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Abstract—The primal-dual distributed computational methods
have broad large-scale data mining applications. Previous primal-
dual distributed methods are not applicable when the dual for-
mulation is not available, e.g. the sum-of-non-convex objectives.
Moreover, these algorithms and theoretical analysis are based
on the fundamental assumption that the computing speeds of
multiple machines in a cluster are similar. However, the straggler
problem is an unavoidable practical issue in the distributed
system because of the existence of slow machines. Therefore, the
total computational time of the distributed optimization methods
is highly dependent on the slowest machine. In this paper, we
address these two issues by proposing novel distributed asyn-
chronous dual free stochastic dual coordinate ascent algorithm
for distributed data mining. Our method does not need the dual
formulation of the target problem in the computation. We tackle
the straggler problem through asynchronous communication and
the negative effect of slow machines is significantly alleviated.
We also analyze the convergence rate of our method and prove
the linear convergence rate even if the individual functions in
objective are non-convex. Experiments on both convex and non-
convex loss functions are used to validate our statements.

I. INTRODUCTION
In this paper, we consider solving the ¢;-norm regular-
ized empirical loss minimization problem which is arising
ubiquitously in supervised machine learning and data mining
problems:

A
min P(w) := min 72@ §||w\|§ (1)

weRd weRE N
We let f(w) = 13" ¢i(w) and w € R? be the linear
predictor to be optimized. There are many applications falling
into this formulation, such as classification, regression, and
principal component analysis (PCA). In classification, given
features z; € R? and labels y; € {1, —1}, we obtain Support
Vector Machine (SVM) when we let ¢;(w) = max{0,1 —
yizlw}. In regression, given features z; € RY and response
y2 € R, we have Ridge Regression problem if ¢;(w) = (y; —
x; w) Recently, [1], [2] showed that the problem of PCA
can be solved through convex optimization. Supposing C' =
L3 @zl be normalized covariance matrix, [1] showed
that appr0x1mat1ng the principle component of A is equivalent
to minimizing f(w) = 2w” (uI —C)w—bTw given 1 > 0 and
b € RY. Defining ¢;(w) = 2w (p— 3)I — 22l )w — bTw
and p > 01(C) + % where 01 (C) denotes the largest singular
value of C, it also falls into problem (1). In this case, f(w)
is convex while each ¢;(w) is probably non-convex.

Distributed machine learning and data mining methods
are required to solve the problem (1) when the data are
distributed over multiple machines. In [3], the authors pro-
posed communication-efficient distributed dual coordinate as-
cent (CoCoA) for primal-dual distributed optimization. In each
iteration, the CoCoA framework allows workers to optimize
subproblems independently at first. After that, it calls “Re-
duce” operation to collect local solution from all workers,
and updates global variable and broadcasts the up-to-date
global variable to workers in the end. It uses stochastic dual
coordinate ascent (SDCA) as the local solver which is one of
the most successful methods proposed for solving the problem
(1) [4], [5]. In [6], the authors proved that SDCA has linear
convergence if the convex function ¢;(w) is smooth, which
is much faster than stochastic gradient descent (SGD). [7],
[8] also proposed distributed SDCA and analyzed the tradeoff
between computation and communication. [9], [10] acceler-
ated the CoCoA by allowing for more aggressive updates,
and proved that CoCoA has linear primal-dual convergence
for the smooth convex problem and sublinear convergence
for the non-smooth convex problem. However, there are two
issues for these primal-dual distributed methods. Firstly, all of
them use SDCA as the local solver. SDCA is not applicable
when the dual problem is unknown, e.g. ¢; is non-convex.
Therefore, the applications of these primal-dual distributed
methods are limited. Secondly, all of these methods assume
that the workers have similar computing speed, which is not
true in practice. Straggler problem is an unavoidable practical
issue in the distributed data mining. Thus, the computing time
of CoCoA and distributed SDCA is dependent on the slowest
worker. Even if there is only one bad worker, they will work
far slower than expectation.

In [11], [12], the authors proposed dual free stochastic dual
coordinate ascent (dfSDCA). It was proved to admit similar
convergence rate to SDCA while it did not rely on duality at
all. However there is no distributed machine learning method
using dfSDCA, and its convergence analysis is still unknown
yet.

In this paper, we solve the above two challenging issues
in previous primal-dual distributed machine learning methods
by proposing novel Distributed Dual Free Stochastic Dual
Coordinate Ascent (Dis-dfSDCA). We use dfSDCA as the
local solver such that Dis-dfSDCA can be applied to the non-
convex problem easily. We alleviate the effect of straggler
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Fig. 1: Distributed asynchronous dual free stochastic dual
coordinate ascent for parameter server framework. In iteration
t, the server receives gradient message vy, from worker k, and
sends the up-to-date w® back to the worker k. Global variables
in other workers are stale. For example worker 1 and K store
stale global variables w'~2 and w'~> respectively.

problem by allowing asynchronous communication between
server and workers. As shown in Figure 1, the server does
not wait and workers may store the stale global variable in
the local. We also analyze the convergence rate of our method
and prove that it admits linear convergence rate even if the
individual losses (¢;) are non-convex, as long as the sum
of losses f is convex. Finally, we conduct simulation on
the distributed system with straggler problem. Experimental
results verify our theoretical conclusions and show that our
method works well in practice.

II. PRELIMINARY

To optimize the primal problem (1), we often derive and
optimize its dual problem alternatively:

n

1
D(a) := — — o
max D(a) gg@gngl ¢; (i) — H

Aa||2, 2

where ¢; is the convex conjugate function to ¢;, A =
[x1,29,..2,] € R¥" denotes data matrix and o € R"
denotes dual variable. We can use stochastic gradient descent
(SGD) to optimize primal problem (1), however, there are
always two issues: (1) SGD is too aggressive at the beginning
of the optimization; (2) it does not have a clear stopping
criterion. One of the biggest advantages of optimizing the dual
problem is that we can keep tracking the duality gap G(«) to
monitor the progress of optimization. Duality gap is defined
as: G(a) = P(w(a)) — D(«), where P(w(a)) and D(«)
denote objective values of primal problem and dual problem
respectively. If w* is the optimal solution of primal problem
(1) and o is the optimal solution of dual problem (2), the
primal-dual relation always holds that:

—A 3
n o 3)
A. Stochastic Dual Coordinate Ascent

In [6], the authors proposed stochastic dual coordinate

ascent (SDCA) to optimize the dual problem (2). The pseu-
docode of SDCA is presented in Algorithm 1. In iteration

w* =w(a*) =

t, given sample ¢ and other dual variables «;; fixed, we
maximize the following subproblem:

max —= 67 (~(af + Aay)) - *II

—All 4
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e; denotes coordinate vector of size n, where element 7 is 1
and other elements are 0. In their paper, the authors proved
that SDCA admits linear convergence rate for smooth loss,
which is much faster than stochastic gradient descent (SGD).
An accelerated SDCA was also proposed in [5]. However,
SDCA is not applicable when it is difficult to derive the dual
problem, e.g. ¢; are non-convex.

Algorithm 1 SDCA

. Initialize o® and w° = w(a?);
fort_O,l,Q,...7 —1do
Randomly sample i from {1,2,...,n};
Find Ac«; to maximize the subproblem 4);
Update dual variable « through:
ot — of + Awye;:
6:  Update primal variable w through
witl — wt + L Aoz

AN

n
7: end for

B. Dual Free Stochastic Dual Coordinate Ascent

To address the limitation of SDCA, [11] proposes Dual Free
Stochastic Coordinate Ascent (dfSDCA) which has similar
convergence property to SDCA. The pseudocode of dfSDCA
is presented in Algorithm 2. Although we keep vector o € R"
in the optimization, the derivation of dual problem is not
necessary for dfSDCA. According to the update rule of «
and w in the algorithm, the primal-dual relation (3) also holds
for dfSDCA. The drawback of dfSDCA is that it is space-
consuming to store v, whose space complexity O(nd). We can
reduce it to O(n) if V¢;(w) can be written as V¢, (z1w)x;.
In [13], the authors accelerated dfSDCA by using non-uniform
sampling strategy in each iteration and proved that it admits
faster convergence.

Algorithm 2 Dual Free SDCA
0

1: Initialize dual variable a® = (o, ...,a0
R4, primal variable w® = w(a®);

2: fort=0,1,2,..., T —1 do

3:  Randomly sample ¢ from {1,2,...,n};

4:  Compute dual residue « through:
K Voi(w') +af;

5:  Update dual variable ozz through:

H'l +— al — nink;

6:  Update pr1mal varlable w through:

wit! «— wt —nk;

) where Vi, ol €

7: end for




III. DISTRIBUTED ASYNCHRONOUS DUAL FREE
STOCHASTIC DUAL COORDINATE ASCENT

In this section, we propose Distributed Asynchronous Dual
Free Stochastic Coordinate Ascent (Dis-dfSDCA) for dis-
tributed optimization. Dis-dfSDCA fits for any parameter
server framework, where the star-shape network is used. We
assume that there are n samples in the dataset, and they are
evenly distributed over K workers. In worker k, there are ny
samples. It is satisfied that n = Zlenk. Different from
sequential dfSDCA, we split the update of dual variable and
primal variable into different nodes. The pseudocodes of Dis-
dfSDCA for server node and worker nodes are presented in
Algorithm 3 and Algorithm 4 respectively.

A. Update Global Variable w on Server

The up-to-date global variable w € RY is stored and
updated on the server. Initially, w is set to be vector zero. At
the beginning of each iteration, the server receives gradient
message vy, from arbitrary worker k and let v* = vy. Then it
updates the global variable through:

ws,t-‘rl — ws,t _ nvt (5)

Finally, it sends the up-to-date global variable back to the
worker k for further computation. Asynchronous method is
robust to straggler problem because it allows for updating
the global variable when receiving from only one worker.
However, if the w in the worker is too stale, it may lead
the algorithm to diverge. Therefore, we induce two loops
in our algorithm. Server broadcasts the latest global variable
w to all workers after every 7' iterations. In this way, we
prevent the problem of divergence and keep the advantage of
asynchronous communication at the same time. Algorithm 3
summarizes the pseudocode on the server.

Algorithm 3 Dis-dfSDCA (Server)

Initialize w € R%, n
for s=0,1,...,.5—1 do
fort=0,1,....,7 —1do
Receive gradient message v** = v, from worker k;
Update global variable w11 through:
,ws,tJrl — ,ws,t _ T]US’t;
Send w***t! back to worker k ;
end for
ws+1,0 — ws,T
Broadcast the up-to-date global variable w9 to all
workers.
end for

In Algorithm 3, we use the update of vanilla dfSDCA in the
server. [12] proposed accelerated dfSDCA by using “Catalyst”
algorithm of [14]. It is proved to admit faster convergence rate
by a constant factor. Our Algorithm 3 can also be extended to
the accelerated version easily. In our paper, we only consider
the vanilla version and analyze the convergence rate of our
algorithm.

B. Update Local Variable oo on Worker

In the distributed optimization, workers are responsible for
the gradient computation which is the main workload during
the optimization. We take arbitrary worker k as an example.
Dual variable o) € R™ is only stored and updated in the
worker k, each «; is corresponding to sample <. Initially,
local variable ap) is set to be vector zero. After receiving
stale global variable w4t ¢ RY from the server, worker k
computes the dual residue x and updates local variable a; and
gradient message vy, for H iterations. Samples [; are randomly
selected in the local dataset, and we set |I;| = H. In each

Algorithm 4 Dis-dfSDCA (Worker k)

Initialize o) € Rxnk n, H
repeat
Receive global variable w4 from server;
Initialize gradient message: vy < 0O;
Randomly select samples I; from {1,---,n;} where
|It| = H;
for sample ¢ in I; do
Compute dual residue « through:
K V(w10 4+ ay;
Update local dual variable «; through:
Q; < Q; — NANK;
Update gradient message vy, through:
Vg < Vi + R;

end for
Send gradient message v to server;
until Termination

iteration, worker k selects a sample ¢ randomly and computes
the dual residue « for coordinate ¢ of the dual variable through:

K = Vi(w>?D) + o (6)

Dual residue can also be viewed as the gradient in Stochastic
Gradient Descent. When we obtain optimal dual variable o*
and primal variable w*, x should be 0. Therefore, it is satisfied
that of = —V¢;(w*). Then worker k updates local dual
variable a; and gradient message v separately through:

o; —nAnk, i€ I (7
v+ K ®)

o; =

Ve =

Because there is only one «; in the cluster, it is always up-to-
date. After H iterations, the worker k£ sends gradient message
v to the server. From the update rule in our algorithm, it
is easy to know that the well-known primal-dual relation in
the equation (3) is always satisfied. The pseudocode of Dis-
dfSDCA in worker node k£ is described in Algorithm 4.

In Algorithm 4, we use vanilla dfSDCA in the worker
which samples with uniform distribution. There are also other
sampling techniques proposed to accelerate dfSDCA. As per
the sampling strategy in [11], [13], [12], [15], there are three
options: uniform sampling, importance sampling, and adaptive
sampling. In importance sampling strategy [12], it first com-
putes the fixed probability distribution p; using smoothness



parameter of each function ¢;, then selects samples following
this probability. In adaptive sampling strategy [13], it computes
the adaptive probability distribution p; using dual residue  for
each sample every iteration, then selects samples following
this probability. Both of them are proved to admit faster
convergence than vanilla dfSDCA with uniform sampling. We
only consider the uniform sampling strategy, and analyze its
corresponding convergence rate in our paper. However, other
sampling techniques are straightforward to be applied to our
distributed method.

IV. CONVERGENCE ANALYSIS

In this section, we provide the theoretical convergence
analysis of Dis-dfSDCA. For the case of convex losses ¢;,
we prove that Dis-dfSDCA admits linear convergence rate. If
losses ¢; are non-convex, we also prove linear convergence
rate as long as the sum-of-non-convex objectives f is convex.

We make the following assumptions for the primal problem
(1) for further analysis. All of them are common assumptions
in the theoretical analysis for the asynchronous stochastic
methods.

Assumption 1 (Lipschitz Constant): We assume V¢; is
Lipschitz continuous, and there is Lipschitz constant L such
that Yz, y € R%:

[Véi(x) = Véi(y)llz < Lz — yll2 ©)
We can also know that P is (L + \)-smooth:

IVP(z) = VP(y)ll2 < (L + A)llz — yl2 (10)

Assumption 2 (Maximum Time Delay): We assume that the
maximum time delay of the global variable in each worker is
upper bounded by 7, such that:

dit)y>t—r (11)

T is relevant to the number of workers K in the system. We
can also control 7 through inner iteration 7" in our algorithm.

A. Convex Case

In this section, we assume that the losses ¢; are convex,
and prove that our method admits linear convergence.

Assumption 3 (Convexity): We assume losses ¢; are convex,
such that Vz,y € R%:

di(2) > bi(y) + V()T (x —v).

In our algorithm, dual variables ayyj, ..., o[k are stored in local
workers. For worker k, there is no update of a{’“] from d(t) to
t. Therefore, it is always true that af,;i = af,;? Y. For brevity,
we write v5t, wSt and ot and of. According to
our algorithm, we know that:

S =Y (T + ) - T
icly icly

where |I;| = H and E[v}] = VP(w?). In our analysis,
we also assume that there are no duplicate samples in I;. To

12)

as o, w

13)

analyze the convergence rate of our method, we need to prove
the following Lemma 1 at first.

Lemma 1: Let w* be the global solution of P(w), and of =
—V¢;(w*). Following the proof in [11], we define A; and B;
as follows:

Ay Elof — o7
B, = E|w'—w*|?

(14)
(15)
According to our algorithm, we can prove that A;; and By
are upper bounded:

E[Ai1 — Ay

—pAHE[a} — af|* — 2pHLNE|jw' — w* |
+4nAHL (P(z') — P(w*)) — nA(1 — nAn)E[[v*||?

t—1

IN

+2ATHL p® Y E[7? (16)
j=d(®)
E[Bty1 — By
< —2(P™®) - P(w")) +1?Ello" |
—op <wt —wd®), VP(md(t))> (17)

Theorem 1: Suppose losses ¢; are convex and V¢, are
Lipschitz continuous. Let w* be the optimal solution to P(w),
and of = —V¢;(w*). Define C; = ”\%At + By. We can prove
that as long as:

1

<
"= 4HL? v nt 2L (18)
the following inequality holds:
E[Cr] < (1 = nAH)E[C)] 19)

Proof sketch:' Substituting A;,; and B,,; according to
Lemma 1, the following inequality holds that:

1
—~—— A1+ Bt

]E[Ct-‘rl] 2)\L

t—1
(1= pAH)E[Cy] + 2rHLy® Y E[v|?
j=d(t)

2
P 0\ g
AL AR B )
+ (T4 = o ) Bl

IN

(20)

Adding the above inequality from ¢ = 0to ¢t =T — 1, we
have:

T-1 T-1
;O E[Cia] < EO (1 —nAH)E[C]

2 T—1
+ (2H22 + 3 4~ ) > ER? @D
where the inquality follows from Assumption 2 and nL < 1.
If 2Hn?72 + % + 9% - 57 <0, such that:
1
S ;
AHL7% + An + 2L

(22)

'We provide the proof sketch here, please check the Appendix for details.



we have the following inequality:

T—1
Z E[Ct 1]
t=0

T-1

> (1= nAH)E[CY]

t=0

< ZE@

Because C; > 0, then we complete the proof that
E[Cr] < (1 —nAH)E[Co]. O

IN

(1—n\H)Cy  (23)

Because V P(w) is Lipschitz continuous, we know that:

L+ A

L+ X
A —w|? < Tct

P(w') — P(w*) <

[’ (24)

Theorem 2: We consider the outer iteration s, and write C*
as C*'. According to Algorithm 3, we know C*+1.0 = ¢
Following Theorem 1 and applying (19) for S iterations, it is
satisfied that:

E[Cs,] < E[Co,0]

In particular, to achieve E[P(w®°) — P(w

_ 1
to set 7 = gz rar and

sz0((5 (e q) ) es(2))

From Theorem 1 and 2, we know that our Dis-dfSDCA
admits linear convergence if losses ¢; are convex. According
to Theorem 2, we observe that 7 affects the speed of our
convergence, if 7 — oo, it may lead our algorithm to diverge.
Therefore, it is important to keep 7 within a reasonable bound.
In our algorithm, 7 is relevant to the number of workers and
less than 7. When we let H =1 and 7 = 0, S is relevant to
O(% +n). It is compatible with the convergence analysis of
sequential dfSDCA in [11].

(1 —nAH)® (25)

*)] < e, it suffices

(26)

B. Non-convex Case

In this section, we assume that the losses ¢; are non-convex,
while the sum-of-non-convex objectives f is convex. We also
prove that Dis-dfSDCA admits linear convergence rate for this
case. Firstly, we get the following Lemma 2.

Lemma 2: Let w* be optimal solution to P(w), and of =

—V¢;(w*). Following the definition of A; and B; in Lemma
1, we prove that Ay, and B;1, are upper bounded:
E[A;11 — Ay
< —nAHE|of - of|]* + 20 AH L*E|lw’ — w*[|?
t—1
ML= E[ 2 + 20 HL2 Y Bl
j=d(t)
E[Bi+1 — Bi]
3 ANH
< —ZEEEllwt - o | + Bl |

oOH HQL N2t S
THAL LN 5 g2

27
J=d(t)

Theorem 3: Suppose f is convex and V¢, is Lipschitz
continuous. Let w* be the optimal solution to P(w), and

af = —=Vo;(w*). Define Cy = 4L2 A + B;. We can prove
that as long as:
)\2
< 2
1S SHLAN L SHLA(L+ N2 4+ 2+ 2D
the following inequality holds:
E[Cr] < (1 = nAH)E[Cy] (29)

Proof sketch: Substituting A; 1, and By according to Lemma
2, the following inequality holds that:

E[Ci11] = 4L2 — A1 + B
< (1 =nAH)E[C]
NHm3  2HT(L+ M)\ = -
Ello’
+ (2 2 3 B
j=d(t)
2,2
2, A nA t[2
+ (4 2 - 2 ) B (0)

Adding the above inequality from ¢ = 0to ¢t =T — 1, we
have:

- 212

nn°A

E E[Ct—',-l :EO 1 — 7’]AH ] + <T] + 4L2
AHT2n?  2HT2(L + \)?*n? 12

G 4L2) ) jEn RED

2L AL
where the inequality follows from Assumptlon 2 and nL < 1.
If n? + na 2 2HT (LN < 0, such that:

)\H72n2
+ 2L + AL

4L?2 4L2
)\2
< 32
TS SHLN 4 SHL(L+ V2 N2 4 npd 02
we have the following inequality:
T—1 T—1
Z E[Ci1] < Z(l —nAH)E[CY]
t=0 t=0
T—1
< Y E[C]+(1-nAH)C,  (33)
t=1

Because C; > 0, then we complete the proof that
E[Cr] < (1 = nAH)E[Co). O

Theorem 4: We consider the outer iteration s, and write C*
as C**. According to Algorithm 3, we know C**t1.0 = CsT,
Following Theorem 3 and applying (29) for S iterations, it is

satisfied that:
E[CS’_’O] S (1 — ’I])\H)SE[CO’()} (34)

8.0) — P(w*)] < e, it suffices

to set 1 = spr—rorsars (L+A)’2+4,\Lz+n,\3 and

(7> +1/H)L* 721 =n 1
szo(( 12 +5 t g log(g) (35)

In particular, to achieve E[P(




From Theorems 3 and 4, we know that our Dis-dfSDCA
admits linear convergence even if losses ¢; are non-convex, as
long as the sum-of-non-convex objectives is convex. Compar-
ing Theorems 2 with 4, we can observe that our method needs
more iterations to converge to the similar accuracy when ¢;
are non-convex. It is reasonable because non-convex problem
is known to be harder to be optimized than convex problem.
When we let H =1 and 7 = 0, S is relevant to O(45 +n). It
is also compatible with the convergence analysis of sequential
dfSDCA in [11].

V. EXPERIMENTS

In this section, we conduct two simulated experiments
on the distributed system with straggler problem. There are
mainly three goals, firstly, we want to verify that our Dis-
dfSDCA has linear convergence rate for the convex and
smooth problem; secondly, we would like to make sure that
our method has better speedup property than other primal-dual
methods; thirdly, we would like to show that our method is
also fit for non-convex losses.

Our algorithm is implemented using C++, and the point-to-
point communication between worker and server is handled
by openMPI [16]. We use Armadillo library [17] for efficient
matrix computation. Experiments are performed on Amazon
Web Services, and each node is a t2.medium instance which
has two virtual CPUs. In our distributed system, we simulate
the straggler problem by forcing one selected worker node
to the delaying state for m times as long as the normal
computing time of other normal workers with probability p.
In our experiments, we set p = 0.2 and m is selected from
[0,10] randomly. In practice, all nodes have a tiny possibility
of being delayed. The setting in our experiments is to verify
that our algorithm is robust to straggler problem, even in the
extreme situation.

A. Convex Case

In our experiment, we optimize quadratic loss with /5
regularization term to solve binary classification problem:

. 1 A
Imn*§:§(fwfwy+§mﬂz
1

(36)
where A = 0.1. Datasets in our experiments are from LIBSVM
[18]. Table I shows brief details of each dataset. In this
problem, because V¢;(w) can be written as Vo, (z] w), we
just need to store & € R”, and recover o € Rdxn through
a; = x;&;. Therefore the space complexity is O(n).

We compare our method with CoCoA+ [9], which is
the state-of-the-art distributed primal-dual optimization frame-
work. We reimplement CoCoA+ framework using C++, and
use SDCA as the local solver. Learning rate 7 in our method
is selected from n = {1,0.1,0.001,0.0001}.

1) Convergence of Duality Gap: We compare the duality
gap convergence of compared methods in terms of time and
epoch number respectively, where duality gap is well defined
in [6]. Experimental results are presented in Figure 2. We
distribute IJCNNI1 dataset over 4 workers. Figures 2a in the

Dataset ## of samples | Dimension | Sparsity
IJCNN1 49,990 22 41 %
COVTYPE 581,012 54 22 %
RCV1 677,399 47,236 0.16%

TABLE I: Experimental datasets from LIBSVM.

first column show the duality gap convergence in terms of
time and epoch on IJCNNI1 dataset. From the second figure, it
is easy to know that Dis-dfSDCA and CoCoA+ have similar
convergence rate. Since CoCoA+ has linear convergence if the
problem is convex and smooth, it is verified that Dis-dfSDCA
has linear convergence rate as well. In the experiment, we
evaluate Dis-dfSDCA when we set different amount of local
computations, H = 102 and H = 103. Results show that our
method is faster than CoCoA+ method in both two cases. The
reason is that CoCoA+ is affected by the straggler problem
in the distributed system. We also optimize problem (36) with
COVTYPE dataset using 8 workers, and RCV1 dataset using
16 workers. We can draw the similar conclusion from the
results of other two datasets.

2) Speedup: In this section, we evaluate the scaling up
ability of compared methods. The first row of Figure 3 presents
the speedup of compared methods on IICNN1 and COVTYPE
datasets. Speedup is defined as follows:

Running time for serial computation

Ti dup — 37
1me speedup Running time of using K workers G

Figure in the second row shows the convergence of duality gap
on RCV1 on multiple machines. It is obvious that Dis-dfSDCA
always converges faster than CoCoA+ when they have the
same number of workers. Experimental results verify that Dis-
dfSDCA has better speedup property than CoCoA+ when there
is straggler problem.

B. Non-convex Case

In this experiment, we optimize the following convex ob-
jective, which is an essential step for principal component
analysis in [1]:

min 1 i le (p—A) —zz] )w —b"w+ éHw”2 (38)
weRT N P 2 H v 2
We conduct the experiment on synthetic data and generate
n = 500,000 random vectors {z1, ..., T500,000 } € R%° which
are mean subtracted and normalized to have Euclidean norm
1. C = L3  x;zl denotes covariance matrix, b € RY
denotes a random vector and we let © = 100, A = 10~*
in the experiment. Because each ¢; is probably non-convex,
CoCoA is not able to solve this problem. In this experiment,
we compare with Distributed asynchronous SVRG [19].

In Figure 4, it is obvious that Dis-dfSDCA runs faster than
Distributed SVRG when there are 4 workers. We can observe
the similar phenomenon when there are 8 workers. This
observation is reasonable because Distributed SVRG needs to
compute two gradients in each inner iteration and full gradient
in each outer iteration. Dis-dfSDCA is faster because it only
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Fig. 2: Figures (a) - (c) present the convergence of duality gap of compared methods in terms of time. Figures (d) - (f) present
the convergence of duality gap of compared methods in terms of epoch number. We train IJCNN1 dataset with 4 workers,
COVTYPE dataset with 8 workers and RCV1 dataset with 16 workers.

needs to compute one gradient in each iteration. However, Dis-
dfSDCA needs O(nd) space for storing « , because V¢;(w)
cannot be written as V¢, (7 w)z; in this problem.

VI. CONCLUSION

In this paper, we proposed Distributed Asynchronous Dual
Free Coordinate Ascent (Dis-dfSDCA) method for distributed
machine learning. We addressed two challenging issues in
previous primal-dual distributed optimization methods: firstly,
Dis-df SDCA does not rely on the dual formulation, and can be
used to solve the non-convex problem; secondly, Dis-dfSDCA
uses asynchronous communication and can be applied on
the complicated distributed system where there is straggler
problem. We also analyze the convergence rate of Dis-dfSDCA
and prove linear convergence even if the loss functions are
non-convex, as long as the sum of non-convex objectives is
convex. We conduct experiments on the simulated distributed
system with straggler problem, and all experimental results
consistently verify our theoretical analysis.

APPENDIX

Proof to Lemma 1
Proof sketch: In our proof, we suppose that there are no
duplicate samples in I;. According to our algorithm, we know

that:
v = 3 (To ) +al®) = 3!

i€l i€l

(39)

where |I;| = H and E[v}] = VP(w®). Following the proof
in [11], we define A; and B; as follows:

A = Elaj - of|? (40)
B, = E|w"—w*|? (41)
Defining 3 = nAn, so in iteration ¢, o!™' = (1 — B)at +

B(—=V i (w®)), we have:
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Fig. 3: Time speedup in terms of the number of workers. Row 1 left: IICNN1; Row 1 right: COVTYPE; Row 2: RCV1.

the following inequality:

102
==f = Distributed SVRG Worker=4 EH V(bl (wd(t)) + Oé* ||2
o ) _ d(t) *\ (12
~ . = Disibuied SVRG Worker = = E[| Véi(w™) = Vgi(w™)|"]
e Dis-dfSDCA Worker=8 < 2E|V¢; (wd(t)) - v¢i(wt)“2 + 2E(|V; (wt) - v¢i(W*)||2
ot < 2L7E[|w’ — w'O + 2E|[Vei(w') — Vi (w")])*
) t—1
2 , A
< el . | < 20| Y 0P +aB(Pt) - Pw) - Gt - ')
2 RN - j=d(1)
t—1
°F S E j * A *
* S < 2rPr 3 El)P + 4LE<p(wt) — P(w") = S’ —w |2)
~ .
wrl g J.*d(t) .
where the first inequality follows from Lemma 4, the second
inequality follows from Lemma 5, the third and the last

0% 10 20 30 40 50 60 70 inequalities follow from the Assumption 2. In addition, it also
follows that:

Fig. 4: Suboptimum (P(w)—P(w*)) convergence of compared E[Bi11 — Bi] = Elw™ —w*|? - E|w’ — w*|?
methods in terms of time. w* denotes the optimal solution to = ok <wt _w ,Ut> + 772]E||vt||2(43)
problem (38) , and it is obtained by running Dis-dfSDCA until ’

We can know E (w® — w*,v?) is lower bounded that:

convergence.
E <wt —w*, ’Ut>

= Z]E<wd(t) —w*,vf> + ZE<wt —wd(t),vf>
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where the last inequality follows from that Y E|jvf[? > - ( ) (@) ( )) 49
i€l where the equality follows form that »! is not relevant to
t12 — t)12 * . * i
El 2 vil* = E|lv*[]°. Because af = —V;(w”), we have 0 (o able before w!™! and the inequality follows from the

i€l



convexity of P(w).

Proof to Theorem 1
Proof sketch: We define Cyy1 = cqAi11 + cpBry1 and set

Cq = 2/\%, ¢y = 1. Inputting Lemma 1 in equation, we have:

E[Ci41] = caAip1 + By

ca(l = nAH)E|al — || 4+ 2ca \THL?n? -
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where the last inequality follows from the L-smooth of P(w):

P(w') < P(wd(t)) + <wt — w?®), VP(wd(t))>
L
5t = w0
< Pwl®) 4 <wt — wd®), vp(wd(t>)>
t—1
LT
sl L (46)
J=d(t)

Adding the above inequality from ¢ = 0to ¢t =T — 1, we
have that:

Z]EOHI
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where the last 1neq2ua11ty follows from Assumption 2 and nL <
f 2Hp?7? LR )‘” +n? — 5% < 0 such that:
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4HL72 4+ An + 2L

(48)

Therefore, we have:
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We complete the proof. ]
Proof to Lemma 2
Proof sketch: As per the smoothness of ¢;, we have:
E[Vi(w'®) + af|?

= E[Vi(w") = Vi(w")|”

< LQEde(f) _ w*HQ
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We can also bound —E (w' — w*,v*) as follows:
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=0 t=0 of P such that (w'—w*, VP(w")) > P(w') — P(w*) +
; T-1 t-1 ) 2wt —w*||? and P(wt) — P(w*) > §||w® — w*||%. Defining
+27H Ln Z Z E[lo’ | v = % and substituting above two inequalities into (42) and
=0 j=d(t) (43) respectively, we complete the proof. ]
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< Z(l — nAH)E[C}] Proof to Theorem 3
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Proof sketch: We define Cyy1 = coAir1 + cpBey1 and set
¢y = 1. Inputting Lemma 2 in the equation, we

_ 1
- 4L2 9
have:



E[Ci11] = caAis1 + 6By
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where v = % Adding the above inequality from ¢ = 0 to

t =T — 1, we have that:
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where the last inequality holds as long as:

)\2
< 52
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such that 2c, \H L2720 + ch(L$)QT2773 +epn? — canA(1 —
B) < 0. We complete the proof. O

EXTRA LEMMAS

Lemma 3 ([20]): For random variables z1, ..., z,. are inde-

pendent and mean 0, we have:

Ellzr + ... + 2?] = E[||lzu]? + ... + |z]]?] (53)
Lemma 4: For any 21, ..., 2, it holds that:
lzr + o+ 22 < ezl 4+ 2l G4

(51511] S.

Lemma 5 ([11]): Assume that each ¢;(w) is L-smooth and
convex. Then, for every w,

1 n
=Y [ Veiw
i=1

o1 (P(w) - Plu) - §lo-w?) 69

) = Vi (w")||?
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