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Abstract 
Acquiring volumetric data plays a crucial role in the 
field of medical imaging. 3D reconstruction is mostly 
performed using multislice image datasets. The objective 
of this research is to introduce a magnetic resonance 
technique for imaging tubular structures and their 3D 
reconstructions using multiple radially deployed 
projections. The oblique projection sequence was 
evaluated on a phantom, and multislice dataset is 
collected using the same phantom for the reference. To 
compute the correctness of the 3D reconstruction 
process, the resulting meshes were compared using the 
Hausdorff Distance Calculation and Point Cloud 
Comparison methods. 
Keywords: Magnetic Resonance Imaging, 3D 
Reconstruction, Oblique Projections 

1. Introduction

Volumetric imaging plays a vital role in the medical 
diagnosis and treatment. It is widely used for 3D 
visualization of tubular structures such as blood vessels 
[1], catheters [2], and bones [3]. 3D reconstruction is 
created by using different medical imaging modality 
outputs such as dual plane fluoroscopy [4, 5], biplane x-
ray [1, 3, 6], CT [7] and MRI [2, 8].    

The traditional 3D reconstruction techniques in the 
field of medical imaging generate 3D volume from a set 
of 2D stacked images. These techniques use different 
rendering algorithms on data volume such as Multiplanar 
Rendering (MPR), Surface Rendering (SR), and Volume 
Rendering (VR). Due to requiring a significant amount 
of time, creating 3D volume from the multislice dataset 
is not a time-efficient technique. 3D reconstruction from 
two or more projection images is a common technic 
especially in dual plane fluoroscopy [5] and biplane x-
ray angiography [6]. However, due to having ionizing 
radiation and the existing co-registration problems, these 
imaging modalities are not impeccable. Magnetic 
Resonance Imaging (MRI) is a substantial and many-

sided medical imaging modality. MRI uses the rules of 
Nuclear Magnetic Resonance combined with gradient 
coil elements to offer spatial encoding; as a result, it has 
the ability to perform three-dimensional imaging of the 
organism [9,10]. Even though MRI enables one to obtain 
more details in the soft tissues and has the capability of 
multiplanar imaging, it takes more time to perform it.  

3D reconstruction from two projections is a common 
method in biplane fluoroscopy [11]. Dual plane 
fluoroscopy projections are not orthogonal to each other 
and the centers of the corresponding field of views are 
not identical. Thus, a series of transformations is 
computed to co-register these projections to the same 
coordinate system of reference. On the contrary while 
using MRI, multiple projections are already inherently 
co-registered, and the center and size of the field of 
views are the same [12]. 

3D Reconstruction of the tubular structures using 
three orthogonal MRI projection images were studied 
and the weakness of the triplanar method is analyzed 
[13]. For the complex structures, three orthogonal images 
are not sufficient and the overlapped structures are 
resulting in the ghost shapes.   

The Radon Transform of an image is a set of 
projections of the image taken at different angles. This 
method has been used in widespread applications in 
medical imaging. Inverse Radon Transform (I-Radon) is 
to reconstruct the original image from its projections 
along various directions [14]. 

In this particular work, we collected MRI projection 
data from different angles and applied I-Radon transform 
method to acquire 3D Reconstruction of the tubular 
structure. In order to analyze the correctness of the 
reconstructed object, we collected multislice dataset 
from the same object and applied rendering algorithm to 
extract a reference object out of this dataset. The 
correctness is tested via two different methods; 
Hausdorff Distance Calculation and Point Cloud 
Comparison methods. 



2. Data Acquisition

The oblique projection sequence was evaluated on a 
phantom made of a Gd-filled (3% Gd-doped water) tube 
(3.0 mm inner diameter and 4.0 mm outer diameter) 
embedded into a watery yogurt-based matrix. Studies 
were performed on a 1.5T PHILIPS MRI scanner using 
the body coil for both transmission and reception. After 
positioning and securing the phantom, scout images were 
collected to identify the volume of interest. Then 32 
projection images were collected along the Y axis with a 
T1-weighted steady-state precession (FFE) pulse 
sequence (pixel spacing=0.958333 mm, flip angle = 50°, 
bandwidth/pixel = 190 Hz, matrix size = 230X230, FOV 
= 200X200 mm2, slice thickness = 200 mm, repetition 
time = 5.3650 ms, echo time= 1.601 ms, number of 
phase encoding steps = 230, echo training length = 92, 
percent sampling = 98.9247, percent phase field of view 
= 80, acquisition duration = 32.99 ms, bits allocated = 
16, and bits stored = 12). For reference (i.e. the ground 
truth), we then collected a multislice set composed of 
142 coronal slices with a standard inversion recovery 
gradient recalled echo (IR-GRE) sequence (flip angle = 
30°, bandwidth/pixel = 172 Hz, matrix size = 256X256, 
fov = 200X200 mm2, slice thickness = 1.8 mm, pixel 
spacing = 0.71875 mm, repetition time = 25, echo time= 
4.047, number of phase encoding steps= 257, echo 
training length = 1, percent sampling = 78.53981, 
percent phase field of view = 78.75, acquisition duration 
= 176.375, and acquisition time TM= 164141.55). The 
data were then stored and processed off-line with the 
reconstruction software, Osirix. 
Projection images were placed on the 3D coordinate 
system regarding their position and orientation 
information in the DICOM header file. Figure 1 shows 
the 32 projection images placed on the 3D coordinate 
system. 
Figure 2 shows the multislice dataset placed in the 3D 
coordinate system. There are 142 images scanned 
through the Z axis. Figure 3 presents the Maximum 
Intensity Projection (MIP) of the multislice dataset. MIP 
is a visualization method used in CT to detect nodules in 
lung cancer, and it consists of projecting the voxel with 
the maximum attenuation value on every view 
throughout the volume onto a 2D image. 

Figure 1:The projection images placed in 3D coordinate 
system 

Figure 2:The multislice dataset placed in 3D coordinate 
system 

Figure 3:Maximum Intensity Projection of the multislice 
dataset 



3. Data Processing

In order to increase the contrast of the projection images, 
we applied an unsharp filter to each image. It is a 
sharpening technique used to enhance the edges of an 
image. The unsharp filter subtracts the smoothed version 
of an image from the original image. After applying the 
unsharp filter, we created a binary mask for each 
projection image. These binary masks had some noise 
after the conversion, thus we removed small objects 
using a MATLAB built-in function; bwareopen().  
DICOM header information of the original projection 
images were copied to create new DICOM files from the 
binary images. Figure 4 displays some of the original 
projection images and their binary mask. The rotation of 
the image orientation can be observed from these figures. 

Figure 4:Original projection images and their binary 
masks, from image 6 to 8 

4. Data Reordering

Projection images were collected for every 5.625 degrees 
around the Y axis of the same region of interest as 
illustrated in Figure5A. I-Radon transform method works 
for the 2 dimensions; thus, we reordered the data and 
applied the I-Radon algorithm for each slice in the new 
order (Figure 5B). The angle between each slice is 
calculated using the following formula; 

The angle value of each image was stored in a vector 
variable and was used in the I-Radon Transform. The 
way we programmed the MRI scanner to collect the data 
was equivalent to applying the Radon Transform to the 
imaged object. Therefore, to generate the original object 
we implemented I-Radon Transform. A CT scanner does 
exactly this thing. 

Figure 5:Illustration of the data reordering; A) Projection 
images in the 3D coordinate system B) Reordered 

projection images 



Projection images were stored in a 3d matrix in 
accordance with the angle of rotations. The size of the 
projection matrix was 360x360x32. The projection 
matrix was reordered to create a new matrix for the I-
Radon Transform.  
The reordering algorithm is shown in the Table 1 
(NRotationAxis (Number of Rotation Axis) =360, 
NOrthogonalAxis (Number of Orthogonal Axis) =360, 
and NProjections (Number of Projection Images) =32). 

Table 1: Algorithm for Matrix Reordering 

The resulting 3D matrix was the size of 360x32x360. We 
selected slices along the (j, k) axis and applied the I-
Radon Transform for each slice (360 slices).   

5. Inverse Radon Transform

We selected images from the iRadonMatrix through the i 
axis and applied Inverse Radon Transform for these 
images. We used MATLAB iradon function with the 
following parameters; interpolation = spline, filter= 
Hamming. The output of the iradon function is a 2D 
image of the 2D reconstruction. These output images had 
some noise depending on the number of projections used 
in the I-Radon Transform. While the number of the 
projection images were increased, the level of the noise 
reduced. The output images were converted into binary 
images with an appropriate threshold level to eliminate 
the noise. The binary results were stored in another 3D 
matrix and the resulting 3D object mesh was 
reconstructed out of this matrix (Figure 6).  To test the 
correctness of the reconstruction, we used the object 
reconstructed from the multislice dataset. Osirix software 
was used to process the multislice data set and the 
resulting object was saved as a mesh file. Figure 29 
shows the resulting object mesh of the multislice data set 

after the surface rendering algorithm was applied (Figure 
7). Figure 8 shows the superimposed 3D rendering of 
both structures. 

Figure 6: The output mesh of the I-Radon transformation 
of the 32 projection images 

Figure 7: The mesh of the multislice dataset 

Figure 8: Superimposed 3D rendering of I-Radon 
Transformation and Multislice Surface Rendering 



6. Results

Point Cloud Comparison method and Hausdorff Distance 
Calculation method was used to compare the resulting 
two meshes. Two meshes converted into point clouds 
using 1,000,000 points for each mesh. The Euclidian 
distance was calculated for each point. The distance 
values are grouped in the 8 classes to display the error 
rate. Table 2 shows the result of the Point Cloud 
Comparison method. 

Table 2: The result of the Point Cloud Comparison 
method 

To convert mesh to point cloud, we used 1,000,000 
points. The percentage of the points in a specific class is 
calculated by dividing the number of points in that class 
into 1,000,000. As shown on the table, more than 40% of 
the points have less than 1 mm and more than 82% of the 
points have less than 2.77 mm error rate. Although the 
maximum error is 7.38 mm, the ratio of these points is 
only 0.05%. We might say that the unfiltered noise 
caused of these results.  
In addition, Figure 9 displays these results on the bar 
graph. As displayed on the graph that the majority of the 
points (~70%) have less than 2 mm distance. 

Figure 9: The result of the Point Cloud Comparison 
method 

Furthermore, Hausdorff Distance Calculation method 
was computed, and the result is shown in the Table 3. As 
shown on the table, the Point Cloud Comparison method 
produced similar results to Hausdorff Distance 
Calculation method. The average error was 1.52 mm 
according to these two methods. 

Table 3: The results of the Hausdorff Distance 
Calculation and Point Cloud Comparison methods 

Minimum 
(mm) 

Maximum 
(mm) 

Mean 
(mm) 

Std 

Point 
Cloud 

0.00000 7.382300 1.525150 1.230497 

Hausdorff 0.000031 7.281123 1.525351 1.247692 



7. Discussions
Oblique orientation images were acquired around the Y 
axis for each 5.625 degree (32 images). The projection 
images were converted into binary masks and stored in a 
3D matrix. The output of the 3D I-Radon was converted 
into a mesh file, and a 3D object was reconstructed. The 
correctness of this method was also tested with the result 
of the multislice dataset. Hausdorff and Point Cloud 
methods generated similar results for the average error 
rate (1.52 ± 1.27 mm vs 1052 ± 1.23 mm, respectively). 
Oblique projection images had enough contrast to 
automate the binary mask creation. I-Radon method was 
modified and implemented for 3D reconstruction of the 
structure using oblique projection images. The results of 
this experiment show that the number of projection was a 
vital parameter of this method. Fewer projection images 
created more noise; thus, it was not possible to 3D 
reconstruct the structure.  

As one can appreciate from Figure 8, at the lower 
portion of the two reconstructions, two structures 
deferred. We suspected that the pulse sequence we 
implemented did not generate accurately balanced 
gradients and Y and Z axis gradients were calculated 
with different weighting parameters. As a result, we had 
differential scaling factors along the two axes on the 
reconstructed structure. The solution to this problem is 
rather trivial but time consuming. Specifically, we plan 
extensive studies with a phantom to calibrate MR 
scanner. Also, it can be noticeable from Figure 8 that 
there is a significant portion of the reconstructed object 
is missing. We figured out that this error occurs because 
of the plastic connector of the catheter that we used in 
the phantom study. Plastic connector is invisible in the 
projection images; thus it is impossible to reconstruct 
that part. 
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