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Abstract: Pattern unlock is a popular screen unlock scheme that protects the sensitive data and
information stored in mobile devices from unauthorized access. However, it is also susceptible
to various attacks, including guessing attacks, shoulder surfing attacks, smudge attacks, and
side-channel attacks, which can achieve a high success rate in breaking the patterns. In this paper,
we propose a new two-factor screen unlock scheme that incorporates surface electromyography
(sEMG)-based biometrics with patterns for user authentication. sEMG signals are unique biometric
traits suitable for person identification, which can greatly improve the security of pattern unlock.
During a screen unlock session, sEMG signals are recorded when the user draws the pattern on the
device screen. Time-domain features extracted from the recorded sEMG signals are then used as the
input of a one-class classifier to identify the user is legitimate or not. We conducted an experiment
involving 10 subjects to test the effectiveness of the proposed scheme. It is shown that the adopted
time-domain sEMG features and one-class classifiers achieve good authentication performance in
terms of the F1 score and Half of Total Error Rate (HTER). The results demonstrate that the proposed
scheme is a promising solution to enhance the security of pattern unlock.

Keywords: biometrics; sEMG; pattern unlock; time domain feature; one-class classification

1. Introduction

Mobile usage has grown tremendously in recent years. Mobile usage is surpassing desktop usage,
as mobile devices are being widely used for a variety of online tasks, including web surfing, online
shopping, mobile banking, and social media [1]. Fast-growing mobile usage has been leaving lots
of sensitive private data and information in mobile devices. These data and information need to be
protected against unauthorized access of the devices.

Screen unlock is a popular mechanism used to secure the mobile device from unauthorized
access. A number of screen unlock schemes have been provided by popular mobile platforms (iOS and
Android), including the slide, PIN, password, pattern, fingerprint, and face. Among them, pattern
unlock provided by the Android platform has been widely adopted by mobile users. It was shown
in a recent study [2] that about 40% of Android users use pattern unlock to secure their devices.
Another study showed that pattern unlock was preferable over the password and PIN by mobile users,
although the PIN outperforms patterns in terms of input speed and error rate [3].

Although pattern unlock is a convenient scheme for protecting the user’s device, it is also
susceptible to a number of attacks, including guessing attacks [4], shoulder surfing attacks [5], smudge
attacks [6], and side-channel attacks [7,8]. It was shown in [6] that smudge attacks were able to break
the pattern up to 68% of the time. The success rate of guessing attacks can be greatly improved from
13.33% to 74.17% when assisted by smudge attacks [4]. The study of [5] showed that patterns are
more memorable and easier to be spied on through shoulder surfing attacks compared with PINs.
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Ye et al. [8] developed a computer vision algorithm that can track the user’s finger movement to infer
the pattern drawn on the screen. Their approach can break over 95% of the patterns in five attempts
before the device is automatically locked by the Android system. Thus, there is a great need to enhance
the security of pattern unlock to defend the attacks.

In this paper, we propose a new two-factor screen unlock scheme that incorporates biometric
information with patterns to achieve improved security. The proposed scheme not only verifies “what
you possess” (pattern), but also “who you are” (unique biometric information) to authenticate the
mobile user. Specifically, we use surface electromyography (sEMG)-based biometric information to
enhance the security of pattern unlock. sEMG signals are generated by the electric activities of muscles
and are recorded by the electrodes placed on the skin’s surface. Since the sEMG signals are electric
potentials generated by muscle cells, the same movements of different people will generate different
electric potentials. Compared with existing biometric information used for screen unlocking, such
as the fingerprint and face, sEMG signals are much harder to be forged, which makes the proposed
scheme secure against attacks. Even the attackers can break the patterns using the aforementioned
attacks, and they will not be able to forge the sEMG signals to gain access of the mobile device.

The rest of this paper is organized as follows. The related work on improving the security of
pattern unlock and biometric-based mobile user authentication is described in Section 2. Section 3
introduces the background information of pattern unlock and EMG signals. The proposed method and
experiment procedure are provided in Section 4. The experimental results are presented in Section 5.
Finally, Section 6 concludes the paper.

2. Related Work

2.1. Improving the Security of Pattern Unlock

There are a number of schemes which have been proposed up to now to improve the security of
pattern unlock. To defend against smudge attacks, Kwon et al. [9] proposed TinyLock, an affordable
defense against smudge attacks. They made the size of the pattern grid very small and introduced
a virtual wheel to wipe off the actual smudge. However, due to the tiny size grid, it has several
drawbacks. Because the grid dots are not visible to the users, the error rate is very high, and it is very
difficult to draw complex patterns. Concepts where the position of the pattern grid is translated to a
different position, scale, and rotation on the screen for each unlock attempt have been explored by
Schneegass et al. [10] and von Zezschwitz et al. [11]. However, they reported that users experienced
difficulty in locating the grid due to its varying location. M-Pattern is a scheme which was proposed
in [12] that employs multiple patterns to unlock the screen. The system randomly pick a pattern
that can be inferred by the user from a visual cue, such as a background image. Since the smudges
created by M-Pattern overlapped with each other, it was much harder for the attackers to recover the
patterns compared with pattern unlock. The usability of the M-Pattern is compromised due to the
memorization of multiple patterns by the user.

Besides smudge attacks, there are schemes proposed to defend against other attacks.
Higashikawa et al. [13] proposed a shoulder-surfing-resistant scheme that uses a pass pattern of pattern
unlock. The scheme utilizes challenge-and-response authentication and the user’s short-term memory.
In [14], a scheme called Pass-O was proposed, which employs a circular layout of the grid. Pass-O
has a pattern space almost 2.5 times larger than pattern unlock, which makes it harder for guessing
attacks. Chiang et al. [15] proposed a multi-layered drawing lock mechanism which greatly increases
the pattern space compared with pattern unlock. Warp cells at the corners of the grid enable more
complex patterns by using multiple layers. For example, when a warp cell is touched as part of pattern
entry, a second empty grid layer is displayed, obscuring the original grid layer, on which the pattern
entry can continue.

Some other schemes were also proposed to improve the security by encouraging users to create
more complex patterns. Sun et al. [16] proposed a formula to calculate the pattern strength quantitatively.
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The quantitative strength score is displayed through a pattern strength meter when the user creates
a pattern. Their study showed that users created more complex patterns with the help of a pattern
strength meter. TinyPal is an enhanced interface proposed in [17] for pattern unlock, which highlights
the set of available dots that can be connected from the currently connected dot. TinyPal helps users
create patterns containing more visual features, like overlaps and knight moves, to resist attacks. Their
experimental results showed that users created more secure patterns using TinyPal than those using the
original interface.

2.2. Biometrics-Based Mobile User Authentication

Biometrics have been widely used in the user authentication of mobile devices. The Apple Touch
ID utilizes fingerprints to unlock the user’s device and authenticate Apple Pay. However, it was shown
in [18] that fingerprints can be easily forged. Face recognition is used by Apple Face ID and Android
Face Unlock to unlock the screen, which is susceptible to attacks, such as using a photo or video of the
authorized user.

Besides the traditional biometrics like the fingerprint and face, behavioral biometrics have also
been used for user authentication of mobile devices. In [19], keystroke dynamics were combined with
the PIN as multifactor authentication for the mobile user. Data from the motion sensors, such as the
accelerometer, gyroscope, and rotation was included to improve the performance of authentication.
Lamiche et al. [20] proposed a scheme that uses the gait pattern from the accelerometer and keystroke
dynamics of text input for continuous authentication. The scheme was proved to be secure against the
zero-effort attack and minimal-effort mimicking attack. SwipeVLock is a screen unlock mechanism
proposed in [21] based on swipe dynamics. Touch features, such as the coordinates of location, touch
pressure, touch size, touch time, and touch speed were used to model the swipe behavior.

Recently, the use of physiological biometrics for mobile user authentication has increased
significantly. Huang et al. [22] proposed a privacy-preserving ECG-based authentication scheme
that utilizes the ECG signal acquired by a medical IoT for ECG monitoring to authenticate the patient.
A mobile EEG-based biometric authentication system was developed in [23] that combines EEG
recordings with other techniques, such as nearfield communication (NFC) and face recognition.
Kumar et al. [24] proposed a framework to enhance the pattern-based authentication with EEG signals.
The Hidden Markov Model (HMM) was applied to model the EEG signals recorded during pattern
drawing. The Support Vector Machine (SVM) classifier was then used to verify the authenticity of the
drawn pattern. In the studies of [25,26], sEMG signals generated from a list of gestures were used for
mobile user authentication. A list of gestures is used as the password, which is combined with the
features extracted from the sEMG signals to defend against shoulder-surfing attacks.

In this paper, we propose to enhance the security of pattern unlock with sEMG-based biometrics.
To the best of our knowledge, the proposed scheme is the first work that incorporates sEMG-based
biometrics with pattern unlock for mobile user authentication.

3. Background

In this section, we provide the background information of pattern unlock and EMG signals.

3.1. Pattern Unlock

Pattern unlock was introduced by Google in 2008 as a graphic-based screen unlock scheme
for Android devices. Instead of entering a PIN or typing a password, the user draws a pattern by
connecting dots in a 3 × 3 grid. Figure 1 shows the pattern unlock grid with the dots labeled from
1 to 9. A pattern is represented as a sequence of connected dots, such as the pattern shown in Figure 1
is 1→ 5→ 9→ 8→ 7.

A pattern has to follow the following rules to be valid: (1) It has to connect at least 4 dots; (2) each
dot can only be connected once; (3) a pattern always connects the first unconnected dot along its path;
(4) a pattern can go through a previously connected dot to connect an unconnected dot. Based on these
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rules, it has been shown that the total number of valid patterns is 389,112 [6,16], which is less than
the number of possible passwords for a four-character, case-insensitive alphabetic password. This
indicates that pattern unlock is relatively weak in security compared with other schemes, such as the
PIN and password, in terms of pattern space.

Figure 1. The 3 × 3 pattern unlock grid and a pattern 1→ 5→ 9→ 8→ 7.

3.2. EMG Signals

EMG signals record the electric activities produced by skeletal muscles, which usually have a
potential difference. Therefore, when recording EMG signals, at least one pair of electrodes are needed.
Sometimes a more complex array of multiple electrodes is used to record the activities of more than
one muscle.

There are two types of EMG: surface EMG (sEMG) and intramuscular EMG (imEMG). sEMG
signals are obtained by measuring muscle activities on the skin surface above the muscle. On the
contrary, imEMG signals are recorded from the muscle tissue which are acquired by percutaneous wire
needle electrodes inserted into muscle. Compared with imEMG, sEMG is convenient to acquire and is
non-invasive. In this study, we used sEMG signals recorded from the forearm muscle as the biometric
information for user authentication.

4. Materials and Methods

In this paper, we propose a new two-factor screen unlock scheme that utilizes sEMG-based
biometric information to enhance the security of pattern unlock. In the following, we first provide an
overview of the proposed scheme. The subjects recruited for this study are then introduced, followed
by the description of the experiment protocol. The experiment serves as a proof-of-concept for the
proposed scheme. Next, we present the features extracted from the sEMG signals. Finally, the one-class
classification algorithms for user classification are introduced.
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4.1. Overview of Proposed Scheme

The workflow of the proposed two-factor screen unlock scheme is illustrated in Figure 2.
During the screen unlocking process, the user draws the unlock pattern on the screen of the device
while the sEMG signals of the user are simultaneously recorded. The pattern drawn on the screen is
first checked regarding whether it is the same as the one set by the authorized user or not. The access
is denied if it is the wrong pattern. Otherwise, the recorded sEMG signals will further be used to
verify the user. The verification is performed by extracting the time domain features from the recorded
sEMG signals first. The features are then used as the input of a one-class classifier to classify the
user as legitimate or not. Note that the one-class classifier is trained only using the data from the
authorized user.

Figure 2. The workflow of the proposed two-factor screen unlock scheme.

4.2. Subjects

This study was approved by the Institutional Review Board (IRB) of New Mexico Institute
of Mining and Technology. We recruited 10 subjects from the school (7 males and 3 females, age
= 23.8 ± 2.5 years, height = 173.9 ± 9.7 cm, weight = 70.0 ± 15.6 kg, all right-handed) for this
study. All participants reported that they did not have upper limb musculoskeletal and nervous
system diseases.

4.3. Experimental Protocol

4.3.1. sEMG Signal Acquisition and Pre-Processing

The experiment setting is shown in Figure 3. The raw sEMG signal is recorded by a gold cup
electrode (OpenBCI) placed on the FDS (Flexor Digitorum Superficialis) muscle of the forearm, which is
connected to a Cyton biosensing board (OpenBCI). It is known that the activation of FDS corresponds to
finger flexion [27]. The electrode placement of the experiment is shown in Figure 4. The sampling rate
of the Cyton board is 250 Hz. The acquired sEMG signal is then sent from the Cyton board to the Cyton
Dongle (OpenBCI), a Bluetooth adaptor plugged into a laptop. The OpenBCI GUI software installed on
the laptop then records the acquired data in the local storage.

The quality of the recorded raw sEMG signals was affected by noises, such as direct current offset,
environment noises, and artifact noises. We applied a 5Hz high-pass filter to eliminate the direct
current offset, baseline drift due to the movement in recording, and perspiration. A 60Hz notch filter
was then applied to filter out the power-line noise. Figure 5 shows an example of recorded sEMG
signal after pre-processing.
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Figure 3. Experiment setting.

Figure 4. Electrode placement.

Figure 5. An example of recorded sEMG signal after pre-processing.
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4.3.2. Experiment Procedure

During the experiment, each subject was comfortably seated on a chair before a table. The electrodes
were placed on the subject’s forearm, as shown in Figure 4. Before electrodes were placed, an alcohol
pad was used to clean the skin of the electrode sites. The electrode cap gel was applied to the cleaned
skin’s surface to reduce electrode–skin impedance for better recording.

After the setting was done, the subject was instructed to draw the two patterns shown in Figure 6.
Each pattern was repeated for 20 trials. sEMG signals were recorded for each trial. The subject was
instructed to rest the arm on the table for one minute before the next trial to avoid muscle fatigue.
The whole process for a subject lasted about one hour and twenty minutes, which consisted of 40 trials
for the two patterns.

Figure 6. Two patterns used in the experiment. Left: 1→ 2→ 3→ 5→ 7→ 8→ 9→ 4; Right: 3→ 5
→ 7→ 4→ 1→ 9→ 6→ 2.

4.4. sEMG Feature Extraction

There are three types of features that can be extracted from sEMG signals: time domain features,
frequency domain features, and time-frequency domain features [28]. In our study, we concentrated
on using features extracted from the time domain, which are widely used in studies and practices
due to their low computational complexity compared with frequency domain and time-frequency
domain features and performance in low-noise environments [29–32]. We selected the following 11
time domain features in this study.

4.4.1. Mean Absolute Value (MAV)

MAV is one of the most popular time domain features for EMG signal analysis [28]. It has been
widely used as an onset detection index for applications like prosthetic limb control [33]. MAV is
calculated as the mean absolute value of the EMG signal in a segment, as shown in Equation (1),
where N is the number of samples in the segment, and Xi is the ith sample of the segment.

MAV =
1
N

N
Σ

i=1
|Xi| (1)

4.4.2. Variance (VAR)

VAR is a measure of the power of the EMG signal [34]. Since the mean value of the EMG signal is
close to zero, VAR is defined as:

VAR =
1

N − 1

N
Σ

i=1
Xi

2. (2)

4.4.3. High-Order Temporal Moment (TM)

The temporal moment (TM) was proposed in [35] as a statistical analysis of EMG signals for
prosthetic arm control. The first-order TM is the same as MAV, and the second-order TM is similar to
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VAR. High-order TMs from Order 3 to Order 5 (TM3, TM4, and TM5) used in [35] were employed in
our study. They are defined in Equations (3)–(5). Note that for the calculation of odd moments, the
absolute value was taken to reduce within-class separation [35].

TM3 = | 1
N

N
Σ

i=1
Xi

3| (3)

TM4 =
1
N

N
Σ

i=1
Xi

4 (4)

TM5 = | 1
N

N
Σ

i=1
Xi

5| (5)

4.4.4. Mean Square Root (MSR)

The Mean Square Root (MSR) is a time-domain feature proposed in [31] for limb motion
classification. The feature provides an estimation of the total amount of activity.

MSR =
1
N

N
Σ

i=1
|Xi|1/2 (6)

4.4.5. Root Mean Square (RMS)

The Root Mean Square (RMS) is another popular feature for EMG pattern recognition [30,32],
which is related to constant force and non-fatiguing contraction. RMS is similar to the standard
deviation of the EMG signal, as the mean of the signal is close to zero.

RMS =

√
1
N

N
Σ

i=1
Xi

2 (7)

4.4.6. Log Detector (LD)

The Log Detector (LD) is a non-linear detector that provides an estimation of the muscle
contraction force [34]. LD is defined in Equation (8) where exp(·) is the exponential function.

LD = exp(
1
N

N
Σ

i=1
log(|Xi|)) (8)

4.4.7. Waveform Length (WL)

Waveform Length (WL) is a measure of the waveform complexity of the EMG signal [33], which is
defined as the cumulative length of the waveform over the segment, as shown in Equation (9).

WL =
N−1
Σ

i=1

∣∣Xi+1 − Xi
∣∣ (9)

4.4.8. Difference Absolute Standard Deviation Value (DASDV)

The Difference Absolute Standard Deviation Value (DASDV) is a feature similar to RMS, which
uses the difference value between two adjacent samples instead of the sample value [36].

DASDV =

√
1

N − 1

N−1
Σ

i=1
(Xi+1 − Xi)

2 (10)



Appl. Sci. 2020, 10, 541 9 of 15

4.4.9. Number of Zero Crossing (NZC)

Number of Zero Crossing (NZC) is a time-domain feature that measures the frequency information
of an EMG signal [33]. It is defined as the number of times the signal crosses zero. A threshold, T, was
included in the calculation to reduce the effect of noise-induced zero-crossings [33].

NZC =
N−1
Σ

i=1
[sgn(Xi × Xi+1) ∩ |Xi − Xi+1| ≥ T] (11)

sgn(x) =

{
1, if x < 0,

0, otherwise.

4.5. One-Class Classification Algorithms

For the purpose of user authentication, all users were considered as abnormal except for the
authorized user. One-class classification algorithms are suitable for the task, as they are trained only
using the data from the authorized user. In this study, two popular one-class classification algorithms
were employed: the one-class SVM (OCSVM) and local outlier factor (LOF).

4.5.1. OCSVM

SVM is a widely used supervised learning algorithm for multi-class classification. It was extended
for the one-class classification problem in [37,38]. OCSVM looks for a non-linear decision boundary by
mapping the training samples xi(i = 1, 2, ..., n) into a higher dimension feature space using a non-linear
kernel map function Φ(·). A hyperplane was then calculated to separate the mapped training samples
from the origin with maximal margin, which will be used as the decision boundary. The quadratic
programming minimization function used to separate the training samples from the origin is defined
below, where ω is the normal vector to the hyperplane, ξ is for penalization, ρ is the margin, and
ν ∈ (0, 1) is a parameter to control the ratio of anomalies in the training samples.

min

(
1
2
||ω||2 + 1

νn

n

∑
i=1

ξi − ρ

)
subject to

(ω ·Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

(12)

After solving the problem with ω and ρ, the decision function is defined in Equation (13). A new
sample y was classified as an anomaly if f (y) was negative.

f (x) = sgn((ω ·Φ(x))− ρ) (13)

There are several choices of the kernel function for OCSVM. In this study, the radial basis function
(RBF) kernel was chosen, which produced the best results among all kernels. The RBF kernel is defined
in Equation (14), where ||x− x′||2 is the squared Euclidean distance between two data points x and x′,
and σ is a parameter related to the decision region. A smaller σ leads to a broader decision region.

K(x, x′) = exp
(
−||x− x′||2

2σ2

)
(14)

4.5.2. LOF

LOF is a popular anomaly detection algorithm proposed in [39]. LOF is based on the idea of local
reachability density (LRD) which is calculated as the inverse of the average distance from a sample
to its k nearest neighbors. The LOF score of a sample x is then calculated as the degree of x isolated



Appl. Sci. 2020, 10, 541 10 of 15

from its k nearest neighbors, as shown in Equation (15). A LOF score larger than one indicates that the
sample is an anomaly.

LOF(x) =
∑p∈Nk(x)

LRD(p)
LRD(x)

k
, (15)

where Nk(x) is the set of k nearest neighbors for x.

5. Performance Evaluation and Results

5.1. Dataset

During the experiment, we collected the sEMG signals of 10 subjects when they were drawing
unlock patterns. For each subject, 20 trials of sEMG signals were recorded for each of the two patterns
shown in Figure 6. A 6s signal segment was extracted from each trial, starting from the time when the
subject started the drawing of the unlock pattern. Each segment was further divided into a series of
overlapping analysis windows with a window length of 2 s and a 1 s overlapping, which is shown in
Figure 7. The 11 time domain features described in Section 4.4 were then calculated for each analysis
window. A total of 55 features were extracted for each segment, which is an instance of a dataset.
Finally, we obtained two datasets for the two patterns. Each dataset contains 200 instances for the
10 subjects.

Figure 7. sEMG signal segment divided into a series of overlapping analysis windows.

5.2. Performance Metrics

The proposed scheme was evaluated using two popular metrics for measuring the performance
of authentication systems: F1 score and Half of Total Error Rate (HTER). Here, the patterns from the
authorized user or client were treated as negatives, while the patterns from the unauthorized users or
impostors were positives. The two metrics were calculated from the four elements of the confusion
matrix, true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). TP and
TN are the numbers of correctly classified patterns from the impostors and client, respectively. FP and
FN are the numbers of misclassified patterns from the client and impostors, respectively.

F1 score is a widely used metric for evaluating the performance of classifiers which is defined as
the harmonic mean of precision and recall, as shown in Equation (16).

F1 = 2× Precision× Recall
Precision + Recall

(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)
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HTER has been used for evaluating the performance EEG-based authentication systems [24,40].
HTER is defined as the average of the False Acceptance Rate (FAR) and False Rejection Rate (FRR):

HTER =
FAR + FRR

2
(19)

FAR is the ratio of the number of false acceptances to the number of attempts from the impostors.
FRR is the ratio of the number of false rejections to the number of attempts from the client.

FAR =
FN

TP + FN
(20)

FRR =
FP

TN + FP
(21)

5.3. Results

We tested the authentication performance using sEMG-based biometrics for each of the 10
subjects as the client. Subjects other than the client were considered as impostors for the test. For a
dataset obtained in Section 5.1, we randomly selected 10 instances from the client for training. Other
instances of the dataset were used for testing. The data was normalized using min–max normalization.
The process was repeated 10 times for each subject. Python and the scikit-learn library [41] were used
for the experiment.

Tables 1 and 2 show the test results for unlock patterns 1 and 2, respectively. The mean and
standard deviation of the results obtained from the 10 repeated tests on a subject are reported in
the tables. It can be seen that both OCSVM and LOF achieve good performance in terms of the F1

score, indicating that they are good at finding attempts from impostors. On the other hand, LOF
has significantly better performance than OCSVM in terms of HTER, which is due to the high FRR
obtained by OCSVM. Thus, LOF is a better classifier than OCSVM for our task. We also observe that
the results obtained from the two patterns are similar. The performance evaluation demonstrates that
using LOF with time domain features extracted from sEMG signals for user identification is a viable
solution for enhancing the security of pattern unlock.

Table 1. Authentication test results of 10 subjects (Pattern 1).

OCSVM LOF

Subject F1 HTER F1 HTER

1 0.9760 ± 0.0054 0.1911 ± 0.0505 0.9755 ± 0.0060 0.1200 ± 0.0338

2 0.9746 ± 0.0066 0.2350 ± 0.0626 0.9882 ± 0.0045 0.1031 ± 0.0383

3 0.9786 ± 0.0075 0.1931 ± 0.0740 0.9812 ± 0.0070 0.1144 ± 0.0720

4 0.9786 ± 0.0042 0.1975 ± 0.0399 0.9789 ± 0.0067 0.1281 ± 0.0363

5 0.9764 ± 0.0071 0.1706 ± 0.0496 0.9751 ± 0.0072 0.1003 ± 0.0388

6 0.9602 ± 0.0104 0.2042 ± 0.0478 0.9617 ± 0.0109 0.1094 ± 0.0256

7 0.9831 ± 0.0064 0.1550 ± 0.0599 0.9912 ± 0.0046 0.0733 ± 0.0442

8 0.9759 ± 0.0052 0.2225 ± 0.0492 0.9920 ± 0.0049 0.0725 ± 0.0045

9 0.9812 ± 0.0058 0.1725 ± 0.0546 0.9920 ± 0.0047 0.0725 ± 0.0432

10 0.9807 ± 0.0054 0.1775 ± 0.0506 0.9844 ± 0.0033 0.0844 ± 0.0254
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Table 2. Authentication test results of 10 subjects (Pattern 2).

OCSVM LOF

Subject F1 HTER F1 HTER

1 0.9780 ± 0.0051 0.2025 ± 0.0480 0.9892 ± 0.0047 0.0731 ± 0.0337

2 0.9386 ± 0.0085 0.1931 ± 0.0452 0.9402 ± 0.0162 0.1328 ± 0.0253

3 0.9779 ± 0.0058 0.1870 ± 0.0605 0.9789 ± 0.0047 0.1100 ± 0.0215

4 0.9762 ± 0.0068 0.2200 ± 0.0643 0.9885 ± 0.0050 0.0850 ± 0.0564

5 0.9804 ± 0.0044 0.1800 ± 0.0415 0.9898 ± 0.0027 0.0814 ± 0.0303

6 0.9717 ± 0.0058 0.2625 ± 0.0556 0.9901 ± 0.0054 0.0771 ± 0.0592

7 0.9767 ± 0.0053 0.2106 ± 0.0537 0.9763 ± 0.0111 0.1192 ± 0.0405

8 0.9748 ± 0.0045 0.2325 ± 0.0426 0.9920 ± 0.0044 0.0725 ± 0.0399

9 0.9523 ± 0.0899 0.2500 ± 0.0402 0.9465 ± 0.0083 0.1272 ± 0.0442

10 0.9745 ± 0.0057 0.2008 ± 0.0581 0.9733 ± 0.0118 0.1042 ± 0.0412

6. Conclusions

Pattern unlock is a popular screen unlock mechanism, but has relatively weak security compared
with other mechanisms, such as the PIN and password. It is susceptible to various attacks, including
guessing attacks, over-the-shoulder attacks, smudge attacks, and side channel attacks. In this paper, we
proposed a new two-factor authentication scheme that utilizes sEMG-based biometrics to enhance the
security of pattern unlock. The proposed scheme uses time domain features extracted from recorded
sEMG signals and one-class classifiers to determine the authenticity of the user. To test the effectiveness
of the proposed scheme, 10 subjects were recruited for the study. The results show that the proposed
scheme achieves good authentication performance in terms of F1 score and HTER. In addition to
mobile devices, the proposed scheme has the potential to be applied for the vehicle access control
system of electrical vehicles (EVs) which is projected to be a 22.6 billion market by 2027 [42]. There are
several limitations of the current research. First, the sEMG acquisition system used in the experiment
was for the purpose of proof-of-concept, which is not intended for real-world applications. Wearable
wireless sEMG acquisition devices, such as the MyoWare Muscle Sensor [43] or Myo Armband [44]
with better usability should be considered in those scenarios. The second limitation is the relatively
small number of subjects recruited for the experiment. We plan to perform larger-scale testing of the
proposed scheme in the future. Finally, the experiment conducted in the paper only considered the
scenario of using both hands to unlock the device. In future studies, we will also consider the scenario
of using only one hand to unlock the device.
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