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Abstract. Hierarchical clustering is a fundamental tool in data mining,
machine learning and statistics. Popular hierarchical clustering algorithms
include top-down divisive approaches such as bisecting k-means, k-median,
and k-center and bottom-up agglomerative approaches such as single-
linkage, average-linkage, and centroid-linkage. Unfortunately, only a few
scalable hierarchical clustering algorithms are known, mostly based on
the single-linkage algorithm. So, as datasets increase in size every day,
there is a pressing need to scale other popular methods.
We introduce efficient distributed algorithms for bisecting k-means, k-
median, and k-center as well as centroid-linkage. In particular, we first
formalize a notion of closeness for a hierarchical clustering algorithm,
and then we use this notion to design new scalable distributed methods
with strong worst case bounds on the running time and the quality of the
solutions. Finally, we show experimentally that the introduced algorithms
are efficient and close to their sequential variants in practice.

Keywords: Hierarchical Clustering, Parallel and Distributed Algorithms,
Clustering, Unsupervised Learning

1 Introduction

Thanks to its ability in explaining nested structures in real world data, hierarchical
clustering is a fundamental tool in any machine learning or data mining library.
In recent years the method has received a lot of attention [23, 24, 15, 35, 7, 10,
34, 37, 5]. But despite these efforts, almost all proposed hierarchical clustering
techniques are sequential methods that are difficult to apply on large data sets.

The input to the hierarchical clustering problem is a set of points and a
function specifying either their pairwise similarity or their dissimilarity. The
output of the problem is a rooted tree representing a hierarchical structure of the
input data, also known as a dendrogram. The input points are the leaves of this
tree and subtrees induced by non-leaf nodes represent clusters. These clusters
should also become more refined when the root of the corresponding subtree is
at a lower level in the tree. Hierarchical clustering is useful because the number
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of clusters does not need to be specified in advance and because the hierarchical
structure yields a taxonomy that allows for interesting interpretations of the data
set. For an overview of hierarchical clustering methods refer to [31, 27, 18].

Fig. 1. A Hierarchical Clustering Tree. The grey leaves are the input data points.
Internal nodes represent a cluster of the leaves in the subtree rooted at the internal
node.

Several algorithms have emerged as popular approaches for hierarchical clus-
tering. Different techniques are used depending on the context because each
method has its own advantages and disadvantages. There are various classes of
data sets where each method outperforms the others. For example, the centroid-
linkage algorithm has been used for biological data such as genes [12], whereas,
an alternative method, bisecting k-means, is popular for document comparison
[36]. The most commonly used methods can be categorized into two families:
agglomerative algorithms and divisive algorithms.

Divisive algorithms are top-down. They partition the data starting from a
single cluster and then refine the clusters iteratively layer by layer. The most
commonly used techniques to refine clusters are k-means, k-median, or k-center
clustering with k = 2. These divisive algorithms are known as bisecting k-means
(respectfully, median, center) algorithms [22]. Agglomerative algorithms are based
on a bottom up approach (see [17] for details). In an agglomerative algorithm, all
points begin as their own cluster. Clusters are then merged through some merging
strategy. The choice of merging strategy determines the algorithm. Common
strategies include single-linkage, average-linkage and centroid-linkage.

Most of these algorithms are inherently sequential; they possess a large number
of serial dependencies and do not lend themselves to efficient parallelization. For
example, in centroid-linkage one cannot simultaneously perform many merges
because the selection of which clusters to merge may depend strongly on prior
merges (and their resultant centroids).

Recently, there has been interest in making hierarchical clustering scalable [24,
23, 15, 35, 5, 33, 30, 38]. Nevertheless most prior work has focused on scaling the
single-linkage algorithm; efficient MapReduce and Spark algorithms are known for
this problem [24, 23, 5, 38]. This includes the result of [38] giving strong theoretical
guarantees and practical performance for scaling single-linkage clustering. This is
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unsurprising because single-linkage can be reduced to computing a Minimum-
Spanning-Tree [14], and there has been a line of work on efficiently computing
minimum spanning trees in parallel and distributed settings [2, 26, 28, 1, 32].
Unfortunately this approach does not extend to other hierarchical clustering
techniques. In contrast, to the best of our knowledge no efficient distributed
algorithm is known for centroid-linkage or divisive clustering methods. Thus,
scaling methods such as centroid-linkage and bisecting k-means are open problems
and the main focus of this paper.

Our Contribution: In this paper we introduce fast scalable hierarchical clus-
tering algorithms. The main results of the paper are the following:
A Theoretical Framework: This paper develops a theoretical framework for
scaling hierarchical clustering methods. We introduce the notion of closeness
between two hierarchical clustering algorithms. Intuitively, two algorithms are
close if they make provably close or similar decisions. This enforces that our
scalable algorithms produce similar solutions to their sequential counterpart.
Using this framework, the paper formalizes the root question for scaling existing
methods.
Provably Scalable Algorithms: We introduce fast scalable algorithms for
centroid-linkage and the bisecting k-means, k-median and k-center algorithms.
These new algorithms are the main contribution of the paper. The algorithms are
proved to be close to their sequential counterparts and efficient in parallel and
distributed models. These are the first scalable algorithms for divisive k-clustering
as well as centroid-linkage.
Empirical results: We empirically study the algorithms on three datasets to
show that they are efficient. The empirical results demonstrate that the dis-
tributed algorithms are closer to their sequential counterparts than the theory
suggests. This shows that the new methods produce clusterings remarkably similar
to those produced by the sequential methods.

The algorithms can be used for most data sets. The scalable bisecting k-
clustering algorithms apply to data belonging to any metric space. For centroid
linkage, we assume that the input data points belong to some Euclidean space so
that computing the centroid of a finite set of points is well defined. In this case,
our techniques generalize to any distance function between points in Euclidean
space for which a family of Locality Sensitive Hash (LSH) functions is known,
such as distances induced by an ℓp-norm for p ∈ (0, 2] [11].

2 Preliminaries

In this section we formally define the hierarchical clustering problem, describe
popular sequential approaches, and provide other necessary background informa-
tion.

Problem Input: The input is a set S of n data points. The distance between
points specifies their dissimilarity. Let d(u, v) ≥ 0 denote the distance between
two points u, v ∈ S. It is assumed that d is a metric.
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Problem Output: The output is a rooted tree where all of the input points are
at the leaves. Internal nodes represent clusters; the leaves of the subtree rooted
at a node correspond to the points in that specific cluster.
Computational Model: We analyze our algorithms in the massively parallel
model of computation [26, 20]4. Let N be the input size. In this model we have
m = O(N1−δ) machines with local memory of size Õ(N δ), for constant δ > 0.
The Õ suppresses logarithmic factors. Notice that the total amount of memory
used is near linear. The computation occurs in rounds and during each round
each machine runs a sequential polynomial time algorithm on the data assigned
to it. No communication between machines is allowed during a round. Between
rounds, machines are allowed to communicate as long as each machine receives
no more communication than its memory and no computation occurs. Ideally, in
this model one would like to design algorithms using a number of rounds that is
no more than logarithmic in the input size.
k-Clustering Methods: We recall the definitions of k-{center,median,means}
clusterings. Let C = {c1, c2, . . . , ck} be k distinct points of S called centers.
For x ∈ S let d(x,C) = minc∈C d(x, c) We say that these centers solve the
k-{center,median,means} problem if they optimize the following objectives, re-
spectively: k-center: minC maxx∈S d(x,C), k-medians: minC

∑
x∈S d(x,C) and

finally k-means: minC
∑

x∈S d(x,C)2.
The choice of centers induces a clustering of S in the following natural way.

For i = 1, . . . , k let Si = {x ∈ S | d(x, ci) = d(x,C)}, that is we map each
point to its closest center and take the clustering that results. In general it is
NP-hard to find the optimal set of centers for each of these objectives, but efficient
O(1)-approximations are known [19, 9, 25].
Classic Divisive Methods: We can now describe the classical divisive k-
clustering algorithms. The pseudocode for this class of methods is given in
Algorithm 1. As stated before, these methods begin at the root of the cluster
tree corresponding to the entire set S and recursively partition the set until we
reach the leaves of the tree. Note that at each node of the tree, we use an optimal
2-clustering of the current set of points to determine the two child subtrees of
the current node.
Classic Agglomerative Methods: Recall that agglomerative methods start
with each data point as a singleton cluster and iteratively merge clusters to build
the tree. The choice of clusters to merge is determined by considering some cost on
pairs of clusters and then choosing the pair that minimizes the cost. For example,
in average-linkage the cost is the average distance between the clusters, and for
centroid-linkage the cost is the distance between the clusters’ centroids. In this
paper we focus on the centroid-linkage method, and have provided pseudocode
for this method in Algorithm 2.
Notation: We present some additional notation and a few technical assumptions.
Let X be a finite set of points and x a point in X. We define the ball of radius
R around x, with notation B(x,R), as the set of points with distance at most

4 This model is widely used to capture the class of algorithms that scale in frameworks
such as Spark and MapReduce.
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1 DivisiveClustering(S)
2 if |S| = 1 then

3 Return a leaf node corresponding to S
4 else

5 Let S1, S2 be an optimal 2-clustering of S /* One of the means, median,

or center objectives is used */

6 T1 ← DivisiveClustering(S1)

7 T2 ← DivisiveClustering(S2)

8 Return a tree with root node S and children T1, T2

9 end

Algorithm 1: Standard Divisive Clustering

1 CentroidClustering(S)
2 Let T be an empty tree
3 For each x ∈ S add a leaf node corresponding to the cluster {x} to T
4 Let C be the current set of clusters
5 while |C| > 1 do

6 S1, S2 ← argminA,B∈C d(µ(A), µ(B)) /* µ(A) := centroid of A */

7 Add a node to T corresponding to S1 ∪ S2 with children S1 and S2

8 C ← C \ {S1, S2} ∪ {S1 ∪ S2}

9 end

10 Return the resulting tree T
Algorithm 2: Centroid Linkage Clustering

R from x in the point set X, i.e. B(x,R) = {y | d(x, y) ≤ R, y ∈ X}. Let
∆(X) = maxx,y∈X d(x, y) be the maximum distance between points of X. When
X is a subset of Euclidean space, let µ(X) = 1

|X|

∑
x∈X x be the centroid of X.

Finally, WLOG we assume that all points and pairwise distances are distinct5

and that the ratio between the maximum and minimum distance between two
points is polynomial in n.

3 A Framework for Parallelizing Hierarchical Clustering

Algorithms

We now introduce our theoretical framework that we use to design and ana-
lyze scalable hierachical clustering algorithms. Notice that both divisive and
agglomerative methods use some cost function on pairs of clusters to guide the
decisions of the algorithm. More precisely, in divisive algorithms the current set of
points S is partitioned into S1, and S2 according to some cost c(S1, S2). Similarly,
agglomerative algorithms merge clusters S1 and S2 by considering some cost
c(S1, S2). So in both settings the main step consists of determining the two sets
S1 and S2 using different cost functions. As an example, observe that c(S1, S2)
is the 2-clustering cost of the sets S1 and S2 in the divisive method above and
that c(S1, S2) = d(µ(S1), µ(S2)) in centroid linkage.

5 We can remove this assumption by adding a small perturbation to every point.
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The insistence on choosing S1, S2 to minimize the cost S1, S2 leads to the large
number of serial dependencies that make parallelization of these methods difficult.
Thus, the main idea behind this paper is to obtain more scalable algorithms by
relaxing this decision making process to make near optimal decisions. This is
formalized in the following definitions.

Definition 1 (α-close sets). Let c be the cost function on pairs of sets and let
S1, S2 be the two sets that minimize c(S1, S2). Then we say that two sets S′

1, S
′
2

are α-close to the optimum sets for cost c if c(S′
1, S

′
2) ≤ αc(S1, S2), for α ≥ 1.

Definition 2 (α-close algorithm). We say that a hierarchical clustering algo-
rithm is α-close to the optimal algorithm for cost function c if at any step of the
algorithm the sets selected by the algorithm are α-close for cost c, for α ≥ 1. 6

A necessary condition for efficiently parallelizing an algorithm is that it must
not have long chains of dependencies. Now we formalize the concept of chains of
dependencies.

Definition 3 (Chain of dependency). We say that a hierarchical clustering
algorithm has a chain of dependencies of length ℓ, if every decision made by the
algorithm depends on a chain of at most ℓ previous decisions.

We now define the main problem tackled in this paper.

Problem 1 Is it possible to design hierarchical clustering algorithms that have
chain of dependencies of length at most poly(log n) and that are α-close, for
small α, for the k-means, the k-center, the k-median and centroid linkage cost
functions?

It is not immediately obvious that allowing our algorithms to be α-close will admit
algorithms with small chains of dependencies. In sections 4.1 and 4.2 we answer
this question affirmatively for divisive k-clustering methods and centroid linkage7.
Then in section 4.3 we show how to efficiently implement these algorithms in the
massively parallel model of computation. Finally, we give experimental results
in section 5, demonstrating that our algorithms perform close to the sequential
algorithms in practice.

4 Fast Parallel Algorithms for Clustering

4.1 Distributed Divisive k-Clustering

We now present an O(1)-close algorithm with dependency chains of length
O(log(n)) under the assumption that the ratio of the maximum to the minimum
distance between points is polynomial in n.

6 Note that the guarantees is on each single choice made by the algorithm but not on
all the choices together.

7 In prior work, Yaroslavtsev and Vadapalli [38] give an algorithm for single-linkage
clustering with constant-dimensional Euclidean input that fits within our framework.
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As discussed in Sections 2 and 3, the main drawback of Algorithm 1 is that
its longest chains of dependencies an be linear in the size of the input8. We
modify this algorithm to overcome this limitation while remaining O(1)-close
with respect to the clustering cost objective. In order to accomplish this we
maintain the following invariant. Each time we split S into S1 and S2, each set
either contains a constant factor fewer points than S or the maximum distance
between any two points has been decreased by a constant factor compared to
the maximum distance in S. This property will ensure that the algorithm has a
chain of dependency of logarithmic depth. We present the pseudocode for the
new algorithm in Algorithms 3 and 4.

1 CloseDivisiveClustering(S)
2 if |S| = 1 then

3 Return a leaf node corresponding to S
4 else

5 Let S1, S2 be an optimal 2-clustering of S /* One of the means, median,

or center objectives is used */

6 S1, S2 ← Reassign(S1, S2, ∆(S)) /* Key step, see Algorithm 4 */

7 T1 ← CloseDivisiveClustering(S1)

8 T2 ← CloseDivisiveClustering(S2)

9 Return a tree with root S and children T1, T2

10 end

Algorithm 3: O(1)-Close Divisive k-Clustering Algorithm

The goal of this subsection is to show the following theorem guaranteeing
that Algorithm 3 is provably close to standard divisive k-clustering algorithms,
while having a small chain of serial dependencies.

Theorem 1. Algorithm 3 is O(1)-close for the k-center, k-median, and k-means
cost functions and has a chain of dependencies of length at most O(log n).

The main difference between Algorithm 1 and Algorithm 3 is the reassignment
step. This step’s purpose is to ensure that the invariant holds at any point during
the algorithm as shown in the following lemma. Intuitively, if both S1 and S2 are
contained within a small ball around their cluster centers, then the invariant is
maintained. However, if this is not the case, then there are many points “near the
border” of the two clusters, so we move these around to maintain the invariant.

Lemma 1. After the execution of Reassign(S1, S2) in Algorithm 3 either |S1| ≤
7
8 |S| or ∆(S1) ≤

1
2∆(S). Similarly, either |S2| ≤

7
8 |S| or ∆(S2) ≤

1
2∆(S).

Proof. Let S1, S2 be the resulting clusters and v1, v2 be their centers. Consider
the sets Bi = B(vi, ∆(S)/8)∩ S, for i = 1, 2. If S1 ⊆ B1 and S2 ⊆ B2, then both

8 Consider an example where the optimal 2-clustering separates only 1 point at a time.
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1 Reassign(S1, S2, ∆)

2 Let v1, v2 be the centers of S1, S2, respectively
3 for i = 1, 2 do

4 Bi ← B(vi, ∆/8) ∩ (S1 ∪ S2)
5 end

6 if S1 ⊆ B1 and S2 ⊆ B2 then

7 Return S1, S2

8 else

9 U ← (S1 \B1) ∪ (S2 \B2)
10 if |U | ≤ n/c /* c is constant parameter, default is c = 4 */

11 then

12 Assign U to the smaller of B1 and B2

13 else

14 Split U evenly between B1 and B2

15 end

16 Return B1, B2

17 end

Algorithm 4: Reassign Subroutine for Divisive Clustering

clusters are contained in a ball of radius ∆(S)/8. By the triangle inequality the
maximum distance between any two points in either S1 or S2 is at most ∆(S)/2.9

Otherwise, consider U , the set of points not assigned to any Bi. We consider
c = 4 as in the default case. If |U | ≤ |S|/4, then the algorithm assigns U to
the smaller of B1 and B2 and the resulting cluster will have size at most 3|S|/4
since the smaller set has size at most |S|/2. Furthermore the other cluster is still
contained within a ball of radius ∆/8 and thus the maximum distance between
points is at most ∆(S)/2. If |U | ≥ |S|/4 then the points in U are distributed
evenly between S1 and S2. Both sets in the recursive calls are guaranteed to have
less than |S| − |U |/2 ≤ 7

8 |S| points since U was evenly split. Similar properties
can be shown for other values of c.

Next we can show that the algorithm is O(1)-close by showing that the
algorithm is an O(1)-approximation for the desired k-clustering objective in each
step.

Lemma 2. Let p be the norm of the clustering objective desired (i.e. p = 2 for
k-means, p = ∞ for k-center or p = 2 for k-median). The clustering produced in
each iteration is a constant approximation to any desired k-clustering objective
with any constant norm p ∈ (0, 2] or p = ∞.

The proof of Lemma 2 is deferred to the full version of this paper. Combining
Lemma 1 and Lemma 2 we obtain Theorem 1 as a corollary.

9 By the generalized triangle inequality this is true for p = 1, 2 and it is true for p =∞.
So this is true for the cost of k-center, k-means and k-median.
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4.2 Distributed Centroid-Linkage

As discussed in Sections 2 and 3, Algorithm 2 has a linear chain of dependencies.
In this subsection we show how to modify step 4 of Algorithm 2 to overcome this
difficulty.

The main intuition is to change Algorithm 2 to merge any pair of clusters
A,B whose centroids are within distance αδ, where δ is the current smallest
distance between cluster centroids and α ≥ 1 is a small constant. Our algorithm
will find a collection of disjoint pairs of clusters which meet this condition. The
algorithm then merges all such pairs and updates the minimum distance before
repeating this procedure. This procedure is described in Algorithm 5.

1 CloseCentroidClustering(S, α)
2 Let T be an empty tree
3 For each x ∈ S add a leaf node corresponding to {x} to T
4 Let C be the current set of clusters while |C| > 1 do

5 δ ← minA,B∈C d(µ(A), µ(B))
6 for X ∈ C do

7 if ∃Y ∈ C such that d(µ(X), µ(Y )) ≤ αδ then

8 Add a node corresponding to X ∪ Y with children X,Y to T
9 C ← C \ {X,Y } ∪ {X ∪ Y }

10 end

11 end

12 end

13 Return the resulting tree T
Algorithm 5: Idealized Close Centroid Clustering Algorithm

By definition, Algorithm 5 will be α-close to the centroid linkage algorithm.
There are two issues that arise when bounding the algorithm’s worst-case guaran-
tees. First, it is not clear how to efficiently implement lines 5-10 in the distributed
setting. We will address this issue in Section 4.3, where we describe the distributed
implementations. Intuitively, we apply the popular locality-sensitive-hashing
(LSH) technique, allowing us to perform these steps efficiently in the distributed
setting.

The second issues is that it is difficult to bound the chain of dependencies for
this algorithm since we cannot guarantee that the minimum distance δ increases
by a constant factor after each iteration of the while loop.10 Nevertheless, we
find that this formulation of the algorithm works well empirically despite not
having a formal bound on the round complexity. See Section 5 for these results.

To understand why this algorithm might have small round complexity in
practice, we developed an algorithm with strong guarantees on its running time.
See the full version of this paper for a proper description of this algorithm. For

10 It is possible to construct worst-cases instances where the minimum distance δ can
decrease between iterations of the while loop.
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intuition, the algorithm maintains the following two invariants. First, if two
clusters X,Y are merged during the algorithm, then the distance between their
centroids is O(log2(n)δ), where δ is the current minimum distance between any
two clusters. Second, at the end of the merging step the minimum distance
between the centroids of the resulting clusters is at least (1 + ǫ)δ, for some
constant ǫ > 0.11 These two invariants taken together imply an O(log2(n))-close
algorithm for centroid linkage with O(poly(log n)) length dependency chains
when the ratio of the maximum to the minimum distance in S is bounded by a
polynomial in n.

To achieve these invariants our new algorithm carefully merges nodes in two
stages. A first where the algorithm recursively merges subsets of points that are
close at the beginning of the stage. Then a second where the algorithm merges
the leftover points from different merges of the first stage. With this two stage
approach, we can formally bound the dependency chains and the closeness of
the resulting algorithm. The precise description and analysis of this algorithm is
involved and is presented in the full version of this paper. The following theorem
characterizes the main theoretical result of this section.

Theorem 2. There exists an algorithm that is O(log2(n))-close to the sequential
centroid linkage algorithm and it has O(poly(log n)) length chains of dependencies.

The main trade-off involved in this result is that in order to ensure a fast
running time our algorithm must be willing to make some merges that are an
O(log2(n))-factor worse than the best possible merge available at that time. This
is due to considering a worst-case analysis of our algorithm. In practice, we find
that the closeness of a variation of Algorithm 5 is much smaller than Theorem 2
would suggest while maintaining a fast running time. See Section 5.

4.3 From Bounded Length Dependency Chains to Parallel
Algorithms

We now discuss how to adapt our algorithms to run on distributed systems. In
particular we show that every iteration between consequent recursive calls of our
algorithms can be implemented using a small number of rounds in the massively
parallel model of computation and so we obtain that both algorithms can be
simulated in a polylogarithmic number of rounds.
Parallelizing Divisive k-Clustering: We start by observing that there are
previously known procedures [13, 8, 4, 6] to compute approximate k-clusterings
in the massively parallel model of computation using only a constant number of
rounds. Here we use these procedures as a black-box.

Next, the reassignment operation can be performed within a constant number
of parallel rounds. Elements can be distributed across machines and the centers v1
and v2 can be sent to every machine. In a single round, every element computes
the distance to v1 and v2 and in the next round the size of B1, B2 and U are

11 In order to guarantee this second invariant,our algorithm must be allowed to make
merges at distance O(log2(n)δ).
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computed. Finally given the sizes of B1, B2 and U the reassignment can be
computed in a single parallel round.

So steps 4, 5 and 6 of Algorithm 3 can be implemented in parallel using
a constant number of parallel rounds. Furthermore, we established that the
algorithm has at most logarithmic chain of dependencies. Thus we obtain the
following theorem:

Theorem 3. There exist O(log n)-round distributed hierarchical clustering algo-
rithms that are O(1)-close to bisecting k-means, bisecting k-center or bisecting
k-median.

Parallelizing Centroid-Linkage: Parallelizing our variant of centroid-linkage
is more complicated. As stated before, the main challenge is to find an efficient
way to implement lines 5-10 of Algorithm 5. The solution to this problem is the
use of Locality Sensitive Hashing (LSH). For simplicity of exposition we focus
on the Euclidian distances and we use the sketch from [11] for norm p ∈ (0, 2],
nevertheless we note that our techniques can be easily extended to any LSH-able
distance function. We refer the interested reader to the full version of this paper
for complete technical details. The following Theorem is restated from [11].

Theorem 4. Fix a domain S of points a parameter δ > 0 and constant parameter
ǫ > 0. There exists a class of hash functions H = {h : S → U} and constants
p1, p2 > 0 with p1 > p2 such that for any two points u and v in S if d(u, v) ≤ δ
then PrH[h(v) = h(u)] ≥ p1 and if d(u, v) ≥ (1+ǫ)δ then PrH[h(v) = h(u)] ≤ p2.

Intuitively the LSH procedure allows us to group together points that are near
each other. Using the previous theorem and the classic amplification technique
for LSH presented in [21], it is possible to show the following theorem.

Theorem 5. Fix a domain S of points, a parameter δ > 0 and a small constant
ǫ > 0. Let S′ be the set of points where there exists another point within distance
δ and S′′ be the set of points where there exists another point within distance
(1 + ǫ)δ. With probability 1− n−2 for each points v ∈ S′ there is a O(1) round
distributed procedure that can identify another point u such that d(u, v) ≤ (1+ ǫ)δ.
Furthermore the same procedure identifies for some v ∈ S′′ another point u such
that d(u, v) ≤ (1 + ǫ)δ.

Using these tools, we now describe a parallelizable variant of Algorithm 5. See
Algorithm 6 for the pseudocode. Intuitively, we apply LSH to the centroids of
the current set of clusters in order to identify candidate merges that are α-close
for centroid-linkage.

We note that LSH can also be applied to the theoretically efficient algorithm
alluded to in Theorem 2. This allows us to get a theoretically efficient distributed
algorithm that is close to centroid-linkage. The following theorem characterizes
this result, however its proof is technical and deferred to the full version of this
paper.

Theorem 6. There exists an algorithm running in O(log2(n) log log(n)) dis-
tributed rounds and is O(log2(n))-close to the sequential centroid-linkage algo-
rithm.
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1 FastCentroid(S, α)
2 Let T be an empty tree
3 For each x ∈ S add a leaf node corresponding to {x} to T
4 Let C be the current set of clusters
5 while |C| > 1 do

6 δ ← minA,B∈C d(µ(A), µ(B))
7 Use LSH with distance parameter αδ on each point µ(X) for X ∈ C
8 For each hash value h, let Ch denote all the clusters hashed to this value
9 For each h place Ch on a single machine

10 Pair clusters that are within distance αδ in Ch until all remaining clusters
have no other cluster within distance αδ

11 Merge the paired clusters and add the corresponding nodes to the tree T
12 Update C appropriately to contain the new clusters but not the old clusters

used in each merge.
13 end

14 Return the resulting tree T
Algorithm 6: Fast α-Close Centroid Clustering Algorithm

5 Experimental Results

In this section we empirically evaluate the algorithms in this paper. The algorithms
will be referred to as Div-k-clust. (for the k-means algorithm) and CentroidLink
(for the centroid algorithm). The sequential baseline algorithms are kBase and
cBase. These are evaluated on three datasets from the UCI machine learning
repository commonly used for clustering experimentation: Shuttle, Covertype,
and Skin [29].

Parameters. Both of our algorithms are parameterized with an adjustable
parameter. This is c in the divisive algorithm and α in the centroid algorithm.
Both parameters were set to 4 in the experiments if not specified.

Evaluation Criteria. The algorithms are evaluated on their efficiency as well as
the quality of the solution compared to the sequential algorithms. The closeness
is a measure of quality; the number of rounds measures the efficiency. We also
examine the effect of varying the parameter on the efficiency of the algorithm.

Quality Evaluation: Here we examine the closeness of the algorithm to their
sequential counterparts.

CentroidLink For the CentroidLink algorithm the parameter α specifies the
closeness. Recall that the sequential algorithm merges the pair of clusters whose
centroids are closest to form a subtree; whereas, the distributed algorithm merges
all pairs with distance at most an α factor greater than the smallest distance.
The experimenter can freely choose how close the parallel algorithm will adhere
to the sequential one with a tradeoff in the number of rounds. We are interested
in the closeness of the algorithm’s decisions compared to that of the sequential
algorithm. We will show this by presenting the ratio of the distance between the
pair the algorithm merges compared to the actual distance of the closest pair of
nodes.
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Div-k-clust. Recall that Div-k-clust. differs from kBase by having an extra
step in which some points are reassigned before the recursion. This step can
potentially cause Div-k-clust. to deviate from kBase by placing points in different
subtrees than kBase would. The closeness should be a measure of the cost of
this difference. We measure closeness as the ratio of the k-means cost before and
after the reassignment.

On average, the closeness ratio of the algorithms are small constants for each
data set. Tables 1(b) and 1(a) have a more detailed breakdown of the results.
There, we break down the data on closeness by noting the size of the subtree the
moment the algorithm makes the decision which might differ from the sequential
algorithm. As there are many different sizes for subtrees, we have grouped the
subtrees which are close to each other in size and averaged them, for example,
subtrees of size 0-1000 are averaged together in the first row of the table. The
dashes, ’-’, in the table indicate that there were no resultant subtrees of the
corresponding size range. Note that the ratios are small in general for both
algorithms.

Table 1. Evaluation of the Closeness

(a) Closeness of Div-k-clust. to
kBase

Size Shuttle Skin Covertype

≤1000 1.51 1.61 1.51
2000 1.69 1.74 1.58
3000 1.74 1.91 1.22
4000 1.57 2.10 1.74
5000 - 1.19 -
6000 - 2.30 -
8000 1.64 - 2.01
≥10000 1.74 1.84 1.07
Overall 1.52 1.61 1.51

(b) Closeness of CentroidLink to
cBase

Size Shuttle Skin Covertype

≤1000 2.74 2.66 2.38
2000 2.66 2.56 2.70
3000 2.76 2.25 2.72
4000 2.50 2.89 -
5000 - 3.16 1.81
6000 1.84 - -
7000 2.48 3.40 2.11
8000 2.72 1.16 -
9000 - - 1.92
≥10000 1 2.84 1
Overall 2.74 2.66 2.38

Efficiency Evaluation: Figure 2 plots the number of rounds used by each
algorithm on each dataset. Data points are subsampled and averaged over five
trials. We compare our algorithms against the baseline sequential algorithms.
However, in theory, the centroid baseline is very sequential; the ith merge must
depend on all i − 1 previous merges. Therefore, it has a round complexity of
Ω(n). For a more reasonable comparison, we have instead plotted the function
2 ln(n) for comparison as we expect our algorithms to scale logarithmically. The
sequential algorithm is much worse than this.

Both Div-k-clust. and kBase perform poorly on the Skin dataset. One explana-
tion is that this 2-class dataset mostly contains data points of one class, therefore,
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c/α Div-k-clust. CentroidLink

1.5 21.8 13.6
2 19.1 7.6
4 18.5 7.4
8 17.3 5.8

Table 2. Effect of c/α on Rounds for Shuttle

that support our theory. An interesting open question is how to apply this paper’s
framework to other popular methods such as average-linkage or Ward’s method.
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