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Abstract—The primal-dual distributed computational methods
have broad large-scale data mining applications. Previous primal-
dual distributed methods are not applicable when the dual for-
mulation is not available, e.g. the sum-of-non-convex objectives.
Moreover, these algorithms and theoretical analysis are based
on the fundamental assumption that the computing speeds of
multiple machines in a cluster are similar. However, the straggler
problem is an unavoidable practical issue in the distributed
system because of the existence of slow machines. Therefore, the
total computational time of the distributed optimization methods
is highly dependent on the slowest machine. In this paper, we
address these two issues by proposing novel distributed asyn-
chronous dual free stochastic dual coordinate ascent algorithm
for distributed data mining. Our method does not need the dual
formulation of the target problem in the computation. We tackle
the straggler problem through asynchronous communication and
the negative effect of slow machines is significantly alleviated.
We also analyze the convergence rate of our method and prove
the linear convergence rate even if the individual functions in
objective are non-convex. Experiments on both convex and non-
convex loss functions are used to validate our statements.

I. INTRODUCTION

In this paper, we consider solving the `2-norm regular-
ized empirical loss minimization problem which is arising
ubiquitously in supervised machine learning and data mining
problems:

min
w∈Rd

P (w) := min
w∈Rd

1

n

n∑
i=1

φi(w) +
λ

2
‖w‖22. (1)

We let f(w) = 1
n

∑n
i=1 φi(w) and w ∈ Rd be the linear

predictor to be optimized. There are many applications falling
into this formulation, such as classification, regression, and
principal component analysis (PCA). In classification, given
features xi ∈ Rd and labels yi ∈ {1,−1}, we obtain Support
Vector Machine (SVM) when we let φi(w) = max{0, 1 −
yix

T
i w}. In regression, given features xi ∈ Rd and response

yi ∈ R, we have Ridge Regression problem if φi(w) = (yi −
xTi w)2. Recently, [1], [2] showed that the problem of PCA
can be solved through convex optimization. Supposing C =
1
n

∑n
i=1 xix

T
i be normalized covariance matrix, [1] showed

that approximating the principle component of A is equivalent
to minimizing f(w) = 1

2w
T (µI−C)w−bTw given µ > 0 and

b ∈ Rd. Defining φi(w) = 1
2w

T ((µ − λ
2 )I − xixTi )w − bTw

and µ > σ1(C) + λ
2 where σ1(C) denotes the largest singular

value of C, it also falls into problem (1). In this case, f(w)
is convex while each φi(w) is probably non-convex.

Distributed machine learning and data mining methods
are required to solve the problem (1) when the data are
distributed over multiple machines. In [3], the authors pro-
posed communication-efficient distributed dual coordinate as-
cent (CoCoA) for primal-dual distributed optimization. In each
iteration, the CoCoA framework allows workers to optimize
subproblems independently at first. After that, it calls “Re-
duce” operation to collect local solution from all workers,
and updates global variable and broadcasts the up-to-date
global variable to workers in the end. It uses stochastic dual
coordinate ascent (SDCA) as the local solver which is one of
the most successful methods proposed for solving the problem
(1) [4], [5]. In [6], the authors proved that SDCA has linear
convergence if the convex function φi(w) is smooth, which
is much faster than stochastic gradient descent (SGD). [7],
[8] also proposed distributed SDCA and analyzed the tradeoff
between computation and communication. [9], [10] acceler-
ated the CoCoA by allowing for more aggressive updates,
and proved that CoCoA has linear primal-dual convergence
for the smooth convex problem and sublinear convergence
for the non-smooth convex problem. However, there are two
issues for these primal-dual distributed methods. Firstly, all of
them use SDCA as the local solver. SDCA is not applicable
when the dual problem is unknown, e.g. φi is non-convex.
Therefore, the applications of these primal-dual distributed
methods are limited. Secondly, all of these methods assume
that the workers have similar computing speed, which is not
true in practice. Straggler problem is an unavoidable practical
issue in the distributed data mining. Thus, the computing time
of CoCoA and distributed SDCA is dependent on the slowest
worker. Even if there is only one bad worker, they will work
far slower than expectation.

In [11], [12], the authors proposed dual free stochastic dual
coordinate ascent (dfSDCA). It was proved to admit similar
convergence rate to SDCA while it did not rely on duality at
all. However there is no distributed machine learning method
using dfSDCA, and its convergence analysis is still unknown
yet.

In this paper, we solve the above two challenging issues
in previous primal-dual distributed machine learning methods
by proposing novel Distributed Dual Free Stochastic Dual
Coordinate Ascent (Dis-dfSDCA). We use dfSDCA as the
local solver such that Dis-dfSDCA can be applied to the non-
convex problem easily. We alleviate the effect of straggler



Fig. 1: Distributed asynchronous dual free stochastic dual
coordinate ascent for parameter server framework. In iteration
t, the server receives gradient message vk from worker k, and
sends the up-to-date wt back to the worker k. Global variables
in other workers are stale. For example worker 1 and K store
stale global variables wt−2 and wt−5 respectively.

problem by allowing asynchronous communication between
server and workers. As shown in Figure 1, the server does
not wait and workers may store the stale global variable in
the local. We also analyze the convergence rate of our method
and prove that it admits linear convergence rate even if the
individual losses (φi) are non-convex, as long as the sum
of losses f is convex. Finally, we conduct simulation on
the distributed system with straggler problem. Experimental
results verify our theoretical conclusions and show that our
method works well in practice.

II. PRELIMINARY

To optimize the primal problem (1), we often derive and
optimize its dual problem alternatively:

max
α∈Rn

D(α) := max
α∈Rn

1

n

n∑
i=1

−φ∗i (−αi)−
λ

2
‖ 1

λn
Aα‖22 , (2)

where φ∗i is the convex conjugate function to φi, A =
[x1, x2, ...xn] ∈ Rd×n denotes data matrix and α ∈ Rn
denotes dual variable. We can use stochastic gradient descent
(SGD) to optimize primal problem (1), however, there are
always two issues: (1) SGD is too aggressive at the beginning
of the optimization; (2) it does not have a clear stopping
criterion. One of the biggest advantages of optimizing the dual
problem is that we can keep tracking the duality gap G(α) to
monitor the progress of optimization. Duality gap is defined
as: G(α) = P (w(α)) − D(α), where P (w(α)) and D(α)
denote objective values of primal problem and dual problem
respectively. If w∗ is the optimal solution of primal problem
(1) and α∗ is the optimal solution of dual problem (2), the
primal-dual relation always holds that:

w∗ = w(α∗) =
1

λn
Aα∗ . (3)

A. Stochastic Dual Coordinate Ascent

In [6], the authors proposed stochastic dual coordinate
ascent (SDCA) to optimize the dual problem (2). The pseu-
docode of SDCA is presented in Algorithm 1. In iteration

t, given sample i and other dual variables αj 6=i fixed, we
maximize the following subproblem:

max
∆αi∈R

− 1

n
φ∗i (−(αti + ∆αi))−

λ

2
‖wt +

1

λn
∆αixi‖22 (4)

ei denotes coordinate vector of size n, where element i is 1
and other elements are 0. In their paper, the authors proved
that SDCA admits linear convergence rate for smooth loss,
which is much faster than stochastic gradient descent (SGD).
An accelerated SDCA was also proposed in [5]. However,
SDCA is not applicable when it is difficult to derive the dual
problem, e.g. φi are non-convex.

Algorithm 1 SDCA

1: Initialize α0 and w0 = w(α0);
2: for t = 0, 1, 2, . . . , T − 1 do
3: Randomly sample i from {1, 2, ..., n};
4: Find ∆αi to maximize the subproblem (4);
5: Update dual variable α through:

αt+1 ← αt + ∆αiei;
6: Update primal variable w through:

wt+1 ← wt + 1
λn∆αixi;

7: end for

B. Dual Free Stochastic Dual Coordinate Ascent

To address the limitation of SDCA, [11] proposes Dual Free
Stochastic Coordinate Ascent (dfSDCA) which has similar
convergence property to SDCA. The pseudocode of dfSDCA
is presented in Algorithm 2. Although we keep vector α ∈ Rn
in the optimization, the derivation of dual problem is not
necessary for dfSDCA. According to the update rule of α
and w in the algorithm, the primal-dual relation (3) also holds
for dfSDCA. The drawback of dfSDCA is that it is space-
consuming to store α, whose space complexity O(nd). We can
reduce it to O(n) if ∇φi(w) can be written as ∇φi(xTi w)xi.
In [13], the authors accelerated dfSDCA by using non-uniform
sampling strategy in each iteration and proved that it admits
faster convergence.

Algorithm 2 Dual Free SDCA

1: Initialize dual variable α0 = (α0
0, ..., α

0
n) where ∀i, α0

i ∈
Rd, primal variable w0 = w(α0);

2: for t = 0, 1, 2, . . . , T − 1 do
3: Randomly sample i from {1, 2, ..., n};
4: Compute dual residue κ through:

κ← ∇φi(wt) + αti;
5: Update dual variable αi through:

αt+1
i ← αti − ηλnκ;

6: Update primal variable w through:
wt+1 ← wt − ηκ;

7: end for



III. DISTRIBUTED ASYNCHRONOUS DUAL FREE
STOCHASTIC DUAL COORDINATE ASCENT

In this section, we propose Distributed Asynchronous Dual
Free Stochastic Coordinate Ascent (Dis-dfSDCA) for dis-
tributed optimization. Dis-dfSDCA fits for any parameter
server framework, where the star-shape network is used. We
assume that there are n samples in the dataset, and they are
evenly distributed over K workers. In worker k, there are nk
samples. It is satisfied that n =

∑K
k=1 nk. Different from

sequential dfSDCA, we split the update of dual variable and
primal variable into different nodes. The pseudocodes of Dis-
dfSDCA for server node and worker nodes are presented in
Algorithm 3 and Algorithm 4 respectively.

A. Update Global Variable w on Server

The up-to-date global variable w ∈ Rd is stored and
updated on the server. Initially, w is set to be vector zero. At
the beginning of each iteration, the server receives gradient
message vk from arbitrary worker k and let vt = vk. Then it
updates the global variable through:

ws,t+1 = ws,t − ηvt (5)

Finally, it sends the up-to-date global variable back to the
worker k for further computation. Asynchronous method is
robust to straggler problem because it allows for updating
the global variable when receiving from only one worker.
However, if the w in the worker is too stale, it may lead
the algorithm to diverge. Therefore, we induce two loops
in our algorithm. Server broadcasts the latest global variable
w to all workers after every T iterations. In this way, we
prevent the problem of divergence and keep the advantage of
asynchronous communication at the same time. Algorithm 3
summarizes the pseudocode on the server.

Algorithm 3 Dis-dfSDCA (Server)

Initialize w ∈ Rd, η
for s = 0, 1, ..., S − 1 do

for t = 0, 1, ..., T − 1 do
Receive gradient message vs,t = vk from worker k;
Update global variable ws+1,t+1 through:

ws,t+1 ← ws,t − ηvs,t;
Send ws,t+1 back to worker k ;

end for
ws+1,0 = ws,T

Broadcast the up-to-date global variable ws+1,0 to all
workers.

end for

In Algorithm 3, we use the update of vanilla dfSDCA in the
server. [12] proposed accelerated dfSDCA by using “Catalyst”
algorithm of [14]. It is proved to admit faster convergence rate
by a constant factor. Our Algorithm 3 can also be extended to
the accelerated version easily. In our paper, we only consider
the vanilla version and analyze the convergence rate of our
algorithm.

B. Update Local Variable α on Worker

In the distributed optimization, workers are responsible for
the gradient computation which is the main workload during
the optimization. We take arbitrary worker k as an example.
Dual variable α[k] ∈ Rnk is only stored and updated in the
worker k, each αi is corresponding to sample i. Initially,
local variable α[k] is set to be vector zero. After receiving
stale global variable ws,d(t) ∈ Rd from the server, worker k
computes the dual residue κ and updates local variable αi and
gradient message vk for H iterations. Samples It are randomly
selected in the local dataset, and we set |It| = H . In each

Algorithm 4 Dis-dfSDCA (Worker k)

Initialize α[k] ∈ Rd×nk , η, H
repeat

Receive global variable ws,d(t) from server;
Initialize gradient message: vk ← 0;
Randomly select samples It from {1, · · · , nk} where
|It| = H;
for sample i in It do

Compute dual residue κ through:
κ← ∇φi(ws,d(t)) + αi;

Update local dual variable αi through:
αi ← αi − ηλnκ;

Update gradient message vk through:
vk ← vk + κ;

end for
Send gradient message vk to server;

until Termination

iteration, worker k selects a sample i randomly and computes
the dual residue κ for coordinate i of the dual variable through:

κ = ∇φi(ws,d(t)) + αi (6)

Dual residue can also be viewed as the gradient in Stochastic
Gradient Descent. When we obtain optimal dual variable α∗

and primal variable w∗, κ should be 0. Therefore, it is satisfied
that α∗i = −∇φi(w∗). Then worker k updates local dual
variable αi and gradient message vk separately through:

αi = αi − ηλnκ, i ∈ It (7)
vk = vk + κ (8)

Because there is only one αi in the cluster, it is always up-to-
date. After H iterations, the worker k sends gradient message
vk to the server. From the update rule in our algorithm, it
is easy to know that the well-known primal-dual relation in
the equation (3) is always satisfied. The pseudocode of Dis-
dfSDCA in worker node k is described in Algorithm 4.

In Algorithm 4, we use vanilla dfSDCA in the worker
which samples with uniform distribution. There are also other
sampling techniques proposed to accelerate dfSDCA. As per
the sampling strategy in [11], [13], [12], [15], there are three
options: uniform sampling, importance sampling, and adaptive
sampling. In importance sampling strategy [12], it first com-
putes the fixed probability distribution pi using smoothness



parameter of each function φi, then selects samples following
this probability. In adaptive sampling strategy [13], it computes
the adaptive probability distribution pi using dual residue κ for
each sample every iteration, then selects samples following
this probability. Both of them are proved to admit faster
convergence than vanilla dfSDCA with uniform sampling. We
only consider the uniform sampling strategy, and analyze its
corresponding convergence rate in our paper. However, other
sampling techniques are straightforward to be applied to our
distributed method.

IV. CONVERGENCE ANALYSIS

In this section, we provide the theoretical convergence
analysis of Dis-dfSDCA. For the case of convex losses φi,
we prove that Dis-dfSDCA admits linear convergence rate. If
losses φi are non-convex, we also prove linear convergence
rate as long as the sum-of-non-convex objectives f is convex.

We make the following assumptions for the primal problem
(1) for further analysis. All of them are common assumptions
in the theoretical analysis for the asynchronous stochastic
methods.

Assumption 1 (Lipschitz Constant): We assume ∇φi is
Lipschitz continuous, and there is Lipschitz constant L such
that ∀x, y ∈ Rd:

‖∇φi(x)−∇φi(y)‖2 ≤ L‖x− y‖2 (9)

We can also know that P is (L+ λ)-smooth:

‖∇P (x)−∇P (y)‖2 ≤ (L+ λ)‖x− y‖2 (10)

Assumption 2 (Maximum Time Delay): We assume that the
maximum time delay of the global variable in each worker is
upper bounded by τ , such that:

d(t) ≥ t− τ (11)

τ is relevant to the number of workers K in the system. We
can also control τ through inner iteration T in our algorithm.

A. Convex Case

In this section, we assume that the losses φi are convex,
and prove that our method admits linear convergence.

Assumption 3 (Convexity): We assume losses φi are convex,
such that ∀x, y ∈ Rd:

φi(x) ≥ φi(y) +∇φi(y)T (x− y) . (12)

In our algorithm, dual variables α[1], ..., α[K] are stored in local
workers. For worker k, there is no update of α[k] from d(t) to
t. Therefore, it is always true that αs,t[k] = α

s,d(t)
[k] . For brevity,

we write vs,t, ws,t and αs,t as vt, wt and αt. According to
our algorithm, we know that:

vt =
∑
i∈It

(
∇φi(wd(t)) + α

d(t)
i

)
=
∑
i∈It

vti (13)

where |It| = H and E[vti ] = ∇P (wd(t)). In our analysis,
we also assume that there are no duplicate samples in It. To

analyze the convergence rate of our method, we need to prove
the following Lemma 1 at first.

Lemma 1: Let w∗ be the global solution of P (w), and α∗i =
−∇φi(w∗). Following the proof in [11], we define At and Bt
as follows:

At = E‖αti − α∗i ‖2 (14)
Bt = E‖wt − w∗‖2 (15)

According to our algorithm, we can prove that At+1 and Bt+1

are upper bounded:

E[At+1 −At]
≤ −ηλHE‖αti − α∗i ‖2 − 2ηHLλ2E‖wt − w∗‖2

+4ηλHL
(
P (xt)− P (w∗)

)
− ηλ(1− ηλn)E‖vt‖2

+2λτHL2η3
t−1∑
j=d(t)

E‖vj‖2 (16)

E[Bt+1 −Bt]
≤ −2η

(
P (wd(t))− P (w∗)

)
+ η2E‖vt‖2

−2η
〈
wt − wd(t),∇P (xd(t))

〉
(17)

Theorem 1: Suppose losses φi are convex and ∇φi are
Lipschitz continuous. Let w∗ be the optimal solution to P (w),
and α∗i = −∇φi(w∗). Define Ct = 1

2λLAt+Bt. We can prove
that as long as:

η ≤ 1

4HLτ2 + λn+ 2L
(18)

the following inequality holds:

E[CT ] ≤ (1− ηλH)E[C0] (19)

Proof sketch:1 Substituting At+1 and Bt+1 according to
Lemma 1, the following inequality holds that:

E[Ct+1] =
1

2λL
At+1 +Bt+1

≤ (1− ηλH)E[Ct] + 2τHLη3
t−1∑
j=d(t)

E‖vj‖2

+

(
η2λn

2L
+ η2 − η

2L

)
E‖vt‖2 (20)

Adding the above inequality from t = 0 to t = T − 1, we
have:

T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct]

+
(

2Hτ2η2 + η2λn
2L + η2 − η

2L

) T−1∑
t=0

E‖vt‖2 (21)

where the inequality follows from Assumption 2 and ηL ≤ 1.
If 2Hη2τ2 + η2λn

2L + η2 − η
2L ≤ 0, such that:

η ≤ 1

4HLτ2 + λn+ 2L
, (22)

1We provide the proof sketch here, please check the Appendix for details.



we have the following inequality:

T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct]

≤
T−1∑
t=1

E[Ct] + (1− ηλH)C0 (23)

Because Ct ≥ 0, then we complete the proof that
E[CT ] ≤ (1− ηλH)E[C0]. �

Because ∇P (w) is Lipschitz continuous, we know that:

P (wt)− P (w∗) ≤ L+ λ

2
‖wt − w∗‖2 ≤ L+ λ

2
Ct (24)

Theorem 2: We consider the outer iteration s, and write Ct

as Cs,t. According to Algorithm 3, we know Cs+1,0 = Cs,T .
Following Theorem 1 and applying (19) for S iterations, it is
satisfied that:

E[CS,0] ≤ (1− ηλH)SE[C0,0] (25)

In particular, to achieve E[P (wS,0)− P (w∗)] ≤ ε, it suffices
to set η = 1

4HLτ2+λn+2L and

S ≥ O
((

L

λ

(
τ2 +

1

H

)
+
n

H

)
log

(
1

ε

))
(26)

From Theorem 1 and 2, we know that our Dis-dfSDCA
admits linear convergence if losses φi are convex. According
to Theorem 2, we observe that τ affects the speed of our
convergence, if τ →∞, it may lead our algorithm to diverge.
Therefore, it is important to keep τ within a reasonable bound.
In our algorithm, τ is relevant to the number of workers and
less than T . When we let H = 1 and τ = 0, S is relevant to
O(Lλ + n). It is compatible with the convergence analysis of
sequential dfSDCA in [11].

B. Non-convex Case

In this section, we assume that the losses φi are non-convex,
while the sum-of-non-convex objectives f is convex. We also
prove that Dis-dfSDCA admits linear convergence rate for this
case. Firstly, we get the following Lemma 2.

Lemma 2: Let w∗ be optimal solution to P (w), and α∗i =
−∇φi(w∗). Following the definition of At and Bt in Lemma
1, we prove that At+1 and Bt+1 are upper bounded:

E[At+1 −At]
≤ −ηλHE‖αti − α∗i ‖2 + 2ηλHL2E‖wt − w∗‖2

−ηλ(1− ηλn)E‖vt‖2 + 2λτHL2η3
t−1∑
j=d(t)

E‖vj‖2

E[Bt+1 −Bt]

≤ −3ηλH

4
E‖wt − w∗‖2 + η2E‖vt‖2

2HτH2(L+ λ)2η3

λ

t−1∑
j=d(t)

E‖vj‖2 (27)

Theorem 3: Suppose f is convex and ∇φi is Lipschitz
continuous. Let w∗ be the optimal solution to P (w), and
α∗i = −∇φi(w∗). Define Ct = 1

4L2At + Bt. We can prove
that as long as:

η ≤ λ2

2HLτ2λ2 + 8HLτ2(L+ λ)2 + 4λL2 + nλ3
(28)

the following inequality holds:

E[CT ] ≤ (1− ηλH)E[C0] (29)

Proof sketch: Substituting At+1 and Bt+1 according to Lemma
2, the following inequality holds that:

E[Ct+1] =
1

4L2
At+1 +Bt+1

≤ (1− ηλH)E[Ct]

+

(
λHτη3

2
+

2Hτ(L+ λ)2η3

λ

) t−1∑
j=d(t)

E‖vj‖2

+

(
η2 +

nη2λ2

4L2
− ηλ

4L2

)
E‖vt‖2 (30)

Adding the above inequality from t = 0 to t = T − 1, we
have:
T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct] +

(
η2 +

nη2λ2

4L2

+
λHτ2η2

2L
+

2Hτ2(L+ λ)2η2

λL
− ηλ

4L2

) T−1∑
t=0

E‖vt‖2 (31)

where the inequality follows from Assumption 2 and ηL ≤ 1.
If η2 + nη2λ2

4L2 + λHτ2η2

2L + 2Hτ2(L+λ)2η2

λL − ηλ
4L2 ≤ 0, such that:

η ≤ λ2

2HLτ2λ2 + 8HLτ2(L+ λ)2 + 4λL2 + nλ3
(32)

we have the following inequality:

T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct]

≤
T−1∑
t=1

E[Ct] + (1− ηλH)C0 (33)

Because Ct ≥ 0, then we complete the proof that
E[CT ] ≤ (1− ηλH)E[C0]. �

Theorem 4: We consider the outer iteration s, and write Ct

as Cs,t. According to Algorithm 3, we know Cs+1,0 = Cs,T .
Following Theorem 3 and applying (29) for S iterations, it is
satisfied that:

E[CS,0] ≤ (1− ηλH)SE[C0,0] (34)

In particular, to achieve E[P (wS,0)− P (w∗)] ≤ ε, it suffices
to set η = λ2

2HLτ2λ2+8HLτ2(L+λ)2+4λL2+nλ3 and

S ≥ O

(((
τ2 + 1/H

)
L2

λ2
+
τ2L3

λ3
+
n

H

)
log

(
1

ε

))
(35)



From Theorems 3 and 4, we know that our Dis-dfSDCA
admits linear convergence even if losses φi are non-convex, as
long as the sum-of-non-convex objectives is convex. Compar-
ing Theorems 2 with 4, we can observe that our method needs
more iterations to converge to the similar accuracy when φi
are non-convex. It is reasonable because non-convex problem
is known to be harder to be optimized than convex problem.
When we let H = 1 and τ = 0, S is relevant to O(L

2

λ2 +n). It
is also compatible with the convergence analysis of sequential
dfSDCA in [11].

V. EXPERIMENTS

In this section, we conduct two simulated experiments
on the distributed system with straggler problem. There are
mainly three goals, firstly, we want to verify that our Dis-
dfSDCA has linear convergence rate for the convex and
smooth problem; secondly, we would like to make sure that
our method has better speedup property than other primal-dual
methods; thirdly, we would like to show that our method is
also fit for non-convex losses.

Our algorithm is implemented using C++, and the point-to-
point communication between worker and server is handled
by openMPI [16]. We use Armadillo library [17] for efficient
matrix computation. Experiments are performed on Amazon
Web Services, and each node is a t2.medium instance which
has two virtual CPUs. In our distributed system, we simulate
the straggler problem by forcing one selected worker node
to the delaying state for m times as long as the normal
computing time of other normal workers with probability p.
In our experiments, we set p = 0.2 and m is selected from
[0, 10] randomly. In practice, all nodes have a tiny possibility
of being delayed. The setting in our experiments is to verify
that our algorithm is robust to straggler problem, even in the
extreme situation.

A. Convex Case

In our experiment, we optimize quadratic loss with `2
regularization term to solve binary classification problem:

min
w∈Rd

1

n

n∑
i=1

1

2
(xTi w − yi)2 +

λ

2
‖w‖2 (36)

where λ = 0.1. Datasets in our experiments are from LIBSVM
[18]. Table I shows brief details of each dataset. In this
problem, because ∇φi(w) can be written as ∇φi(xTi w), we
just need to store α̂ ∈ Rn, and recover α ∈ Rd×n through
ai = xiα̂i. Therefore the space complexity is O(n).

We compare our method with CoCoA+ [9], which is
the state-of-the-art distributed primal-dual optimization frame-
work. We reimplement CoCoA+ framework using C++, and
use SDCA as the local solver. Learning rate η in our method
is selected from η = {1, 0.1, 0.001, 0.0001}.

1) Convergence of Duality Gap: We compare the duality
gap convergence of compared methods in terms of time and
epoch number respectively, where duality gap is well defined
in [6]. Experimental results are presented in Figure 2. We
distribute IJCNN1 dataset over 4 workers. Figures 2a in the

Dataset # of samples Dimension Sparsity
IJCNN1 49,990 22 41 %

COVTYPE 581,012 54 22 %
RCV1 677,399 47,236 0.16%

TABLE I: Experimental datasets from LIBSVM.

first column show the duality gap convergence in terms of
time and epoch on IJCNN1 dataset. From the second figure, it
is easy to know that Dis-dfSDCA and CoCoA+ have similar
convergence rate. Since CoCoA+ has linear convergence if the
problem is convex and smooth, it is verified that Dis-dfSDCA
has linear convergence rate as well. In the experiment, we
evaluate Dis-dfSDCA when we set different amount of local
computations, H = 102 and H = 103. Results show that our
method is faster than CoCoA+ method in both two cases. The
reason is that CoCoA+ is affected by the straggler problem
in the distributed system. We also optimize problem (36) with
COVTYPE dataset using 8 workers, and RCV1 dataset using
16 workers. We can draw the similar conclusion from the
results of other two datasets.

2) Speedup: In this section, we evaluate the scaling up
ability of compared methods. The first row of Figure 3 presents
the speedup of compared methods on IJCNN1 and COVTYPE
datasets. Speedup is defined as follows:

Time speedup =
Running time for serial computation
Running time of using K workers

(37)

Figure in the second row shows the convergence of duality gap
on RCV1 on multiple machines. It is obvious that Dis-dfSDCA
always converges faster than CoCoA+ when they have the
same number of workers. Experimental results verify that Dis-
dfSDCA has better speedup property than CoCoA+ when there
is straggler problem.

B. Non-convex Case

In this experiment, we optimize the following convex ob-
jective, which is an essential step for principal component
analysis in [1]:

min
w∈Rd

1

n

n∑
i=1

1

2
wT
(
(µ− λ)− xixTi

)
w − bTw +

λ

2
‖w‖2 (38)

We conduct the experiment on synthetic data and generate
n = 500, 000 random vectors {x1, ..., x500,000} ∈ R500 which
are mean subtracted and normalized to have Euclidean norm
1. C = 1

n

∑n
i=1 xix

T
i denotes covariance matrix, b ∈ Rd

denotes a random vector and we let µ = 100, λ = 10−4

in the experiment. Because each φi is probably non-convex,
CoCoA is not able to solve this problem. In this experiment,
we compare with Distributed asynchronous SVRG [19].

In Figure 4, it is obvious that Dis-dfSDCA runs faster than
Distributed SVRG when there are 4 workers. We can observe
the similar phenomenon when there are 8 workers. This
observation is reasonable because Distributed SVRG needs to
compute two gradients in each inner iteration and full gradient
in each outer iteration. Dis-dfSDCA is faster because it only
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Fig. 2: Figures (a) - (c) present the convergence of duality gap of compared methods in terms of time. Figures (d) - (f) present
the convergence of duality gap of compared methods in terms of epoch number. We train IJCNN1 dataset with 4 workers,
COVTYPE dataset with 8 workers and RCV1 dataset with 16 workers.

needs to compute one gradient in each iteration. However, Dis-
dfSDCA needs O(nd) space for storing α , because ∇φi(w)
cannot be written as ∇φi(xTi w)xi in this problem.

VI. CONCLUSION

In this paper, we proposed Distributed Asynchronous Dual
Free Coordinate Ascent (Dis-dfSDCA) method for distributed
machine learning. We addressed two challenging issues in
previous primal-dual distributed optimization methods: firstly,
Dis-dfSDCA does not rely on the dual formulation, and can be
used to solve the non-convex problem; secondly, Dis-dfSDCA
uses asynchronous communication and can be applied on
the complicated distributed system where there is straggler
problem. We also analyze the convergence rate of Dis-dfSDCA
and prove linear convergence even if the loss functions are
non-convex, as long as the sum of non-convex objectives is
convex. We conduct experiments on the simulated distributed
system with straggler problem, and all experimental results
consistently verify our theoretical analysis.

APPENDIX

Proof to Lemma 1
Proof sketch: In our proof, we suppose that there are no
duplicate samples in It. According to our algorithm, we know
that:

vt =
∑
i∈It

(
∇φi(wd(t)) + α

d(t)
i

)
=
∑
i∈It

vti (39)

where |It| = H and E[vti ] = ∇P (wd(t)). Following the proof
in [11], we define At and Bt as follows:

At = E‖αti − α∗i ‖2 (40)
Bt = E‖wt − w∗‖2 (41)

Defining β = ηλn, so in iteration t, αt+1
i = (1 − β)αti +

β(−∇φi(wd(t))), we have:

E[At+1 −At]

= E[
1

n

∑
i∈It

‖(1− β)(αti − α∗i ) + β(−∇φi(wd(t))− α∗i )‖2

− 1

n
‖αti − α∗i ‖2]

= E
[

1

n

∑
i∈It

(
(1− β)‖αti − α∗i ‖2 + β‖∇φi(wd(t)) + α∗i ‖2

−β(1− β)‖αti +∇φi(wd(t))‖2 − ‖αti − α∗i ‖2
)]

= ηλH

(
−E‖αti − α∗i ‖2 + E‖∇φi(wd(t)) + α∗i ‖2

)
−ηλ(1− β)

∑
i∈It

E‖vti‖2

≤ ηλH

(
−E‖αti − α∗i ‖2 + E‖∇φi(wd(t)) + α∗i ‖2

)
−ηλ(1− β)E‖vt‖2 (42)



Number of Workers
1 2 4 6 8

S
p
ee
d
u
p

1

2

3

4

5

6

7

8

Ideal

CoCoA+

Dis-dfSDCA

Number of Workers
0 2 4 6 8 10 12 14 16

S
p
ee
d
u
p

0

2

4

6

8

10

12

14

16

Ideal

CoCoA+

Dis-dfSDCA

Time (s)
0 1000 2000 3000 4000 5000 6000 7000

D
u
a
li
ty

G
a
p

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

CoCoA+ Worker=2

CoCoA+ Worker=4

CoCoA+ Worker=8

CoCoA+ Worker=16

Dis-dfSDCA Worker=2

Dis-dfSDCA Worker=4

Dis-dfSDCA Worker=8

Dis-dfSDCA Worker=16
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where the last inequality follows from that
∑
i∈It

E‖vti‖2 ≥

E‖
∑
i∈It

vti‖2 = E‖vt‖2. Because α∗i = −∇φi(w∗), we have

the following inequality:

E‖∇φi(wd(t)) + α∗‖2

= E[‖ ∇φi(wd(t))−∇φi(w∗)‖2]

≤ 2E‖∇φi(wd(t))−∇φi(wt)‖2 + 2E‖∇φi(wt)−∇φi(w∗)‖2

≤ 2L2E‖wt − wd(t)‖2 + 2E‖∇φi(wt)−∇φi(w∗)‖2

≤ 2L2η2E‖
t−1∑
j=d(t)

vj‖2 + 4LE
(
P (wt)− P (w∗)− λ

2
‖wt − w∗‖2

)

≤ 2L2η2τ

t−1∑
j=d(t)

E‖vj‖2 + 4LE
(
P (wt)− P (w∗)− λ

2
‖wt − w∗‖2

)
where the first inequality follows from Lemma 4, the second
inequality follows from Lemma 5, the third and the last
inequalities follow from the Assumption 2. In addition, it also
follows that:

E[Bt+1 −Bt] = E‖wt+1 − w∗‖2 − E‖wt − w∗‖2

= −2ηE
〈
wt − w∗, vt

〉
+ η2E‖vt‖2(43)

We can know E 〈wt − w∗, vt〉 is lower bounded that:

E
〈
wt − w∗, vt

〉
=

∑
i∈It

E
〈
wd(t) − w∗, vti

〉
+
∑
i∈It

E
〈
wt − wd(t), vti

〉
= H

〈
wd(t) − w∗,∇P (wd(t))

〉
+H

〈
wt − wd(t),∇P (wd(t))

〉
≥ H

(
P (wd(t))− P (w∗)

)
+H

〈
wt − wd(t),∇P (wd(t))

〉
(44)

where the equality follows form that vti is not relevant to
the variable before wt+1 and the inequality follows from the



convexity of P (w). �

Proof to Theorem 1
Proof sketch: We define Ct+1 = caAt+1 + cbBt+1 and set
ca = 1

2λL , cb = 1. Inputting Lemma 1 in equation, we have:

E[Ct+1] = caAt+1 + cbBt+1

≤ ca(1− ηλH)E‖αti − α∗i ‖2 + 2caλτHL
2η3 ·

t−1∑
j=d(t)

E‖vj‖2 − caηλ(1− β)E‖vt‖2

+4caηλHL

(
P (wt)− P (w∗)− λ

2
E‖wt − w∗‖2]

)
+cbη

2E‖vt‖2 − 2cbη

(
H
(
P (wd(t))− P (w∗)

)
+H

〈
wt − wd(t),∇P (wd(t))

〉)
+ cbE‖wt − w∗‖2

≤ (1− ηλH)E[Ct] + 2ηH ·(
P (wt)− P (wd(t))−

〈
wt − wd(t),∇P (wd(t))

〉)
+

(
η2λn

2L
+ η2 − η

2L

)
E‖vt‖2 + τHLη3

t−1∑
j=d(t)

E‖vj‖2

≤ (1− ηλH)E[Ct] +

(
η2λn

2L
+ η2 − η

2L

)
E‖vt‖2

+2τHLη3
t−1∑
j=d(t)

E‖vj‖2 (45)

where the last inequality follows from the L-smooth of P (w):

P (wt) ≤ P (wd(t)) +
〈
wt − wd(t),∇P (wd(t))

〉
+
L

2
‖wt − wd(t)‖2

≤ P (wd(t)) +
〈
wt − wd(t),∇P (wd(t))

〉
+
Lτη2

2

t−1∑
j=d(t)

‖vj‖2 (46)

Adding the above inequality from t = 0 to t = T − 1, we
have that:

T−1∑
t=0

E[Ct+1]

≤
T−1∑
t=0

(1− ηλH)E[Ct] +

(
η2λn

2L
+ η2 − η

2L

) T−1∑
t=0

E‖vt‖2

+2τHLη3
T−1∑
t=0

t−1∑
j=d(t)

E‖vj‖2

≤
T−1∑
t=0

(1− ηλH)E[Ct]

+

(
2Hτ2η2 +

η2λn

2L
+ η2 − η

2L

) T−1∑
t=0

E‖vt‖2 (47)

where the last inequality follows from Assumption 2 and ηL ≤
1. If 2Hη2τ2 + η2λn

2L + η2 − η
2L ≤ 0 such that:

η ≤ 1

4HLτ2 + λn+ 2L
(48)

Therefore, we have:

T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct]

≤
T−1∑
t=1

E[Ct] + (1− ηλH)C0 (49)

We complete the proof. �

Proof to Lemma 2
Proof sketch: As per the smoothness of φi, we have:

E‖∇φi(wd(t)) + α∗i ‖2

= E‖∇φi(wd(t))−∇φi(w∗)‖2

≤ L2E‖wd(t) − w∗‖2

≤ 2L2E‖wd(t) − wt‖2 + 2L2E‖wt − w∗‖2

≤ 2L2η2τ
t−1∑
j=d(t)

E‖vj‖2 + 2L2E‖wt − w∗‖2 (50)

We can also bound −E 〈wt − w∗, vt〉 as follows:

−E
〈
wt − w∗, vt

〉
= −HE

〈
wt − w∗,∇P (wd(t))

〉
= −HE

〈
wt − w∗,∇P (wt)

〉
−HE

〈
wt − w∗,∇P (wd(t))−∇P (wt)

〉
≤ −λHE‖wt − w∗‖2 +

γH

2
E‖wt − w∗‖∗

+
H

2γ
E‖∇P (wt)−∇P (wd(t))‖2

≤ −(λ− γ

2
)HE‖wt − w∗‖2

+
H(L+ λ)2η2τ

2γ

t−1∑
j=d(t)

E‖vj‖2

where the first inequality follows from the strong convexity
of P such that 〈wt − w∗,∇P (wt)〉 ≥ P (wt) − P (w∗) +
λ
2 ‖w

t−w∗‖2 and P (wt)−P (w∗) ≥ λ
2 ‖w

t−w∗‖2. Defining
γ = λ

2 and substituting above two inequalities into (42) and
(43) respectively, we complete the proof. �

Proof to Theorem 3
Proof sketch: We define Ct+1 = caAt+1 + cbBt+1 and set
ca = 1

4L2 , cb = 1. Inputting Lemma 2 in the equation, we
have:



E[Ct+1] = caAt+1 + cbBt+1

≤ ca(1− ηλH)E‖αti − α∗i ‖2

+(cb + 2caηλHL
2 − 2cbηH(λ− γ

2
))E‖wt − w∗‖2

+
(
cbη

2 − caηλ(1− β)
)
E‖vt‖2

+

(
2caλHτL

2η3 + cb
Hτ(L+ λ)2η3

γ

) t−1∑
j=d(t)

E‖vj‖2

= (1− ηλH)E[Ct] +
(
cbη

2 − caηλ(1− β)
)
E‖vt‖2

+

(
2caλHτL

2η3 + cb
Hτ(L+ λ)2η3

γ

) t−1∑
j=d(t)

E‖vj‖2

where γ = λ
2 . Adding the above inequality from t = 0 to

t = T − 1, we have that:

T−1∑
t=0

E[Ct+1]

≤ (1− ηλH)
T−1∑
t=0

E[Ct] +
(
cbη

2 − caηλ(1− β)
) T−1∑
t=0

E‖vt‖2

+

(
2caλHτL

2η3 + cb
Hτ(L+ λ)2η3

γ

) T−1∑
t=0

t−1∑
j=d(t)

E‖vj‖2

≤ (1− ηλH)
T−1∑
t=0

E[Ct] + (cbη
2 − caηλ(1− β)

+2caλHτ
2L2η3 + cb

Hτ2(L+ λ)2η3

γ
)

T−1∑
t=0

E‖vt‖2

≤
T−1∑
t=1

E[Ct] + (1− ηλH)E[C0] (51)

where the last inequality holds as long as:

η ≤ λ2

2HLτ2λ2 + 8HLτ2(L+ λ)2 + 4λL2 + nλ3
(52)

such that 2caλHL
2τ2η3 + cb

H(L+λ)2τ2η3

γ + cbη
2− caηλ(1−

β) ≤ 0. We complete the proof. �

EXTRA LEMMAS

Lemma 3 ([20]): For random variables z1, ..., zr are inde-
pendent and mean 0, we have:

E[‖z1 + ...+ zr‖2] = E[‖z1‖2 + ...+ ‖zr‖2] (53)

Lemma 4: For any z1, ..., zr, it holds that:

‖z1 + ...+ zr‖2 ≤ r(‖z1‖2 + ...+ ‖zr‖2) (54)

Lemma 5 ([11]): Assume that each φi(w) is L-smooth and
convex. Then, for every w,

1

n

n∑
i=1

‖∇φi(w)−∇φi(w∗)‖2

≤ 2L

(
P (w)− P (w∗)− λ

2
‖w − w∗‖2

)
(55)
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