revolute, and
fixed effectively. This will be discussed in detail in Section
IV-D.2.

Pose estimation of the articulated object involves inferring
the hidden variables Xs that maximize the joint probability
of the graph G considering only second order cliques, and
is given as:

p(X,Y ) =
1

Z

∏
(s,t)∈E

ψs,t(Xs, Xt)
∏
s∈V

φs(Xs, Ys) (1)

where ψs,t(Xs, Xt) is the pairwise potential between nodes
Xs and Xt, φs(Xs, Ys) is the unary potential between the
hidden node Xs and observed node Ys, and Z is a normal-
izing factor. The problem is to infer belief over the possible
articulation poses assigned to hidden variables X that are
continuous, such that the joint probability is maximized.
This inference is generally performed by passing messages
between hidden variables X until convergence of their belief
distributions over several iterations. After convergence, a
maximum likelihood estimate of the marginal belief gives
the pose estimate Xest

s of an object-part corresponding to

the node in the graph G. The collection of all such object-
part pose estimates forms the entire object’s pose estimate.

IV. NONPARAMETRIC BELIEF PROPAGATION

A. Overview

A message is denoted as mt→s directed from node t to
node s if there is an edge between the nodes in the graph
G. The message represents the distribution of what node t
thinks node s should take in terms of the hidden variable Xs.
Typically, if Xs is in the continuous domain, then mt→s(Xs)
is represented as a Gaussian mixture to approximate the real
distribution:

mt→s(Xs) =
M∑
i=1

w
(i)
ts N (Xs;µ

(i)
ts ,Λ

(i)
ts ) (2)

where
∑M
i=1 w

(i)
ts = 1, M is the number of Gaussian

components, w(i)
ts is the weight associated with the ith

component, µ(i)
ts and Λ

(i)
ts are the mean and covariance of the

ith component, respectively. We use the terms components,
particles and samples interchangeably in this paper. Hence,
a message can be expressed as M triplets:

mt→s = {(w(i)
ts , µ

(i)
ts ,Λ

(i)
ts ) : 1 ≤ i ≤M} (3)

Assuming the graph has a tree or loopy structure, com-
puting these message updates is nontrivial computationally.
The message update at iteration n in a continuous domain
from node t→ s is given by

mn
t→s(Xs)←∫

Xt∈HD

(
ψst(Xs, Xt)φt(Xt, Yt)

∏
u∈ρ(t)\s

mn−1
u→t(Xt)

)
dXt

(4)

where ρ(t) is the set of neighbor nodes of t. The marginal
belief over each hidden node at iteration n is given by

belns (Xs) ∝ φs(Xs, Ys)
∏
t∈ρ(s)

mn
t→s(Xs)

belns = {(w(i)
s , µ(i)

s ,Λ(i)
s ) : 1 ≤ i ≤ T}

(5)

where T is the number of components used to represent the
belief.

B. “Push” Message Update

NBP [8] provides a Gibbs sampling approach to com-
pute an approximation of the product

∏
u∈ρ(t)\sm

n−1
u→t(Xt).

Assuming that φt(Xt, Yt) is pointwise computable, a “pre-
message” [27] is defined as

Mn−1
t→s (Xt) = φt(Xt, Yt)

∏
u∈ρ(t)\s

mn−1
u→t(Xt) (6)

which can be computed in the Gibbs sampling procedure.
This reduces Equation 4 to

mn
t→s(Xs)←

∫
Xt∈Rb

(
ψst(Xs, Xt)M

n−1
t→s (Xt)

)
dXt (7)
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Algorithm - Message update

Given input messages mn−1
u→t(Xt) = {(µ(i)

ut , w
(i)
ut )}Mi=1 for

each u ∈ ρ(t) \ s, and methods to compute functions
ψts(Xt, Xs) and φt(Xt, Yt) point-wise, the algorithm com-
putes mn

t→s(Xs) = {(µ
(i)
ts , w

(i)
ts )}Mi=1

1. Draw M independent samples {µ(i)
ts }Mi=1 from

beln−1
s (Xs).

(a) If n = 1 the bel0s(Xs) is a uniform distribution
or informed by a prior distribution.

(b) If n > 1 the beln−1
s (Xs) is a belief computed at

(n− 1)th iteration using importance sampling.
2 For each {µ(i)

ts }Mi=1, compute w(i)
ts

a Sample X̂(i)
t ∼ ψts(Xt, Xs = µ

(i)
ts )

b Unary weight w
(i)
unary is computed using

φt(Xt = X̂
(i)
t , Yt).

c Neighboring weight w(i)
neigh is computed using

mn−1
u→t.

(i) For each u ∈ ρ(t) \ s compute W
(i)
u =∑M

j=1 w
(j)
ut w

(ij)
u where

w
(ij)
u = ψts(Xs = µ

(i)
ts , Xt = µ

(j)
ut ).

(ii) Each neighboring weight is computed by
w

(i)
neigh =

∏
u∈ρ(t)\sW

(i)
u

d The final weights are computed as w
(i)
ts =

w
(i)
neigh × w

(i)
unary .

3 The weights {w(i)
ts }Mi=1 are associated with the samples

{µ(i)
ts }Mi=1 to represent mn

t→s(Xs).

Algorithm - Belief update

Given incoming messages mn
t→s(Xt) = {(w(i)

ts , µ
(i)
ts )}Mi=1

for each t ∈ ρ(s), and methods to compute functions
φs(xs, ys) point-wise, the algorithm computes belns (Xs) ∝
φs(Xs, Ys)

∏
t∈ρ(s)m

n
t→s(Xs) = {(w

(i)
s , µ

(i)
s )}Ti=1

1 For each t ∈ ρ(s)
a Update weights w(i)

ts = w
(i)
ts ×φ(Xs = µ

(i)
ts , Ys).

b Normalize the weights such that
∑M
i=1 w

(i)
ts = 1.

2 Combine all the incoming messages to form a single set
of samples and their weights {(w(i)

s , µ
(i)
s )}Ti=1, where

T is the sum of all the incoming number of samples.
3 Normalize the weights such that

∑T
i=1 w

(i)
s = 1.

4 Perform a resampling step followed by diffusion with
Gaussian noise, to sample new set {µ(i)

s }Ti=1 that
represent the marginal belief of Xs.

NBP [8] sample X̂
(i)
t from the “pre-message” followed

by a pairwise sampling where ψst(Xs, Xt) is acting as
ψst(Xs|Xt = X̂

(i)
t ) to get a sample X̂(i)

s .

The Gibbs sampling procedure is itself an iterative proce-
dure and hence makes the computation of the ”pre-message”
(as the Foundation function described for PAMPAS) more
expensive as M increases.

C. “Pull” Message Update

Given the overview of Nonparametric Belief Propagation
above in Section IV-A, we now describe our “pull” message
passing algorithm. We represent each message as a set of
pairs instead of triplets as in Equation 3, which is

mt→s = {(w(i)
ts , µ

(i)
ts ) : 1 ≤ i ≤M} (8)

Similarly, the marginal belief is summarized as a sample set

belns (Xs) = {µ(i)
s : 1 ≤ i ≤ T} (9)

where T is the number of samples representing the marginal
belief. We assume there exists a marginal belief over Xs,
as beln−1s (Xs), from the previous iteration. To compute the
mn
t→s(Xs) at iteration n, we initially sample {µ(i)

ts }Mi=1 from
the belief beln−1s (Xs). We then pass these samples to the
neighboring nodes ρ(t) \ s and compute weights {w(i)

ts }Mi=1.
This step is described in Algorithm - Message update. The
computation of belns (Xs) is described in Algorithm - Belief
update. The key difference between the “push” approach
of earlier methods (NBP [8] and PAMPAS [7]) and our
“pull” approach is the message mt→s generation procedure.
In the “push” approach, incoming messages to t determine
the outgoing message t→ s. Whereas in the “pull” approach,
samples representing s are drawn from its belief bels at the
previous iteration and weighted by the incoming messages
to t. This weighting strategy is computationally efficient.
Additionally, the product of incoming messages to compute
bels is approximated by a resampling step as described in
Algorithm - Belief update.

D. Potential Functions

1) Unary potential: Unary potential φt(Xt, Yt) is used
to model the likelihood by measuring how pose Xt explains
the point cloud observation Pt. The hypothesized object pose
Xt is used to position the given geometric object model and
generate a synthetic point cloud P ∗t that can be matched with
the observation Pt. The synthetic point cloud is constructed
using the object-part’s geometric model available a priori.
The likelihood is calculated as

φt(Xt, Yt) = eλrd(Pt,P
∗
t ) (10)

where λr is the scaling factor, d(Pt, P
∗
t ) is the sum of 3D

Euclidean distance between the observed point p ∈ Pt and
rendered point p∗ ∈ P ∗t at each pixel location in the region
of interest.

2) Pairwise Potential and Sampling: Pairwise potential
ψt,s(Xt|Xs) gives information about how compatible two
object poses are given their joint articulation constraints
captured by the edge between them. As mentioned in Section
III, these constraints are captured using dual quaternions.
Most often, the joint articulation constraints have minimum
and maximum range in either prismatic or revolute types. We
capture this information from URDF to get Rt|s = [dqat|s,
dqbt|s] giving the limits of articulations. For a given Xs and
Rt|s, we find the distance between Xt and the limits as
A = d(Xt, dq

a
t|s) and B = d(Xt, dq

b
t|s), as well as the
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Fig. 3: Convergence of pose estimation on two different scenes: the first column shows the RGB image of each scene, second to fourth columns show
the convergence results of PMPNBP. The second column shows randomly initialized belief particles, the third column shows the belief particles after 100
iterations, and the fourth column shows the maximum likelihood estimates of each part. The fifth column shows the estimation error (0.95 confidence
interval) using PMPNBP with respect to the baseline particle filter method across 10 runs (400 particles and 100 iterations each). It can be seen that the
baseline suffers from local minimas while PMPNBP is able to recover from them effectively.

distance between the limits C = d(dqat|s, dq
b
t|s). Using a joint

limit kernel parameterized by (σpos, σori), we evaluate the
pairwise potential as:

ψt,s(Xt|Xs) = e
− (Apos+Bpos−Cpos)2

2(σpos)2
− (Aori+Bori−Cori)

2

2(σori)
2

(11)
The pairwise sampling uses the same limits Rt|s to sample
for Xt given an Xs. We uniformly sample a dual quaternion
X̄t that is between [dqat|s, dq

b
t|s] and transform it back to the

Xs’s current frame of reference by Xt = Xs ∗ X̄t.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We use a Fetch robot, a mobile manipulation platform
for our data collection. 3D data is collected using an ASUS
Xtion RGBD sensor mounted on the robot. We make use of
the intrinsic and extrinsic parameters of the sensor. We use
CUDA-OpenGL interoperation to render synthetic scenes on
a large set of poses in a single render buffer on a GPU. We
render scenes as depth images, then project them back to 3D
point clouds via camera intrinsic parameters.

We use a cabinet with three drawers and Fetch robot
as our articulated objects to evaluate our method. A CAD
model of the objects were obtained from the Internet and
annotations of the object’s articulations were added manually
using Blender to generate a URDF model (Fetch robot
comes with URDF model). Obtaining geometrical models
and articulation models can either be crowd-sourced [28] or
learned using human or robot interactions [10].

B. Baseline

We implemented a Monte Carlo localization (particle
filter) method that includes an object specific state repre-
sentation. For example, the Cabinet with 3 drawers has a

state representation of (x, y, z, φ, ψ, χ, ta, tb, tc) where the
first 6 elements describe the 6D pose of the object in the
world and ta, tb, tc represent the prismatic articulation. The
measurement model in the implementation uses the unary
potential described in Section IV-D.1. Instead of rendering
a point cloud of each object-part, the entire object in the
hypothesized pose is rendered for measuring the likelihood
in the particle filter. As the observations are static, the
action model in the standard particle filter is replaced with
a Gaussian diffusion over the object poses.

C. Convergence Results

In Figure. 3, we show the convergence of the proposed
method visually for two scenes containing different point
cloud observations. We collected point cloud observations of
the cabinet object in arbitrary poses and performed inference
using both the proposed PMPNBP and the baseline Monte
Carlo localization. The entire point cloud measurement is
used as the observation for all object-parts. The first column
shows the scene (RGB not used during inference). The sec-
ond column shows the uniformly initialized pose samples of
the object-parts over the entire point cloud. The third column
shows the propagated belief particles for each object-part
after 100 iterations. The fourth column shows the Maximum
Likelihood Estimate (MLE) of each object-part using the
belief particles from the third column.

For the results shown in Figure. 3, we ran our inference for
100 iterations with 400 particles per message. 10 different
trials were used to generate the convergence plot that shows
the mean and variance in error across the trials. We adopt
the average distance metric (ADD) proposed in [29], [20] for
comparison between the methods. The point cloud model
of the object-part is transformed to its ground truth dual
quaternion (dq) and to the estimated pose’s dual quaternion
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Original Scene Incomplete Observation MLE using PMPNBP MLE from a different view

Fig. 4: Partial and incomplete observations due to self and environmental occlusions are handled by PMPNBP in estimating plausible pose with accuracy

(a) Fetch robot (b) Point cloud observation (c) Belief at iteration 1 (d) Belief at iteration 1000 (e) MLE at iter 1000

Fig. 5: Factored pose estimation using PMPNBP extends to articulated objects such as a Fetch robot (a) which has 12 nodes and 11 edges in the
probabilistic graphical model. For a scene (a), which has partial 3D point cloud observation (b), the PMPNBP message passing algorithm, propagates
the belief samples from iteration 1 (c) to iteration 1000 (d), that leads to MLE (e). Video with graphical model and iterative covergence - https:
//youtu.be/eKdoC8Mq46U.

(d̄q). Error is calculated as the pointwise distance of these
transformation pairs normalized by the number of points in
the model point cloud.

ADD =
1

m

∑
p∈M

‖d̄q ∗ p ∗ d̄qc − dq ∗ p ∗ dqc‖ (12)

where (d̄qc) and (dqc) are the conjugates of the dual quater-
nions [25], [26], m is the number of 3D points in the model
set M.

D. Partial and incomplete observations

Articulated models suffer from self-occlusions and often
environmental occlusions. By exploiting the articulation con-
straints of an object in the pose estimation, our inference
method is able to produce a physically plausible pose that
explains the partial or incomplete observations. In Figure. 4,
we show two compelling cases that indicate the strength
of our inference method. In the first case, the cabinet is
occluded by the robot’s arm, while in the second case,
a blanket suspended from drawer 1 occludes half of the
object. PMPNBP is able to recover from these occlusions
and produce a plausible estimate along with belief of possible
poses. The factored approach proposed in this paper scales
to objects such as a Fetch robot with higher number of links

and joints with combinations of articulations compared to a
cabinet (see Figure. 5 and [30] for extended results).

VI. CONCLUSION

We proposed Pull Message Passing algorithm for Non-
parametric Belief Propagation (PMPNBP), an efficient al-
gorithm to estimate the poses of articulated objects. This
problem was formulated as a graph inference problem for a
Markov Random Field (MRF). We showed that the PMPNBP
outperforms a baseline Monte Carlo localization method
quantitatively. Qualitative results were provided to show the
pose estimation accuracy of PMPNBP under a variety of
occlusions. We also showed the scalability of the algorithm
to articulated objects such as a Fetch robot. The notion of
uncertainty in the inference is inevitable in robotic percep-
tion. Our proposed PMPNBP algorithm is able to accurately
estimate the pose of articulated objects and maintain belief
over possible poses that can benefit a robot in performing
manipulation tasks.
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“Probabilistic articulated real-time tracking for robot manipulation,”
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 577–584,
2017.

[15] T. Schmidt, R. A. Newcombe, and D. Fox, “DART: dense articulated
real-time tracking,” in Robotics: Science and Systems, 2014.

[16] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation
for approximate inference: An empirical study,” in Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence, 1999, pp.
467–475.

[17] K. Desingh, A. Opipari, and O. C. Jenkins, “Pull message passing for
nonparametric belief propagation,” arXiv preprint arXiv:1807.10487,
2018. [Online]. Available: http://arxiv.org/abs/1807.10487

[18] V. Narayanan and M. Likhachev, “Discriminatively-guided deliberative
perception for pose estimation of multiple 3d object instances.” in
Robotics: Science and Systems, 2016.

[19] Z. Sui, Z. Zhou, Z. Zeng, and O. C. Jenkins, “SUM: Sequential
scene understanding and manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017.

[20] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” in Robotics: Science and Systems (RSS), 2018.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems (NIPS), 2015, pp. 91–99.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 580–587.

[23] J. Chua and P. F. Felzenszwalb, “Scene grammars, factor graphs, and
belief propagation,” arXiv preprint arXiv:1606.01307, 2016. [Online].
Available: https://arxiv.org/abs/1606.01307

[24] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[25] I. Gilitschenski, G. Kurz, S. J. Julier, and U. D. Hanebeck, “A new
probability distribution for simultaneous representation of uncertain
position and orientation,” in 17th IEEE International Conference on
Information Fusion (FUSION), 2014, pp. 1–7.

[26] B. Kenwright, “A beginners guide to dual-quaternions,” WSCG’2012,
2012.

[27] A. Ihler and D. McAllester, “Particle belief propagation,” in Artificial
Intelligence and Statistics, 2009, pp. 256–263.

[28] S. R. Gouravajhala, J. Yim, K. Desingh, Y. Huang, O. C. Jenkins, and
W. S. Lasecki, “Eureca: Enhanced understanding of real environments
via crowd assistance,” in Sixth AAAI Conference on Human Compu-
tation and Crowdsourcing, 2018.

[29] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes,” in Asian conference
on computer vision. Springer, 2012, pp. 548–562.

[30] K. Desingh, S. Lu, A. Opipari, and O. C. Jenkins, “Factored
pose estimation of articulated objects using efficient nonparametric
belief propagation,” arXiv preprint arXiv:1812.03647, 2018. [Online].
Available: https://arxiv.org/abs/1812.03647

7227


