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A Transactive Energy Framework for Coordinated
Energy Management of Networked Microgrids
With Distributionally Robust Optimization

Zhaoxi Liu

Abstract—Networked microgrids (MGs) are considered as an
emerging grid design for the future distribution system (DS). The
coordination of the networked MGs is critical in order to further
enhance the operation efficiency and reliability of the system. In
this paper, a transactive energy (TE) framework is proposed for
the coordinated energy management of networked MGs in DS.
Instead of direct coordination signals and fixed pricing schemes,
the distribution network operator (DNO) organizes a transactive
market with the MGs to coordinate the energy management in the
operation. Further, a distributionally robust optimization (DRO)-
based algorithm is developed to provide a robust solution of the
detailed scheduling decisions in the proposed TE framework under
uncertainty without being too conservative. Case studies with the
proposed framework were conducted with the IEEE 33-bus system
with three MGs and the IEEE 123-bus system with nine MGs.
The results of the case studies show that the proposed TE-based
framework can effectively coordinate the energy scheduling of
the MGs. The operational cost of the DS is reduced significantly.
Meanwhile, the proposed DRO-based algorithm provides a robust
but not over-conservative solution for the operation decisions of the
DNO and MGs in the proposed framework.

Index Terms—Distributionally robust optimization (DRO), mi-
crogrids, networked microgrids, transactive control, transactive
energy.

NOMENCLATURE
A. Indices and Sets

g Index of micro turbines (MTs) in the distribution
system (DS)/microgrids (MGs).

i,7,k Index of buses (nodes) in the DS/MGs.

m Index of MGs in the DS.

t,T Index of time intervals.

v Index of photovoltaic panels (PVs) in the DS/MGs.
w Index of wind turbines (WTs) in the DS/MGs.

w Index of scenarios.

Ep/Em Set of branches in the DS/MG m.
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Gp/Gm Set of MTs in the DS/MG m.

M Set of MGs in the DS.

Np /Ny Set of buses (nodes) in the DS/MG m.

S Ambiguity set of the distributionally robust opti-
mization (DRO) model.

T Set of time intervals in scheduling horizon.

Vo /Vm Set of PVs in the DS/MG m.

Wp /W Set of WTs in the DS/MG m.

Q Set of scenarios.

B. Parameters

ag/bg/cq Second order/first order/constant coefficients of
generation cost function of MT g.

pg+ / p,  Upper/lower limits of active power of MT g.

pf‘ tw Active power demand of node j at time ¢ in scenario
w.

pUV.t.w Active power output of PV v at time ¢ in scenario
w.

. . Active power output of WT w at time £ in scenario

v w.

qg"' /ag Upper/lower limits of reactive power of MT g.

Q;Tft w Reactive power demand of node j at time ¢ in
scenario w.

Tij Resistance of branch between node ¢ and node j.

Sjg Grid connection indicator of MT g to node ;.

Sj.m Grid connection indicator of MG m to node j.

Sju Grid connection indicator of PV v to node j.

Sjw Grid connection indicator of WT w to node j.

VjJr /V;~  Upper/lower voltage limits of node j.

T j Reactance of branch between node ¢ and node j.

a; Day-ahead spot price of electricity at time £.

Biw Real-time regulating price of electricity at time £ in
scenario w.

Vew Real-time electricity price of imbalance settlement
at time £ in scenario w.

T [ W Probability of scenario w.

o Tolerant limit of norm-1 of the ambiguity set in the
DRO model.

Yoo Tolerant limit of norm-infinity of the ambiguity set
in the DRO model.

C. Variables

Jpw Operation cost of the DS in scenario w.

I w Operation cost of MG m in scenario w.
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Active power output of MT g at time ¢ in scenario
w.

Active power flow from node : to node j at time ¢
in scenario w.

Active power exchange between MG m and DS at
time ¢ in scenario w, positive value means injection
from DS to MG, negative value means export from
MG to DS.

Reactive power output of MT g at time ¢ in scenario
w.

Reactive power flow from node : to node j at time
t in scenario w.

Reactive power exchange between MG m and DS at
time ¢ in scenario w, positive value means injection
from DS to MG, negative value means export from
MG to DS.

D; Scheduled active power exchange between DS and
high voltage (HV) system at time £, positive value
means injection from HV to DS, negative value
means export from DS to HV.

Deviant active power exchange between DS and
HV system at time ¢ in scenario w, positive value
means higher consumption or lower export from
DS, negative value means lower consumption or
higher export from DS.

Voltage of node j at time ¢ in scenario w.

Clearing price in transactive market at time ¢ in
scenario w.

Real-time imbalance settlement of DNO with HV
system at time ¢ in scenario w.
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D. Functions

v, Cost function of MT g.

I. INTRODUCTION

icrogrids (MGs) are integrated systems with connected

loads and distributed energy resources (DERs) which
can facilitate the implementation of many cherished functions
of the smart grid, such as reliability and self-healing [1]. In
recent years, networked MGs are considered as an emerging
network design to further enhance the benefits of MGs [2].
The operation and reliability of the system can be improved
by connecting multiple MGs to make a distribution system (DS)
with networked MGs [3]-[6]. Thus, networked MGs will be an
important network feature in the future distribution systems.

In a distribution system with multiple connected MGs, the
coordination between the operations of the individual entities
in the system becomes necessary. Some recent efforts have
been made to study the coordinated energy management of
networked MGs. The authors of [6] propose a control strat-
egy for the coordinated operation of the networked MGs in
a distribution system. The interest of the distribution network
operator (DNO) and each MG in the system is considered with
individual optimization models. The impact of the correlated
wind generators on the energy management of the DS and
networked MGs is investigated in [7]. A stochastic framework is
proposed to model the uncertainties in load and wind generation
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in the study. In [8], the authors propose a transactive energy
management method for the interconnected microgrid cluster.
Four different management optimization models are proposed
in the study with different requirements of the collective and
individual interests of the MGs in the objective functions of
the approach. In [9], an agent-based transactive energy man-
agement framework is proposed to handle the aggregation in
the DS. An inter-microgrid auction based electricity market
is organized to manage the excess supply or residual demand
in the systems. The works in [8] and [9] both apply the TE
concepts for the coordination of multiple MGs in the system.
However, the bilevel framework in which the DNO is considered
as an individual entity with its own interest in the coordinated
operation is studied in this paper, while it is not included in
the scope of [8] and [9]. The work in [10]-[12] focuses on the
decentralized algorithms for the operation of networked MGs.
In [10], an iterative bilevel stochastic programming algorithm
is proposed based on penalties to guarantee the convergence of
the solutions of each entities’ operation decisions. Meanwhile,
the alternating direction method of multipliers (ADMM) is used
in [11], [12] to decentralize the energy management algorithms
for the networked MGs in the DS.

The existing researches have provided valuable insights on the
coordinated energy management of networked MGs. However,
in the existing studies, the settlement for the power exchanges
between the DS and MGs is determined by a rigid clearing
scheme in which the clearing price for the power exchange
between the DS and MGs is fixed. In this case, the flexibility
of the MGs in the DS is not fully explored and the operation
efficiency of the system is not optimized. In order to further
enhance the efficiency of the operation, a transactive energy (TE)
based energy management framework is proposed in this paper.
Transactive energy is emerging as one of the most promising
solutions for the decentralized coordination of different entities
in the smart grid [13]. As defined by the GridWise Architecture
Council (GWAC), TE is a set of economic and control mecha-
nisms that allows the dynamic balance of supply and demand
across the power system [14]. It uses value as a key operational
parameter. Price signals are applied in TE to bridge all the
components in the system, and the agreement between the con-
trol decisions of different components are determined through
transactions. The TE concept is highly valued for its ability to
fully utilize the response potential of various components in the
system, perform stably and maintain the market efficiency. In
the proposed framework, the DNO and each MG are considered
as individual entities and maximize their own profits during the
operation. A transacitive market is organized by the DNO to
coordinate the energy management of the DS and MGs in the
operation. Instead of fixed prices in the existing models, the
power exchange between the DS and MGs in the operation is
cleared with dynamic pricing in the transactive market. As such,
the energy management of the DS and MGs can be coordinated
and optimized according to the real-time operation condition,
and the flexibility of the MGs is further explored compared with
the fixed pricing schemes. In the TE framework, the clearing
prices between the DS and MGs are determined according to the
status of the system for every scheduling interval. It serves as
a bridging signal between the DS and MGs. With the dynamic
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clearing prices, the MGs determine the scheduling decisions,
and make agreements with the DNO on the power transaction
between them. The transaction for the interval is settled with the
clearing price of this interval. As a result, the flexibility of the
system can be further exploited with the TE framework.

Further, the scenario based stochastic programming (SP)
model is extensively-used in literature, which can optimize the
expected value of the objective function for the system operation
problem under uncertainty. However, the SP model does not
provide robustness with its solution and it needs the exact prob-
ability distribution of the scenarios. On the other hand, robust
optimization (RO) is used to give a robust solution by optimizing
the objective function in the worst-case scenario. Nevertheless,
it may be too conservative and perform badly in the usual
cases [15]. In order to provide a robust solution without being
over-conservative, a distributionally robust optimization (DRO)
based algorithm is developed and used in this study to formulate
and solve the optimization model of the proposed TE based
energy management framework. DRO is an emerging technique
in recent years to handle the robust optimization problem [16]. It
provides an intermediate approach between the SP and RO. By
applying the DRO based algorithm, two important advantages
are provided by the proposed method. First, the exact probability
distribution of the scenarios which may not be available in prac-
tice is not needed. Moreover, it offers robustness in the solution
under uncertainty while avoiding over-conservative solutions.
The main contributions of this paper are summarized as follows:

* A decentralized energy management framework based
on transactive energy is proposed to coordinate the en-
ergy scheduling of the networked MGs in the distribution
system.

* A bilevel quadratic optimization model is developed to
determine the detailed energy scheduling decisions of the
DNO and MGs in the transactive energy based framework.

* A DRO based algorithm is developed for the DNO to
determine the energy scheduling decisions under uncer-
tainty. To the best of the authors’ knowledge, this is the
first study on the DRO models for the energy management
problem of networked MGs. In the existing literature, not
any DRO based models have been proposed for the en-
ergy management problem of networked MGs which is
formulated as a bilevel quadratic problem in this work. In
this paper, a DRO model is developed for the transactive
energy based scheduling problem of networked MGs, and
the corresponding solving method is proposed. The pro-
posed DRO based algorithm can provide a robust solution
of the scheduling problem while preventing it from being
too conservative like the solution by the generic robust
optimization.

The rest of the paper is organized as follows. The transactive
energy based energy management framework for networked
MGs in the distribution system is introduced in Section II. In
Section III, the detailed formulations of the DNO and MGs’
optimization models are described. The DRO based algorithm
is presented in Section IV. The case studies of the proposed
coordinated energy management framework are presented
and discussed in Section V, followed by the conclusions in
Section VI.
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Fig. 1. Transactive Energy Management Framework for Networked Micro-
grids in Distribution System.

II. TRANSACTIVE ENERGY BASED ENERGY MANAGEMENT
FRAMEWORK FOR NETWORKED MGS

In this study, we consider a common system architecture for
a distribution system with networked MGs [6], [10], [12]. The
distribution system is connected with the MGs, and at the same
time connected to the up-stream high voltage (HV) system.
Both the DS and MGs have loads and distributed generators
(DGs), including dispatchable DGs and renewable energy source
(RES)-based DGs. Either the DNO or each MG is considered
as an individual entity in the system and determines its own
operation decisions for the dispatchable units in the system.
Each MG determines the output of the dispatchable units in the
MG, and the deviant between the demand and generation will be
compensated through the power exchange with the DS. At the
same time, the DNO determines the output of the dispatchable
units in the DS. Considering the power exchanges of all the MGs,
the difference between the demand and generation in the DS is
filled by the purchase/sales from/to the HV system. Because
the operation of the DNO and each MG is correlated with each
other, their operation need to be coordinated in order to achieve
the efficient operation of the system. In this paper, a transactive
energy based framework is designed for the coordination of
the energy management of the DNO and MGs. The proposed
framework is illustrated in Fig. 1.

In the system model, the DS is connected with the HV system
and the DNO needs to manage the power exchange between
the DS and the HV system. In the day-ahead process, the DNO
schedules the power exchange between the DS and HV system.
The power exchange will be settled with the day-ahead spot
price ;. In the real-time operation, the power exchange between
the DS and HV system may deviate from the scheduled power
exchange in the day-ahead process due to the operation of the
DNO and MGs under various sources of uncertainty such as
RES and demand, etc. The deviant power exchange between the
DS and HV system in the real-time operation will be settled
according to the real-time price 3; in the balancing market. The



398

imbalance settlement is determined according to the two-price
balance settlement model which is implemented by power mar-
kets (such as NordPool) to encourage the consistency of the
scheduled energy plan and the real-time operation [17]. During
an up-regulating hour, the system needs upward regulation and
the real-time price /3; is higher than the day-ahead spot price .
The purchase price for balance power equals to 3; while the sales
price for balance power equals to ;. On the contrary, the system
needs downward regulation in a down-regulating hour, and the
real-time price 3; is lower than the day-ahead spot price a;. In
this case, the purchase price for balance power equals to o; while
the sales price for balance power equals to 3;. With the purchase
and sales prices for the balance power, the settlement for the
deviant power exchange between the DNO and HV system in
the real-time operation is calculated accordingly.

Meanwhile, the DNO needs to coordinate the MGs in the
DS for the efficient operation. Instead of direct coordination
signals and fixed pricing schemes, during the operation, the DNO
organizes a transactive market with the MGs connected to the DS
to coordinate the energy management of the MGs considering
the real-time operational condition in the proposed framework.
As shown in Fig. 1, the DNO determines and announces a
clearing price A; for the power exchange of all the MGs in the
DS of each time slot, and the MGs determine and feedback
their operation decisions. Based on the price A; for the power
exchange, each MG determines its operation decisions to min-
imize its own operation cost, and the power exchange between
the MGs and DS is determined accordingly at the same time.
The power exchange between the MGs and DS of each time slot
will be cleared according to the clearing price A; and the power
exchange between them at the slot. As such, the transaction
between the DNO and MGs is committed with the clearing price
A and the power exchange in the proposed transactive market.
As either the DNO or each MG is an individual entity and has
its own interest, they will determine their operation decisions to
maximize their own surplus. The optimization models for the
operation of the DNO and MGs are presented in details in the
following section.

III. ENERGY SCHEDULING OPTIMIZATION
MoDELS OF DNO AND MGs

A. System Model of Distribution System and Microgrids

In the system model, both the DS and MGs have dispatch-
able DGs (which are micro turbines (MTs) in this study) and
RES-based DGs (which are wind turbines (WTs) and photo-
voltaic panels (PVs) in this study), and the RES-based DGs are
considered nondispatchable. Both the DNO and MGs need to
determine the output of the MTs to minimize the operation cost.
The generation cost of the MTs is formulated with a quadratic
function of active power output [11] as follows.

Uy (pg) = agpy + bgpg + g (D

Following the work in [6], [10], [11], the linearized DistFlow
model is used in this paper. The model has been widely applied
and justified in the studies of DS and MGs, i.e., [18]-[20].
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The linearized DistFlow model is known to approximate the
exact AC power flow model well [21]. The linearized DistFlow
equations are presented as follows.

pf_f: Z pgk_pj: V@,_‘}GN, (313)65 (2)
keN:(j,k)e€
qu: Z qgk_qja V%.,j EN! (Ea.}')eg (3)
keN:(j,k)e€
F F
Ti,i05 i T Ti,jq; 5
Vy=Vi— M i eN, () €€ ()
0
p;=pS —p, g5=q—qF, VieN 5)

where p; and g; are the active and reactive power injection of
node j in the system respectively, p:?' and q:? are the generation
at node j, pj and g’ are the load at node j, Vs is the voltage of
the node at which the DS is connected to the HV system, A" and
£ are the sets of the nodes and branches in the DS respectively.

B. Optimization Model of DNO

For the DNO, the energy scheduling aims to minimize the op-
eration cost. Thus, the objective function of the energy schedul-
ing problem of the DNO can be formulated as follows.

min JD,w = Z a'tpf + Z ’)’t‘,wApfw
teT teT

+ Z Z (“gpﬁ,t,w +bgpg,tw + cq)
teT gebp

=3 hwpii (6)

teT meM

The first term in the objective function of the DNO’s opti-
mization model is the cost for the scheduled power exchange
between the DS and HV system. The second term is the cost for
the deviant power exchange between the DS and HV system in
the operation. -, is the price for the settlement calculation in the
two-price balance model according to the system condition and
the power exchange direction between the DS and HV system.
The third term is the generation cost of the MTs in the DS.
The fourth term is the settlement between the DS and MGs.
In this study, the two-price model of the real-time balancing
market is adopted [17], [22]. Thus, the price for the deviant
power exchange Apfw between the DS and HV system in the
operation can be determined as follows.

Yiw =

{at: if (Apfw <0, ar < frw) or (Apfw >0, ar = Brw)
181‘.,.&'1 if (Apfw > 0: ap < .Bt,w) or (Apfw < 0: Qg > .Bt,w)
)

With the expression of price ~;,, above, the optimization

model of the energy scheduling problem of the DNO can be
reformulated as follows to facilitate an efficient solution with
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the off-the-shelf solvers.

min Jp, = Y apf + Y UE,

teT teT
+ D) (agp] 0+ bopg.cw +cg)
teT geGp
=D MwPmiw @)
teT meM
Subject to
"'!{J?,w = QtApfw, YVte T (9)

fo}‘tﬁ,w 2 JSt,.wApfw: Vt S T (10)

F _ F L M+
Pijiw= D, Piktw T Powt D SimPmiw
keNp:(j,k)eép meM

W
- Z 57.9Pg.tw — Z sj,wpw,t,w
geGp weWp
E : Vv
- Sj,.'t.rpv,lt,wu
veVp

vte T, VjeNp,(i,5) €Ep (11)

F ' M #
Qriw T Grw T E , Sjmm, t.w
meM

F _
Dijtw = Z

keND:(j,k)eép

- Z Sj.g9g,tws VEET, Vi€ Np,(i,5) €€p

g9<Gp
(12)
P}stsw = I/;:‘.tsw - (Tisjpfj‘.t,w + Ii,.quj,,t,.w) vaa vt € T'.l
Vi <Vigw <Vjt, WeT, VieNp (14)
Py SPoiw<pPs, VteT, Vgelp (15)
9y <dgtw<4qy, Yt€T, Ygelp (16)

Constraints (9) and (10) together with the second term of the
objective function (8) reformulate the cost of the DNO for the
deviant power exchange between the DS and HV system in the
operation, which guarantees that ‘tﬁ,w in the second term of
(8) equals to fyt,wApfw in the original objective function (6).
Constraints (11) to (1'4) are the power flow constraints from
the DistFlow formulations. Constraints (15) and (16) are the
capacity limits of the MTs. In the optimization of the DNO, p#
is the scheduled active power exchange of the distribution system
with the HV system, which is the here-and-now decision. On the
other hand, Apfw, Pg.t,w and A; ., are the wait-and-see decisions.
Apfw is the active power exchange deviation of the distribution
system with the HV system in the real-time operation from the
scheduled value pf’. In the operation, the DNO organizes the
transactive market, and determines the dynamic price A; ., to
clear the power exchange with the MGs. {p}% ., gm i, : Ym €
M} are the power exchange between the DS and MG m by
the solutions of the MGs’ energy scheduling optimization as

follows.

(pg’{,’;i‘.w: qg’i:,w) = arg min Jm!"‘" (At,w)

(17

The optimization model of the MGs is presented in the following
subsection.

C. Optimization Model of Microgrids

For each MG, the energy scheduling is to minimize its oper-
ation cost considering the clearing price A; ., for the exchange
between the DS and MGs which is announced by the DNO. The
optimization model of the energy scheduling problem of MG
m (VYm € M) is presented as follows.

min Jp o = Z Z (Ggpf;,z,,w + bgpg.tw + Cg)

teT gelm
+ D AP e (18)
teT
Subject to
F _ F I M
Pijtw = Y Pikew TP — SimPhcw
kENm:(,k)EEm
w
- Z Sj.9Pg.tw — Z s.‘f‘.wpw,t,w
gEGm WEWm
Vv
- Z SjwPy tws
VEVm
Vt €T, Vj€Nn,(1,5) €En (19)

F_
Gijtw = Z

kENm:(7,k)EEm

- Z Sj,gQ'g,t,w; Vt € T’ Vj € Nm, (3.’}) € gm

F L M
G ktw T Dtw = Simm,t.w

g€Gm
(20
Vitw =Vitw— (TgJPfLLw + ﬂ:i1jq§j,t,w) Vo, VteT,
Vj € Nim, (3, 7) € Em 21
Vi <Viw <V, VEeT,Vj€Nm (22)
Py <Pgtw <Py, VtET,Vg€Gn (23)
Gy < Ggiw<aq, YtET,Vgeln (24)

The first term in the objective function (18) is the generation
cost of the MTs in the MG, while the second term of (18) is the
settlement with the DS. Constraints (19) to (22) are the power
flow constraints from the DistFlow formulations. Constraints
(23) and (24) are the capacity limits of the MTs.

D. Bilevel Optimization Model of DNO and Microgrids

As shown in the optimization models of the DNO and MGs
presented above, the optimization problem of the MGs is actually
nested in the DNO’s optimization. Thus, the optimization of
the DNO and MGs forms a bilevel optimization model. The
bilevel optimization model for the energy management of the
DNO and MGs is illustrated in Fig. 2. The clearing price A; is
determined by the optimization of the DNO and serves as an
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input of the MGs’ optimization problem. Based on the A, deter-
mined by the DNO’s optimization, the operation of the MGs are
determined by the MGs’ optimization, and the power exchange
between the DNO and MGs are also determined accordingly.
Meanwhile, the power exchange between the DNO and MGs in
the DNO’s optimization must match the solution of the MGs’
optimization.

In order to solve the bilevel optimization, the Karush-Kuhn-
Tucker (KKT) conditions of the MGs’ optimization are used
to convert the original bilevel optimization into a single level
optimization problem. The optimization model of MG m (Vm €
M) is the minimization problem (18) subject to (19)-(24)
which is a standard quadratic optimization problem. To sim-
plify the presentation of the algorithm, we express the op-
timization model of MG m in a compact vector form as
follows.

min Jy, ., = %xﬂme,wxm,w +Xp bmw  (25)
Subject to

EnwXmw = Cmyw (£m1w) (26)

AmwXmw Cdmw  (Bmw) (27)

where &, , and p, , are the dual variables of the equality
and inequ'cility constraints respectively. The KKT conditions of
the quadratic optimization (25) subject to (26) and (27) can be
expressed as (26) and (27) together with the constraints (28)-(30)
below.

Hm,wxm,.w + bm,w + E{ngm:w + A{Lw”m,w =0,

VYm e M (28)
Mo = 0, YmeM (29
diag(”m,w)(Am,wxm,w - dm,w) =0, YmeM (30)

It can be easily proved that the optimization of the MGs
is a convex quadratic programming problem. Thus, the KKT
conditions expressed above guarantee the optimal solution of
the MG’s optimization problem. However, the complementary
slackness condition (30) is nonlinear which makes the single-
level optimization difficult to solve. In order to address this issue,
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the complementary slackness condition (30) is reformulated
with an auxiliary binary variable vector z,, ., as follows.

dm,w - Am,wxm.,.w < Lzm,,wa Yme M
Pmw < L(1 = 2mw), Ym e M

(3D
(32)

where L is a big enough scalar. With the process above, the
original bilevel optimization model of the DNO and MG:s is re-
formulated and solved by the minimization problem (8) subject
to (9)-(16), (19)-(24), (28), (29), (31), (32).

IV. DISTRIBUTIONAL ROBUST OPTIMIZATION MODEL

In general, expected value is a good measurement of the
performance for the optimization with stochastic variables.
Therefore, the scenario based SP model is widely used for the
optimization under uncertainty. The optimization of the energy
scheduling problem presented in the previous section can be
formulated through SP to minimize the expected value of the
operation cost as follows.

min E [Jp] = Z WwJD,.w

weh)

:Zatpf‘i‘zﬂw

teT we?

D vt D

teT teT geGp

(%pf:,t,,w + bgPg.tw + ¢4)

- Z Z lt,wpg{,t,w

teT meM

subject to (9)-(16), (19)-(24), (28), (29), (31) and (32), where
m,, is the probability of scenario w. However, as discussed in
Section I above, the SP model does not provide robustness in
its solution and requires the exact distribution of the scenarios
7 = {m,, Yw € 2}, which may not be possible in many cases
in practice. To this end, a DRO based model is developed for
the scheduling problem with the proposed TE based framework
under uncertainty to provide robustness in the solution while
preventing it from being over-conservative. Instead of mini-
mizing the expected operation cost or the operation cost in the
worst-case scenario, the DRO approach minimizes the expected
operation cost of the system with the worst-case probability
distribution in the ambiguity set S of an estimated distribution
w = {wy, Yw € Q}. The ambiguity set S can be defined by
the norm-1 and norm-infinite tolerance [23] of the estimated
distribution. It is expressed as follows.

(33)

Plwefl)=1
=0
S=4T (34)
I —=|l; <1
I — @l < Voo

where 9; and 9, are the norm-1 and norm-infinite tolerance
limits respectively. Thus, the optimization model with DRO is
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Algorithm 1: Minimax Optimization Via Relaxation.

0. Denote the energy management decisions by vector x,

and denote  the clearing prices by vector A. Denote

E [Jp] by K.

Pick a random distribution 7 € S and set R, = {7}.

Solve (x*,1") = arg min{maxyeg_ K} and

K* = maxger, K(x*, 1%, 7).

3. Solve m* = arg max, K (x*,1%, 7).

4. If |[K(x*,A*,7m*) — K*| < ethen return (x*, A%, 7*)
as the solution, else append 7* to R and go to Step 2.

N

formulated as follows.

min max E [Jp] = min max lz :rrwJD_.w‘|

wES
weN

= min max {Zacpf - Z"'Tw lZﬁfﬁu

teT weh) teT

+ Z Z (as*p;,z,,w + bgpg,t,,w + Cg)

teT geGp

teT meM

(35)

subject to (9)-(16), (19)-(24), (28), (29), (31), (32) and (34).
The DRO model above is a mixed integer quadratic minimax
optimization model. The integer variables are the binary auxil-
iary variables Z, ., in constraints (31) and (32). In this study,
an iterative algorithm based on the relaxation approach for the
minimax optimization [24] is developed and used to solve the
DRO problem. The steps of the algorithm are described in
Algorithm 1.

The outputs of Algorithm 1 give the energy scheduling de-
cision of the DNO by x* and the optimal clearing prices in the
transactive market by A* at the same time. With the clearing
prices in the transactive market, each MG carries out its own
optimization and determines the operation in each scenario.

V. CASE STUDY

In order to illustrate the performance of the proposed method
for the energy management of networked MGs, case studies
were carried out on the modified IEEE 33-bus system with three
individual MGs and the modified IEEE 123-bus system with nine
individual MGs. The results of the case studies are presented and
discussed in this section.

A. Case Study Descriptions

The first scenario of the case studies was conducted on the
modified IEEE 33-bus system with three MGs [10], [12]. The
single line diagram of the system is shown in Fig. 3. The load at
the buses in the MGs and the RES based distributed generation in
the system are summarized in Table I and Table II respectively.
The resistance and reactance of all the branches in the MGs
are set to be 0.06 and 0.1 p.u., and the base power is set to be

| 26 27|28 29 30|31 (32|33

Fig. 3. IEEE 33-Bus System with Three Microgrids.
TABLE
LOAD INFORMATION OF MGSs
Total Active | Total Reactive
MG No. Bus No. Load (MW) | Load (MVAr)
34,35,36,37,38,39,40,41, ) .
MGI 42,43,44,45,46,47,48 210 1.20
MG2 49,50,51,52,53,54,55 1.05 0.70
MG3 56,57,58,59,60,61 0.72 0.48
TABLE IT
INFORMATION OF RES BASED DGS IN SYSTEM
Bus No. 10 37 39 43 55 57
DER Type WT PV PV WT PV WT
Maximum Active
400 200 100 400 300 400
Power Output (kW)

TABLE III
KEY PARAMETERS IN CASE STUDIES

Parameter || Value
MT Cost Function Coefficient (ag) 3.0 x 1074 §/(kWh)?
MT Cost Function Coefficient (bg) 0.38/kWh

MT Cost Function Coefficient (cg) 0%

MT Active Power Output Limit (p7) 600 kW
MT Reactive Power Output Limit (qg') 200 kVar
Voltage Limits (VJ."', V:,i-_) 1.1, 0.9 p.u.

100 MVA. The key parameters in the case studies are listed in
Table IIL

In order to further illustrate the performance of the proposed
transactive energy management framework, a second scenario
was also conducted on the modified IEEE 123-bus system con-
nected with nine MGs [25]. The diagram of the test system is
shown in Fig. 4. The total load of the system is 3.49 MW. The
MTs and WTs in the system have the same parameters with
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Fig. 4. IEEE 123-Bus Test System with Nine Microgrids.

the previous case in the modified IEEE 33-bus system. Nine
MGs, denoted by MG A to I, are connected to the modified
IEEE 123-bus test system, in which MG A to C have the same
configuration with MG1 in the previous case, MG D to F have
the same configuration with MG2 in the previous case, and MG
G to I have the same configuration with MG3 in the previous
case.

The optimization problems in the case studies were solved on
a laptop with Intel Core i5 CPU (2.30GHz) and 8GB RAM. The
running time of the optimization for each case of the DS is less
than 10 minutes. The operation of the energy management is
scheduled on an hourly basis. The running time of the proposed
algorithm can meet the time requirement of the scheduling
problem.

B. Simulation on Modified IEEE 33-Bus System

The results of the case study with the modified IEEE 33-
bus system with three MGs show that the proposed TE based
framework is able to coordinate the MGs in the DS as expected.
The power exchange between the DS and MGs in each time slot
is identical with the DNO’s optimization and the optimization
of the MGs with the announced clearing prices by the DNO
in the transactive market. More importantly, the proposed TE
based framework will result in higher operation efficiency than
the fixed pricing schemes, in which the power exchange between
the DNO and MGs is settled with a fixed price A. Fig. 5 shows
the operation cost of the DS with both the proposed TE based
framework and the fixed pricing schemes. It is shown that the
operation cost of the DS is significantly reduced by the proposed
TE based framework compared with the fixed pricing schemes
with any price.

The detailed numbers of the operation costs of all the entities
in the system are listed in Table I'V. They are the expected costs of
the entities in the planning horizon of 24 hours. The operation
costs of the MGs show various trends with the change of the
prices in the fixed pricing schemes. When the price is very low,
the MGs will import a large amount of electricity from the DS,
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Fig. 5. Operation Cost of DS with Tranascitve Framework and Fixed Prices

for IEEE 33-Bus Test System with Three MGs.

TABLE IV
OPERATION COST WITH DIFFERENT PRICING SCHEMES

Unit: $ || DNO MG1 MG2Z MG3
Transactive Framework 12098 10074 5156 2896
A = 0.308/kWh 14782 8270 4318 2487
A = 0.358/kWh 13325 9498 4938 2802
A = 0.408/kWh 13271 10426 5357 2916
A = 0.458/kWh 14607 11054 5577 2831
A = 0.508/kWh 17326 11383 5597 2545
A = 0.558/kWh 21282 11411 5416 2060
A = 0.608/kWh 26716 11139 5036 1374

even in the peak hours. On the contrary, when the price is very
high, the MGs will start to export electricity to the DS when it is
in the off-peak hours. Both of the cases will damage the profit of
the DS, and such pricing strategies will not be accepted by the
DNO. Thus the DNO will choose an intermediate price when
its own operation cost is the lowest, which is about 0.4% /kWh
in the case study. In this case, the operation costs of all the
MGs are slightly higher than or roughly the same as the case
with the proposed TE based framework. Thus, the proposed TE
based coordination approach reduces the operation cost of the
DS by better scheduling decisions and deploying the flexibility
of the distributed energy resources more efficiently instead of
damaging the profit of the MGs.

Additionally, a case with a fixed pricing curve rather than a
fixed pricing level is also simulated and compared to further
demonstrate the performance of the proposed framework. It is
assumed that the fixed pricing curve is the same as the day-ahead
spot prices as shown in Fig. 6. The expected operation cost of the
DS is about $15600 in this case compared with the cost of about
$12100 with the proposed TE based framework. Although the
price is fluctuated and aligned with the day-ahead spot prices in
this case, the pricing is still rigid and the flexibility of the system
is not fully exploited with the fixed pricing schemes. As a result,
the operational cost of the DS is obviously higher than the case
with the proposed TE based framework.

In order to provide a robust solution without being over-
conservative, the DRO based algorithm is developed and used in
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Fig. 7. Scheduled Active Power Exchange between DS and HV System.
TABLE V
OPERATION COST WITH DIFFERENT ALGORITHMS
Unit: § | sp DRO RO
Expected Operation Cost 11834.48  12098.31  14261.82
Worst-Case Operation Cost 16003.40  14820.02  14307.15

the proposed framework. The result with the DRO based algo-
rithm is compared with the outputs using the SP and RO models.
The scheduled active power exchange between the DS and HV
system in the day-ahead process with different algorithms are
shown in Fig. 7. In order to hedge the risk, the solution with
the RO model schedules the highest amount of electricity in
the day-ahead process to the prevent possible power shortage in
the operation which may result in high imbalance costs in the
worst case. On the other hand, the solution with the SP model
schedules the least electricity in the day-ahead process in order
to achieve a lowest expected cost. However, the solution with
the DRO based algorithm offers an intermediate solution.

The expected operation cost of the DNO and the results in
the worst-case scenario with different algorithms are listed in
Table V. It is shown that the solution with the SP model has
the lowest expected operation cost of the DNO. However, it
provides no robustness with the solution in the worst case. The
DNO’s operation cost with SP is obviously higher than both
the cases using the DRO and RO models. The solution with
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Fig. 8. Operation Cost of DS with Tranascitve Framework and Fixed Prices

for IEEE 123-Bus Test System with Nine MGs.

the RO model is very robust in the worst-case scenario. It has
the lowest operation cost among the three algorithms. However,
the solution is so conservative that the expected operation cost
using RO is significantly higher than the other two algorithms.
With the proposed DRO based algorithm, the expected operation
cost of the DNO increases marginally compared with the result
with the SP model. Meanwhile, the DNO’s operation cost in
the worst-case scenario is just slightly higher than the case
using RO and obviously lower than the case using SP. Thus,
the DRO based algorithm can provide a robust solution for the
proposed TE based coordinated energy management framework
under uncertainty while it prevents the solution from being
over-conservative which is the case with the RO model.

C. Simulation on Modified IEEE 123-Bus System

The results of the case with the modified IEEE 123-bus test
system with nine MGs share the same trend with the previous
case with the modified IEEE 33-bus system with three MGs.
Fig. 8 shows the operation cost of the DS with both the proposed
TE based framework and the fixed pricing schemes in this case.

Similar to the results of the previous case, the operation cost of
the DS is greatly reduced by the proposed TE based framework
with respect to the fixed pricing schemes at any price point.
The expected operation cost of the DS with the proposed TE
based framework is about $4550 while it is higher than $7000
for all the cases with the fixed pricing schemes. The proposed TE
based energy management framework can effectively improve
the operation efficiency of the DS in the case study.

VI. CONCLUSION

In this paper, a transactive energy based energy management
framework is proposed for the coordinated operation of net-
worked MGs in distribution systems. Instead of direct coordi-
nation signals and fixed pricing schemes, the DNO organizes
a transactive energy market and determines the dynamic prices
in the proposed framework to settle the power exchange be-
tween the DS and MGs in the real-time operation. Either the
DNO or each MG is considered as an individual entity and



maximizes its own profit in the proposed framework. A bilevel
optimization model is developed to achieve the convergence
between the operation decisions of the DNO and MGs. A DRO
based algorithm is developed and used to provide a robust
solution of the optimization problems while preventing the
solution from being over-conservative. The case study results
of the proposed framework show that the transactive energy
based energy management approach significantly improves the
operation efficiency of the system. The operation cost of the
DS is greatly reduced compared with the fixed pricing schemes.
Further, the DRO based algorithm is able to provide a robust
solution compared with the stochastic programming model.
Meanwhile, it avoids the over-conservative solutions like the
case with the robust optimization model.
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