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ABSTRACT

Organized surveillance, especially by governments poses a major
challenge to individual privacy, due to the resources governments
have at their disposal, and the possibility of overreach. Given the
impact of invasive monitoring, in most democratic countries, gov-
ernment surveillance is, in theory, monitored and subject to public
oversight to guard against violations. In practice, there is a diffi-
cult fine balance between safeguarding individual’s privacy rights
and not diluting the efficacy of national security investigations, as
exemplified by reports on government surveillance programs that
have caused public controversy, and have been challenged by civil
and privacy rights organizations.

Surveillance is generally conducted through a mechanism where
federal agencies obtain a warrant from a federal or state judge
(e.g., the US FISA court, Supreme Court in Canada) to subpoena
a company or service-provider (e.g., Google, Microsoft) for their
customers’ data. The courts provide annual statistics on the re-
quests (accepted, rejected), while the companies provide annual
transparency reports for public auditing. However, in practice, the
statistical information provided by the courts and companies is at a
very high level, generic, is released after-the-fact, and is inadequate
for auditing the operations. Often this is attributed to the lack of
scalable mechanisms for reporting and transparent auditing.

In this paper, we present SAMPL, a novel auditing framework
which leverages cryptographic mechanisms, such as zero knowl-
edge proofs, Pedersen commitments, Merkle trees, and public ledgers
to create a scalable mechanism for auditing electronic surveillance
processes involving multiple actors. SAMPL is the first framework
that can identify the actors (e.g., agencies and companies) that
violate the purview of the court orders. We experimentally demon-
strate the scalability for SAMPL for handling concurrent monitoring
processes without undermining their secrecy and auditability.
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1 INTRODUCTION

With increases in connected devices and electronic communica-
tions becoming the mainstay of human interactions, monitoring of
human electronic activities have become pervasive both by com-
panies trying to use the information for business advantage and
governments trying to surveil citizens for national security and
criminal activities [31]. Organized surveillance, particularly by state
actors poses a serious challenge to an individual’s privacy on ac-
count of the resources at disposal and its potential for overreaching
use [11, 31]. Further, individual or representative entities do not
have a mechanism to audit the surveillance, even after it’s comple-
tion, to assess if their rights were violated.

To motivate the discussion, we use the well-known United States
Surveillance law, namely Electronic Communications Privacy Act
(ECPA), it’s amendments, and it’s corresponding processes as an
example. Similar laws exist in other countries, e.g., the Investigatory
Powers Act in the UK, and the Telecommunications (Interception
and Access) Act in Australia. Several studies have shown that said
processes, although technically auditable, tend to be opaque and sel-
dom fully auditable, even when the audit is performed by powerful
oversight bodies, such as the US Congress [31, 40].

In these monitoring processes, the active players include the
law enforcement/intelligence gathering agency (L) that makes the
surveillance request; the judge/court (J) that grants the requests;
and the company (C) that provides the data corresponding to the
request. The other actors include the individual (I) being surveilled
and other users/agencies, e.g., American Civil Liberties Union
(ACLU) [6] whose mission is to defend and safeguard individual
privacy rights. The steps in the process generally start with the
agency L requesting a court order from the judge J. If J approves
the request, she creates a sealed court order, which can only be
unsealed by L for the company C; the sealed order can be unsealed
for the public after a pre-defined time (set during the issue of the
order). The company C either accepts the request and provides the
data or challenges the order on perceived violations. Once all parties
agree, C sends the data requested. The agency L and company C
can iteratively request and transmit data respectively several times,
as needed, within the purview of the order.

Challenges and Motivation: The said monitoring processes
present several issues that hinder accountability and public au-
ditability, that are desirable for transparency: 1) The fact that there
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exists a sealed order is not publicly notified. 2) Further, as per stud-
ies [35], there is no systematic mechanism to unseal orders. In the
absence of information, there is no way for the public to even know
if there is any order, let alone request its unsealing when the sealing
date expires. Note that an order not getting unsealed might not
necessarily mean the judge issuing the order is malicious, rather,
the judge might simply forget to unseal the order at the right time.
3) An important missing piece in all accountability mechanisms to-
day is that there is no way to make sure that exchanges happening
between L and C, at the time of the surveillance, followed the letter
and spirit of the sealed order (enabling an auditable trail). 4) The
scalability of the processes given the number of requests (around
16K to 33K, as discussed below) and the frequency of exchanges
between/among the parties has not been explored.

Currently the only information that is publicly available is sum-
marized information from the courts themselves or from annual
aggregate reporting by companies [21, 27]. For instance, the FISA
court rulings present the number of requests made under different
sections, the number fully or partially granted, and the number
denied. For example in 2018, 1204 requests were submitted for Sec-
tions U.S.C. 50 §1805 and §1804, with 868 granted, 308 modified,
41 partly denied, and 18 completely denied. However, this infor-
mation usually tends to be high level aggregate statistics, and are
not useful for public accountability. It does not equip individuals
being surveilled with the means to determine if any of the players
involved (law enforcement agencies, companies) reached beyond
the ambit of the court’s order, or if they were unfairly surveilled,
e.g., wholesale or dragnet surveillance.

As a result, the exchanges and dealings between governments
conducting surveillance, citizens being surveilled, and non-profit
privacy advocates and organizations, are uneasy at best, and pug-
nacious at worst. This is evidenced in the steady stream of lawsuits
challenging the constitutionality of various government surveil-
lance programs, raising pertinent questions about the legality and
ethics of the surveillance itself, and if citizens’ privacy and consti-
tutional rights were violated [34, 41, 42].

Google’s transparency report [27] states the number of user
data and account requests made over a six-month period and the
proportion of requests under each category (such as subpoena and
search warrants). Notable is the fact that the number of requests to
Google have been rising steadily for the last five years, e.g., in the
US, 16,407 user data requests for roughly 31,072 user accounts for
year 2012, to 32,877 user data requests corresponding to roughly
68,456 user accounts in 2017.

For the first months of 2018 (the last reported data), there were
20,936 user requests for approximately 62,142 user accounts. Similar
reports are also available from other companies, such as Microsoft
and Facebook [19, 30]. According to our findings, frequently, the
information presented is scarce and there are neither well-defined
mechanisms to audit surveillance processes from the outset, nor
to enable the surveilled individual the capability to assess post-
completion of the surveillance whether the search violated their
privacy rights, e.g., the right of citizens to be secure against un-
reasonable searches and seizures, per the US Constitution’s Fourth
Amendment.
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Contributions: In this paper, we propose our framework, SAMPL
that addresses the challenges mentioned above. Our novel contri-
butions include: i) Design of SAMPL: a generic and scalable frame-
work for accountability of monitoring processes. ii) Capability for
auditing the compliance of the entities over the lifetime of the
surveillance order, from the outset, using cryptographic techniques,
such as zero knowledge proofs (ZKPs), and Pedersen commitments.
We introduce an entity called Enforcer who serves as the conduit
for interactions between law enforcement/intelligence gathering
agencies and companies, and verifies their interactions to guar-
antee compliance. We qualitatively prove that auditability of the
surveillance process when the court order is active is only possi-
ble if an entity like our proposed enforcer serves as the conduit
for information and the process does not leak information about
the surveillance to the public, just provides audit insights. iii) A
case study of our system in the context of the US legal system. iv)
Security analysis of the the proposed framework. v) Validation of
the framework using a near-real world implementation to assess
scalability.

Outline: In Section 2, we review related work. In Sections 3 and 4,
we present the system model, and threat model and privacy/security
properties, respectively. In Section 5, we present our construction
for SAMPL; in Section 6 we discuss SAMPL in the context of the
US legal system; and in Section 7, we present the security analysis
for SAMPL. In Section 8, we present our implementation of the
framework and our evaluations to demonstrate both feasibility
and scalability. In Section 9, we discuss possible enhancements,
extensions and generalizations of SAMPL. For better readability,
we give the proof of security of SAMPL in the appendix.

2 RELATED WORK

Our related work falls into three broad categories: auditing and
access control mechanisms, dragnet surveillance, and surveillance
with accountability. We review each of these below.

Auditing and access control mechanisms: Goldwasser and
Park [25] proposed cryptographic mechanisms involving ZKPs and
commitments to provide auditability in the application of secret
laws. For example, the U.S. Foreign Intelligence Surveillance Act
(FISA) court operations are classified, and the court typically hears
arguments only from government agencies [22]. While the focus
of [25] was on providing the public auditable records that secret
laws were correctly applied by courts, our focus is on verifying
whether the interactions between the law enforcement agencies
and companies, follow the letter and spirit of a court’s order.

Bates et al. [8] proposed mechanisms to enable secure audits
of wiretapping systems. Kroll et al. [28] designed a way for enti-
ties such as companies, law enforcement/intelligence-gathering
agencies to prove using cryptographic techniques that they are
authorized to access data such as phone records and email data.
These works focus on providing auditability using encrypted au-
dit logs that are not accessible to the general public, whereas our
goal is to focus on public accountability. Kamara [29] proposed a
mechanism for federal agencies to carry out warranted tapping on
phones of users, which focuses on providing access-control, not
public accountability.

Dragnet surveillance: Segal et al. [38, 39] focused on building
mechanisms to avoid contact chaining, where a large number of
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users get pulled into a surveillance net, chiefly because they were
associated with a legitimate target of surveillance. Their account-
ability mechanism ensures that government agencies can safely
disclose statistics such as number of warrants per month and maxi-
mum number of individuals affected per warrant.

Table 1: Notations

Variable l Definition

A Security parameter

J,L,C EILU,I Judge, Law enforcement agency, Com-
pany, Enforcers Set, Individual, Set of
Users, Set of Individuals

o Signature

T I’s total data records

Rl = (VKR), SKR)) Real identity of individual T

Al = (VKaj, SKap) Anonymized identity of individual T

Pl = (VKpy,, SKpl, ) . .-

,(VKpy,,,SKpi,,) Pseudonymous identities of individual I

Ker Key shared between company C and indi-
vidual I

KjLc Key shared between J, L, C

KgjLc Key shared between E, J, L, C

e Ciphertext

bSize Batch Size for a client

bNum Batch number for a specific client message

P, ZKP that Pl; is valid pseudonym of indi-
vidual I

SO Surveillance order

10 Intermediate order

L time period for surveillance

Verify() Verification function

ZKPVerify() ZKP Verification function

Jdecide() Judge decision function

Ldecide() Law enforcement agency decision func-
tion

Cdecide() Company decision function

OrderGen() Judge order generating function

SR Law enforcement agency’s surveillance
request

SRR Company’s surveillance request response

[l Concatenation operator

BC() Blockchain

BC.read() Blockchain read function

BC.write() Blockchain write function

Surveillance: Frankle et al. [24], proposed a system which deals
with accountability in secret processes, which is most relevant to
our work. There are two significant differences between [24] and
our work: 1) [24] requires law enforcement agencies and companies
to post cryptographic commitments and ZKPs to the blockchain
at regular intervals. Moreover, in their system, honest parties are
trusted to log information regularly, and honest parties are expected
to report dishonest logging whenever they see it. There are two
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problems with this: firstly, government agencies and companies
might be forgetful, and cannot be trusted to post information reg-
ularly to a public ledger. Secondly, companies might be loath to
report possibly dishonest logging by law enforcement agencies
when they see it, fearing retribution.!

We remove this requirement by introducing an independent
auditor, called Enforcer (E), who can keep both, the company and
the law enforcement agency in check. 2) In [24], ZKPs created by
an agency and/or company are basically a proof that they are aware
of the court’s surveillance order. A ZKP is a proof of knowledge,
not compliance; merely proving knowledge of the contents of a
court’s orders does not guarantee that the agency/company are
complying with the court’s orders. In our system, the Enforcer
explicitly verifies that the data requested by the law enforcement
agency, and given by the company are within the ambit of the
court’s surveillance order. This is done in a privacy-preserving
manner such that the Enforcer does not actually get to know the
user’s data (e.g., emails), but is able to verify that the agency is not
over-requesting data, and the company is not over-sharing data.

3 SYSTEM MODEL

Parties: In our system, there are six parties: the individual being
surveilled I, company C that I has an account (e.g., e-mail) with, law
enforcement/intelligence gathering agency L requesting the surveil-
lance, Judge J who can potentially issue the surveillance order on I,
and an Enforcer E, who enforces accountability of L and C’s opera-
tions, by ensuring that L does not request more information about I
than what is authorized by J, and C does not over-share information
about I, more than what is authorized by J. Finally our system has a
set of interested users, U, made up of civil-rights and/or non-profit
organizations (e.g., American Civil Liberties Union (ACLU)) whose
mission is to protect and preserve individuals’ privacy as defined
by laws. We assume that all communication between J, L, C, E, I,
and U takes place via secure and authenticated channels. They use
each other’s public and verification keys, respectively to encrypt
and authenticate all communication between them.

We note that I ¢ I, where [ is a set of individuals who have an
account with C. Our table of notations is given in Table 1.
Identities of an individual I: In our system, an individual I has
three identities associated with her:

A real identity, Rl which may correspond to I’s e-mail address
that is being surveilled. Rl is established between I and C when I
signs up for service with C. In our system Rl is represented by a
verification/signing key-pair: Rl = (VKRg|, SKg|). The company C
stores VKR| and VKR is known only to J, L, and C. In particular,
Rl will not be known to E. We assume that Rl is stored safely by
I, does not get compromised, and acts as the root-of-trust for all
other keys involving I.

An anonymized identity, Al, which corresponds to a nickname
associated with RI. When a user signs up for service with a com-
pany, they are asked to create the anonymized identity Al which is
linked by C to their real identity RI. The user can create only one
anonymous identity with a service provider (e.g., one nickname per

1A report issued by the US Department of Justice’s OIG [2] says that they found
company employees provided telephone records to the FBI in response to just verbal
and e-mail requests, without legal process or even exigent letters, since they (company
employees) believed the requests related to major FBI counterterrorism investigations.
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e-mail address). We represent Al by a keypair: Al = (VKa|, SKa))-
We use anonymized identities to avoid having the enforcer know
RI. The company C stores VK| which is known and revealed to
E, ], L, and C during the surveillance period.

A pseudonymous identity, Pl;;i € [1..m], represented by PI =
(VKpy,, SKpi,) which corresponds to I's pseudonym associated with
Al. The pseudonymous identity can be chosen from a set of m
identities, with the restriction that only one pseudonymous identity
can be active at any given point of time, and a pseudonymous
identity cannot be reused. Pseudonymous identities, as opposed
to real and anonymized identities, are transient key-pairs. VKp
is known and revealed to E, J, L, and C. The company stores all
historical VKpis for future verification.

An individual storing data on company servers: Although
SAMPL enables the auditing of a broad range of data and application
types, for illustration in this paper we use user emails. In Section 9,
we generalize this requirement. When an individual I signs up for
service with a company C, it interactively creates a symmetric key
Kcr to be shared between C and I. I uses K¢y to encrypt sensitive
information, but keeps the date and time as plaintext and signs
the whole message. K¢y can be updated periodically. C and I agree
on two parameters, bSize and bNum, which denote batch size and
batch number.

The batch size represents the intervals at which the user’s mes-
sages are batched. The batch number indicates the batch a given
message originates from. Let I’s total data records, e.g., emails be
denoted by T. Then bNum = T/bSize, bSize can be a static or dy-
namic parameter. In the static case, I sets up bSize at the time of
service initiation with C, and doesn’t change it; in the dynamic case,
bSize can be changed by I as needed. SAMPL supports both these
implementation choices.

I creates and encrypts each email with K¢y before sending it to

C. At the end of each batch, C creates a Merkle tree with the hashes
of all messages in the batch at the leaves. C sends the root hash
of the Merkle tree to I. I verifies the root hash calculation, signs
it if accepts, and sends it to C. All signatures contain a timestamp
which has sign date and time. C then discards the Merkle tree and
archives just the signed root hash, since C can create the Merkle
tree on demand from the stored ciphertexts as needed.
Role of Enforcer, E: Each communication between L and C in-
volves them independently passing the message to E for verification.
Once E verifies that the message is not over-requesting or over-
sharing data with respect to an approved court order, the message
is passed on to the intended recipient (C or L). When surveillance
data from C is approved by E and received by L, C sends the shared
key, K¢y directly to L, who can can then decrypt the information
and carry out the investigation.

We envision the enforcer to be a government watchdog or or-
ganization that oversees adherence to laws and rights by private
companies and law enforcement agencies. Federal agencies have
their own oversight entities, e.g., FBI is audited by the Department
of Justice’s Office of the Inspector General (OIG). Other federal
agencies also have their corresponding auditing entities. These en-
tities currently do auditing when needed, and hence the auditing
always happens after the event. We propose that the OIG plays a
proactive role in auditing such process, and enforce accountability
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from the beginning, rather than play a reactive role and issue review
and audit reports after-the-fact, as it currently does.

Blockchain and its operations: The blockchain, BC, is used as an
official record for verification of actions performed, we use it as an
off-the-shelf enabling technology. When forwarding a request, each
entity posts a signed hash of the request/response to the blockchain-
a transaction—all messages posted on the BC are signed. The BC
also serves as a platform to announce new cases to the public
watch dogs and the general public without divulging investigation
details. The miners ensure that only valid entities involved in an
investigation can post transactions to the BC. We envision the
implementation of SAMPL using a permissioned blockchain with
read-only access given to public. For efficiency and fast convergence,
proof-of-stake may be used as the distributed consensus mechanism.
The infrastructure required for the BC may be maintained and
managed by the judicial system to engender greater trust.

4 THREAT MODEL

We list trust assumptions on the parties in the system:

Judge J: The judge J is assumed to be honest, but forgetful, i.e.,
J might forget to unseal records at the right time. J is trusted to
correctly generate an Surveillance Order (SO) and place it on the BC.
Whenever SO’s seal expires, members of U can choose to contact
J to make public the contents of SO. U can then verify details of
case, including contacting I as needed.

Law enforcement agency L: L is assumed to be malicious, in that
L will try to over-request data beyond what is authorized by the
SO issued by J (we discuss some overreaches in the real world in
Section 6.2). Once the SO is posted by J on the blockchain, L will
contact E with a surveillance request (SR). SR will be checked and
ratified by E based on the SO and prevalent policies.

Company C: C is assumed to be malicious, in that C can over-share
data beyond what is sought by the SR, and authorized by J’s SO.
If C fails to respond to an SR with a surveillance request response
(SRR), then there are policy measures that can be exercised by J to
enforce compliance.

Enforcer E: E verifies each SR generated by L and also verifies
each SRR generated by C, respectively. We assume E is honest. The
enforcer only knows I’s anonymized identity, Al and pseudonymous
identity, PI. In particular, E is not privy to I’s real identity RI. E
also does not have access to the plaintext version of I’s records
stored with C (e.g., emails). When a certain threshold of failures on
the part of L, C is reached (which can be a implementation specific
system parameter), E can choose to contact J and post a message
to BC exposing identity of the faulty party. The enforcer does not
store information linking Al and PI after evaluating an SRR.

No collusion assumption: In our system, we assume L and C
do not directly communicate with each other, and go through E for
information exchanges. We believe if L and C break this protocol
and interact directly, auditable data structures [26] may be used to
verify the operations of C. However, out of band, unbridled data
exchange is difficult to prevent when both parties are complicit.
Nevertheless, for accountability, it is in L’s and C’s interest to act
according to due process, and go through E, and not collude.

4.1 Privacy and security properties
SAMPL provides the following privacy and security properties:
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Accountability for L and C: We ensure that a malicious L and/or
C cannot over-request, or over-share data, respectively, beyond
that authorized by the SO, as long as they do not bypass the en-
tire system, and collude via side-channels. This applies to both:
over-requesting/over-sharing of the surveilled user’s data, or data
belonging to users not listed in the SO (not under surveillance).
Forgetful J: Our system enables an independent set of users, U (e.g.,
non-profit organizations such as ACLU) who keep track of court-
order unsealing dates, to contact the courts to unseal non-sensitive
information, contact the individuals who were being surveilled, and
help them with further courses of action.

Security against malicious I and C: We ensure that a malicious
I cannot make C fail E’s queries by creating fake ZKP for their
real, anonymous and pseudonymous identities. Also, a malicious C
cannot create fake data for I and frame I.

We now give the computational assumption for our system.

Definition 4.1. (DDH Problem [10]) We say that the DDH prob-
lem is hard relative to G if for all PPT algorithms A, there is a
negligible function negl such that

|PrlA(G, q,9.9%,9%,9%) = 1]
-Pr[A(G, ¢.9,9%,9%,9*Y) = 1]| < negl(})

where in each case the probabilities are taken over the experiment
in which Q(l’l) outputs (G, g, g), and then uniform x,y, z € Zq are
chosen.

5 DESCRIPTION OF SAMPL

As a pre-requisite to using SAMPL for surveillance, I and C interact
to setup keys, associated ZKPs, and other operations as outlined
in Section 5.1. Surveillance on user I’s data is carried out with in-
teractions between J, L, C, and E as described in Section 5.2. We
note that SAMPL has 7 protocols and 4 algorithms. We adopt the
convention that communication protocols are run between two
or more entities, and algorithms are computations done by a sin-
gle entity. We recall that per our system model we assume that
all communication between entities takes place over secure and
authenticated channels.

5.1 Pre-Requisite for SAMPL

Protocols 1 and 2 bootstrap the communication between C and I,
and the corresponding data exchange. These protocols are required
so that in case of surveillance request by L for I's data, E can verify
the user data without gaining any knowledge about identity of I.
Protocol 1: This is run by an individual I the first time she
sets up an email account with company C. In Line 1, I does two
3-round ZKPs with C to prove that: 1) VK4 was produced by
someone who has knowledge of SKpg|, and 2) VKp|, was gener-
ated by someone who has knowledge of SKa; (if C accepts VK,
as valid). At the end, C will receive from I a copy of VK, VKpy,
and their associated ZKPs, 7a|, 7p|,, and signed copies of the ZKPs:
oAl = Signgg, (A1), op1, = Signgs.,, (7rp1,), along with some public
verification metadata, zkpVerf, which will be used by the Enforcer
for verifying the ZKPs. The proofs are Chaum-Pedersen-style in-
teractive ZKPs [16], which can be made non-interactive using the
Fiat-Shamir transform [20]. Since the ZKPs are essentially used as
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Protocol 1: Setup run between C and I.

Input :Public parameters: Group G, q = |G|, g, h € G.
Output: ] establishes RI, Al, Pl;, bSize and K¢y with C.
Parties :C and I
1 User I sets up (VKaj, SKaj) and (VKpy;, SKpy,), and sends
the ZKPs, their verification metadata, and signatures on
the ZKPs: (7ay, 7tp1, ), zkpVerf, and (oal, op,), respectively,
to C.
2 User I sets up a shared key with C, K¢y, used to encrypt I’s
data stored on C’s servers.
3 Cand I agree upon and setup a batch-size, bSize € Z*.

black-boxes, in order not to distract the reader with their details, we
give the ZKPs and their description in Appendix A.

Next, I and C setup a shared key K¢y using which I’s emails
stored on C’s servers are encrypted. I and C also agree upon a
batch-size bSize, which denotes the message-intervals at which I's
emails will be batched, e.g., after every 100 emails. C will batch all
of I’s emails at bSize intervals and create a Merkle hash tree for the
batch with the hashes of the emails at the leaves; I will verify and
sign the root of the tree.

Protocol 2: Exchange of data between C and I for a given

batch.
Input :Public parameters: bSize, bNum € [1..maxbNum)].
Output:C stores I’s emails along with verification hashes.
Parties :C and I.

1 Let Mynym represent the set of all e-mail messages in bNum.

2 for each My € Mynym, x € [1..bSize] do

3 I encrypts My: Cx «— Kcy(My), sends Cy to C.

4 C stores Cy.

end
5 /* At the end of batch bNum of bSize messages: */
Let Cpnum represent the set of all ciphertexts in bNum.

6 begin
7 C generates hashes, Hx = H(Cy), for all the Cy received
from I.

8 C forms a Merkle tree Myny,,, with the Hys at the

leaves, and Ry, as root of the Merkle tree.

9 C sends Mpnym and Rynym to 1.

I verifies that the root hash (Rynym) of Mpnum 1S
correctly computed:

101 If verification fails, I notifies C to retry.

102 Else, I signs Rynum® ORyum < Si8NsKp. (RoNum)s

sends og,,,. to C and deletes all local copiés of M.

10

1 C stores o, along with previously stored Cx’s for

batch bNum.

end

Protocol 2: Protocol 2 depicts I’s emails being stored on C’s
servers. Before I and C execute this algorithm, they would have
already run Protocol 1 to setup the symmetric key Kcy. I creates an
email message My and encrypts it with K¢y, generating Cy, before
forwarding it to C (Lines 2,3,4). This already happens in OpenSSL,
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where the connections (and data transmitted) between two commu-
nicating entities are encrypted using pairwise symmetric session
keys.

Protocol 3: J issuing SO and posting SO on BC.
Input :VKy, VKpjofuserI, G, g,h € G, g = |G].
Output: J issues SO, sets up keys K¢, Kgjrc and
transmits them to relevant parties.
Parties :E, J,L, and C.
L issues a request to J: SR = (VKR||evidence).
2 J validates L’s request. If “accept” « Jdecide(SR), |
generates IO = (VKRgy||evidence) and gives to L.
L gives IO to C; C validates the IO. If
“accept” «— Cdecide(I10), C sends to J and L,
(VKailloaillzar), given to C by I in Protocol 1.
J validates C’s response, checks if
“true” « Verify(VKRgy, oal, 7a1), and if
“true” « ZKPVerify(VKRi||VKai||7al||zkpVerf), and does
the following:
41 Pick Kjrc « {0, 1}*, send to L and C. Pick
Kgyre < {0, 1}’1, send to E, L, C. J also picks rz, r3 < Zq,
g, h € G, and generates Pedersen commitments:
Comy = (gKILCh2), Comy = (gKEILC RTs),
42 ] creates P1 = (VKR||evidence). P1 is encrypted with
Kjrc and hence is accessible only to J, L and C. P1is
transmitted to L and C for verification and signatures.
4.3 ] verifies the received signatures of L and C on P1, and
embeds the signatures of J, L, C on P1: ojp1,0Lp1, and ocpy
in P2, to preserve identity of L and C.
14 P2 contains VKg|, start/end dates i = [ts, t.], among
other information, is encrypted with Kgjrc, and sent to L

[

[

'S

and C for verification and signatures o p2, ocps.
0Jp2, 0Lp2, 0Ccp2 are then appended to the SO as P3.
4.5 Generates SO < OrderGen(VKp,||VKRgi||evidence),
which has format as described below:

SO = (metadatal|oyetadatal|ICP11|Cp2||Cp3), where
Cp1 = EjLc(P1)
Cp2 = Egjrc(P2)
Cps = Egjrc(aypzlloLpzllocps)

At the end of the current batch bNum, let Cypny,,, represent the set
of all ciphertexts in bNum. C calculates hashes for all Cx € Cynym
and uses them as leaves to create a Merkle hash tree My, (Lines
7,8). C sends Myny,, and the root hash (Rpnym) of the Merkle tree to
I (Line 9). I verifies that Ryny,, calculation is correct for the current

batch. I signs the verified Rpnyy, and sends og,,, . to C (Line 10.2).

I can then delete all the data stored locally since it is available for
future retrieval from C. C stores og,,, and discards the Merkle
tree for the batch (Line 11). This construction helps reduce the
space overhead significantly. This process is repeated for all future
batches. If I found Ry, to be wrongly calculated, then I does not
sign Rynym and C is contacted to reconstruct the Merkle tree and
try again (Line 10.1).
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5.2 Surveillance

The communication model under SAMPL can be divided into four
phases, which we depict in Figure 1, and we give a high level idea
of the phases in what follows.

Phase 1: Figure 1: Steps 1-7, are described in Protocol 3, and
represents the first phase of SAMPL. It describes collection of in-
formation by J to validate the need for an SO, create, and post it
to BC. This allows members of U to verify public data in SO for
accountability of L and C, and allows L to conduct surveillance on
data for I.

Phase 2: Figure 1: Steps 8-11, are described in Algorithm 4 and
Algorithm 5, and represent the second phase of SAMPL. In Algo-
rithm 4, L creates the SR corresponding to the SO created in Phase
1, and in Algorithm 5 we enforce accountability for L by having E
verify the SR before sending it to C.

6. be.write(SO) (12) be.write(H(SRR))

! (7) KEJLC4KJLC
Judge Company
| 2
pall ) =
5|=|= >
ol B= g e
91 8|8 - |
S E Sla| 1
o
51 8192 HEE
= %)
71 8| 2[R slgl &
X clg|= cla =
crslold T |0
Sr=]el3 x5
[ 5 o %) -g
g < & x| o
nl|=Z|= 8 2
<[¢]® 512
=
Law Enforcement (9) Send SR =
Enforcer <!

Agency
(8) be.write(H(SR))
(16) be.write(H(SRR))

(15) Check and forward SRR if valid
(10) be.write(H(SR),0'sg)
(14) be.write(H(SRR),0% 'sgr)

Figure 1: Workflow in SAMPL (Dashed lines represent Key Exchange
and solid lines represent regular communication).

Phase 3: Figure 1: Steps 12-15, are described in Algorithm 6
and Algorithm 7, and represent the third phase of SAMPL. In Al-
gorithm 6, C creates the SRR corresponding to the SR received in
Phase 2, and in Algorithm 7 we enforce accountability for C by
having E verify the SRR before sending it to L.

Phase 4: Figure 1: Step 16, is described in Protocol 8 and repre-
sents the fourth phase of SAMPL. In Protocol 8, L decrypts the user
information and conducts the surveillance specified in the SO.

Protocol 3: Protocol 3 presents the interaction between J, L, C,
and E, which culminates in J issuing a surveillance order SO, and
setting up surveillance-related keys. In Line 1, L approaches J with
evidence of suspicious behavior on the part of I which forms the
surveillance request (SR). Here evidence represents the documented
evidence supporting the SR. J has its own internal decision pro-
cedure, Jdecide using which it decides whether to accept or turn
down the request (Line 2). If J decides to reject the request, L will
have to return with an updated request SR = (VKg)||evidence’), if
it wants to persist with the request.

If the request SR is accepted, J generates an intermediate order
IO, and gives it to L who forwards it to C. If C decides to comply
(according to Cdecide), it retrieves VKp| corresponding to VKpj,
sends VKu| to L, along with 74|, and o obtained in Protocol 1. L
forwards this info to J (Line 3). If C decided to not comply with IO
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(e.g., request violates statutory company policy), C would address
the reasons to L prompting potential intervention from J, which is a
judicial matter and out of scope of SAMPL. On receiving info from

Algorithm 4: L creating and posting SR on BC, and sending
to E for verification.
Input :5O created on BC.
Output: Surveillance request SR created and sent to E.
1 begin
2 L creates a surveillance request:
SR = (SOl = [ts, te ]| [VKAllIC).
3 L generates and posts H(SR) to BC.
4 L sends SR to E, who handles it as described in
Algorithm 5.
5 end

C, ] independently verifies the ZKP associated with VKa| and the
signature on it (Line 4). If the verification fails, J notifies C and L,
and exits. If the verification passes, J generates two symmetric keys:
Kjrc meant to be shared between J, L, and C, and Kgj1c meant
to be shared between E, J, L, and C. J then issues a surveillance
order SO which is formatted as in Figure 2. The metadata may
include case number, date of unsealing, and Pedersen commitments
Comy and Comy to Kjrc and Kgjrc, respectively (Line 4.1), and
any other information that can be made public about the case.
The commitments are needed to hold J accountable. Part 1 (P1)
contains data meant to be shared between J, L, and C only, and
includes VK| and the evidence. P1 is encrypted with K c (Line
4.2), and the hash of the encrypted P1 is signed independently
by J (ojp1),L (orp1), and C (ojp1) (Line 4.3). These signatures
are included inside Part 2 (P2) along with VKj|, start/end dates
of surveillance (ts, t) respectively?. P2 is encrypted with Kgjrc,
before it is sent for verification and signing to J, L, and C which
yield o7 p2, o1 p2 and ocpy, respectively on successful verification.
Before C signs hash of encrypted P2, it verifies that VK| contained
in P2 corresponds to VKR contained in P1 that it had signed, i.e.,
ocp1-

These signatures are then verified by J, encrypted with Kgyrc
and added to SO as part of Part 3 (P3). The signatures are included
in the encrypted text to preserve the identity of L and C from public
until the SO is opened to public. Signatures on Cp; and Cp; are
verified by E to hold J, L, and C accountable. The different kinds of
SOs are discussed in Section 6.

Algorithm 4: This shows the surveillance request, SR created by
L after J posts SO to the blockchain, BC. L creates an SR by creating
a tuple with the start/end dates for the requested surveillance time
interval, 1 = [ts,te] (Line 2). L includes the Al of the intended
surveillance target, VKy|. A reference to the original SO and the
identity of C (whom the SR is intended for), is also included in the
SR tuple. L then posts the hash of the SR on the BC and forwards
SR to E for verification (Line 3,4).

2An SO could possibly have multiple, non-contiguous dates/times of surveillance.
This will not affect the system design.
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SO

Metadata 1
Case-Number, Date of __Uneggtr)y”zted/
Expiry, Com; Comy,, etc. J
e Part 1 | Encrypted with
P1 VKg, evidence J Kic
Part 2 '1 .
C,,— | VK, start/end dates for _Encry'fted with
surveillance, 0 pq, O\ p1, Ocpy J EJLC
e,. Part 3 Encrypted with
. Oyp2; OLp2, Ocp2 Keyc

Oyp1 < SiQHSKJ(H(Gpl )
OLpy— Signsk, (H(C,, )
Ocpy— Signsk(H(C,,))

Oyp2 < S’:Q”SK J(H( G,))
OLp2 — Signsk, (H(Cy, )
Ocpz — Signsk(H(C,,))

Figure 2: Structure of SO generated by J.

In SAMPL, the Enforcer uses the start/end times listed in the SO,
and the pseudonymous identities of the email senders listed in the
SO to check over-requesting by L and over-sharing by C.3

Algorithm 5: E verifying SR received from L.

Input :SRreceived from L.
Output: Accept or reject SR.
/* Verify SR does not violate SO published on
BC by J.
1 Eretrieves Kgjc sent by J in Protocol 3, does
P2 « Dgjrc(Cp2), posted on BC, and accepts SR as valid
if:
2 begin
3 The VKp of P2 and SR match.
4 The time interval, | = [ts, te | contained in SR is within
the timeline specified in P2.
5 end

*/

¢ If E accepts SR, a confirmation is posted on BC. Since all BC
transactions are signed, we denote the corresponding
transaction signature as crfR; and SR is forwarded to C.

7 If E rejects SR, it notifies agency L and judge J, and SR is not
sent to C. It also stores evidence of the reason for rejection,
which will be provided to J, L upon request.

Algorithm 5: Here E receives the SR from L and processes the
SR. The verification includes checking that the time interval : from
SR is a sub-interval of the timeline contained in P2 of SO. After E
verifies SR, it signs the hash, H(SR), and posts the signature crfR on
BC. Then SR is forwarded to the C listed as intended receiver in
SR. If SR fails to verify with E, no message is posted on the BC, and
SR is not forwarded to C. If fine-grained accountability is desired,
the failure message can be posted to BC, identifying the reason and
scope of the failure. We discuss this further in Section 9.2.
3This can be extended to the Enforcer checking pseudonyms of recipients too, filtering
by subject of e-mails, etc., which gives finer auditing granularity. This will not affect

the base system design, but will require more computations and verifications on the
part of I, C, and E. We discuss such generalizations in Section 9.1.
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E (1) Send SR c

(a) (2) Send SRR = ( C || H(C3) Il hy o Il Mo Il Oy g Il Css
ITH(Cs2) [ hi27 [ 12 1l Oy )

(3) Compute h; g and hy g

(4) Verify Ohy and Ohy (5) Accept/Deny

Data Being Audited: C,, Cs5

Batch 1

Batch 7

Figure 3: (a) Illustration of communication between C and E.
(b) Illustration of relevant Merkle trees in SRR.

Algorithm 6 and Algorithm 7 cover interaction between E and C,
as depicted in Figure 3, where C responds to an approved SR with an
SRR containing requested user data. C selects user data that matches
criteria outlined in SR (depicted by shaded items in Figure 3(b))
and adds the data to SRR before sending it to E for verification. E
verifies the SRR and either forwards it to L if approved or contacts
C if verification failed.

Algorithm 6: When C receives a verified SR from E, C verifies
that : and VKy| listed in SR are the ones actually signed by C in P2
of SO (Line 2). C then creates an SRR in response to SR. C checks
each message stored corresponding to VK listed in the SR. If some
message My in batch bNum matches the surveillance time 1 in SR,
then the encrypted message (Cx), the sibling hashes for H(Cy ) inthe
Merkle tree for bNum, and oy, are added to the SRR by C (Line
9). C also includes the ZKP for the VKp|; used to sign opny, (Line
9). Once C has finished processing all messages for the VKjy listed
in SR, C adds identity of L to SRR and then posts a signed hash of
SRR to BC (Line 13). SRR is then forwarded to E (Line 15).

For ease of exposition, we have presented SRR creation for one
batch (bNum). If there exist multiple batches, bNum;; i € [1..T/bSize],
where T is the total number of I’s messages stored on C, Line 7-11
of Algorithm 6 are repeated for all the batches. In Line 12, the SRR
includes corresponding C, sibling hashes, batch number, root of the
Merkle hash tree, concatenated in order.

Algorithm 7: E receives the SRR from C, and parses its contents.
E verifies the signature (agR) on the corresponding SR (Line 1). For
each Cy that appears in SRR, E checks that the message is dated
within the time period 1 = [ts, te] from SR (Line 3). Then the root
hash for Cy, Rpnym is computed using the sibling hashes for Cy
provided in SRR, and the signature og,,, . is verified (Line 4). The
ZKP for VK, Pl used in og,,,,, is also verified by E (Line 5). If there
are multiple batches, they are verified in succession at this time; as in
Algorithm 6, we omit this part in the algorithm and this description
for ease of exposition. After E verifies SRR, it signs H(SRR), and a
message containing the signature of E is posted on BC, and SRR is
forwarded to L listed as intended receiver in SRR (Line 7). If SRR
failed to verify with E, no message is posted in the BC and SRR is
not forwarded to L. If fine-grained auditing is required, a failure
message can be written to the BC.
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Algorithm 6: C creating SRR, posting H(SRR) on BC, and
sending SRR to E for verification.

Input :SRreceived from E.
Output: SRR created and forwarded to E.
/* When C receives a validated SR from E, it

does the following: */
1 begin
/* SO verification */

2 C decrypts Cps of SO contained in SR, verifies
signatures ojpy, o p2. C then decrypts P2 of SO,
verifies ojp1, op p1. It then checks if (1,VKa|) contained
in SR corresponds to what it had signed in ocp;.

3 end

/* C create an SRR in response to the SR as

follows */
4 begin
5 C retrieves and verifies signature O'SER posted on BC.

6 Let Cpnym represent the set of all ciphertexts in bNum.
7 for each Cx € Cypnym; x € [1..bSize] for VKa do

8 if Cx was created during time-period 1 = [ts, te| from
SR then
9 Add Cy||siblingHashes(Cy)||bNuml||og,,,,, to

SRR, Add the signed ZKP for VK pI; used to
verify og,,,, ( € [1..m]) to SRR:
(oaillzallopy, [ pi, gl zkpVerf), where
zkpVerf is some metadata given to C by I for
ZKP verification (details in Appendix A,
Protocol 11).

10 end

11 end

12 C adds the identity of L to SRR. The final SRR is given
below.

SRR = (SR||L||Cy||siblingHashes(Cx)||
bNum||oR,,,,, [1oall Al o, ||
7p1; |lgl| zkpVerf)

13 C generates and posts H(SRR) on BC.
14 end
/* C sends SRR to E. */
15 C sends SRR to E, who processes it as described in
Algorithm 7.

Protocol 8: Once L receives a validated SRR from E, it posts a
signature on the hash of SRR to BC as acknowledgment. L then
asks C to hand over K¢y to be able to decrypt I’s encrypted emails
in SRR and conduct surveillance.

Protocol 9: This is not a part of the regular workflow of SAMPL
and is optionally executed by members of U on an as needed basis.
It can be implemented using smart contracts. In Protocol 9, any
member(s) of a set of watchdog organizations, u € U (e.g., ACLU),
who monitor the BC, can contact ] whenever an SO expires and
retrieve Kj1c, Kgjpc. Entity u decrypts the SO (P1 and P2), verifies
signatures (P3), and can contact I who was surveilled. I, u can then
investigate and verify the validity of reason for surveillance, if due
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Algorithm 7: E verifying SRR received from C.

Input :SRRreceived from C.

Output: Accept or reject SRR.
1 E retrieves SR from SRR, and verifies signature agR posted

on BC.

2 for each Cx € SRR; x € [1..bSize| do
3 E confirms that Cy is dated within time period  from
the SR.
4 E computes H(Cy), runs Rynym <
rootCompute(Cy||siblingHashes(Cx)||bNum), and

checks “true” = Verify(Vij, RbNum» ORypum)-
5 Finally, E verifies ZKP for VKpy; used to sign og,,,.
with given (ol 7aillopy, |I7p1; |gl| zkpVerf).

¢ end

7 If E accepts SRR, a confirmation is posted on BC. Since all
BC transactions are signed, we denote the corresponding
transaction signature as G.JQSRR; and SRR is forwarded to L,
who handles it as described in Protocol 8.

8 If E rejects SRR, it notifies J, C and SRR is not sent to L. It
also stores evidence of the reason for rejection, which will

be provided to J, C upon request.

Protocol 8: L on receiving validated SRR from E.

Input :Verified SRR received by L from E.
Output:Surveillance carried out by L.
Parties : L and C.
1 L receives SRR, and posts a signed hash of SRR to BC as
acknowledgment of SRR received.
2 L gets K¢y from C to decrypt I’s emails (Cy’s contained in
SRR), and carry out surveillance.

Protocol 9: Protocol run by members of U.
Input :SO posted on BC.
Output:u checks adherence to protocol by parties involved
in surveillance in relation to SO and follows up
with J.
Parties :u € U and J.
/* Whenever there is a message posted on BC by
E:
1 u € U checks the signatures of the hashes posted.
/* Whenever an SO expires according to i € [f,te]
posted on BC: */
2 u contacts J and retrieves Kjrc, Kgjrc. u decrypts P1, P2
and verifies P3 of the SO.

*/

diligence was applied, and lawful procedures were followed during
surveillance.

6 APPLICABILITY: CASE STUDY OF U.S.
LEGAL SYSTEM

In this section, we discuss how our system can be instantiated and
adapted in a real-world legal system to provide accountability. We
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consider the U.S. legal system as an example, and discuss our system
within its constitutional and jurisdictional parameters. SAMPL can
be modified to be applicable to legal systems in other countries.

6.1 Different Authorization Paths

The U.S. constitution provides several authorization paths for law
enforcement agencies to obtain permission to conduct surveillance,
some with judicial oversight, some without. We discuss them below.
Electronic Communications Privacy Act (ECPA): ECPA was
created by the U.S. Congress in 1986 [17] to elucidate the boundaries
of government surveillance on citizens, and clearly define the ways
and means by which government surveillance can be conducted.*
ECPA can be used by federal law enforcement agencies to obtain
information about users’ emails in transit, emails at rest, phone calls,
location data, and more. ECPA provides law enforcement agencies
two methods of accessing users’ information: via warrant, or via
subpoena. A subpoena is a court order demanding that someone
or something be provided to assist in a case. For issuing a warrant,
the law enforcement agency must show the issuing judge probable
cause that a crime has been, or will be committed. Most warrants are
unsealed when charges are filed against someone, and the defendant
has the right to see the evidence collected against them before the
trial.

Per ECPA statute 18 U.S.C. §2616 [3] and statute 18 U.S.C. §2703 [4],
emails in transit, emails in storage on home computer, and un-
opened emails in remote storage stored for < 180 days all need
a warrant for law enforcement access. Opened emails in remote
storage, and unopened emails stored for > 180 days only need a
subpoena for law enforcement access.

Our system can be deployed in a straightforward manner in

both cases, as described in Section 5, where the SO written to the
blockchain by J can be either a subpoena or a warrant. The SR
and the furnished data are all routed through the Enforcer, E, who
writes the data transfer success/failure to the blockchain BC for
auditing (refer Section 5).
National Security Letter (NSL): The USA PATRIOT Act §505 [36,
37] empowered the Federal Bureau of Investigation (FBI) to is-
sue a National Security Letter compelling companies to disclose
information about their customers for a national security-related
investigation. An NSL is typically issued to a company by a local
FBI field office and does not require judicial oversight. It can be
used to obtain meta-information about phone/email records, times,
length of service, network addresses, how a customer paid for ser-
vice; although the FBI cannot obtain actual content of phone/email
records. An NSL can also be used by the FBI to obtain financial
details, such as credit reports, and bank account details from banks,
credit unions and insurance companies. Any recipient of an NSL is
prohibited by law or “gagged” from disclosing their receipt of the
NSL, which makes oversight difficult. Additionally, the U.S. govern-
ment can seek judicial enforcement of an NSL in non-compliance
situations, under ECPA statute 18 U.S.C. §2709.

4There have been calls to reform ECPA, with several amendments to the law being made
over the years, such as the USA PATRIOT Act, among others. It has also faced criticism
for being outdated and not inclusive of many modern methods of communication,
since it was first codified in 1986. Nevertheless, as of this writing, ECPA with its
amendments is the law in the U.S. relating to surveillance processes. A full discussion
of proposals and avenues for future ECPA reform, and their possible consequences on
our system is out of the scope of this paper.
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Since NSL does not require a judge, there is no J to post the SO to
BC. But L and C can still use SAMPL and hence E for auditability. L
would create an SO for the NSL, post it on BC, and then create an SR,
before sending it to E. E would then pass it on to C, after checking
that the SO and the SR does not request content of emails (which
is a legal restriction on NSLs). Note that E cannot check if an SO is
for a genuine national security issue, since U.S. law expressly gives
discretionary powers to the FBI while deciding to issue NSLs. But
what E can help check is if the SO and SR adhere to legal guidelines,
that is, the agency is only seeking meta-information. On receipt of
the SR from E, C will construct and return an SRR to E, who will
then verify it and send it to L.

Our pseudonymous identity scheme prevents E from learning

the actual identities of the users whose details were requested. As
discussed before, E writes the pass/fail result of the SR and SRR to
the BC. The legal/political feasibility of writing encrypted NSLs to
the BC is out of the scope of this paper.
Foreign Intelligence Surveillance Act (FISA): FISA was enacted
in 1978 and amended in 2008 by the U.S. Congress for the purposes
of surveillance related to foreign powers and persons [22]. Under
FISA, a person who is believed to be a foreign power, or spying
on behalf of a foreign power can be put under surveillance, even
if they haven’t engaged in any criminal activity. Over the years,
the ambit of FISA has gradually expanded to include electronic
surveillance, “roving wiretap” surveillance, pen-registers, and trap-
and-trace devices, per 50 U.S.C. Ch. 36 [5]. Additionally, FISA per-
mits warrantless surveillance® up until certain time periods, beyond
which the agency conducting the surveillance needs to obtain a
warrant from a special court called the FISA court [23]. Although
the court maintains records of its proceedings, the FISA court’s
records are not available to the public.

Our system can be applied to the FISA ecosystem, which en-
compasses the court, and surveilling agencies which work with it,
such as the NSA. The FISA ecosystem operates with little to no
auditability (other than annual aggregate statistics published by the
court). Using our system, the FISA court judges will issue and post
an encrypted SO on the BC. The E can verify that the surveillance
is not conducted in wholesale or an overarching manner by agen-
cies, and only data that is pertinent to an ongoing investigation is
revealed by companies. In particular, our system allows indepen-
dent non-profit organizations (e.g., ACLU) to verify if due process
has been followed during FISA-authorized surveillance, even if the
actual court orders are never made public, without compromising
national security.

6.2 Law Enforcement Agencies Overreach:
Violations, “sneak peeks” and more

In the US. legal system, a government agency, e.g., FBI or NSA
is, in most cases, required to present a warrant to a company for
conducting surveillance on its customers, and conduct the surveil-
lance within the confines of the warrant. Unfortunately, in practice,
there are agency overreaches; we outline a few here. In 2018, the
NSA’s Office of Inspector General (OIG) in its first semi-annual
unclassified report to the U.S. Congress described the investiga-
tions and activities of the NSA [32]. Among other findings, the OIG

5One such program has recently come to light [41].
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report found “several deficiencies that have the potential to impact
the protection of U.S. persons privacy rights,” in relation to FISA
investigations conducted by the NSA.

A report by the Department of Justice (DoJ) OIG found that
the FBI issued NSLs “contrary to statutory limitations," issued “im-
proper requests under the statute referenced in the NSL”, “obtained
information beyond the time period referenced in the NSL,” and
various other illegal uses of NSLs [1]. A partially redacted 300-page
report by the DoJ OIG [2] also found that the FBI acquired phone
call information regarding “hot numbers” without legal process,
made inaccurate statements to the FISA court, and improperly used
FBI administrative subpoenas. The OIG report also finds that the
FBI uses “exigent letters” and other informal requests for phone
records that do not comply with legal requirements or FBI policies
governing the acquisition of those records. The same report also
found the FBI has a practice of conducting “sneak peeks” for tele-
phone toll records in providers’ databases without due process, a
practice that violates the ECPA statute 18 U.S.C. §2702(a)(3).

All said, our system will help systematize a seemingly unpre-
dictable process that would help law enforcement agencies and
companies ensure that they follow the letter of the law with respect
to issuing and responding to surveillance requests respectively.

7 SECURITY ANALYSIS

We prove the security of our constructions in the well-known Uni-
versal Composability (UC) framework [12]. The UC paradigm el-
egantly captures the conditions under which a given distributed
protocol is secure, by comparing it to an ideal realization of the
protocol. To this end, the UC framework defines two “worlds™:
the real-world, where the protocol, 7 to be proved secure runs in
the presence of a real-world adversary, A. The other is the ideal-
world, where the entire protocol, ¢ is executed by an ideal, trusted
functionality, in the presence of a simulator, 8, which models the
ideal-world adversary. All users only talk to an ideal functional-
ity via secure and authenticated channels, the ideal functionality
takes input from users, performs some computations in a possibly
interactive manner, and returns the output of the protocol. The
goal then is to prove that no distinguishing algorithm, commonly
called as “environment”, Z, can successfully distinguish between
the execution (EXEC) of the two worlds.

7.1 Design of Ideal Functionalities

We define an ideal functionality, Fg,veil Wwhich encompasses all our
other functionalities and algorithms, and consists of four indepen-
dent ideal functionalities, Fgyyeil = (ffffMPL, Finits Fereate» FBC)-
Furthermore, we assume that Fg,,,ej maintains internal state that
is accessible at any time to ?S?MPL, Finit> Fereate, Fpc. We describe
the functionalities of JFgy,yej, discuss some of their motivating
design choices, and give the proof of the following theorem in
Appendix B.

THEOREM 7.1. Let Fgy,yeil be an ideal functionality for SAMPL.
Let A be a probabilistic polynomial-time (PPT) adversary for SAMPL,
and let § be an ideal-world PPT simulator for Fsyyeil- SAMPL UC-
realizes Fsyryeil for any PPT distinguishing environment Z.
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Figure 4: (a) Verification time of SRR by E for different surveillance durations (legends) at batch size of 32 messages, (b) Verification time of
SRR, batch size of 64 messages, and (c) Merkle tree computation time at C for different message sizes (legends) and batch sizes.

8 EXPERIMENTATION AND RESULTS

We evaluate the performance of SAMPL for scalability, and to bench-
mark the operations performed by different entities within SAMPL
with varying system parameters and surveillance requirements.

8.1 Experimental Setup

Four Desktop class machines with Intel(R) Core(TM) i7-6700K CPUs
and 8 GB RAM each were used to run our implementation of SAMPL.
Each of the machines ran a single entity in SAMPL: ], E, L, and
C, communicating over C Sockets. The entities were coded using
the C programming language and compiled with gcc version 7.3.0
(Ubuntu 7.3.0-27 ubuntul 18.04). Our code, along with test data gen-
erators, and a small test database is available online [33]. Random
user data, for 500 users, was pre-generated and stored in an SQL
database (we use email as the representative application) at C. User
data was created for 120 days.

In our experiment, Rl for a given user is tied to their real name
and each user has an Al tied to their name in the database, where
the Al is a key pair that is tied to the user’s Pl;;i € [1..m] using
ZKPs. We simulated with only a single Pl; for each user’s data,
during the surveillance period. The cryptographic operations of
signing and verifying user data, and ZKP related operations were
prototyped using the Charm Cryptographic framework [7]. AES-
256 in GCM mode was used for the symmetric key encryption
involving Kcr, Ky c, and Kgjp c. For emulating the blockchain in
SAMPL, we used Ethereum [18]. Each entity ran its own Ethereum
node and communicated with the local blockchain network.

8.2 Metrics and Parameters

Separate simulations were run for 5, 10, 15, and 30 users in the SO
posted by J. The surveillance periods simulated were 5, 10, 20, and
50 days. These aforementioned values (number of users, days) were
chosen to demonstrate scalability in the event of concurrency. We
evaluate SAMPL using the following metrics:

(1) ZKP generation and verification time per user: The Prime192v1
Elliptic Curve was used as the prime order group G for ZKP as
described in Protocol 11.
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(2) Merkle root generation and signing per user: Simulations were
run for batch-sizes with 16, 32, 64, 128, and 256, leaves in the tree
with message sizes set to 1 KB, 75 KB, 1 MB, and 2 MB.

(3) Enforcer Verification Time: Measured for 5, 10, 15, and 30 users,
batch sizes of 32 and 64 messages, and surveillance period of 5, 10,
20, and 50 days. The message size was set to 75 KB.

Verification of SR by E as depicted in Figure 1: Step 11, is not
quantified in the results because it does not involve complex cryp-
tographic operations. This step would incur a low computational
cost regardless of the number of Als and duration of surveillance
in SR, as it only involves comparisons and range checks between
SR and the corresponding SO on BC.

8.3 Results

Table 2 reflects the ZKP verification and generation times per user
averaged over 100 runs. The generation time is calculated for the
setup in Protocol 1 (only establishment of PI: ref. Protocol 11). The
average ZKP generation time was 1.02 ms with a standard deviation
of 0.236 ms. This time is expended when an I signs up for a new
account with C or whenever I establishes a new Pl with C. The
verification time is calculated for an E verifying the user data inside
SRR (calculated once per SRR). The verification time was found to
be 1.066 ms with standard deviation of 0.096 ms.

Figure 4a shows the verification time of SRR by E for different
number of Is in SR, and different surveillance periods, for a batch
size of 32 messages. Figure 4b shows the SRR verification time,
for a batch size of 64 messages. We observed a linear increase in
computation time with an increase in the number of users. We
note that the computation time includes the ZKP verifications, the
Merkle tree generation and root signature verification (one per
user), and doing the date range checks on the data.

Comparison of Figures 4a and 4b shows that the verification
of SRR for batch size of 64 messages is faster by roughly 0.65 s.
This difference is because for the same number of total messages,
larger batch sizes will result in less Merkle tree roots and signature
verification operations when compared to smaller batch sizes. In
our simulations, SRR verification for 10 users for a surveillance
period of 30 days involved processing 299 batches with the batch
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size of 32 messages, as opposed to 153 batches with 64 messages.
Similarly, number of batches processed for 30 users over 30 days
involved processing 898 batches with 32 messages and 460 batches
with 64 messages.

Figure 4c shows the computation time at C at the end of each
batch. Batch sizes of 16, 32, 64, 128, and 256 messages were simulated
for messages sizes of 1 KB, 75 KB, 1 MB, and 2 MB, averaged over 50
runs. The larger message sizes represent emails with attachments.
The computation time for the different message sizes converges
as the batch size grows. This is because once the hashes of the
messages are calculated for leaves of the Merkle tree, the rest of
the operations on Merkle trees of given batch size are the same for
messages of different sizes. For Merkle trees with larger messages
initial hash computation of the leaves of the tree has to deal with
larger data size.

To give a fine-grained analysis of components of SRR verification
at E, we give a break down of the computation time in Table 3. For
each step, it does follow that the amount of time taken is linear, as
the number of users and/or surveillance period is increased, hence
showing the scalability of our approach.

Table 2: Zero Knowledge Proof Timings

Operation Mean [ Standard Deviation
ZKP Generation | 1.02 ms 0.236 ms
ZKP Verification | 1.066 ms 0.096 ms

We note that the total time for operations performed on a given
SRR depicted in Table 3 are lower than the computation time de-
picted in Figures 4a. This is due to the extra operations for look ups
and other input-output operations performed by E on SRR during
the verification.

9 DISCUSSION

In this section we discuss some generalizations and possible en-
hancements of SAMPL.

9.1 Generalization

SAMPL can apply to other types of surveillance criteria by mod-
ifying the way user records are stored by C. In case of email, the
sender and receiver names and their IP addresses could be salted
and hashed separately and stored along with other details such as
date and time as the metadata. This information could be listed in
the SO and subsequently verified by E without learning the actual
values. This will enable search based on sender/receiver names
and/or IP addresses. Searchable encryption [9] can be implemented
to search based on specific keywords in the data records. Although
this increases the types of surveillance auditable, it leaks more
information to E.

SAMPL can also be extended to allow a user to delete historical
records. The user would update the data record to a generic “deleted
message, the Merkle root for the given historical batch would be
recalculated with the new message, and the user would sign the
updated Merkle root with the current SKpy. Every time VKp| gets
updated by the user, C verifies the ZKP and also verifies the signa-
tures on the Merkle root so that I cannot inject fake data/signatures
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to frame an honest C. For practicality, the management of users
VKpis can be handled by software like keystores, plugins, etc.

There can be instances where a single user is part of multiple
surveillance requests. In that case, each SO has VKj), and E can
link it to the corresponding VKp using the ZKP provided by C.
Our framework does not provide unlinkability of the independent
surveillances to a user’s VKpj. The problem of malicious enforcers
leaking information about the VKAas is not addressed by us.

SR can also include requests for system logs showing activity
of a certain user identified by VKjy,. If the logs contain VKgj, to
preserve privacy, C can replace it with VKA. If the logs contain
VKp, then C furnishes the ZKP associated with VKp,. Unlike data
such as emails, users do not see the logs, hence do not sign them.

9.2 Enhancements and Adaptability

There are several design choices in our system that are implementation-

specific. We list some below:

(1) Set of Enforcers: We can relax the assumption on the E from
honest to being honest but curious. To provide unlinkability of users’
Pls over multiple surveillances for a given time period, nonoverlap-
ping striping of data across the set of Es, when sending SR or SRR
could be used. Note that the sets of enforcers chosen by L and C
need not be the same. This would increase the efficiency of verifica-
tion of the system, as data for verification is not duplicated between
different Es. As long as the number of SOs for a given Al does not
exceed the number of enforcers in the system, the unlinkability
assumption will hold (due to the non-overlapping striping).

(2) Internal decision procedures of J, L, and C: Certain actions
are largely dependent on the specific jurisdiction, and are governed
by the laws of the country where J, L, and C operate. What exactly
J, L, and C do when any of their internal decision procedures return
a “reject” in the course of operation is beyond the scope of SAMPL.
For example, what happens when C decides to reject the IO when
the IO violates statutory company policy in some way? Or what
is the course of action for L to follow if J decides to reject its
surveillance request?

(3) Handling Multiple Users: We described, prototyped, and an-
alyzed SAMPL with an example of a single user being surveilled
by L, this can easily be extended to multiple users (I € [1..a]) by
modifying the SO to include a list of users’ identities. We would
thenhave VKp, -+, VK, VK, .-+, VKR, and VKp, .-+ VKT .
When multiple identities are surveilled, J needs to add a random
string (salt) to each user’s identity(VKrlu, -+, VKg)) and hash it
before putting it in P1 of SO. This randomization added to each
identity will help protect the identities of each of the surveilled
users from each other whenever the SO expires and is released to
the individuals being surveilled. The random salts for all the VKR,’s
are shared with L and C.

(4) Hard reject/soft reject: Whenever an SR or SRR is rejected by
E, perhaps due to clerical errors, administrative errors, or otherwise
honest mistakes on the part of C or L, E just responds with a reject
message and takes no further action (soft reject). E can assess how
many times a certain party’s request/response has been rejected.
Once this number of rejections reaches a threshold, which can be
a system parameter, E informs the party whose request/response
was rejected, and the judge J, and stores a local copy of the reason
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Table 3: SRR Verification time (sec) break-down at E for bNum = 32 and message size of 75 KB.

Surveillance Period (Days) 5 10 50
Number of Users 5 10 15 30 5 10 15 30 5 10 15 30
ZKP Verification for Pl; (s) | 0.039 | 0.0795 | 0.1207 | 0.2003 | 0.0750 | 0.1528 | 0.229 0.459 0.369 | 0.740 | 1.109 | 2.219
Merkle Root Generation (s) | 0.140 | 0.259 0.382 0.619 0.246 0.475 0.705 1.390 | 1.1178 | 2.224 | 3.32 6.64
Merkle Sign Verification (s) | 0.015 | 0.0304 | 0.046 | 0.0767 | 0.0286 | 0.0583 | 0.0875 | 0.1757 | 0.141 | 0.282 | 0.423 | 0.846
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A ZERO-KNOWLEDGE PROOFS BETWEEN [
AND C

Protocol 10 is initiated by I when she needs to establish her real
identity RI (corresponding to an email address and represented
by keypair (VKR), SKRr)) and tie it to an anonymized identity Al
(corresponding to a nickname for the email address and represented
by keypair (VKaj, SKa1)). I can choose to create a new Al if she
needs to change the current Al in case SKa| gets compromised.

The goal of Protocol 10 is for I to establish her (VKg;, SKRi),
(VKAa, SKa1) keypairs, and prove in zero-knowledge to C that VK|
could have been generated only by someone who had knowledge of
SKRi, and that the two key-pairs are related to each other by a DDH
tuple. To this end, I and C do a Chaum-Pedersen-style interactive
ZKP [16] (ZKP) for I to prove her anonymized identity, Al to C. The
proof 7a| can be made non-interactive by applying the Fiat-Shamir
transform [20]. If C chooses to accept the proof as valid, it asks I to
send a signed copy of the transcript of the proof, g|. C stores ma|
and o, Al-

Protocol 11 is initiated by I when she needs to establish her

pseudonymous identity (PI) keypair (VKpy,, SKp,), where i € [1..m].

I could have multiple Pls tied in to a single Al, but only one can
be active at a given point in time. I creates a new Pl;,1 if SKpj,
gets compromised or after a certain time period, which could be a
system parameter.

The goal of Protocol 11 is for I to establish her (VKpy,, SKp,)
keypairs, and prove in zero-knowledge to C that VKp|, could only
have been generated by someone who had knowledge of SK4|, and
the two key-pairs are related to each other by a DDH tuple. To
this end, I and C do a Chaum-Pedersen-style IZKP [16], similar to
Protocol 10 for I to prove her current pseudonymous identity, VKpy,
to C (made non-interactive by applying the Fiat-Shamir transform).
If C chooses to accept the proof, Pl;, as valid, it asks I to send
a signed copy opj, of the transcript of the proof. C stores 7pj,
and opy,. 7p|, and opy; are used by C during surveillance to prove
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Protocol 10: Setup of (RI, Al) keypairs.
Inputs :Public parameters: Group G, q = |G|, g, h € G.
ZKP Claim: VKu| was generated by someone
with knowledge of SKa|, SKR.
Witness: SKa|, SKR).
Output:Signed ZKP: Signgy, (7al)
Parties :C and I
1 I picks a,a’ « Zg, sets SKp| = a, SKa| = a’, and
VKri = g%, VKar = g%
2 begin
3 I picks w1 = g*'¢, and sends DDH tuple
(¢:X=¢%Y=¢%Z=¢g"")to C.
4 C picks a challenge s < Zg4, and sends Com(s) to I,
where Com is a Pedersen commitment.
5 I picks r1 « Zg, computes y; = g" mod g,

y2 = g ™ mod q. I sends 1,y to C.

6 Csends s to I.

7 I verifies Com, computes response z = a - s + r; mod q,
and sends (z,y1,y2) to C.

8 C verifies if g7 z (X* -y1) mod g, and if

yz < (Z* - y2) mod q. If checks verify, C accepts the
response as valid, asks I to send signed transcript of
proof, ma|.

9 I sends oa| = Signg,, (mp) =
H(glIVKrl[VKaillw1]ly1]lyzlls]|2)) to C.

10 end

that Pl; was generated by I. Although we have abstracted it out, a
Pedersen commitment is of the form g% -h" ( mod q), where g, h € G,
q = |G|, v is the value to be committed to, and r is the commitment
randomness. Here h = g% mod g, where a «— Z is chosen by the
receiver of the commitment. We assume h is fairly chosen in a
distributed manner by I, C.

Note that the ZKP and the signature on the ZKP can be replaced
by a single signature proof of zero-knowledge of knowledge [15],
but we do not discuss this optimization in this paper.

B UC FUNCTIONALITIES AND ANALYSIS

The notion of UC security is captured by the pair of definitions
below:

Definition B.1. (UC-emulation [12]) Let 7 and ¢ be probabilistic
polynomial-time (PPT) protocols. We say that 7 UC-emulates ¢ if
for any PPT adversary A there exists a PPT adversary S such that
for any balanced PPT environment Z we have

EXEC¢’S’Z =~ EXEC”,A’Z

Definition B.2. (UC-realization [12]) Let J be an ideal function-
ality and let 7 be a protocol. We say that 7 UC-realizes J if &
UC-emulates the ideal protocol for .

We describe the functionalities of Fgyyeil: ?fﬁMPL, Finits Fcreates
Fpc. We assume that Fgyyej) maintains a table 7, with information
about the individuals being surveilled, and the surveillance orders.
A single row of the table would look like: (VKRg|, SO, soid) where
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Protocol 11: Setup of (Pl;) keypair.

Inputs :Public parameters: Group
G, |G| = q,g,h € G, VKA|,SKA|.
Claim : VKp|, was generated by someone with
knowledge of SKa|, SKpj, .
Witness : SKpa, SKp[L..
Output:Signed ZKP: Signgy, (7p1,).
Parties :C and I
1 forie[1..m] do
2 I'picks a” « Zg, sets SKp|, = a’’, and VKp|, = ga//.
3 begin

4 I parses SKp| as a’ and VKj| as g“'.

5 I picks wy = g%"@". I sends DDH tuple
(g. zkpVerf = (Y = g% P = g%, Q = wy)) to C.

6 C picks a challenge s; < Zg, and sends Com(sy) to
I, where Com is a Pedersen commitment.

7 I picks r{ « Zg, computes y; = ¢’ mod ¢, and
y; = ¢%"""1 mod g, and sends Y1, yy to C.

8 C sends s1 to I.

9 I verifies Com, computes response:

z1=a 51+ rl’ mod g, and sends (z1, y{, yé) to C.

C verifies if g% z (Y1 - y7) mod ¢, and if

10

pa l (Q° - y3) mod q. If checks verify, C accepts
the response as valid, asks I to send signed
transcript of proof, 7py,.

I sends op|; = Signgg, (7p1, =
H(gllVKAIllVKpy, [|wz2|ly;1ly5lIs1]]21)) to C.

11

12 end

13 end

soid denotes the id number of the SO which is associated with
VKR|. We use L to denote unresponsive parties, malformed replies
to the ideal functionalities, and ideal functionalities returning fail
messages to parties.

?SI‘(AMPL: We define our ideal functionality for zero-knowledge
proofs, S”S?MPL, based on the ideal zero knowledge functionality,
F,i defined by Canetti et al. [14]. While [14] deals with generic
relations, our S’f?MPL is restricted only to discrete-log relations,
and also involves the ideal functionality writing the claim to the
shared table 7. ?fIfMPL is given in Figure 5, and the 3, functional-
ity of [14] is given in Figure 6.

?ESMPL is parametrized by a prime-order cyclic group G, |G| = g,
g € G, a € Zg, and a session id, sid. The prover, I sends a claim to
be proven, VKR, to F,i, and a witness a. Fy checks if g% = VK,
i.e., if the claim is correct and forwards VKp to the verifier C and
the ideal-world adversary 8, and writes VKp; into table .

F,k as given in Figure 6, is parametrized by a relation R, and a
session id, sid. The prover, P sends a claim to be proven, x to J,
and a witness w. F, checks if R(x, w) = 1, i.e., if the claim is correct
and forwards x to the verifier V and the ideal-world adversary 8.

Finit: The Fipj¢ ideal functionality described in Figure 7, inter-
acts with J, L, and C, initiates the process for creating a SO, and
posts the SO to the BC. L initiates contact with Fj,j; by sending a
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Functionality EFS?MPL
?S?MPL proceeds as follows, running with prover I, verifier
C, an adversary 8. Let G be a prime-order cyclic group, g € G,
|G| = g,and a € Z4.
(1) Upon receiving (VKRy, sid, a) from I, if g¢* = VKg,,
send (VKRgy, sid) to C and 8, else exit. Write (VKp|) to
table 7 and exit.

Figure 5: Ideal functionality for ZKPs in SAMPL

Functionality 3
F,k proceeds as follows, running with a prover P, verifier V,
and an adversary 8, and parametrized with a relation R:
(1) Upon receiving (zk — prover, sid, x, w) from P, if
R(x,w) = 1, send (zk — proof, sid, x) to V and § and
exit. Otherwise exit.

Figure 6: Ideal functionality for ZKPs [14]

(create — 10, evidence, VKR)) request tuple to Finit. Finit forwards
the request to J, who can accept or decline it. If J accepts, Finit
creates an intermediate order IO = (VKp|, evidence) and forwards
the IO to C. C can either accept or decline the IO. If either J or C
declines the IO request, Fj,jt aborts the execution and exits. If C
accepts, Jinjt checks if VKg| was deposited in the shared table = by
e

If yes, it means VKR was verified by HTEI?MPL. Finit then gener-

ates a key K « {0,1}*, generates a string regarding the surveil-
lance order, data < {0, l}’l, which includes evidence provided by
L, crimes committed by VKp, reason for sealing, etc. It also gen-
erates metadata, which includes the date the SO will be unsealed.
Finit writes (SO, soid) to the table 7, in the VKg| row. Fipn;; then
creates the SO tuple: (metadata, C = Ex(VKRy, data)), sends (K, C)
to J, L, C, calls Fgc and posts the SO on the BC. Finally, when the
SO needs to be unsealed, Fj,j; proactively contacts I, whom VK,
belongs to, and gives her the decrypted contents of the SO.

Fereate: Fereate 1S given in Figure 8. Freate Creates a request
SR and response SRR. L first contacts Fereate for creating an SR
by sending VKp|, upon which Freate looks up table 7 for an SO
corresponding to VKg. If none has been entered by JFjjt, that
means L is not authorized to surveil VKR, and F¢reate returns L
to L. Else F¢reate proceeds with generating SR and forwards SR to
L and C. At this point C is expected to respond to SR with VKg,’s
emails, batch information, and Merkle tree information required to
verify the emails are from the correct batches.

We represent all this information by a string, records. If C ignores
the request, Fcreate Will write C’s identity to BC, along with the
associated SO (this means C is behaving maliciously). If C responds
with the records, Fereate Will first verify that the records belong to
the surveillance time-period as given in the metadata part of the
SO. If verification succeeds, Freate Will create the SRR, which will
be sent to L and C. Finally F¢reate posts the hash of SR, SRR to BC
respectively.

Fsc: The blockchain functionality is given in Figure 9. Fpc re-
ceives messages from Fipnit and Fereate. Fpc writes tuples to the
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Functionality JFj;;
(1) L sends JFj,it a tuple requesting for an IO,
(create — 10, evidence, VKg|), which Fin;¢ forwards
to J. J replies with either (accept, VKg|) or L. If J
responds with L, JFjj; returns L to L and exits.
If J accepts the IO request, Finj; creates an intermediate
order IO = (VKRy, evidence) and sends it to C. C can
either send (accept) or L to Fi,it. If C sends (accept),
Finit checks if VKR is present in table 7. If yes, Finit
proceeds to the next step. If either C sends L, or VKp|
is not present in 7, Fj,jt sends L to J, L, C and exits.
(3) Finit picks a symmetric key, K « {0, 1}*, and gener-
ates data — {0, 1}* creates a surveillance order tuple,
SO = (metadata, (C = Eg(VKR|, data)), and picks an
soid € Z". Finit writes (SO, soid) to 7 in the VKR, row.
Finit sends (K, C) to J, L, C. Finjt calls Fgc and writes
SO to the blockchain.
(4) At the time of unsealing of SO, Fj,it sends I a tuple
SO = (metadata, VKy), data) and exits.

@

~

Figure 7: Ideal functionality for issuance of SO.

Functionality Freate

(1) L sends a tuple (create — SR, VKR|) to Fcreate- Fereate
looks up the SO corresponding to VKR in 7. If none
exists, Fcreate sends L to L and exits. Else, Fereate gen-
erates an SR = (SO, VKR)) and forwards it to L and
C.

(2) C replies to Fcreate With a tuple (VKgy, records «
{0,1}*), where records «— {0,1}* denote VKg,’s
emails, and verification metadata. If C replies with L,
Fereate Will call Fgc and write (SO, C) to the BC and
exit.

(3) In response to C’s tuple, Fereate Verifies records, and
creates an SRR = (SO, records) tuple, and forwards to
LandC.

(4) Fereate calls Fpc, posts H(SR) and H(SRR) to the BC
and exits.

Figure 8: Ideal functionality for creating SR, SRR.

blockchain, and sends a copy of the new block, B, to parties J, L, C, I.
This is done by sending (update, B). The party can either accept the
update, or decline (unresponsive, disconnected, or non-cooperating
parties). When a dormant party wishes to update itself, it can re-
quest a copy of the full blockchain by sending a read message to
Fpc.

B.1 Discussion and Analysis

We now briefly discuss the correctness of our ideal functionalities,
some of our motivating design choices, including aspects that may
seem unusual.

B.1.1  Correctness. The privacy properties our system aims to pro-
vide are accountability for L and C, protection against a forgetful J
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Functionality Fpc

(1) Fpc receives three kinds of write messages: Finjt
writes SO, Fereate Writes (SO, C) and Fereate Writes
(H(SR), H(SRR)). Jpc writes the tuples to the
blockchain and sends a copy of the newest block B
to all parties, J, L, C, I by sending a tuple (update, B).
Each party either replies with (agree, B) or L. In the
former case, the party updates the local copy of the
blockchain, and is synced with the global blockchain.
However if the reply was L, the party now has an
outdated copy of the blockchain.

In the event that an outdated party wants to get synced
with the blockchain, it sends a message (read) to Fpc,
Fpc replies with (update, B’), where B’ is the copy of
the entire blockchain.

@

~

3

=

Figure 9: Ideal functionality for blockchain

who might forget to unseal orders, and protection against a mali-
cious I and C. The design of our ideal functionalities need to capture
these properties.

Accountability is provided by the fact that Fereate generates the
SR and SRR, thus ensuring that no data is over-requested by L,
or over-shared by C, both in terms of redundant data belonging
to the same user, or other users’ data. Fj,j; creates the SO and
guarantees that the SO will get unsealed by Fj; before it exits, thus
providing protection against forgetful J. Since ?SﬁMPL checks the
witness and generates the ZKP for each VKpy, it ensures that a user
cannot create a fake ZKP for VKR, that passes verification, yet the
corresponding SKg; cannot be used for decrypting the user’s email
records. Protection against a malicious C which tries to include fake
data in an SRR is provided by F¢reate, which verifies C’s returned
user information before creating an SRR.

B.1.2  Peculiar design choices. (1) In Fipjt, J, C can return L to Fip
in Step 1 and Step 2 respectively: This is to model the fact that in
the real-world, J has the right to refuse a surveillance request by L,
and C has the right to refuse or appeal an intermediate order by J.
(2) Finit creates an SO, and Fcreate generates the SR and SRR for
SO, but only after being contacted by L (Step 1 of Fcreate): This
is because in the real-world, L might get an SO authorized by J,
but may choose not to follow it up with any action, i.e., eventually
not conduct any surveillance, e.g., because L needs to invest its
limited resources in higher-priority matters, budget cuts after SO
was issued, etc.

(3) Fcreate writes C’s identity to the BC if C doesn’t respond with
I’s email records in Step 2 of Fereate: We assume that I is an (email)
customer of C, and C will have email records associated with I for
the surveillance period. These emails are stored only with C. If
C deliberately chooses not to respond to, or refuses an SR, after
having accepted the IO that the SR is a follow up on (Fjyt, Step 2),
then that can only be construed as malicious behavior on the part
of C. Hence Freate Will expose malicious C’s identity on the public
BC.
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B.2 Proof

We now give the proof of Theorem 7.1.

Proof: Our goal is to describe a simulator 8 such that for any real-
world A running with SAMPL, Z cannot distinguish A from an
ideal-world 8 running with Fgvejl. S runs A internally, simulates
all inputs A is expecting, and gives A’s outputs to Fgyyeil, who will
complete the simulation in the ideal-world. S reflects the choices of
A in the ideal-world, and reflects the protocol outcomes and aborts
of the ideal-world in the real-world. If A cheats, § aborts.

That is, any attempt by A to cheat in the real-world will result in
the protocol aborting in the both, the ideal and real worlds. Hence
it follows that no PPT Z can distinguish between EXECsanmpr, 4,2
and EXECg, . s 2. We now consider a complete run of the pro-
tocol, starting from when I sets up her RI, Al, 7 keypairs with C
and ending when L receives the validated SRR from a subset of E.

First, 8 needs to create keypairs (VKR|, SKg;), (VKaj, SKa),
(VKpi;, SKpi;), j € [1..m]. 8 simulates a UC-secure digital signature
scheme, S;g, that UC-realizes the ideal digital signature functional-
ity, Fsig (see [13] for UC-secure signatures definitions), and creates
the keypairs. The VKRy, VKa| and VKp|; will be handed over to A.
If A wishes to corrupt I, SKgy, SKa| and SKpy, will also be given to
A.

8 will also have to generate the zero-knowledge proofs associated
with VKa| and VKpj;. 8 runs the steps of Protocol 10, computes
mal = (HlIVKRiIVKalllo1]ly1lly2|ls|lz)) and generates oar by
calling Ssig. 8 then gives | and oa| to A along with the keys. §
follows a similar procedure for generating the p1;, OPI; of Proto-
col 11. In the ideal-world, 8 will call g to generate VKR, and call

?SI‘?MPL for generating the ZKP corresponding toVKR). If A rejects
the ZKPs or signatures, § aborts the execution.

8 then needs to setup shared key K¢y of Protocol 1, and pass it to
A, if A has corrupted either C and/or I. 8 creates a key K « {0, 1}
by calling Finit, and passes it to A. Finally, § generates a random
batch-size bSize and gives to A. This completes the simulation of
the setup phase.

Next, § needs to pass on inputs to A during the SO creation
phase, and simulate the corresponding actions in the ideal-world
(actions of Protocol 3). If A has corrupted L, A will generate the
SR = (VKR|, evidence), else, § generates the SR = (VKR|, evidence)
and gives the SR to A. We recollect from our adversary model that
J is forgetful, but not malicious. In other words, A cannot corrupt
J.

Once J (impersonated by 8) has received the SR from A, J will
validate it, and decide whether to accept it or not. Once J decides, it
will give its output to A. A will then pass on the IO to C, through
corrupted L. C will decide whether to accept the IO or not. If A has
corrupted C, then this communication is handled locally by A, and
need not be simulated. If C is honest, its action will be simulated
by §.

C responds to the IO, and generates an SRR = (VKa||7alloal)s
and sends SRR to J, L. In the ideal world, 8 calls Fj,jt, which creates
an IO and sends to J, L, C. If A cheats, i.e., includes a wrong a, oA
inside the SRR, then 8 will send a corresponding malformed message
to Finit, which will then abort (Step 2 of Figure 7), and § aborts
the execution of A. § then generates the SO as a honest | would,
and gives the final SO to A. If either of C or L are corrupted by
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A, or if a subset of E are corrupted by A, & will send the Kj;c
and/or Kgjrc to A. We do not give details of the SO generation by
8, since it is straightforward (simulate Sg;g for signatures, Jjg in
the ideal-world, etc.). If at any step, the signatures in the SO sent
by A do not verify, 8 aborts. In the ideal-world, § calls Fj,j who
will in turn call Fg¢ and posts the SO to the blockchain.

The next step for § is to simulate the storage of I's emails on C
(Protocol 2). There are three cases to consider:

(1) Case 0: If both I and C are corrupted by A, this is handled
locally by A, and does not need to be simulated.

(2) Case 1: If C is corrupted, but I is not, 8 creates I's outputs,
i.e., for each My € Mynym, x € [1..bSize], S generates a Cy.
A, playing the role of corrupted C will create a Merkle hash
tree with the H(Cy) at the leaves, which will be checked by
8. 8 will verify the root-hash and will abort of there is any
mismatch. Else, § will sign the root-hashes by simulating
Ssig- In the ideal world, 8 will get random strings signed by
calling Fs;g.

Case 2: If I is corrupted, but C is not, A does I's leaf en-
cryptions, creates Cy’s, etc., and gives to 8. & generates the
corresponding root-hashes for the Merkle trees, and sends
the root-hashes to A for signing. A is expected to sign the
root-hashes. If A refuses to sign the root-hashes, § will abort.

Now, 8 needs to simulate the creation and verification of the SR
(Algorithm 4, and Algorithm 5). For this, 8 will retrieve the SO, i,
etc., and construct a tuple SR = (SO||:||VKRg;||C) and forward it to
a subset of E. If L is corrupted, A will construct the SR tuple. If A’s
SR tuple is malformed, § aborts. In the ideal world, S calls Fcreate,
who generates the SR. At this point, S C E needs to validate SR. Per
our adversary model, A can corrupt a minority of members in S.
Here there are two cases to consider:

(1) Case 0: None of S are corrupted: 8 verifies SR (if SR was gen-
erated by A in the previous step), and checks it against the
SO 8 had created. S simulates Ssjg and creates the signature
GSSR, and gives it to A. In the ideal world, 8 calls ?sig and
creates the signature.

Case I: A (minority) subset of S are corrupted by A. For
the minority, A will check the SR. If A rejects the SR, or
refuses to produce a signature O'§ , for any reason, § aborts,
and sends a malformed request to Fereate, Which will abort
the simulation in the ideal world. Communication among
members of corrupted minority of S is controlled by A and
need not be simulated. If A behaves properly, i.e., validates
the SR and produces signature O'ER, 8 will simulate the honest
majority, and the ideal world similar to Case 0.

The next step is for 8 to simulate C producing an SRR, and a
subset of E verifying the SRR. S first retrieves the SO it created.
Here again there are two broad cases:

(1) Case 0: If C is uncorrupted, S retrieves the Cx € Cp,;x €
[1..bSize], adds the Cy s, sibling hashes, etc. to the SRR tuple,
the ZKP tuple it created before, calls Ssig, signs the SRR tuple,
and gives the H(SRR), along with the signed SRR to A. A
then passes it on to S C E, who will accept or reject it. If all
members of S are honest, § will validate the signed SRR and
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we are done. In the ideal world, 8 will call F¢reate, ik ,

and JFjg to create and sign the SRR, respectively.
Case 1: If C is corrupted, A will create the SRR; the SO is
given to A. Firstly, A can return a verification fail on the

SO created by 8. If this happens, 8§ will abort the simulation.

If A chooses to proceed with the simulation, A will create
the Merkle hash trees with the H(Cy) at the leaves, sibling
hashes, etc.. A will give the ZKPs, 7|, 7rpj; and signatures on
the ZKPs, o, opy; to 8. If any do not verify, 8 aborts. A will
generate the final SRR, and H(SRR). If the SRR is malformed,
in the ideal-world, 8 will cause Fereate to abort by having C

L
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not reply to an SRR. F¢reate Will write malicious C’s identity

to the blockchain by calling Fpc.
If a minority of S C E are corrupted, A can return a fail on the ZKP
verification, upon which & aborts. If A rejects the SRR, or refuses
to produce a signature O'SS , & aborts. In the ideal world, § will
corrupt C such that C does not repond to Fereate’s request for an
SRR, upon which Fireate Will write C’s identity to the blockchain
by calling Fpc, and will then abort. If A validates the SRR and
produces signature USSRR’ 8 will simulate the honest majority. In the
ideal world 8 will call JF;g. Lastly, 8 will give K¢y to A, if A had
not already corrupted C and/or I, and obtained K¢y earlier. This
concludes our proof. [
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