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Abstract—Link prediction is one of the fundamental problems
in social network analysis. A common set of techniques for link
prediction rely on similarity metrics which use the topology of
the observed subnetwork to quantify the likelihood of unobserved
links. Recently, similarity metrics for link prediction have been
shown to be vulnerable to attacks whereby observations about
the network are adversarially modified to hide target links. We
propose a novel approach for increasing robustness of similarity-
based link prediction by endowing the analyst with a restricted
set of reliable queries which accurately measure the existence of
queried links. The analyst aims to robustly predict a collection
of possible links by optimally allocating the reliable queries. We
formalize the analyst’s problem as a Bayesian Stackelberg game
in which they first choose the reliable queries, followed by an
adversary who deletes a subset of links among the remaining
(unreliable) queries by the analyst. The analyst in our model is
uncertain about the particular target link the adversary attempts
to hide, whereas the adversary has full information about the
analyst and the network. Focusing on similarity metrics using
only local information, we show that the problem is NP-Hard for
both players, and devise two principled and efficient approaches
for solving it approximately. Extensive experiments with real and
synthetic networks demonstrate the effectiveness of our approach.

Index Terms—Social network analysis, link prediction, adver-
sarial robustness, game theory

I. INTRODUCTION

The availability of massive social network datasets has led

to the widespread use of Social Network Analysis (SNA) tools.

For instance, centrality measures are used to identify important

individuals [5], while link prediction aims to uncover hidden

or missing connections within the network [14]. At the high

level, such SNA tools extract knowledge from the observed

network data, and the reliability of SNA critically relies on

the veracity of these observed data.

However, network data collection (which subsequently

grounds SNA) is not necessarily reliable. Many modes of data

collection are error-prone, including field surveys (which may

suffer from imperfect participant recall) and digitally collected

data (such as social media, in which “friends” may both

exclude actual friends, and include people who have never

met one another). In addition to such non-adversarial noise

in data collection, many SNA settings introduce incentives

for individuals to deliberately subvert network analysis by

tampering with the data collection process. For example,

suppose that law enforcement is investigating a crime network

and collecting information about this network from personal

interviews. The criminals may either themselves provide mis-

leading information, or intimidate others to do so.

The systematic investigation of the latter problem of ad-

versarial social network analysis has received some attention

from the attacker’s perspective in recent literature, with several

approaches developed for defeating analysis techniques such

as centrality analysis, community detection [22], link predic-

tion [23], [25], and node classification [26]. However, there

have been scarcely any approaches investigating how to make

SNA robust to such attacks. We propose the first approach

for robust similarity-based link prediction—a core problem in

social network analysis—in the presence of adversarial edge

deletion.

We begin by modeling network data collection as follows.

The analyst submits a set of node-pair queries to the envi-

ronment which returns edge or non-edge in response to each

query, corresponding to the assessment whether a queried

pair of nodes are connected. This is an abstraction of most

data collection approaches, such as field interviews, phone

call monitoring (in criminal cases), etc. Based on the query

results, we assume that the analyst will construct a subgraph

and use a similarity metric to assess the likelihood of the

existence of target edges that are not in the set of queries.

In our setting, an attacker can modify the query results by

changing edge to non-edge (equivalently, delete edges from the

observed subgraph) for a limited subset of queries in order to

hide a target link. In our running criminal network example,

the criminals would intimidate some of the interviewees to

not disclose existing relationships known to these. To counter

such attacks, we assume that the analyst can make a subset of

their queries reliable. For example, they may elicit a particular

relationship through multiple interviews as well as other means

(such as monitoring communications), significantly reducing

the likelihood that an existing link is successfully hidden.

We model the interaction between the analyst and the

attacker as a non-zero-sum Bayesian Stackelberg game in

which the defender (analyst) first commits to a set of reliable

queries, and the attacker chooses the set of links they will

delete after observing the analyst’s decision. The Bayesian

nature of this game captures the uncertainty of the analyst
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about both the network itself, and the attacker’s preference

about which link they wish to hide. We are interested in

finding the Strong Stackelberg Equilibrium of this game. We

show that for all local similarity metrics finding the attacker’s

best response in this game is NP-hard, with the difficulty

arising from the nature of tie-breaking. We then propose two

principled algorithms to approximate the defender’s optimal

commitment strategy in the Stackelberg game, one that casts

an approximate version of the problem as an integer linear

program, and another that identifies the set of critical links

that the attacker is likely to delete and associates each link

with an estimate of damage to the defender.

We conduct extensive experiments on several random graph

models as well as real networks. We show, surprisingly, that

the attack will not always harm the defender—by virtue of

this being a non-zero-sum game, there are instances when the

attack may actually increase the defender’s utility. In the more

typical cases where the attack will decrease the defender’s

utility, our proposed heuristic algorithm dramatically reduces

the damage with only a small proportion of reliable queries.

We also show that it is not always useful to have more

reliable queries, if they are not carefully chosen: in particular,

increasing the number of randomly chosen reliable queries

may at times decrease the defender’s utility.

II. RELATED WORK

Link prediction, as formulated by Liben-Nowell and Klein-

berg [14], considers the problem of predicting hidden or

missing links based on the network structure as well as other

side information. An important line of work in link prediction

focuses on the design of node pair similarity metrics [16], [21],

with the view that a higher similarity score for a pair indicates

a greater likelihood of the existence of a link. Such similarity

metrics are commonly classified as neighbor-based [11], path-

based [7], [15], and random-walk-based [4], depending on the

information used.

Recently, much effort has been devoted to analyzing the

vulnerability of social network analysis methods to adversarial

manipulation. For example, Waniek et al. [22] study the

vulnerability of centrality measures, which are indicators of

the importance of individuals or groups within a network,

to adversarial manipulation. Specifically for link prediction,

authors in [23] and [25] study how attackers can lower the

similarities among target links perceived by a network analyst,

thus evading link prediction, by modifying network topology.

Zhang et al. [24] experimentally analyzed the robustness of

several similarity metrics in link prediction to random noise.

While prior efforts primarily focus on attacking link prediction

algorithms, there is scarcely any systematic analysis of how

to make link prediction approaches robust to attack, which is

the subject of our work.

There are also related works in the realm of adversarial

machine learning [20], specifically on attacking representation

learning approaches (based on, e.g., random walk [17] or graph

convolutional networks [9]) over network data. However, such

works mainly focus on the attacks of some separate learning

tasks, such as node classification [26], [27]. To the best of our

knowledge, the attacks explicitly designed for such learning

based link prediction approaches are still unknown.

Game theory has been extensively used in security domains

to model and analyze the behavior of defenders and attackers

in adverse situations. In an important class of Stackelberg

game models [3], [10] the defender first commits to a defense

strategy, and the attacker then observes this commitment

decision and optimally responds. The typical solution concept

for such games is the Strong Stackelberg Equilibrium [10],

in which the attacker breaks ties in the defender’s favor.

Such a framework naturally fits in many real-world situations,

demonstrating considerable success in both theory and practice

[19]. Bayesian Stackelberg Games [6], [8] are an extension

of this framework in which the attacker has an informational

advantage, providing a natural modeling approach for our

setting.

III. SIMILARITY-BASED LINK PREDICTION

The key idea behind similarity-based link prediction is to

assess the likelihood of the existence of the link between a pair

of nodes by calculating how topologically similar these nodes

are. While a large variety of similarity metrics are used in

different prediction systems, we focus on a category of metrics

termed local metrics. For these, the similarity Sim(u, v|G)
between two nodes u and v given an observed subgraph G
only depends on “two-hop” information about u and v: their

neighbors and neighbors’ neighbors. As a result, local metrics

are easy to compute and do not require global information

about the network.

TABLE I: List of representative similarity metrics. Specifi-

cally, N(u, v) denotes the set of common neighbors of u and

v and d(u) denotes the degree of a node u.

Local Metrics Sim(u, v)

SLM

Adamic-Adar
∑

w∈N(u,v)
1

log d(w)

Resource Allocation
∑

w∈N(u,v)
1

d(w)

Common Neighbours |N(u, v)|
Jaccard

|N(u,v)|
d(u)+d(v)−|N(u,v)|

Sørensen
2|N(u,v)|
d(u)+d(v)

ASLM

Salton
|N(u,v)|√
d(u)d(v)

Hub Promoted
|N(u,v)|

min(d(u),d(v))

Hub Depressed
|N(u,v)|

max(d(u),d(v))

Leicht-Holme-Newman
|N(u,v)|
d(u)d(v)

We list the metrics considered in this paper in Table I, which

cover most of the popular metrics for link prediction. We find

it useful to classify them as Symmetric Local Metrics (SLM)

and Asymmetric Local Metrics (ASLM), as defined below in

Section VI-B.

IV. ROBUST LINK PREDICTION MODEL

In our model, a network analyst (defender) faces an attacker

whose goal is to hide certain links.



A. Defense & Attack Models

While much of prior literature on link prediction is not

explicit about how network data is acquired, modeling data

acquisition is crucial for a principled approach to robust link

prediction. We model the data collection process as follows.

An analyst collects observations about the network via a set

of queries Q = {(ui, uj)} to the environment (which is a

proxy for actual data collection; for example, field interviews,

communication monitoring, etc.), where each (ui, uj) stands

for a pair of nodes. The environment responds with “edge” if

(ui, uj) ∈ Q is indeed an edge in the underlying network and

with a “non-edge” otherwise. Again, query response here is

an abstraction; for example, it would correspond to an answer

of a survey subject whether individuals i and j are friends.

Since data collection is costly, the number of such queries is

limited. Hence, given the partial graph GQ constructed with Q,

the analyst employs link prediction algorithms to find whether

there exist some other links in the network that have not been

identified so far. Formally, the analyst wants to predict the

existence of links among a set of node pairs, denoted by

HD = {(vi, vj)}, that do not appear in the observed network.

Naturally, we assume (vi, vj) /∈ Q, for any (vi, vj) ∈ HD,

since otherwise the existence of this edge is directly observed.

We refer to HD as a target set of the analyst.

We assume that the analyst uses similarity-based link pre-

diction, i.e., she computes a similarity score Sim(vi, vj |GQ)
between a pair of nodes (vi, vj) ∈ HD based on the observed

subgraph GQ. When clear from context, we often write the

similarity metric simply as Sim(vi, vj). We assume that the

analyst will predict that the link between vi and vj exists iff

Sim(vi, vj) ≥ θ, where θ is a pre-defined threshold.

The attacker aims to hide a target connection HA = (V1, V2)
from the network analyst. Specifically, the attacker attempts to

minimize the similarity score Sim(V1, V2|GQ) by modifying

the results of a subset of the queries Q, following the model

proposed by Zhou et al [25]. We restrict the attacker’s ability

to changing edges in Q into non-edges, which is equivalent

to deleting a subset of edges in GQ. In practice, this can

be achieved by making the existing links difficult to observe

or measure (e.g., blocking communication channels, limiting

communication, intimidating witnesses, etc.). Since deleting

links is typically costly (e.g., the connection between nodes

comes from an actual need to communicate), we impose a

constraint that the attacker can delete at most kA links. Let the

set of links removed by the attacker be denoted by SA ⊆ Q.

The graph constructed by the analyst after the attack then

becomes ĜQ = GQ − SA.

We assume that the attacker knows the structure of the

underlying graph G, as well as the defender’s target set HD,

modeling an informationally powerful attacker.1

To defend against the attack, we assume that the analyst

can make a subset of queries Q reliable in the sense that

the associated link information is accurately measured despite

1In fact, it suffices in our case for the attacker to only know local network
structure for the target edge HA, which is informationally quite plausible.

adversarial tampering. For example, the analyst of a covert

network can decide to devote sufficient resources (such as a

background check, private investigation, etc.) to measure the

connection between two nodes reliably. Let SD ⊆ Q denote

the set of reliable queries chosen by the defender. Clearly,

reliably measuring links can be quite costly, and the analyst

therefore faces a budget constraint that |SD| ≤ kD for an

exogenously specified number of reliable queries kD she can

make. For a combination of decisions (SD, SA) by the analyst

and the attacker about reliable queries and edges to remove,

respectively, the observed subgraph becomes ĜQ = GQ−SA \
SD, where SA \ SD = {(ui, uj) ∈ SA|(ui, uj) /∈ SD}.

B. Bayesian Stackelberg Game Formulation

At the high level, we have an adversarial situation, where

the analyst attempts to distribute her budget of reliable queries

within Q so as to make link prediction vis-a-vis the target set

of links HD robust against link removal attacks. To formalize

this, we model the interaction between the analyst and the

attacker as a Bayesian Stackelberg game. In this game, the

analyst first chooses the set SD of reliable queries. The

attacker then observes SD, and chooses the set of edges SA

to remove from GQ (equivalently, the set of query answers

to flip from “edge” to “non-edge”). Crucially, the analyst is

uncertain about both HA (the attacker’s target link to hide) and

the true network G (as well as the derived subnetwork), which

are both known to the attacker. We denote by t = (HA,G)
the attacker’s type or private information, upon which they

can condition the choice of SA. Suppose that the analyst

has a prior distribution P over attacker’s types t. Let the

utilities of the attacker and the defender in the game given

joint decisions (SD, SA) and attacker type t be uA(SD, SA; t)
and uD(SD, SA; t), respectively. The attacker can condition

their strategy on both their type t and the observation of the

analyst’s strategy SD; we represent it as a function g(SD; t).
We are now ready to formally define the Strong Stackelberg

equilibrium of the Bayesian Stackelberg game above.

Definition 1. The strategy profile 〈S∗

D, g∗〉 forms a Strong

Stackelberg Equilibrium (SSE) of the Bayesian Stackelberg

game if they satisfy the following:

• The defender plays a best response: ∀ SD,

Et∼P [uD(S∗

D, g∗(S∗

D; t); t)] ≥ Et∼P [uD(SD, g∗(SD; t); t)].

• The attacker plays a best response for each type t:

uA(SD, g∗(SD; t); t) ≥ uA(SD, g(SD; t); t), ∀SD, g.

• The attacker breaks ties optimally for the defender for

each type t: ∀S∗

D, g ∈ G(S∗

D; t), where G(S∗

D; t) is the

set of attacker’s best responses to S∗

D for attacker type t,

uD(S∗

D, g∗(S∗

D; t); t) ≥ uD(S∗

D, g(S∗

D; t); t).

We now specialize the Bayesian Stackelberg game model to

our problem by defining the utilities of both players. First, re-

call that the goal of the attacker is to minimize the similarity of

a target link HA. Consequently, uA(SD, SA; t) = −Sim(HA).





S (respectively T ) is s (respectively t). Then in graph H, the

attacker will delete all links (ui, V1) for ui ∈ S and delete all

links (uj , V2) for uj ∈ T . Now consider any target (ui, uj). If

ui and uj belong to different partitions (for example, ui ∈ S
and uj ∈ T ), the similarity Sim(ui, uj) = 0 as there is no

common neighbors between ui and uj due to the deletion

of links. If ui and uj belong to the same partition S, then

Sim(ui, uj) = 1 as they share only one common neighbor V2.

As there are s edges with both end-nodes in S in graph G, we

know there are s target links in the partition S in graph H, each

with similarity 1. Similarly, we know there are t target links in

T each with similarity 1. Thus SD = s+ t = |E|−k. That is,

we found a partition S and T of the nodes (which corresponds

to a way of deleting edges) such that SD = |E| − k.

Second, we show that if we find a partition of nodes in

graph H such that SD ≤ |E| − k, then we found a cut of

size at least k. Let the partition be S and T and the attacker

delete all links (ui, V1) for ui ∈ S and all links (uj , V2) for

uj ∈ T . Consider a target link (ui, uj) in HD. If ui and uj

belong to different partitions, then Sim(ui, uj) = 0. If ui and

uj belong to the same partition, we have Sim(ui, uj) = 1. As

SD = |E| − k, we know there are |E| − k such target links

that the end-nodes belong to the same partition (either S or

T ). Let S and T be a cut in graph G. Since each target link

in HD corresponds to an edge in G, we have the number of

edges with both end-nodes in the same partition is |E| − k.

By definition, the size of the cut is k. That is, if we find a

partition of nodes in graph H such that SD ≤ |E| − k, then

we found a cut of size at least k.

It is an immediate consequence that the problem of com-

puting the SSE of our game is hard: simply let kD = 1 (in this

case, the problem is equivalent to computing the attacker’s best

response part of the SSE). Given that computing an optimal

solution efficiently is out of the question, in what follows, we

present principled approaches for computing an approximately

optimal SSE strategy for the analyst.

VI. SOLUTION APPROACH

At the high level, our approach makes an assumption

that the damages caused by deleting links are approximately

independent, which significantly simplifies the attack. Under

this assumption, we show that the attacker’s best response that

breaks ties in the defender’s (analyst’s) favor can be found

efficiently for all local metrics. Based on this, we then compute

an approximately optimal defender strategy.

A. Independent Damage Approximation

In essence, the hardness of finding the attacker’s best

response that breaks ties in favor of the defender comes

from the fact that the effects of deleting each link are inter-

dependent. That is, the damage to the defender caused by

deleting a particular link is determined by the states (either

deleted or not) of other links. To make the problem tractable,

we make the approximation that deleting a link will cause a

damage which is independent of the states of other links. Our

experiments subsequently demonstrate the effectiveness of this

approach.

Given the independence assumption, the results of Zhou et

al. [25] imply that for a sample (Gi, Hi
A), the attacker will

only delete links connecting V i
1 or V i

2 with their common

neighbors. Specifically, the attacker will identify a subgraph

Gi
A of Gi consisting of tuples (V i

1 , w
i
j , V

i
2 ), where wi

j are

common neighbors of V i
1 and V i

2 . Denote the set of common

neighbors by W i = {wi
j}

Ni

j=1, where N i = |N(V i
1 , V

i
2 )|.

Let cijr (r ∈ {1, 2}) denote the damage caused by deleting

link (V i
r , w

i
j), which is the change in the defender’s loss

L(SD, HD|θ,Gi)−L(SD, HD|θ,Gi−{(V i
r , w

i
j)}\SD). Thus

for each sample (Gi, Hi
A), the attacker can extract a weighed

sub-graph Gi
A, termed damage graph, with each edge (V i

r , w
i
j)

associated with a damage cijr. Then under the independent

damage assumption, the total damage Ci caused by the attack

is the summation of the damages cijr corresponding to the

deleted links: Ci =
∑

(V i
r ,w

i
j)∈Si

A
cijr.

We note that each individual damage cijr could be zero, pos-

itive, or negative. That is, the attack could possibly decrease

the defender’s loss, which reflects the non-zero-sum nature of

the game between the attacker and defender. This is because

deleting links could either increase or decrease the similarity

score of a node pair in the defender’s target set, which further

will increase or decrease the defender’s loss depending on the

state (edge or non-edge) of that link.

B. Computing Attacker’s Best Response

We seek to compute the attacker’s best response that breaks

ties in favor of the defender under the independent damage

assumption. We model strong attackers by assuming that kiA =
|N(V i

1 , V
i
2 )|.

We begin by considering attacker’s strategy without con-

sidering tie-breaking. For an arbitrary sample (G, HA) and

its corresponding damage graph GA, the results in [25] show

that the attacker would not delete the two links connecting

to the same common neighbor simultaneously. Instead, he

will choose one of (V1, wj) and (V2, wj) to delete for each

wj . Now, consider a tuple (V1, wj , V2). If both (V1, wj) and

(wj , V2) are “protected” (i.e., reliably queried) by the defender,

the attacker cannot delete either edge. If one of (V1, wj)
and (wj , V2) is protected, the attacker will delete the other

unprotected edge. Thus, the only non-trivial attacker decision

is to select which one of (V1, wj) and (wj , V2) to delete

when both of them are unprotected. For convenience, we

term such edges critical edges. We assume that there are k′A
(k′A ≤ |N(V1, V2)|) pairs of critical edges, among which the

attacker will delete k1 critical edges connecting to V1 and k2
connecting to V2 (k1 + k2 = k′A).

Based on the results in [25], we classify the local met-

rics into Symmetric and Asymmetric metrics depending on

the attacker’s strategy in deleting critical edges. Specifically,

for symmetric metrics, any combinations of k1 and k2 will

maximize the attacker’s utility as long as k1 + k2 = k′A. For

asymmetric metrics, the optimal solution requires some fixed

k∗1 and k∗2 with k∗1 + k∗2 = k′A. The values of k∗1 and k∗2 can



be efficiently computed given the degrees of V1 and V2 and

the number of their common neighbors [25].

Now, consider the attacker’s best response when breaking

ties in favor of the defender. Intuitively, the attacker will

choose the set SA that simultaneously minimizes the similarity

of the target link and minimizes the total damage C. The

next two results characterize such a best response first for

symmetric and then for asymmetric similarity metrics.

Proposition 1. For symmetric metrics, the attacker’s best

response that breaks ties in favor of the defender is: for each

pair of links (V1, wj) and (V2, wj), if one of the links is

protected, delete the other unprotected link and if both links

are unprotected, delete the link which is associated with a

smaller damage.

Proof. For each pair of links (V1, wj) and (V2, wj), if one

of the links is protected, the attacker will delete the other

unprotected link to minimize Sim(V1, V2).
When both links are not protected, we use a binary vari-

able yj to denote the attacker’s decision regarding the tuple

(V1, wj , V2), j = 1, 2, · · · , k′A. Specifically, yj = 1 means that

the attacker will delete edge (V1, wj) and yj = 0 means that

the attacker will delete (wj , V2). The attacker will minimize

the total damage C, which can be written as:

argmin
y

C =

k′

A∑

j=1

cj1yj + cj2(1− yj) (4)

For symmetric metrics, the above optimization problem

is unconstrained, as every combination of k1 and k2 will

maximize the attacker’s utility. Then it’s straightforward to

obtain that the optimal solution is to set yj = 1 if and only if

cj1 − cj2 ≤ 0 for j = 1, 2, · · · , k′A.

Proposition 2. For asymmetric metrics, the attacker’s best

response that breaks ties in favor of the defender is : i) for

each pair of links (V1, wj) and (V2, wj), if one of the links

is protected, delete the other unprotected links; ii) among all

the unprotected link pairs, select k∗1 common neighbors wj in

ascending order of (cj1 − cj2) and delete the corresponding

links (V1, wj), and for the remaining wj , delete (V2, wj).

Proof. For asymmetric metrics, the attacker solves optimiza-

tion problem (4) with an extra constraint
∑k′

A

j=1 yj = k∗1 .

Rewrite the objective as C =
∑k′

A

j=1 cjyj + B, where cj =

cj1 − cj2 and B =
∑k′

A

j=1 cj2 is a constant. Clearly, greedily

setting yj = 1 in ascending order of (cj1 − cj2) gives the

optimal solution.

C. Computing an Approximately Optimal Strategy for the

Analyst

Based on the attacker’s best response characterized above,

we propose two algorithms to find the defender’s strategy. The

first one, termed IDOpt (Independent Damage Optimization),

formulates the defender’s problem as a nonlinear integer

program which can be linearized using standard techniques

and whose solution yields the defender’s optimal strategy

for symmetric metrics under the independent damage ap-

proximation. The second one, termed IDRank (Independent

Damage Ranking), ranks the importance of each link based on

the accumulated damages, avoiding solving the optimization

problem and thereby allowing a significant improvement in

scalability.

a) IDOpt: For each sample, the defender is facing an

attacker strategically deleting edges over the damage graph

Gi
A. The challenging part is that as the underlying graph Gi is

sampled over the same node set according to some distribution,

the damage graphs can have overlapping edges (although they

are independent in the view of different types of attackers).

This makes finding the defender’s best response regarding

a single sample meaningless. Instead, the defender needs to

jointly consider all the samples.

We first show that for symmetric metrics, the defender’s

problem can be formulated as a nonlinear integer program

with linear constraints. Specifically, we use a binary variable

xi
jr (r = 1, 2) to denote the defender’s decision of protecting

(reliably querying) edge (wj , V
i
r ), where xi

jr = 1 means the

defender choose to protect the edge and xi
jr = 0 otherwise.

Consider the tuple (V i
1 , w

i
j , V

i
2 ), the defender has four dif-

ferent options regarding protecting the two links (V i
1 , w

i
j) and

(V i
2 , w

i
j). Specifically, when the defender chooses to protect

neither links, the expected damage is min{cij1, c
i
j2}, based on

the attacker’s best response. Thus, the expected damage to the

defender regarding tuple (V i
1 , w

i
j , V

i
2 ) is

cij(x
i
j1, x

i
j2) =cij2x

i
j1(1− xi

j2) + cij1(1− xi
j1)x

i
j2

+min{cij1, c
i
j2}(1− xi

j1)(1− xi
j2). (5)

Under the independent damage approximation, the total

expected damage to the defender is

C(x) =

K∑

i=1

Ni∑

j=1

cij(x
i
j1, x

i
j2), (6)

where N i denotes the number of common neighbors of V i
1 and

V i
2 and x denotes the defender’s joint decision. Then minimiz-

ing the defender’s total loss is equivalent to minimizing the

total expected damage over all samples. The defender solves

the following integer programming problem:

min
x

C(x), s.t.

K∑

i

Ni∑

j=1

(xi
j1 + xi

j2) ≤ kD. (7)

The nonlinear terms involve only pairwise products of binary

decision variables. Since each such term can be linearized

using standard techniques, the optimization problem can be

cast as an integer linear program. We note that the decision

variables xi
jk many appear multiple times in the samples as the

critical edges may overlap in the reduced sub-graphs. However,

each xi
jk is counted once in the above constraint. From the

above analysis, we have the following proposition regarding

the defender’s optimal strategy.



Proposition 3. Suppose the attacker’s best response is as

specified by Proposition 1, then the solution to the integer

program (7) gives the defender’s optimal strategy.

IDOpt is summarized in Alg. 1. We also use IDOpt as

a heuristic for asymmetric metrics. Specifically, we solve

Eqn (7) to obtain the defender’s strategy while in the simulated

attacks, we let the attacker follow the strategy as stated in

Proposition 2.

Algorithm 1 IDOpt

1: for i = 1, 2, · · · ,K do

2: generate sample (Gi, Hi
A)

3: add cij(x
i
j1, x

i
j2) to objective ⊲ defined in Enq (5)

4: construct integer program ⊲ defined in Eqn (7)

5: solve integer program, output x ⊲ x: reliable queries

b) IDRank: When the size of the graph or the number

of samples becomes large, solving the integer program will

not scale. For this purpose, we propose a second approach

IDRank. At the high level, IDRank is guided by considering

the defender’s optimal strategy when there is only one sample.

Then IDRank will assign an importance score to each critical

edge and the edges are ranked by their accumulated impor-

tance scores. Finally, the edges with high scores are identified

as those that the defender needs to protect.

Let GA be the damage graph extracted from a sample. Let

each common neighbor wj of V1 and V2 be associated with a

weight cj = min{cj1, cj2}. Let Np be the number of common

neighbors whose weights are positive. We have the following

proposition characterizing the defender’s (analyst’s) optimal

strategy for a single attack sample.

Proposition 4. Suppose the attacker’s best response is as

specified by Proposition 1. The defender’s optimal strategy

is: 1) when KD ≥ 2Np, the defender will protect edges

(wj , V1) and (wj , V2) for wj whose weights are positive;

2) when kD < 2Np, the defender will select ⌊kD

2 ⌋ common

neighbors wj in descending order of their weights and protect

all (wj , V1) and (wj , V2) for selected wj .

Proof. When the attacker’s best response is as stated in Propo-

sition 1, the total damage is C =
∑N

j=1 cj , as the attacker

will choose the edge with smaller damage to delete for each

tuple (V1, wj , V2). Consider a common neighbor wj whose

weight cj is non-positive. Protecting one or both of (V1, wj)
and (V2, wj) will not decrease C. For a common neighbor wj

with positive weight, suppose cj1 ≤ cj2, i.e., cj = cj1 > 0. If

the defender chooses to protect edge (V1, wj), C will increase

by cj2 − cj1, which is non-negative. If the defender chooses

to protect edge (V2, wj), C will not change. If the defender

chooses to protect both edges, C will decrease by cj1, which

is positive. To minimize C, the defender’s optimal strategy is

to protect both edges. Thus, when KD ≥ 2Np, the defender

will protect edges (wj , V1) and (wj , V2) for wj whose weights

are positive. When kD < 2Np, the defender will select ⌊kD

2 ⌋

common neighbors wj in descending order of their weights

and protect all (wj , V1) and (wj , V2) for selected wj .

Proposition 4 states that when there is a single sample, the

defender will protect the tuples (V1, wj , V2) (i.e., protect both

edges (V1, wj) and (V2, wj)) only if deleting both edges will

cause positive damage. This gives some intuition when the

defender jointly considers all the samples.

Based on this, IDRank works as follows. For each damage

graph Gi
A, the defender will identify those common neighbors

whose weights (i.e., cij = min{cij1, c
i
j2}) are positive and

assign an importance score cij to both edges (wi
j , V

i
1 ) and

(wi
j , V

i
2 ). After processing all the damage graphs, the defender

obtains a list of edges ranked by their importance scores, from

which the defender can pick the top kD edges to protect.

IDRank is summarized in Alg. 2.

Algorithm 2 IDRank

1: initialize a weight vector w for all possible edges (V i
r , w

i
j)

2: for i = 1, 2, · · · ,K do

3: generate sample (Gi, Hi
A)

4: for j = 1, 2, · · · , N i do

5: if cij > 0 then ⊲ cij = min{cij1, c
i
j2}

6: add w[(V i
r , w

i
j)] by cij for r = 1, 2

7: rank w in descending order

8: output top kD edges ⊲ reliable queries

VII. EXPERIMENTS

A. Datasets

a) Synthetic: We consider two synthetic data sets gener-

ated from two random graph models. Both of these two models

will generate graphs with a power-law distribution, which are

used to model a large range of social networks. The first data

set, denoted as PA, are generated from the Barabasi-Albert [1]

(or Preferential Attachment) model. Each of the graphs has

n = 500 nodes, and the average degree of each node is ∼ 10.

The second dataset is generated from the configuration model

[2], that is used to generate graphs with pre-defined degree

distributions. The generated graphs have a degree distribution

satisfying P (k) ∝ k−γ , where γ is a controllable parameter.

We set n = 500 and γ = 2.0. In the generated data set (PLD),

each node in the graphs has an average degree of around 5.

Both graph generators are implemented through SNAP [13].

b) Real networks: We consider two real social networks

from [18], denoted as TVShow and Gov, which represent

Facebook pages of two categories ( TV show and government,

respectively). The nodes represent pages, and the (undirected)

edges represent the “likes” among them. TVShow has 3892
nodes and 17262 edges, and Gov has 7057 nodes and 89, 455
edges, which is denser. We use the random-walk (with restart

probability c = 0.15) sampling approach [12] to generate

random subgraphs each having 500 nodes from TVShow and

Gov.



B. Attack and Defense Methods

We consider three attack and three defense methods. The

first attack is proposed in [25], which we term LinkDel, and it

will delete links according to Proposition 1 and Proposition 2.

The second attack, termed UnbiasedDel, is based on a heuristic

approach from [23]. Specifically, UnbiasedDel will delete one

of the two links (V1, w) and (V2, w) without bias in case they

are both not protected, for each common neighbor w of the

attacker’s target nodes. The third attack RandDel is motivated

by [24] where they measure the robustness of link prediction

algorithms through random perturbation on the graphs. To

simulate such random perturbation, RandDel will delete each

unprotected link (Vi, w) (i = 1, 2) with probability p = 0.5.

The first two defense methods are IDOpt and IDRank.

We also consider a third defense as a baseline, termed PPN

(Protect Potential Neighbors). PPN will protect a subset of

links randomly sampled from a set of critical links Ec, which

are links between the defender’s target node set VD and the

rest of the nodes in the network.

Evaluation metric: We evaluate the defense performance

by simulating 2000 independent attacks and measuring the

changes in the accumulated loss. Specifically, let L0 be the

defender’s accumulated loss when there is no attack. Let LA

be the defender’s loss under some attack A when the defender

cannot make any reliable queries. We use LD to denote the

loss when the defender make reliable queries according to

a certain defense strategy D. We are primarily interested in

damage prevention, which measures the amount of damage

that can be prevented by defense. Formally, we define a

damage prevention ratio DPR
D
A as the percentage of damage

that is prevented:

DPR
D
A =

LA − LD

LA − L0
,

where D ∈ {IDOpt, IDRank,PPN} represents a defense

strategy and A ∈ {LinkDel,UnbiasDel,RandDel} denotes an

attack method. We note that a larger DPR means that the

defense strategy is more effective, and DPR is not necessarily

smaller than 1, as theoretically the attacks may decrease the

defender’s loss.

C. Vulnerable Cases

In this section, we empirically evaluate the effect of at-

tacks in different scenarios, using LinkDel as a representative

attack, and identify the vulnerable cases where the attack

has a relatively higher impact on the defender’s loss. Let

VD (respectively, VA) be the union of end-nodes appeared

in HD (respectively, HA). We thus classify the attacks by

the distributions of VD and VA. Specifically, we consider

two cases of VD, termed as clustering and sparse, where the

nodes in VD are randomly drawn from high degree nodes

and from all nodes in the network, respectively. We also

consider two cases of VA, termed targeted, where VA ⊂ VD,

and sparse, where VA are randomly drawn from all nodes

in the network, respectively. As a result, we consider four

different attack scenarios in combination: Random Sparse

Attack (RSA), Random Clustering Attack (RCA), Targeted

Sparse Attack (TSA), and Targeted Clustering Attack (TCA).

We first empirically evaluate the damage to the defender

caused by each attack. In our experiments, we keep VD fixed,

which is implemented by renumbering the node IDs in the

sample graphs. We measure the accumulated losses from 1k

simulated attacks in each attack scenarios. We define the

damage as the change in the accumulated loss before and after

the attacks. In our experiments, we use the exponential loss

function, defined as l(e) = exp(−yeβ(Sim(e)− θ)), where e
represents a node pair in HD, β is a parameter, and θ is a pre-

defined threshold. The relative quantities of the damages are

similar for other standard loss functions. We present the results

for four representative metrics (Table II ): CN, Sørensen, RA,

and Salton, that have their own features. Specifically, CN

only considers the number of common neighbors; Sørensen

and Salton can be considered as generalized CN adjusted

by node degrees; RA computes the degrees of the common

neighbors. Among these, Salton is asymmetric and the others

are symmetric.

TABLE II: The damages (%) caused by attacks in four

different attacking scenarios on TVShow and PA.

Metrics TCA RCA TSA RSA

TVShow

CN +23.524 +1.400 +3.196 +0.022
Sørensen +11.274 +0.589 +1.424 −0.002

RA +9.461 +0.101 +3.371 +0.005
Salton +22.632 +0.727 +7.695 −0.025

PA

CN +7.167 +1.072 +0.394 +0.138
Sørensen +5.292 +0.589 −0.302 +0.061

RA +17.628 +2.408 +0.952 −0.046
Salton +8.911 +1.659 +1.673 +0.3945

In general, the effects of random attacks (whether VD are

clustered or not) are almost negligible; while the targeted

attack on clustered VD causes significant damage for all

metrics. This motivates us to focus on TCA, where VD consists

of relatively high degree nodes and VA are sampled from VD.

We note that TCA models are an important class of attacks in

reality, where both the defender and the attacker are interested

in important individuals (measured by their degrees) in the

networks. While the defender wants to predict the mutual

connections among them, an attacker aims to hide a particular

relationship.

The rest of this section focuses on evaluating the perfor-

mance of our proposed defense strategies in the TCA scenario.

In our experiments, we set |VD| = 10 and consider all node

pairs in VD. Accordingly, the set of critical edges |Ec| has

a size of ∼ 5000. We sample VD from high degree nodes

such that on average there are ∼ 45% − 55% edges in HD

in the sample graphs. For the IDOpt and IDRank defense,

we generate 4000 samples to identify the important links to

protect.

D. Defense Performance under Attacks

a) Defense under LinkDel attack: We present the DPR

of the three defense methods, IDOpt, IDRank, and PPN, under

the LinkDel attack on four datasets in Fig. 2 to Fig. 5. In all
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