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The Euler-Bernoulli beam model with non-conservative
feedback type boundary conditions is investigated.
Components of the two-dimensional input vector are
shear and moment at the right end, and components
of the observation vector are time derivative of
displacement and slope at the right end. The
boundary matrix containing four control parameters
relates input and observation. The following results
are presented: (i) if one and only one of the control
parameters is positive and the rest of them are equal
to zero, then the set of the eigenmodes is located
in the open left half plane of the complex plane,
which means that all eigenmodes are stable; (ii) if
the diagonal elements of the boundary matrix are
positive and off-diagonal elements are zeros, then the
set of the eigenmodes is located in the open left half
plane, which imply stability of all eigenmodes; (iii)
specific combinations of the diagonal and off-diagonal
elements have been found to ensure the stability
results. To prove the results, two special relations
between the eigenmodes and mode shapes of the
non-selfadjoint problem and clamped-free selfadjoint
problem have been established.

1. Introduction
In the present paper, we consider the stability problem
for the Euler-Bernoulli beam model subject to a special
type of non-dissipative boundary conditions. The left
end the beam is clamped, while the right end is subject
to linear conditions that are represented as a feedback
control law. The input and the observation of this control
law are the 2-dimensional vectors: U and Y, respectively.
The components of the input, U , are the shear and the
moment at the right end. The components of the
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observation, Y , are the time derivatives of the displacement (tip velocity) and of the slope (angular
velocity) at the right end. U and Y are related by a 2× 2 matrix K : U =KY . The entries of the
feedback matrix, K, are the control parameters. The corresponding closed loop system is non-
dissipative in the sense that for the general K, the energy functional is not a strictly decreasing
function of time.

Our main result consists of the following: even though the system is non-dissipative all the
eigenmodes are stable (i.e., they belong to the left half-plane of the spectral parameter) for certain
ranges of the control parameters (see the precise statement in Theorem 2.4 below).

The main tools in proving this result are two relations between the eigenmodes and the mode
shapes of the non-selfadjoint operator, which is the dynamics generator of our closed loop control
system, and the selfadjoint operator, which is the dynamics generator of the beam with clamped-
free boundary conditions. To the best of our knowledge, such relations (the main identities) did
not occur in the literature on spectral analysis of differential operators before. We suggest that
they might be of purely theoretical interest in their own right as a tool in spectral analysis.

The present work is a generalization of the results obtained in [Shubov & Shubov, 2016 (1)],
where the boundary feedback matrix contained only two non-trivial parameters: the codiagonal
entries of the feedback matrix, K. It is shown in [Shubov & Shubov, 2016 (1)], that if only one
control parameter is not equal to zero, then the model (still non-dissipative) is stable, i.e., all
vibrational modes are located in the closed left half-plane of the complex plane.

Now we present a motivation for choosing the above described specific input U and
observation Y . The reason for this choice is twofold.

(i) The engineering origin of the above control law resides in the problem of control of a
flexible robot arm. We refer to [Guiver & Opmeer, 2010] where the same control law (with
the diagonal entries of the feedback matrix, K, are equal to zero) was used to investigate
the stability of the Rayleigh and Timoshenko beams. The authors of this paper in turn
referred to [Luo & Guo, 1997] where a shear force feedback control was used for an Euler-
Bernoulli beam model of a robot arm with a revolute joint. We also mention [Cannon &
Schmitz, 1984] and [Sakawa, et. al., 1985] for the experimental origin of the feedback
controls for a robot arm.

(ii) The second reason for the choice of the above control law is purely theoretical. This reason
was pointed out in [Guiver & Opmeer, 2010] (in the case of the Rayleigh and Timoshenko
beams). Namely, if one calculates the time derivative of the energy functional, E , of
the beam, taking into account only the equation of motion and the clamped boundary
conditions at the left end, then the result turns out to be Et = Y · U . We find that the
dot product of the above input and observation appears in a natural way. If we set
U =KY then Et = Y ·KY and therefore, Et < 0 if K is a negative definite matrix. In other
words, we get a feedback that produces a dissipative system. (This feedback is actually
stabilizing, though this fact requires a separate proof. The proof based on the Riesz basis
property of the mode shapes will be given in our forthcoming work.) Our feedback is a
generalization of the aforementioned approach: we replace K by the general 2× 2 matrix,
i.e., K is not necessarily negative definite.

Feedback control of beams is an extensively studied area. Euler-Bernoulli, Rayleigh,
Timoshenko, and other beam models have been studied with different control laws. We mention,
e.g., [Chen, et. al., 1987], [Conrad & Morgul, 1998], [Ozer & Hansen, 2011, 2014]. We also mention
[Guiver & Opmeer, 2010; Curtan & Zwart, 1995; Zwart, 2010; Lions, 1988; Shubov, 2006, 2008;
Russell, 1986].

The area of beam control has numerous applications to the control of robotic manipulators,
aircraft wings, propeller blades, large space structures, (see [Dowell, 2004; Joshi, 1988;
Balakrishnan & Shubov, 2004; Balakrishnan, 2012] and references herein). Additional applications
include dynamics of carbon nanotubes [Shubov & Rojas-Arenaza, 2008, 2011] and rapidly
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developing area of energy harvesting mathematical modeling [Erturk & Inman, 2011; Erturk,
2012; Shubov, 2018; Shubov & Shubov, 2016 (2)].

We also point out that non-dissipative feedbacks are important for the energy harvesting
purposes since destabilization is desirable for energy harvesters. Our results describing the
spectrum for the off-diagonal case may be useful for engineers designing control laws for
energy harvesters. In this connection we mention [Ozer, 2018], which studies a voltage-controlled
piezoelectric laminate model based on the Euler-Bernoulli beam. The model studied in this
work can be viewed as an application of non-dissipative feedback in consideration of energy
harvesting.

The non-dissipative boundary conditions similar to the conditions considered in the present
paper for the Euler-Bernoulli beam can be also considered for the Rayleigh beam model (that adds
rotary inertia effects of the Euler-Bernoulli beam) and for the Timosheko beam model (that takes
into account the effects of shear distortion and rotary inertia). Those boundary conditions for
the Rayleigh and Timoshenko beams with constant structural parameters have been considered
in [Guiver & Opmeer, 2010]. The authors have demonstrated that each of these models has an
infinite sequence of unstable eigenmodes. This is a sharp contrast to the Euler-Bernoulli beam
which, as was mentioned above, may have only stable eigenmodes.

The present paper can be considered as a counterpart of the works [Shubov, 2014, 2018]. The
author in [Shubov, 2014] examines the asymptotic and spectral analysis of the Rayleigh beam with
similar non-dissipative boundary conditions. The main result of that paper is a set of asymptotic
formulas for the eigenmodes of the Rayleigh beam pertaining to all possible ranges of control
parameters. The instability result proven in [Guiver & Opmeer, 2010] follows from the asymptotic
formulas of [Shubov, 2014] as an immediate corollary. The leading asymptotical term shows that
the eigenmodes approach the imaginary axis. The second order asymptotical term contains an
alternating sign factor. This fact together with the estimate of the remainder implies that starting
from a certain number, all even numbered modes (in the asymptotic numeration) are unstable.

The main findings of the paper. We mention at this point that we use a nonstandard notation
for the dynamics generator of our system. Namely, we denote the dynamics generator of the
closed loop system by iL and the dynamics generator of the clamped-free beam by iL0. Then
we apply the term “dynamics generator" for the operators L and L0 as well. The reason for such
notations consists of the following. L0 is a selfadjoint operator in the state space while iL0 is
skew-selfadjoint. L can be viewed as a finite rank perturbation of L0. The present paper is one in
a series of our works devoted to the above control system. In this series we extensively use the
classical results (Krein theorem, Keldysh theorem, etc.) on completeness and Riesz basis property
of the eigenvectors of non-selfadjoint operators that are perturbations of selfadjoint (not skew-
selfadjoint) operators [Gohberg & Krein, 1996]. Thus, our notations make it convenient to refer
directly to the results presented in the literature.

Below we denote the diagonal entries of the feedback matrix, K, by (−α) and (−β) and the
codiagonal entries by (−κ1) and (−κ2). In what follows, we discuss the cases when all control
parameters are non-negative; the cases of non-positive boundary control parameters can be
treated in a similar fashion. The present paper contains four main results formulated as Theorem
2.4 (see Section 2 of the paper). 1) The first group of results is concerned with the case when one
control parameter is positive, and the rest are equal to zero. We show that the entire spectrum of
the operator, L, is located in the open upper half-plane of the complex plane (and, therefore, the
spectrum of iL is located in the open left half-plane.) 2) The second group of results is concerned
with the cases when two boundary control parameters are positive. It turns out that the location
of the spectrum depends on a specific choice of two non-zero parameters. Namely, for the case
when α> 0, β > 0 and κ1 = κ2 = 0, the main non-selfadjoint operator, L, is in fact a dissipative
operator, i.e.=

(
LF, F

)
H ≥ 0 for F ∈D

(
L
)
. For suchL, the spectrum is located in the closed upper

half-plane. 3) The situation when the combination of two positive control parameters involves one
diagonal element of the control matrix (α or β) and one co-diagonal element (κ1 or κ2) is more
complicated. It is proven in Statements (2) and (3) of Theorem 2.4 that for two cases when either
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α> 0, κ1 > 0 and β = κ2 = 0 or β > 0, κ2 > 0 and α= κ1 = 0, the stability result holds, i.e. the
entire spectra of the corresponding operators are located in the open upper half-plane.

As mentioned above to prove such results we derive “two main identities". Each identity
relates the eigenmodes and mode shapes corresponding to the self-adjoint operator, L0, and the
eigenmodes and mode shapes of the non-selfadjoint operator, L. The first main identity is used
to prove the result for the case α> 0, κ1 > 0; β = κ2 = 0 and the second is used for the case β > 0,
κ2 > 0; α= κ1 = 0. The choice of non-trivial control parameters is important, meaning that the
pair of positive parameters must be α and κ1 or β and κ2. Preliminary numerical simulations
show that the combination α> 0, κ2 > 0, and β = κ1 = 0 can produce several eigenvalues located
in the closed lower half-plane.

The organization of the paper. In Section 2, we describe the Euler-Bernoulli beam equation and
the boundary conditions. Then, we reformulate the original initial boundary value problem as
an operator evolution equation in the state space and give an explicit description of the dynamics
generator. Finally, we represent the spectral problem for the dynamics generator in the form of the
spectral problem for a polynomial operator pencil. In the same section, we provide formulation
of the results on the eigenvalue distribution in the model from [Shubov & Kindrat, 2018, 2019].
From these results (see Theorems 2.2 and 2.3 below) it follows that using the spectral asymptotics,
one can claim that for specific combinations of control parameters, all distant eigenvalues are
located in the upper half-plane. However, based on asymptotic results it is impossible to prove
the absence of a possible finite number of eigenvalues that might be located in the lower half-
plane (generating unstable vibrational modes) or on the real axis (generating marginally stable
modes).

In Section 3, we derive the specific relation between the eigenfunctions of the non-selfadjoint
operator, L, and its selfadjoint counterpart, L0, corresponding to the clamped-free model. We call
this relation “the first main identity" and use it in Section 5 for the proof of Statement 3 of Theorem
2.4.

In Section 4, we derive the second relation connecting the eigenfunctions of the operators L
and L0. We call this relation “the second main identity" and make use of it in Section 5 for the
proof of Statement 4 of Theorem 2.4.

2. Problem statement, spectral asymptotics, and main results
The transverse displacement of the Euler-Bernoulli beam model, h(x, t), at position x and time t
is governed by the hyperbolic partial differential equation

ρ(x)
∂2h(x, t)

∂t2
+

∂2

∂x2

(
EI(x)

∂2h(x, t)

∂x2

)
= 0, 0≤ x≤L, t≥ 0. (2.1)

This equation represents a commonly used model for the motion of a straight beam of length L,
linear density ρ(x), modulus of elasticity of the beam material E(x), and cross-sectional moment
of inertia, I(x) (EI(x) is the bending stiffness). The model is obtained by using Hooke’s law and
the simplifying assumptions that the thickness and width of the beam are small compared to the
length, and the cross-sections of the beam remain plane during deformation [Shubov & Shubov,
2016(1); Benaroya, 1998; Gladwell, 2005]. We assume that the beam is clamped at the left end

h(0, t) = hx(0, t) = 0. (2.2)

To describe the right-end conditions, we use the moment, M(x, t), and the shear, Q(x, t) defined
by [Benaroya, 1998; Gladwell, 2005]:

M(x, t) =EI(x)hxx(x, t), Q(x, t) =
(
EI(x)hxx(x, t)

)
x
. (2.3)

Let the input, U(t), and output, Y (t), be given as R2-vectors

U(t) =
[
−Q(L, t), M(L, t)

]T and Y (t) =
[
ht(L, t), hxt(L, t)

]T
, (2.4)
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where the superscript “T " stands for transposition. The feedback control law is given by

U(t) =KY (t), and K=

[
−α −κ2
−κ1 −β

]
, (2.5)

where α, β, κ1, κ2 are the control parameters. The feedback (2.5) can be written in the form

EI(L)hxx(L, t) =−κ1ht(L, t)− βhxt(L, t),
(
EI(x)hxx(x, t)

)
x

∣∣
x=L

= αht(L, t) + κ2hxt(L, t).

(2.6)
Ifα= β = κ1 = κ2 = 0, then the right-end conditions become hxx(L, t) =

(
EI(x)hxx(x, t)

)
x

∣∣
x=L

=

0, and the problem corresponds to the clamped-free model.
Consider the energy functional for the beam [Benaroya, 1998; Gladwell, 2005]:

E(t) = 1

2

∫L
0

[
ρ(x)h2t (x, t) + EI(x)h2xx(x, t)

]
dx. (2.7)

Evaluating Et(t) on the solutions of Eq.(2.1) satisfying the left-end conditions (2.2), we obtain that
Et(t) = Y (t) · U(t), where “·" denotes the dot-product in R2. If we use (2.5), then

Et(t) = Y (t) ·KY (t) =−αh2t (L, t)− βh2xt(L, t)−
(
κ1 + κ2

)
ht(L, t)hxt(L, t), (2.8)

which means that if κ1 + κ2 = 0 and α≥ 0, β ≥ 0, then Et(t)≤ 0 and the system is dissipative.
Different combinations of the boundary parameters yield different energy dynamics for the
structure. If the above conditions on the control parameters are not satisfied, the system is not
dissipative. In the present paper we consider the initial boundary-value problem defined by
Eq.(2.1), conditions (2.2) and (2.6), and a standard set of the initial conditions

h(x, 0) = h0(x),
∂h(x, 0)

∂t
= h1(x). (2.9)

Let us rewrite problem (2.1), (2.2), and (2.6), as the first order in time evolution equation in the
state space of the system (the energy space). Without loss of generality we assume that the spatial
extent of the beam is L= 1. We also assume that EI and ρ are smooth, strictly positive functions
i.e.

EI(·), ρ(·)∈C2[0, 1]; EI(x)> 0, ρ(x)> 0, x∈ [0, 1]. (2.10)

LetH be the Hilbert space of two-component complex vector-valued functions obtained as the
closure of smooth functions Φ(x) =

[
ϕ0(x), ϕ1(x)

]T , such that ϕ0(0) = ϕ′0(0) = 0, in the following
norm:

‖Φ‖2H =
1

2

∫1
0

[
EI(x)

∣∣ϕ′′0 (x)∣∣2 + ρ(x)
∣∣ϕ1(x)

∣∣2]dx. (2.11)

The energy spaceH is topologically equivalent to the space H̃2
0 (0, 1)× L2(0, 1), where

H̃2
0 (0, 1) =

{
ϕ∈H2(0, 1) : ϕ(0) = ϕ′(0) = 0

}
.

The problem (2.1), (2.2), (2.6), and (2.9) can be represented as an evolution problem

Φt(x, t) = i
(
LΦ
)
(x, t) and Φ(x, 0) =

[
h0(x), h1(x)

]T
, 0≤ x≤ 1, t≥ 0. (2.12)

The dynamics generator is iL, where L is given by the following matrix differential expression:

L=−i

 0 1

− 1
ρ(x)

d2

dx2

(
EI(x) d

2

dx2 ·
)

0

 (2.13)

defined on the domain

D(L) =
{
Φ=

(
ϕ0, ϕ1

)T ∈H : ϕ0 ∈H4(0, 1), ϕ1 ∈H2(0, 1); ϕ1(0) = ϕ′1(0) = 0;

EI(1)ϕ′′0 (1) =−κ1ϕ1(1)− βϕ′1(1),
(
EI(x)ϕ′′0 (x)

)′
x=1

= κ2ϕ
′
1(1) + αϕ1(1)

}
.

(2.14)
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Remark 2.1. 1) We introduce the factor “i" in the definition (2.13) and into Eq.(2.12) for
convenience. As shown in Theorem 3.1 below, the operator L is a finite-rank perturbation of
the selfadjoint operator corresponding to the cantilever beam (the model with clamped-free end
conditions). So owing to this factor we deal with a selfadjoint (or symmetric) operator rather than
with a skew-selfadjoint (or skew-symmetric) operator.

2) The problem (2.1), (2.2), and (2.6) defines a C0-semigroup in H and the operator iL is an
infinitesimal generator of this semigroup. This fact follows, e.g. from the Riesz basis property of
the generalized eigenfunctions of L, which will be proven in a forthcoming paper. So, the use of
the term "dynamics generator" for iL is justified [Curtain & Zwart, 1995].

It can be verified directly that the eigenvalue/eigenfunction equation for the operator L,(
LΨ = λΨ

)
can be equivalently written in terms of the polynomial operator pencil P(λ) [Marcus,

1988; Shubov & Kindrat, 2018; Shubov & Shubov, 2016(1)] which is given by the expression[
P(λ)ψ

]
(x) =

(
EI(x)ψ′′(x)

)′′ − λ2ρ(x)ψ(x), (2.15)

defined on the domain

D
(
P(λ)ψ

)
=

{
ψ ∈H4(0, 1); ψ(0) = ψ′(0) = 0;

EI(1)ψ′′(1) =−κ1iλψ(1)− βiλψ′(1);
(
EI(x)ψ′′(x)

)′∣∣∣
x=1

= κ2iλψ
′(1) + αiλψ(1).

} (2.16)

We say that λn is an eigenvalue of the pencil P(λ) if there exists a function ψn from the domain
D
(
P(λ)

)
such that the following equation is satisfied:

(
EI(x)ψ′′n(x)

)′′
= λ2nρ(x)ψn(x). (2.17)

The corresponding solution, ψn, is called an eigenfunction of the pencil.
We mentioned that P(λ) is a non-standard pencil since the spectral parameter λ enters the

boundary conditions explicitly. If ψn is an eigenfunction of the pencil in the space L2
ρ(0, 1), then

the two-component vector-function
(

1
iλn

ψn(x), ψn(x)
)T

is an eigenfunction of the operator L in
the spaceH.

Now we address the problem of the eigenfunctions and associate functions numeration. As
is known [Gohberg & Krein, 1996], for each eigenvalue λn of the operator L, there could be
a non-trivial set of the associate functions. Due to the fact that the operator L (generating the
pencil P(λ)) has a compact inverse, each root space (eigenvectors and associate vectors together
corresponding to λn) is finite-dimensional. However, in general, it is quite difficult task to obtain
an upper bound on the dimensions of the root spaces corresponding to different eigenvalues.
As follows from [Shubov & Kindrat, 2018], the distant eigenvalues are simple, i.e. the set of all
associate functions of the operator L is finite. It means that one can use through numeration for the
root vectors of the operator Lmaking no difference between the numeration of the eigenfunction
and associate functions. Concerning the self-adjoint counterpart of the operator L, the operator
L0 does not have associate functions. As shown in [Shubov & Kindrat, 2017], the spectrum of
L0 is simple, i.e., each root subspace (corresponding to each λ0n) of L0 is one-dimensional, which
means that the numeration of the eigenvalues of L0 can be done in a straightforward fashion.

Now, we provide formulation of the results from [Shubov & Kindrat, 2018] derived for the case
of EI = ρ= 1 that will be needed for the present work.

As shown in [Shubov & Kindrat, 2018], the spectral asymptotics are different for the cases
β 6= 0 and β = 0.

Theorem 2.2. Assume that β = κ2 = 0, and κ1 > 0, α> 0. Let

K=
κ1 − 1

κ1 + 1
. (2.18)
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1) If 0<K< 1, then there is an infinite sequence of eigenvalues in the upper half-plane with the
following asymptotic approximation as n→∞:

λn =
(
πn
)2 − iπn lnK − ln2

√
K+

α
(
κ1 − i

)
κ21 − 1

+O

(
1

n

)
, λ−n =−λn. (2.19)

There could be a finite number of eigenvalues located in the closed lower half plane.
2) If −1<K< 0, then there is an infinite sequence of eigenvalues in the upper half-plane with the

following asymptotic approximation as n→∞:

λn = π2
(
n+

1

2

)2

− iπ
(
n+

1

2

)
ln
∣∣K∣∣+ α

(
κ1 − i

)
κ21 − 1

+O

(
1

n

)
, λ−n =−λn. (2.20)

There could be a finite number of eigenvalues located in the closed lower half-plane.
3) IfK= 0, i.e. κ1 = 1, then there is an infinite sequence of eigenvalues in the upper half-plane with the

following asymptotic approximation as n→∞:

λn =
(
πn
)2 − 1

4
ln2
(
2πnD

)
− 1

2
ln
(
2πnD

)
+

1

2
D + iπn ln

(
2πnD

)
+O

(
ln2 n

n

)
,

λ−n =−λn, where D=
1− i
2α

.

(2.21)

There could be a finite number of eigenvalues in the closed lower half-plane.
Theorem 2.3. Assume that α= κ1 = 0 and β > 0, κ2 > 0. Then there is an infinite sequence of

eigenvalues in the upper half-plane with the following asymptotic approximation as n→∞:

λn =
(
πn
)2

+
π2n

2
+
(π
4

)2
+
κ2 + i

β
+O

(
1

n

)
, λ−n =−λn. (2.22)

There could be a finite number of eigenvalues in the closed lower half-plane.
We point out that for the case of smooth variable structural parameters, the leading

asymptotical terms in formulas (2.19) – (2.22) remain essentially the same; in particular, one has
limn→∞ λn/(π n)

2→Const. Finally, we present the main result of the paper.
Theorem 2.4. The spectrum S(L) of the operator L is located in the open upper half-plane and,

moreover, inf {=λ : λ∈S(L)}> 0 if one of the following four sets of conditions is satisfied:
1) one control parameter

(
any from the set

{
κ1, κ2, α, β

})
is positive, and the rest of them are equal to

zero;
2) α> 0, β > 0, and κ1 = κ2 = 0;
3) κ1 > 0, α> 0, and κ2 = β = 0;
4) κ2 > 0, β > 0, and κ1 = α= 0.
Remark 2.5. 1) To prove Theorem 2.4 it suffices to show that in each of the aforementioned

four cases, the spectrum S(L) is located in the open upper half-plane. If the latter fact is shown,
then the fact that inf {=λ : λ∈S(L)}> 0 becomes an immediate corollary of Theorems 2.2 and
2.3. Indeed, owing to the results of these theorems, in all considered cases the spectrum of L
is asymptotically close to certain horizontal lines in the upper half-plane, and, therefore, no
subsequence can approach the real axis.

2) As mentioned in Remark 2.1, the operator iL is the generator of a C0-semigroup. By
Theorem 2.4 the spectral abscissa of this semigroup is such that sup {<(iλ) : λ∈S(L)}< 0.
However, the fact that the spectral abscissa of the generator is negative does not guarantee the
exponential decay of the semigroup (see, e.g., Pazy, 1983, Sec. 4.4, Example 4.2). Based on the
location of the spectrum, one can claim that the system modeled by (2.1) – (2.6) is stable.

3) As is well known (Pazy, 1983; Engel & Nagel, 1999), a semigroup decays exponentially if the
spectral abscissa is negative and the semigroup is analytic. However, the semigroup generated by
our system (2.1) – (2.6) is not analytic. It has been shown in (Shubov, 2006) that this semigroup
belongs to the Gevrey class.
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3. Derivation of the first main identity
Let L0 be a selfadjoint operator in H obtained from L by placing α= β = κ1 = κ2 = 0, i.e., L0
corresponds to the clamped-free boundary conditions. As shown in [Shubov & Kindrat, 2018], the
operator L has a compact inverse and thus it has purely discrete spectrum of normal eigenvalues.
(We recall that a normal eigenvalue is an isolated point of a discrete spectrum whose multiplicity is
finite [Gohberg & Krein, 1996]).

Lemma 3.1. 1) The operator L∗ adjoint to operator L, is given by the same differential expression (2.13)
as L and defined on the domain

D
(
L∗
)
=
{
Φ=

(
ϕ0, ϕ1

)T ∈H : ϕ0 ∈H4(0, 1), ϕ1 ∈H2(0, 1); ϕ1(0) = ϕ′1(0) = 0;

EI(1)ϕ′′0 (1) = βϕ′1(1),
(
EI(x)ϕ′′0 (x)

)′
x=1

=−αϕ1(1)
}
.

(3.1)

2) The operator L is a finite-rank perturbation of the self-adjoint operator L0 in the sense that the
operators L−1 and L−10 are related by the rule:

L−1 =L−10 + T , (3.2)

where T is a rank-two operator. The following formulas hold for any G=
(
g0, g1

)T ∈H:

(
L−10 G

)
(x) =−

−i
∫x
0
dη

∫η
0

dτ

EI(τ)

∫1
τ
dξ

∫1
ξ
ρ(ν)g1(ν)dν

ig0(x)

 (3.3)

and (
T G
)
(x) =

−iχ1(x)
[
κ1g0(1) + βg′0(1)

]
− iχ2(x)

[
κ2g
′
0(1) + αg0(1)

]
0

 , (3.4)

where

χ1(x) =

∫x
0
dτ

∫τ
0

dη

EI(η)
, χ2(x) =

∫x
0
dτ

∫τ
0

1− η
EI(η)

dη. (3.5)

Proof. To prove Statement (1) it suffices to check that for the operators L and L∗ defined by
(2.13), (2.14) and (2.13), (3.1) respectively, one has(

LU, V
)
H =

(
U,L∗V

)
, U ∈D

(
L
)
, V ∈D

(
L∗
)
. (3.6)

Indeed, by direct calculation, one can establish that the left hand side of (3.6) (for U ∈D(L)) and
the right hand side of (3.6) (for V ∈D(L∗)) are both equal to the same expression given by

− i
2

[
− αu1(1)v1(1)− βu′1(1)v′1(1) +

∫1
0

[
EI(x)u′′1 (x)v

′′
0 (x)− EI(x)u

′′
0 (x)v

′′
1 (x)

]
dx

]
.

Statement (1) is proven.
To prove Statement (2), we consider the equation LΨ = F and show it has the unique solution

Ψ ∈D
(
L
)

for any F ∈H. Let Ψ =
(
ψ0, ψ1

)T and F =
(
f0, f1

)T , then the afore equation can be
written component-wise as follows:(

EI(x)ψ′′0 (x)
)′′

=−iρ(x)f1(x), ψ1(x) = if0(x). (3.7)

The boundary conditions are:

EI(1)ψ′′0 (1) =−iκ1f0(1)− iβf ′0(1), (3.8)(
EI(x)ψ′′0 (x)

)′∣∣∣
x=1

= iκ2f
′
0(1) + iαf0(1). (3.9)
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Integrating (3.7) and using condition (3.9), we obtain(
EI(x)ψ′′0 (x)

)′
= iκ2f

′
0(1) + iαf0(1) + i

∫1
x
ρ(τ)f1(τ)dτ. (3.10)

Integrating (3.10) and using condition (3.8), we obtain

EI(1)ψ′′0 (1)− EI(x)ψ′′0 (x) = iκ2f
′
0(1)(1− x) + iαf0(1)(1− x) + i

∫1
x
dτ

∫1
τ
ρ(η)f1(η)dη,

which yields
EI(x)ψ′′0 (x) =− iκ1f0(1)− iβf ′0(1)− iκ2f ′0(1)(1− x)

− iαf0(1)(1− x)− i
∫1
x
dτ

∫1
τ
ρ(η)f1(η)dη.

(3.11)

Integrating this equation we have

ψ′0(x) =− iκ1f0(1)
∫x
0

dτ

EI(τ)
− iβf ′0(1)

∫x
0

dτ

EI(τ)
− iκ2f ′0(1)

∫x
0

1− τ
EI(τ)

dτ

− iαf0(1)
∫x
0

1− τ
EI(τ)

dτ − i
∫x
0

dτ

EI(τ)

∫1
τ
dη

∫1
η
f1(ξ)dξ.

(3.12)

Finally, integrating (3.12) we obtain

ψ0(x) =− iκ1f0(1)
∫x
0
dτ

∫τ
0

dη

EI(η)
− iβf ′0(1)

∫x
0
dτ

∫τ
0

dη

EI(η)

− iκ2f ′0(1)
∫x
0
dτ

∫τ
0

1− η
EI(η)

dη − iαf0(1)
∫x
0
dτ

∫τ
0

1− η
EI(η)

dη

− i
∫x
0
dτ

∫τ
0

dη

EI(η)

∫1
η
dξ

∫1
ξ
ρ(ω)f1(ω)dω.

(3.13)

In terms of the functions χ1 and χ2 introduced in (3.4), formula (3.13) can be written as

ψ0(x) =− iχ1(x)
[
κ1f0(1) + βf ′0(1)

]
− iχ2(x)

[
κ2f
′
0(1) + αf0(1)

]
− i

∫x
0
dτ

∫τ
0

dη

EI(η)

∫1
η
dξ

∫1
ξ
ρ(ω)f1(ω)dω,

which implies (3.3) and (3.4). �
At this point we make the following comments on the relation (3.2). To the best of our

knowledge, a finite-dimensional perturbation (in our case T ) of a compact self-adjoint operator(
L−10

)
can significantly affect the geometry of the spectrum of the operator L which is inverse to(

L−10 + T
)
. The reason for such a behavior is the fact that in our case the perturbation T of L−10

cannot be reformulated in terms of the perturbation of the unbounded operator L0. In particular,
one cannot claim that L is a bounded (or relatively bounded) perturbation of L0, which means
that the behavior of the spectra of L and L0 can be very different (which is observed in our case).

Based on the spectral asymptotics, we claim that there are only a finite number of real
eigenvalues and/or a finite number of the eigenvalues with negative imaginary parts (that
generate marginally stable or unstable vibrational mode shapes). Let Z′ = Z \ {0} and let{

Ψm(x) =

(
1

iλm
ψm(x), ψm(x)

)T}
m∈Z′

and

{
Φn(x) =

(
1

iλ0n
ϕn(x), ϕn(x)

)T}
n∈Z′

(3.14)
be the sets of the normalized to unity in H eigenfunctions corresponding to the eigenvalues λm
and λ0n of the operators L and L0 respectively.

It can be verified directly that ψm(x) and ϕn(x) are the eigenfunctions (corresponding to the
eigenvalues λm and λ0n) of the pencils P(λ) and P0(λ) generated by the operators L and L0.

Now we are in a position to prove the first main result to be used in the proof of Theorem 2.4.
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Theorem 3.2. Let λm and ψm(x) be an eigenvalue and the corresponding eigenfunction of the pencil
P(λ). Let λm 6= λ0n, n∈ Z′. Then the following expansion of ψm(x) in terms of the eigenfunctions{
ϕn(x)

}∞
n=1

of the pencil P0(λ) is valid:

ψm(x) =
λm
i

{ ∞∑
n=1

[
κ1ϕ
′
n(1) + αϕn(1)

] ψm(1)(
λ0n
)2 − λ2m ϕn(x)+

∞∑
n=1

[
κ2ϕn(1) + βϕ′n(1)

] ψ′m(1)(
λ0n
)2 − λ2m ϕn(x)

}
.

(3.15)

The series (3.15) converges in the space L2
0(0, 1).

Proof. Consider the eigenvalue/eigenfunction equation corresponding to the eigenvalue λm
of the operator L, i.e., LΨm = λmΨm. Using decomposition (3.2), we rewrite this equation in the
form:

Ψm(x) = λmL−1Ψm(x) = λm
(
L−10 + T

)
Ψm(x). (3.16)

Since λm does not coincide with any λ0n, Eq. (3.16) can be transformed to

Ψm = λm
(
I − λmL−10

)−1
T Ψm = λmL0

(
L0 − λmI

)−1
T Ψm. (3.17)

Using the spectral decomposition for the selfadjoint operator L0 [Gohberg & Krein, 1996; Birman
& Solomyak, 1987]:

L0 =
∑
n∈Z′

λ0n
(
·, Φn

)
HΦn, (3.18)

we obtain that the following representation holds for the operator
(
I − λmL−10

)
:

I − λmL−10 =
∑
n∈Z′

[(
·, Φn

)
HΦn − λm

(
·, Φn

)
λ0n

Φn

]
=
∑
n∈Z′

λ0n − λm
λ0n

(
·, Φn

)
HΦn,

and therefore (
I − λmL−10

)−1
=
∑
n∈Z′

λ0n
λ0n − λm

(
·, Φn

)
HΦn. (3.19)

Substituting decomposition (3.19) into Eq.(3.17), we get

Ψm(x) = λm
∑
n∈Z′

λ0n
λ0n − λm

(
T Ψm, Φn

)
H Φn(x), (3.20)

where the series converges in the space H. Using formulas (3.4), (3.5), and (3.14) we evaluate the
scalar product Amn ≡

(
T Ψm, Φn

)
H and have

Amn =−i


χ1(x)iλm

(
κ1ψm(1) + βψ′m(1)

)
+
χ2(x)

iλm

(
κ2ψ

′
m(1) + αψm(1)

)
0

 ,

ϕn(x)iλ0n

ϕn(x)



H

.

(3.21)
Using formula (2.11) for the norm inH, we obtain that

Amn =
1

2

∫1
0

{
EI(x)

(
− iχ1(x)

)′′[ κ1
iλm

ψm(1) +
β

iλm
ψ′m(1)

]
1

iλ0n
ψ′′n(x)

}
dx

+
1

2

∫1
0

{
EI(x)

(
− iχ2(x)

)′′[ κ2
iλm

ψ′m(1) +
α

iλm
ψm(1)

]
1

iλ0n
ψ′′n(x)

}
dx.

(3.22)
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Taking into account that χ′′1 (x) = 1/EI(x) and χ′′2 (x) = (1− x)/EI(x) we get from (3.22):

Amn =
1

2

∫1
0
(−i)

[
κ1
iλm

ψm(1) +
β

iλm
ψ′m(1)

]
1

iλ0n
ϕ′′n(x)dx

+
1

2

∫1
0
(−i)(1− x)

[
κ2
iλm

ψ′m(1) +
α

iλm
ψm(1)

]
1

iλ0n
ϕ′′n(x)dx

=
−i

2λmλ0n

{[
κ1ψm(1) + βψ′m(1)

] ∫1
0
ϕ′′n(x)dx

+
[
κ2ψ

′
m(1) + αψm(1)

] ∫1
0
(1− x)ϕ′′n(x)dx

}
.

(3.23)

Evaluating both integrals, one has

∫1
0
ϕ′′n(x)dx=ϕ′n(1),

∫1
0
(1− x)ϕ′′n(x)dx=ϕ′n(x)− xϕ′n(x)

∣∣∣1
0
+

∫1
0
ϕ′n(x)dx=ϕn(1). (3.24)

Substituting (3.24) into (3.23) yields the following formula for Amn:

Amn =− i

2λmλ0n

{[
κ1ψm(1) + βψ′m(1)

]
ϕ′n(1) +

[
κ2ψ

′
m(1) + αψm(1)

]
ϕn(1)

}
. (3.25)

Using this formula, we obtain the following representation for Ψm of (3.20):

Ψm(x) = λm
∑
n∈Z′

λ0n
λ0n − λm

{
− i

2λmλ0n

([
κ1ψm(1) + βψ′m(1)

]
ϕ′n(1)

+
[
κ2ψ

′
m(1) + αψm(1)

]
ϕn(1)

)}
Φn(x)

=− i
2

∑
n∈Z′

1

λ0n − λm

([
κ1ψm(1) + βψ′m(1)

]
ϕ′n(1) +

[
κ2ψ

′
m(1) + αψm(1)

]
ϕn(1)

)
Φn(x).

(3.26)

Rewriting this equation component-wise we obtain the following two equations:

1

iλm
ψm(x) =− i

2

∑
n∈Z′

ϕn(x)

λ0n
(
λ0n − λm

)([κ1ψm(1) + βψ′m(1)
]
ϕ′n(1) +

[
κ2ψ

′
m(1) + αψm(1)

]
ϕn(1)

)
.

(3.27)
and

ψm(x) =− i
2

∑
n∈Z′

ϕn(x)

λ0n − λm

([
κ1ψm(1) + βψ′m(1)

]
ϕ′n(1) +

[
κ2ψ

′
m(1) + αψm(1)

]
ϕn(1)

)
.

(3.28)
The series in (3.27) converges in H̃0(0, 1) and the series in (3.28) converges in L2(0, 1).

It can be readily seen that the set of the eigenvalues of the operator L0 is symmetric with
respect to the origin, i.e., if λ0n is an eigenvalue of L0, then

(
− λ0n

)
is an eigenvalue as well. It

follows from the boundary-value problem for the eigenfunction ϕn(x) corresponding to λ0n, i.e.
ϕn(x) is the solution of the problem

(
EI(x)ϕ′′(x)

)′′
=
(
λ0n
)2
ρ(x)ϕ(x), ϕ(0) = ϕ′(0) = ϕ′′(L) =

(
EI(x)ϕ′′(x)

)∣∣
x=1

= 0.
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Thus, taking into account that λ0−|n| =−λ
0
|n| and ϕ−|n| =ϕ|n|, we modify Eq. (3.28) to the

form:

2iψm(x) =

∞∑
n=1

ϕn(x)ψm(1)
[
κ1ϕ
′
n(1) + αϕn(1)

]{ 1

λ0n − λm
+

1

λ0−n − λm

}

+

∞∑
n=1

ϕn(x)ψ
′
m(1)

[
κ2ϕn(1) + βϕ′n(1)

]{ 1

λ0n − λm
+

1

λ0−n − λm

}

=

∞∑
n=1

ϕn(x)ψm(1)
[
κ1ϕ
′
n(1) + αϕn(1)

]{ 1

λ0n − λm
− 1

λ0n + λm

}

+

∞∑
n=1

ϕn(x)ψ
′
m(1)

[
κ2ϕn(1) + βϕ′n(1)

]{ 1

λ0n − λm
+

1

λ0−n − λm

}
,

(3.29)

from which representation (3.15) follows immediately. �
Corollary 3.3. Let us justify that series (3.15) converges uniformly with respect to x∈ [0, 1].

Using the results of [Shubov & Kindrat, 2018], it is not difficult to show that there exists an
absolute constant C0 such that for the normalized ϕn(x) the following estimates hold:

∣∣ϕ′n(x)∣∣≤C0

√
λ0n and

∣∣ϕn(x)∣∣≤C0, x∈ [0, 1], n≥ 1. (3.30)

Indeed, using the symmetry of the spectrum of L0, we have modified Eq. (3.28) to the form
of (3.29) (or, equivalently to the form of (3.15)). Accounting for (3.30) we obtain that for each m,
there exists a constant C1(m) such that the following estimates hold:∣∣∣∣∣

[
κ1ϕ
′
n(x) + αϕn(x)

]
ϕn(x)(

λ0n
)2 − λ2m

∣∣∣∣∣≤ C1(m)

n3
,

∣∣∣∣∣
[
κ2ϕn(x) + βϕ′n(x)

]
ϕn(x)(

λ0n
)2 − λ2m

∣∣∣∣∣≤ C1(m)

n3
.

Even though C1(m) may grow with m, since the summation in (3.29) (as well as in (3.28) and
(3.15)) takes place with respect to n, the uniform convergence of (3.29) (and (3.28), (3.15)) with
respect to x, x∈ [0, 1] is not affected. Setting x= 1, in (3.15) we obtain the following identity for
each m∈N+:

i

λm
ψm(1) = ψm(1)

∞∑
n=1

[
κ1ϕ
′
n(1) + αϕn(1)

]
ϕn(1)(

λ0n
)2 − λ2m + ψ′m(1)

∞∑
n=1

[
κ2ϕn(1) + βϕ′n(1)

]
ϕn(1)(

λ0n
)2 − λ2m .

(3.31)

In what follows, we call (3.31) the first main identity.

4. Derivation of the second main identity
In this section we deal with the first component (3.27) of the eigenvector Ψm. It is convenient to
introduce a new function B(x)

B(x) =
∫x
0
dτ

∫τ
0

dη

EI(η)
. (4.1)

Let L be a linear functional defined by

L[g] = λ2m

∫1
0
B(x)g(x)ρ(x)dx. (4.2)
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Theorem 4.1. Let λm and ψm(x) be an eigenvalue and the corresponding eigenfunction of the pencil
P(λ). Let λm 6= λ0n, n∈ Z′. Then the following relation is valid:[

κ2ψ
′
m(1) + αψm(1)

]{
B(1)−

∞∑
n=1

ϕn(1)ϕ
′
n(1)(

λ0n
)2

}

+
[
κ1ψm(1) + βψ′m(1)

]{
B′(1)−

∞∑
n=1

(
ϕ′n(1)

)2(
λ0n
)2

}
+

1

iλm
ψ′m(1)

=−
[
κ1ψm(1) + βψ′m(1)

] ∞∑
n=1

(
ϕ′n(1)

)2(
λ0n
)2 − λ2m −

[
κ2ψ

′
m(1) + αψm(1)

] ∞∑
n=1

ϕn(1)ϕ
′
n(1)(

λ0n
)2 − λ2m .

(4.3)

Proof. As we know, series (3.27) converges in the space H̃2
0 (0, 1). Due to the embedding

theorem, we have H̃2
0 (0, 1) ↪→C1(0, 1), which means that series (3.27) converges uniformly with

respect to x∈ [0, 1]. Therefore, series (3.27) can be integrated term-wise with the weight ρ(x).
Applying L to both sides of Eq. (3.27) we get

1

iλm
L
[
ψm
]
=− 1

2

∑
n∈Z′

1

λ0n
(
λ0n − λm

)L[ϕn]
×
[(
κ1ψm(1) + βψ′m(1)

)
ϕ′n(1) +

(
κ2ψ

′
m(1) + αψm(1)

)
ϕn(1)

]
.

(4.4)

Now we evaluate L
[
ψm
]

and L
[
ϕm
]
. We have

L
[
ψm
]
= λ2m

∫1
0
B(x)ψm(x)ρ(x)dx. (4.5)

Using Eq.(2.17) we modify (4.5) and have

L
[
ψm
]
=

∫1
0
B(x)

(
EI(x)ψ′′m(x)

)′′
dx

=B(1)
(
EI(x)ψ′′m(x)

)′
x=1
−

∫x
0

dη

EI(η)
EI(x)ψ′′m(x)

∣∣∣1
0
+

∫1
0
ψ′′m(x)dx

=B(1)
(
EI(x)ψ′′m(x)

)′
x=1
− B′(1)EI(1)ψ′′m(1) + ψ′m(1).

(4.6)

Applying the boundary conditions from (2.16), we proceed with (4.6) as

L
[
ψm
]
= iλm

{
B(1)

[
κ2ψ

′
m(1) + αψm(1)

]
+ B′(1)

[
κ1ψm(1) + βψ′m(1)

]}
+ ψ′m(1). (4.7)

Evaluating L
[
ϕn
]

we obtain

L
[
ϕn
]
=

λ2m(
λ0n
)2 ϕ′n(1). (4.8)

Substituting (4.7) and (4.8) into relation (4.4) we obtain

B(1)
[
κ2ψ

′
m(1) + αψm(1)

]
+ B′(1)

[
κ1ψm(1) + βψ′m(1)

]
+

1

iλm
ψ′m(1)

=− λ2m
2

∑
n∈Z′

(
κ1ψm(1) + βψ′m(1)

)
ϕ′n(1) +

(
κ2ψ

′
m(1) + αψm(1)

)
ϕn(1)(

λ0n
)3(

λ0n − λm
) ϕ′n(1).

(4.9)

Let us denote by S the series in the right hand side of Eq.(4.9). It is convenient to modify S as
follows:

S ≡

( −1∑
−∞

+

∞∑
1

)(
κ1ψm(1) + βψ′m(1)

)
ϕ′n(1) +

(
κ2ψ

′
m(1) + αψm(1)

)
ϕn(1)(

λ0n
)3(

λ0n − λm
) ϕ′n(1).
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Taking into account that ϕ−n(x) =ϕn(x) and λ0n =−λ0−n, we obtain that S can be represented in
the form

S =

∞∑
n=1

(
κ1ψm(1) + βψ′m(1)

)
ϕ′n(1) +

(
κ2ψ

′
m(1) + αψm(1)

)
ϕn(1)(

λ0n
)3

×
[

1

λ0n − λm
− 1

−λ0n − λm

]
ϕ′n(1)

= 2

∞∑
n=1

(
κ1ψm(1) + βψ′m(1)

)
ϕ′n(1) +

(
κ2ψ

′
m(1) + αψm(1)

)
ϕn(1)(

λ0n
)2((

λ0n
)2 − λ2m) ϕ′n(1).

(4.10)

Substituting S of (4.10) into relation (4.9) yields:

B(1)
[
κ2ψ

′
m(1) + αψm(1)

]
+ B′(1)

[
κ1ψm(1) + βψ′m(1)

]
+

1

iλm
ψ′m(1)

=− λ2m
[
κ1ψm(1) + βψ′m(1)

] ∞∑
n=1

(
ϕ′n(1)

)2(
λ0n
)2((

λ0n
)2 − λ2m)

− λ2m
[
κ2ψ

′
m(1) + αψm(1)

] ∞∑
n=1

ϕn(1)ϕ
′
n(1)(

λ0n
)2((

λ0n
)2 − λ2m) .

(4.11)

Using the fact that
λ2m(

λ0n
)2((

λ0n
)2 − λ2m) = 1(

λ0n
)2 − λ2m − 1(

λ0n
)2 ,

we rewrite (4.11) as

B(1)
[
κ2ψ

′
m(1) + αψm(1)

]
+ B′(1)

[
κ1ψm(1) + βψ′m(1)

]
+

1

iλm
ψ′m(1)

=−
[
κ1ψm(1) + βψ′m(1)

]{ ∞∑
n=1

(
ϕ′n(1)

)2(
λ0n
)2 − λ2m −

∞∑
n=1

(
ϕ′n(1)

)2(
λ0n
)2

}

−
[
κ2ψ

′
m(1) + αψm(1)

]{ ∞∑
n=1

ϕn(1)ϕ
′
n(1)(

λ0n
)2 − λ2m −

∞∑
n=1

ϕn(1)ϕ
′
n(1)(

λ0n
)2

}
.

(4.12)

Rearranging terms in this equation, we finally obtain (4.3). �
To reduce (4.3) to the desired form we need the results proven in Lemma 4.1 and 4.2 below.
Lemma 4.2. 1) The set of eigenfunctions

{
ϕn(x)

}∞
n=1

of the pencil P0(λ) normalized to unity∫1
0

∣∣ϕn(x)∣∣2ρ(x)dx= 1, n∈N+, (4.13)

where N+ denotes the set of all positive integers, forms an orthonormal basis in the space L2
ρ(0, 1).

2) Let H̃2
0 (0, 1) be equipped with the norm

∥∥f∥∥2
H2

0 (0,1)
=

1

2

∫1
0
EI(x)

∣∣f ′′(x)∣∣2dx.
The set

{
1
iλn

ϕn(x)
}∞
n=1

forms an orthonormal basis in the space H̃2
0 (0, 1).

Proof. To prove Statement (1) it suffices to show that
{
ϕn(x)

}∞
n=1

is an orthonormal set in
L2
ρ(0, 1) and that any function g ∈L2

ρ(0, 1) can be represented in the form of the expansion with
respect to this set.

Since
{
Φn(x)

}
n∈Z′ is the set of eigenfunctions of the self-adjoint operator L0, this set is

complete and orthogonal in H. Let us show that with normalization (4.13), this set is also
normalized to unity in H. Evaluating the norm of 1

iλ0
n
ϕn(x) in the space H̃2

0 (0, 1), we take into
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account that ϕn satisfies the equation
(
EI(x)ϕ′′n(x)

)′′
=
(
λ0n
)2
ρ(x)ϕn(x) and have

∫1
0
EI(x)

1(
λ0n
)2 ∣∣ϕ′′n(x)∣∣2dx=EI(x)

1(
λ0n
)2ϕ′′n(x)ϕ′n(x)∣∣∣10 − 1(

λ0n
)2 (EI(x)ϕ′′n(x))′ ϕn(x)∣∣∣10

+

∫1
0

1(
λ0n
)2 (EI(x)ϕ′′n(x))′′ϕn(x)dx+

∫1
0
ρ(x)

∣∣ϕn(x)∣∣2dx.
(4.14)

Out of integral terms are equal to zero due to the boundary conditions. Using normalization
conditions (4.13), we obtain from (4.14) that

‖Φn‖2H =
1

2

∫1
0

[
E(x)

∣∣ϕ′′n(x)∣∣2
λ2n

+ ρn(x)
∣∣ϕn(x)∣∣2]dx= 1,

which means that the set of eigenfunctions of L0 is normalized to unity isH.
From the fact that {Φn(x)}n∈Z′ forms an orthonormal basis in H it follows that any function

G=
(
g0, g1

)T from H, can be expanded with respect to this basis, G(x) =
∑
n∈Z′ anΦn(x). In

particular, if G=
(
0, g1

)
, g1 ∈L2

ρ(0, 1), then

G(x) =
∑
n∈Z′

(
G,Φn

)
H Φn(x) =

∑
n∈Z′

(
1

2

∫1
0
ρ(x)g1(x)ϕn(x)dx

)
Φn(x). (4.15)

Since ϕ−n(x) =ϕn(x), we obtain from (4.15) that

g1(x) =

(
n=−1∑
−∞

+

∞∑
n=1

)(
1

2

∫1
0
g1(ξ)ϕn(ξ)ρ(ξ)dξ

)
ϕn(x)

=

∞∑
n=1

( ∫1
0
g1(ξ)ϕn(ξ)ρ(ξ)dξ

)
ϕn(x).

(4.16)

Now let us check the orthogonality of the set
{
ϕn(x)

}∞
n=1

inL2
ρ(0, 1). The orthogonality condition

for the set
{
Φn(x)

}
n∈Z′ yields:

1

2iλ0n iλ0m

∫1
0
EI(ξ)ϕ′′n(ξ)ϕ′′m(ξ)dξ +

1

2

∫1
0
ϕn(ξ)ϕm(ξ)ρ(ξ)dξ

=
λ0n
2λ0m

∫1
0
ρ(ξ)ϕn(ξ)ϕm(ξ)dξ +

1

2

∫1
0
ρ(ξ)ϕn(ξ)ϕm(ξ)dξ

=
1

2

(
λ0n
λ0m

+ 1

)(
ϕn, ϕm

)
L2
ρ(0,1)

= δmn.

(4.17)

Since λ0n 6= λ0m [Shubov & Kindrat, 2017; Gladwell, 2005], we obtain that(
ϕn, ϕm

)
L2
ρ(0,1)

= δnm. (4.18)

Taking into account decomposition (4.16) and condition (4.18), we claim that
{
ϕn(x)

}∞
n=1

forms
an orthonormal basis in the space L2

ρ(0, 1).
Statement (1) of the lemma is proven.

Now we prove that the set
{

1
iλ0
n
ϕn(x)

}∞
n=1

forms an orthonormal basis in the space H̃2
0 (0, 1).

To this end, we prove that the above set is complete in H̃2
0 (0, 1) and orthogonal. To prove

completeness, we use the contradiction argument and assume that there exists ψ ∈H2
0 (0, 1) such



16

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

that ψ⊥ϕn, n∈N+. We have

(
ψ,ϕn

)
H2

0 (0,1)
=
1

2

∫1
0
EI(ξ)ψ′′(ξ)ϕ′′n(ξ)dξ =

1

2
EI(ξ)ψ′(ξ)ϕ′′n(ξ)

∣∣∣1
0

−1

2

(
EI(ξ)ϕ′′n(ξ)

)′
ψ(ξ)

∣∣∣1
0
+

1

2

∫1
0

(
EI(ξ)ϕ′′n(ξ)

)′′
ψ(ξ)dξ

=
λ2n
2

∫1
0
ϕn(ξ)ψ(ξ)ρ(ξ)dξ = 0.

Since
{
ϕn(x)

}∞
n=1

is an orthonormal basis in L2
ρ(0, 1), we get ψ= 0. Completeness is proven.

Orthogonality of the set can be shown by sequence of steps similar to (4.17). �
Lemma 4.3. For the function B defined in (4.1), the following relations are valid:

B(1) =
∞∑
n=1

ϕn(1)ϕ
′
n(1)(

λ0n
)2 and B′(1) =

∞∑
n=1

(
ϕ′n(1)

)2(
λ0n
)2 . (4.19)

Proof. Since B(0) = B′(0) = 0 and B′′(x) = 1
EI(x)

, we obtain that B ∈H. The following

expansion of B(x) with respect to the basis
{

1
iλ0
n
ϕn(x)

}∞
n=1

takes place:

B(x) =
∞∑
n=1

an
1

iλ0n
ϕn(x), (4.20)

where

an =

∫1
0

i

λ0n
ϕ′′n(ξ)B′′(ξ)EI(ξ)dξ =

i

λ0n

∫1
0
ϕ′′n(ξ)dξ =

i

λ0n
ϕ′n(1). (4.21)

Hence, substituting (4.21) into (4.20) we obtain

B(x) =
∞∑
n=1

1(
λ0n
)2 ϕ′n(1)ϕn(x). (4.22)

Since the series converges in H̃2
0 (0, 1), we use the embedding H̃2

0 (0, 1) ↪→C1(0, 1) and claim that

B′(x) =
∞∑
n=1

ϕ′n(1)(
λ0n
)2 ϕ′n(x). (4.23)

The lemma is proven. �
Corollary 4.4. Taking into account representations (4.19), we obtain that (4.12) can be modified

to the form

1

iλm
ψ′m(1) =−

[
κ1ψm(1) + βψ′m(1)

] ∞∑
n=1

(
ϕ′n(1)

)2(
λ0n
)2 − λ2m −

[
κ2ψ

′
m(1) + αψm(1)

] ∞∑
n=1

ϕn(1)ϕ
′
n(1)(

λ0n
)2 − λ2m .

(4.24)

In what follows, we call (4.24) the second main identity.

5. Proof of Theorem 2.4
Using the first and second main identities (3.31) and (4.24) we prove the stability results
formulated in Theorem 2.4.

Proof. In what follows in this proof, under Statements (1), (2), (3), or (4) we understand the
main statement of Theorem 2.4 under the conditions (1), or (2), or (3), or (4) respectively.

1) It is technically convenient to start with the proof of Statement (2). To this end, we show
that for the case when κ1 = κ2 = 0, the operator L is dissipative. We use the following definition
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of a dissipative operator (see [Gohberg & Krein, 1996, and Dunford & Schwartz, 1963]). A linear
operator A acting in a Hilbert space H defined on the domain D(A) is called dissipative if

=
(
Af, f

)
H
≥ 0 for f ∈D(A). (5.1)

For a dissipative operator with purely discrete spectrum, all its eigenvalues are located in the
closed upper half-plane. Let us show that the operator L defined by (2.13) on the domain

D(L) =
{
Φ=

(
ϕ0, ϕ1

)T ∈H : ϕ0 ∈H4(0, 1), ϕ1 ∈H2(0, 1); ϕ1(0) = ϕ′1(0) = 0;

EI(1)ϕ′′0 (1) =−βϕ′1(1),
(
EI(x)ϕ′′0 (x)

)′
x=1

= αϕ1(1)
} (5.2)

is dissipative. We evaluate
(
LF, F

)
H on any F =

(
f0, f1

)T ∈D(L) and have

(
LF, F

)
H =−=

∫1
0
EI(x)f ′′0 (x)f

′′
1 (x)dx−

i

2
EI(1)f ′′0 (1)f

′
1(1) +

i

2

(
EI(x)f ′′0 (x)

)′
x=1

f1(1).

Taking into account the right-end boundary conditions from (5.2) we obtain that

=
(
LF, F

)
H =

1

2

[
α
∣∣f1(1)∣∣2 + β

∣∣f ′1(1)∣∣2]≥ 0. (5.3)

To prove statement (2) it remains to be seen that for α+ β > 0, there are no real eigenvalues. Using
the contradiction argument, we assume that L has a real eigenvalue λ0 > 0. From (5.3) we obtain
that if αβ 6= 0, then the eigenfunction corresponding to λ0 has to satisfy the boundary conditions
f1(1) = f ′1(1) = 0. This means that λ0 must be an eigenvalue of the clamped-clamped beam
model [Shubov & Kindrat, 2017]. However, the same eigenfunction must satisfy the boundary
conditions fromD(L), i.e.

(
EI(1)f ′′0 (1)

)
=−βf ′1(1) and

(
EI(1)f ′′0 (1)

)′
(1) = αf1(1), which yields

that f ′′0 (1) =
(
EI(1)f ′′0 (1)

)′
(1) = 0. From these equations we obtain that the same λ0 must be an

eigenvalue of the clamped-free beam model. As follows from Corollary 4.3 of [Shubov & Kindrat,
2017], two selfadjoint beam problems do not share eigenvalues. Therefore, the fact that for α> 0

and β > 0, all eigenvalues are located in the open upper half-plane is proven.
Now let us consider the case when one of the parameters is zero, e.g., α> 0 and β = 0. Then

assuming that there is a real eigenvalue, λ0, we obtain from dissipativity of L that f1(1) = 0. Since
β = 0, the boundary conditions from (5.2) become f ′′1 (1) =

(
EI(1)f ′′0 (1)

)′
= 0. From the fact that

f0(1) = f ′′0 (1) = 0, it follows that λ0 is an eigenvalue of the self-adjoint problem corresponding
the clamped-hinged beam model. From the fact that f ′′0 (1) =

(
EI(1)f ′′0 (1)

)
= 0 it follows that λ0

is an eigenvalue of the clamped-free beam model. By Corollary 4.3 of [Shubov & Kindrat, 2017]
this cannot happen.

Statement (2) is shown.
2) Now we are in a position to prove Statement (1). The fact that the spectrum is located in the

closed upper half-plane follows immediately from the combination of the results of [Shubov &
Shubov, 2016] (see Theorem 5.1 of [Shubov & Shubov, 2016]), and of Statement (2) proven above.
The fact that there are no real eigenvalues follows from Theorem 7.1 of [Shubov & Kindrat, 2017].

3) To prove Statement (3), let us consider the first main identity (3.31) when β = κ2 = 0. Based
on the result of Theorem 5.3 [Shubov & Kindrat, 2017], we haveψm(1) 6= 0 for anym, which yields
the following identity:

i

λm
=

∞∑
n=1

[
κ1ϕ
′
n(1) + αϕn(1)

]
ϕn(1)(

λ0n
)2 − λ2m . (5.4)

Using Theorem 4.2 of [Shubov & Kindrat, 2017], we claim that ϕn(1)ϕ′n(1)> 0. Thus,
κ1ϕn(1)ϕ

′
n(1) + αϕ2

n(1)> 0 for κ1 + α> 0.
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Setting λm ≡ am + ibm, we rewrite relation (5.4) in the form

i
(
am − ibm

)
a2m + b2m

=

∞∑
n=1

γn

{[(
λ0n
)2 − a2m + b2m

]
+ 2iambm

}
((
λ0n
)2 − a2m + b2m

)2
+ 4a2mb

2
m

, where γn = κ1ϕn(1)ϕ
′
n(1) + α

(
ϕn(1)

)2
.

(5.5)

Taking the real and imaginary parts of (5.5), we obtain the following relations:

am

a2m + b2m
= 2

∞∑
n=1

γn
ambm((

λ0n
)2 − a2m + b2m

)2
+ 4a2mb

2
m

(5.6)

and

bm

a2m + b2m
=

∞∑
n=1

γn
[(
λ0n
)2 − a2m + b2m

]
((
λ0n
)2 − a2m + b2m

)2
+ 4a2mb

2
m

. (5.7)

Assume that λm is such that am 6= 0. The relation (5.6) becomes

1

2
(
a2m + b2m

) = bm

∞∑
n=1

γn((
λ0n
)2 − a2m + b2m

)2
+ 4a2mb

2
m

,

which yields bm > 0.
Assume that am = 0 for some m> 0. Then we turn to Eq. (5.7) which becomes

1

bm
=

∞∑
n=1

γn
((
λ0n
)2

+ b2m

)
((
λ0n
)2

+ b2m

)2 ,

and again, bm > 0.
As follows from relation (5.6) for any am > 0, one gets bm > 0, which means that λ0 can be

a real eigenvalue of the operator L if and only if both operators L and L0 share λ0 as their
eigenvalues. Let us show that this cannot happen. Using the contradiction argument, we assume
that some λn0 > 0 is an eigenvalue of both L0 and L with the eigenvectors Φn0(x) and Ψn0(x)

respectively. From relation (3.17), which is valid for any m, one gets for m= n0:(
I − λn0L

−1
0

)
Ψn0(x) = λn0T Ψn0(x). (5.8)

Using the spectral decomposition (3.18) for L0, we obtain that

(
I − λn0L

−1
0

)
Ψn0(x) =

∑
n∈Z′

n6=n0

λ0n − λn0

λ0n

(
Ψn0 , Φn

)
H
Φn(x) + λn0T Ψn0(x). (5.9)

Let us prove that
(
I − λn0L−10

)
Ψn0 and Φn0 are orthogonal inH. We have

((
I − λn0L

−1
0

)
Ψn0 , Φn0

)
H

=

(
Ψn0 ,

(
I − λn0L

−1
0

)
Φn0

)
H

= 0,

since λn0 and Φn0(x) are eigenvalue and the corresponding eigenvector of L0. The sum in (5.9)

is orthogonal to Φn0 by construction. Therefore we get that
(
T Ψn0 , Φn0

)
H

= 0. Now, we use the
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formula in (3.25) in which m= n= n0, κ2 = β = 0, and obtain that(
T , Ψn0

)
H

=− i

2λ2n0

(
κ1ϕ
′
n0

(1) + αϕn0(1)
)
ψn0(1) = 0, (5.10)

where ϕn0 and ψn0 are the second components of the eigenvectors Φn0 and Ψn0 respectively.
However, by Theorem 5.3 of [Shubov & Kindrat], ψn0(1) 6= 0 and by Theorem 4.2 of [Shubov &
Kindrat], ϕn0(1)ϕ

′
n0

(1)> 0. Therefore, (5.10) is not valid.
Due to the obtained contradiction, Statement (3) is proven.
4) To prove Statement (4), let us consider the second main identity (4.24). Assuming that κ1 =

α= 0 and κ2 and β are such that βκ2 > 0, we have

i

λm
ψ′m(1) =

[
β

∞∑
n=1

(
ϕ′n(1)

)2(
λ0n
)2 − λ2m + κ2

∞∑
n=1

ϕn(1)ϕ
′
n(1)(

λ0n
)2 − λ2m

]
ψ′m(1). (5.11)

Since ψ′m(1) 6= 0, we can cancel out ψ′m(1) and obtain that for each m∈N+ the following relation
holds:

i

λm
=

∞∑
n=1

[
κ2ϕn(1) + βϕ′n(1)

]
ϕ′n(1)(

λ0n
)2 − λ2m . (5.12)

If λm = am + ibm, then separating the real and imaginary parts of Eq.(5.12) we arrive at the
equations similar to Eqs.(5.6) and (5.7) in which γn from (5.5) has been replaced with δn, where
δn ≡ κ2ϕ1(1)ϕ

′
n(1) + β

(
ϕ′n(1)

)2. Therefore, the remaining part of the proof is quite similar to the
end of the proof of Statement (3). �
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