3D Reconstruction of Tubular Structure Using Radially Deployed Projections
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Abstract

Acquiring volumetric data plays a crucial role in the
field of medical imaging. 3D reconstruction is mostly
performed using multislice image datasets. The objective
of this research is to introduce a magnetic resonance
technique for imaging tubular structures and their 3D
reconstructions using multiple radially deployed
projections. The oblique projection sequence was
evaluated on a phantom, and multislice dataset is
collected using the same phantom for the reference. To
compute the correctness of the 3D reconstruction
process, the resulting meshes were compared using the
Hausdorff Distance Calculation and Point Cloud
Comparison methods.
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1. Introduction

Volumetric imaging plays a vital role in the medical
diagnosis and treatment. It is widely used for 3D
visualization of tubular structures such as blood vessels
[1], catheters [2], and bones [3]. 3D reconstruction is
created by using different medical imaging modality
outputs such as dual plane fluoroscopy [4, 5], biplane x-
ray [1, 3, 6], CT [7] and MRI [2, §].

The traditional 3D reconstruction techniques in the
field of medical imaging generate 3D volume from a set
of 2D stacked images. These techniques use different
rendering algorithms on data volume such as Multiplanar
Rendering (MPR), Surface Rendering (SR), and Volume
Rendering (VR). Due to requiring a significant amount
of time, creating 3D volume from the multislice dataset
is not a time-efficient technique. 3D reconstruction from
two or more projection images is a common technic
especially in dual plane fluoroscopy [5] and biplane x-
ray angiography [6]. However, due to having ionizing
radiation and the existing co-registration problems, these
imaging modalities are not impeccable. Magnetic
Resonance Imaging (MRI) is a substantial and many-

sided medical imaging modality. MRI uses the rules of
Nuclear Magnetic Resonance combined with gradient
coil elements to offer spatial encoding; as a result, it has
the ability to perform three-dimensional imaging of the
organism [9,10]. Even though MRI enables one to obtain
more details in the soft tissues and has the capability of
multiplanar imaging, it takes more time to perform it.

3D reconstruction from two projections is a common
method in biplane fluoroscopy [11]. Dual plane
fluoroscopy projections are not orthogonal to each other
and the centers of the corresponding field of views are
not identical. Thus, a series of transformations is
computed to co-register these projections to the same
coordinate system of reference. On the contrary while
using MRI, multiple projections are already inherently
co-registered, and the center and size of the field of
views are the same [12].

3D Reconstruction of the tubular structures using
three orthogonal MRI projection images were studied
and the weakness of the triplanar method is analyzed
[13]. For the complex structures, three orthogonal images
are not sufficient and the overlapped structures are
resulting in the ghost shapes.

The Radon Transform of an image is a set of
projections of the image taken at different angles. This
method has been used in widespread applications in
medical imaging. Inverse Radon Transform (I-Radon) is
to reconstruct the original image from its projections
along various directions [14].

In this particular work, we collected MRI projection
data from different angles and applied I-Radon transform
method to acquire 3D Reconstruction of the tubular
structure. In order to analyze the correctness of the
reconstructed object, we collected multislice dataset
from the same object and applied rendering algorithm to
extract a reference object out of this dataset. The
correctness is tested via two different methods;
Hausdorff Distance Calculation and Point Cloud
Comparison methods.



2. Data Acquisition

The oblique projection sequence was evaluated on a
phantom made of a Gd-filled (3% Gd-doped water) tube
(3.0 mm inner diameter and 4.0 mm outer diameter)
embedded into a watery yogurt-based matrix. Studies
were performed on a 1.5T PHILIPS MRI scanner using
the body coil for both transmission and reception. After
positioning and securing the phantom, scout images were
collected to identify the volume of interest. Then 32
projection images were collected along the Y axis with a
T1-weighted steady-state precession (FFE) pulse
sequence (pixel spacing=0.958333 mm, flip angle = 50°,
bandwidth/pixel = 190 Hz, matrix size = 230X230, FOV
= 200X200 mm2, slice thickness = 200 mm, repetition
time = 5.3650 ms, echo time= 1.601 ms, number of
phase encoding steps = 230, echo training length = 92,
percent sampling = 98.9247, percent phase field of view
= 80, acquisition duration = 32.99 ms, bits allocated =
16, and bits stored = 12). For reference (i.e. the ground
truth), we then collected a multislice set composed of
142 coronal slices with a standard inversion recovery
gradient recalled echo (IR-GRE) sequence (flip angle =
30°, bandwidth/pixel = 172 Hz, matrix size = 256X256,
fov = 200X200 mm?2, slice thickness = 1.8 mm, pixel
spacing = 0.71875 mm, repetition time = 25, echo time=
4.047, number of phase encoding steps= 257, echo
training length = 1, percent sampling = 78.53981,
percent phase field of view = 78.75, acquisition duration
= 176.375, and acquisition time TM= 164141.55). The
data were then stored and processed off-line with the
reconstruction software, Osirix.

Projection images were placed on the 3D coordinate
system regarding their position and orientation
information in the DICOM header file. Figure 1 shows
the 32 projection images placed on the 3D coordinate
system.

Figure 2 shows the multislice dataset placed in the 3D
coordinate system. There are 142 images scanned
through the Z axis. Figure 3 presents the Maximum
Intensity Projection (MIP) of the multislice dataset. MIP
is a visualization method used in CT to detect nodules in
lung cancer, and it consists of projecting the voxel with
the maximum attenuation value on every view
throughout the volume onto a 2D image.
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Figure 1:The projection images placed in 3D coordinate
system
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Figure 2:The multislice dataset placed in 3D coordinate
system

Figure 3:Maximum Intensity Projection of the multislice
dataset



3. Data Processing

In order to increase the contrast of the projection images,
we applied an unsharp filter to each image. It is a
sharpening technique used to enhance the edges of an
image. The unsharp filter subtracts the smoothed version
of an image from the original image. After applying the
unsharp filter, we created a binary mask for each
projection image. These binary masks had some noise
after the conversion, thus we removed small objects
using a MATLAB built-in function; bwareopen().

DICOM header information of the original projection
images were copied to create new DICOM files from the
binary images. Figure 4 displays some of the original
projection images and their binary mask. The rotation of
the image orientation can be observed from these figures.

Figure 4:Original projection images and their binary
masks, from image 6 to 8

4. Data Reordering

Projection images were collected for every 5.625 degrees
around the Y axis of the same region of interest as
illustrated in Figure5SA. I-Radon transform method works
for the 2 dimensions; thus, we reordered the data and
applied the I-Radon algorithm for each slice in the new
order (Figure 5B). The angle between each slice is
calculated using the following formula;

180
Angle between projection images = ( ;
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The angle value of each image was stored in a vector
variable and was used in the I-Radon Transform. The
way we programmed the MRI scanner to collect the data
was equivalent to applying the Radon Transform to the
imaged object. Therefore, to generate the original object
we implemented I-Radon Transform. A CT scanner does
exactly this thing.
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Figure 5:1llustration of the data reordering; A) Projection
images in the 3D coordinate system B) Reordered
projection images



Projection images were stored in a 3d matrix in
accordance with the angle of rotations. The size of the
projection matrix was 360x360x32. The projection
matrix was reordered to create a new matrix for the I-
Radon Transform.

The reordering algorithm is shown in the Table 1
(NRotationAxis (Number of Rotation Axis) =360,
NOrthogonalAxis (Number of Orthogonal Axis) =360,
and NProjections (Number of Projection Images) =32).

Table 1: Algorithm for Matrix Reordering
input: imageMatrix (NRotationAxis, NOrthogonalAxis,
NProjections)
output: iRadonMatrix (NOrthogonalAxis, NProjections,
NRotationAxis)

1. fori=1 to NRotationAxis

2. for k = 1 to NProjections

3. for j = 1 to NOrthogonalAxis

4. iRadonMatrix (j, k, i) = imageMatrix (i, j, k)
5. end for: j

6. end for: k

7. endfor:i

The resulting 3D matrix was the size of 360x32x360. We
selected slices along the (j, k) axis and applied the I-
Radon Transform for each slice (360 slices).

5. Inverse Radon Transform

We selected images from the iRadonMatrix through the i
axis and applied Inverse Radon Transform for these
images. We used MATLAB iradon function with the
following parameters; interpolation = spline, filter=
Hamming. The output of the iradon function is a 2D
image of the 2D reconstruction. These output images had
some noise depending on the number of projections used
in the I-Radon Transform. While the number of the
projection images were increased, the level of the noise
reduced. The output images were converted into binary
images with an appropriate threshold level to eliminate
the noise. The binary results were stored in another 3D
matrix and the resulting 3D object mesh was
reconstructed out of this matrix (Figure 6). To test the
correctness of the reconstruction, we used the object
reconstructed from the multislice dataset. Osirix software
was used to process the multislice data set and the
resulting object was saved as a mesh file. Figure 29
shows the resulting object mesh of the multislice data set

after the surface rendering algorithm was applied (Figure
7). Figure 8 shows the superimposed 3D rendering of
both structures.

Z {mm)

Y (mm) 0 eo X (mm)

Figure 6: The output mesh of the I-Radon transformation
of the 32 projection images
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Figure 7: The mesh of the multislice dataset
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Figure 8: Superimposed 3D rendering of [-Radon
Transformation and Multislice Surface Rendering



6. Results

Point Cloud Comparison method and Hausdorff Distance
Calculation method was used to compare the resulting
two meshes. Two meshes converted into point clouds
using 1,000,000 points for each mesh. The Euclidian
distance was calculated for each point. The distance
values are grouped in the 8 classes to display the error
rate. Table 2 shows the result of the Point Cloud
Comparison method.

Table 2: The result of the Point Cloud Comparison

method
Class Class starts Class ends Number of Number of
(mm) (mm) points points (%)
1 0.002145543  0.924665254 = 408592 40.85
2 0.924665254 | 1.847184966 @ 254145 25.41
3 1.847184966 = 2.769704678 = 166667 16.66
4 2.769704678 = 3.69222439 98852 9.88
5 3.69222439 4.614744102 @ 56148 5.61
6 4.614744102 | 5.537263814 @ 13170 1.31
7 5.537263814 = 6.459783526 @ 1701 0.17
8 6.459783526 = 7.382303238 | 520 0.05

To convert mesh to point cloud, we used 1,000,000
points. The percentage of the points in a specific class is
calculated by dividing the number of points in that class
into 1,000,000. As shown on the table, more than 40% of
the points have less than 1 mm and more than 82% of the
points have less than 2.77 mm error rate. Although the
maximum error is 7.38 mm, the ratio of these points is
only 0.05%. We might say that the unfiltered noise
caused of these results.

In addition, Figure 9 displays these results on the bar
graph. As displayed on the graph that the majority of the
points (~70%) have less than 2 mm distance.
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Figure 9: The result of the Point Cloud Comparison
method

Furthermore, Hausdorff Distance Calculation method
was computed, and the result is shown in the Table 3. As
shown on the table, the Point Cloud Comparison method
produced similar results to Hausdorff Distance
Calculation method. The average error was 1.52 mm
according to these two methods.

Table 3: The results of the Hausdorff Distance
Calculation and Point Cloud Comparison methods

Minimum Maximum Mean Std
(mm) (mm) (mm)
Point 0.00000 7.382300 1.525150 1.230497
Cloud
Hausdorff 0.000031 7.281123 1.525351 1.247692




7. Discussions

Oblique orientation images were acquired around the Y
axis for each 5.625 degree (32 images). The projection
images were converted into binary masks and stored in a
3D matrix. The output of the 3D I-Radon was converted
into a mesh file, and a 3D object was reconstructed. The
correctness of this method was also tested with the result
of the multislice dataset. Hausdorff and Point Cloud
methods generated similar results for the average error
rate (1.52 £ 1.27 mm vs 1052 + 1.23 mm, respectively).
Oblique projection images had enough contrast to
automate the binary mask creation. I-Radon method was
modified and implemented for 3D reconstruction of the
structure using oblique projection images. The results of
this experiment show that the number of projection was a
vital parameter of this method. Fewer projection images
created more noise; thus, it was not possible to 3D
reconstruct the structure.

As one can appreciate from Figure 8, at the lower
portion of the two reconstructions, two structures
deferred. We suspected that the pulse sequence we
implemented did not generate accurately balanced
gradients and Y and Z axis gradients were calculated
with different weighting parameters. As a result, we had
differential scaling factors along the two axes on the
reconstructed structure. The solution to this problem is
rather trivial but time consuming. Specifically, we plan
extensive studies with a phantom to calibrate MR
scanner. Also, it can be noticeable from Figure 8§ that
there is a significant portion of the reconstructed object
is missing. We figured out that this error occurs because
of the plastic connector of the catheter that we used in
the phantom study. Plastic connector is invisible in the
projection images; thus it is impossible to reconstruct
that part.
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