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Abstract

Machine learning (ML) techniques are increasingly common
in security applications, such as malware and intrusion detec-
tion. However, ML models are often susceptible to evasion

attacks, in which an adversary makes changes to the input
(such as malware) in order to avoid being detected. A con-
ventional approach to evaluate ML robustness to such attacks,
as well as to design robust ML, is by considering simplified
feature-space models of attacks, where the attacker changes
ML features directly to effect evasion, while minimizing or
constraining the magnitude of this change. We investigate
the effectiveness of this approach to designing robust ML
in the face of attacks that can be realized in actual malware
(realizable attacks). We demonstrate that in the context of
structure-based PDF malware detection, such techniques ap-
pear to have limited effectiveness, but they are effective with
content-based detectors. In either case, we show that augment-
ing the feature space models with conserved features (those
that cannot be unilaterally modified without compromising
malicious functionality) significantly improves performance.
Finally, we show that feature space models enable general-
ized robustness when faced with a variety of realizable attacks,
as compared to classifiers which are tuned to be robust to a
specific realizable attack.

1 Introduction

Machine learning (ML) has come to be widely used in a broad
array of settings, including important security applications
such as network intrusion, fraud, and malware detection, as
well as other high-stakes settings, such as autonomous driving.
A general approach is to extract a set of features, or numerical
attributes, of entities in question, collect a training data set
of labeled examples (for example, indicating which instances
are malicious and which are benign), and learn a model which
labels previously unseen instances, presented in terms of their
extracted features. Success of ML in malware detection is par-
ticularly striking, with ML-based static detection of malicious

entities at times exceeding 99% accuracy [36, 37].
Nevertheless, ML-based techniques are often susceptible to

adversarial examples, an important special case of which are
evasion attacks. In a prototypical case of an evasion attack,
an adversary modifies malware code so that the resulting
malware is categorized as benign by ML, but still successfully
executes the malicious payload [12, 16, 26, 37, 44]. An even
broader class of adversarial examples features attacks that
manipulate an object, such as a stop sign, so that a computer
vision pipeline misclassifies it as another object (such as a
speed limit sign) [10, 15, 33].

In response, a host of methods emerged for making ML
robust to adversarial examples, the most potent of which are
those based on game-theoretic approaches, robust optimiza-
tion (including certified robustness), and adversarial retrain-
ing [5, 15, 23, 25, 32, 42, 43, 46]. A fundamental ingredient in
all of these are feature-space models of attacks. Specifically,
the attacker is assumed to directly modify values of features,
with either a constraint or a penalty on the aggregate feature
change measured in terms of an lp norm.

Such feature-space models of attacks are clearly abstrac-
tions of reality. First, arbitrary modifications of feature values
may not be realizable. For example, adding a benign object
to a malicious PDF (with no other changes) necessarily in-
creases its size, and so setting the associated feature to 1 (from
0) and simultaneously reducing file size may not be practi-
cally feasible. Second, the key goal for an adversary is to
create a target malicious effect, such as to execute a malicious
payload. Limiting feature modifications to be small in some
lp norm clearly need not capture this: one can insert many
no-ops (resulting in a large change according to an lp norm)
with no impact on malicious functionality, and conversely,
minimal changes (such as removing a Javascript tag) may
break malicious functionality. Nevertheless, an implicit as-
sumption in robust ML approaches is that the feature-space
models capture reality sufficiently to yield ML models that
are robust even to realizable attacks. The goal of our work

is to evaluate the validity of this implicit assumption in the
context of PDF malware detection.
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Our first contribution is to evaluate feature-space evasion
attack models in the context of PDF malware detection, us-
ing EvadeML as a realizable attack [44]. Specifically, we
consider four ML-based approaches for PDF malware detec-
tion: two based on features that capture PDF file structure
(SL2013 [36] and Hidost [38]), and two based on PDF file
content (two Mimicus variants of PDFRate [35, 37]). In all
cases, we show that successful defense against a given real-
izable attack is feasible (by retraining with this attack). In
the case of structure-based detectors, we demonstrate that
adversarial retraining in the feature space does not lead to
adequate robustness against realizable attacks. In contrast,
adversarial retraining in the feature space is effective in the
case of content-based detectors. In other words, the nature of
the feature space can matter a great deal.

Our second contribution is a method for boosting robust-
ness of feature-space models without compromising their
mathematical convenience (crucial for most approaches for
robust ML). The key idea is to identify conserved features,
that is, features that cannot be unilaterally modified without
compromising malicious functionality. We exhibit such fea-
tures in our setting, show that they cannot be identified with
traditional statistical methods, and develop an algorithm for
automatically extracting them. Finally, we show that by sim-
ply constraining that these features remain unmodified in ad-
versarial training, feature-space approaches become effective
even for robust structure-based PDF malware detection.

Our third contribution is to explore the extent to which
ML robustness is generalizable to multiple distinct realizable
attacks. Specifically, we expose both a robust classifier that
was retrained by using a realizable attack (EvadeML), and
a model hardened using a feature-space attack (accounting
for conserved features), to a series of realizable attacks. Our
results reveal a stark difference between the two: ML mod-
els hardened using EvadeML are quite fragile; in contrast,
ML models hardened using feature-space attacks exhibit uni-
formly high robustness to the other attacks. Remarkably, we
demonstrate that ML models hardened using feature-space at-
tacks remain robust even against realizable attacks that defeat

conserved features.

2 Machine Learning in Security

2.1 Learning and Prediction

In the (supervised) machine learning literature, it is common
to consider the problem abstractly. We are given a training
dataset D= {(xi,yi)}, where xi ∈ X⊆R

n are numeric feature
vectors in some feature space X and yi ∈ L are labels in a label
space L. Each data point (or example) in D is assumed to be
generated i.i.d. according to some unknown distribution P.
We are also given a hypothesis (model) space, H, and our goal
is to identify (learn) a good model h ∈ H in the sense that it
yields a small expected error on new examples drawn from

P. In practice, since P is unknown, one typically aims to find
h ∈ H which (approximately) minimizes empirical error on
training data D.

In security applications—as in others—one is not given
numerical features; instead, we start with a collection of en-
tities, such as executables, along with associated labels (we
assume henceforth that these are available, as we focus here
on supervised learning problems). We must then design a

collection of feature extractors, where each feature extractor
computes a numerical value of a corresponding feature from
an input entity. For example, we extract a “size” feature by
computing the size of an executable. Applying feature extrac-
tors to each entity in our dataset, and adding associated object
labels, allow us to generate a dataset D to fit the conventional
ML framework.

In this paper we focus on PDF malware detection, where
the label space is binary: either a PDF file is benign (which
we can code as −1), or malicious (which we can code as
+1). In addition, several prior efforts presented techniques
for defining feature extractors (commonly known simply as
features) for PDF files [36, 37]. Applying such feature ex-
tractors to a PDF file dataset transforms this dataset into one
comprised of numerical feature vectors and associated binary
labels. The goal is to predict whether previously unseen PDFs
(simulated by holding out a portion of our dataset as test data)
are correctly labeled as malicious or benign.

2.2 Evasion Attacks

In an evasion attack, abstractly, one is given a learned model
h(x) (e.g., a SVM or neural network) which returns a label
y = h(x) (e.g., malicious or benign) for an arbitrary feature
vector x ∈ X (e.g., extracted from a PDF file). The attacker ad-
ditionally starts with an entity e (such as a malicious PDF file),
from which we can extract a feature vector φ(e). The attacker
then transforms e into another entity, e′, with an associated
feature vector x′ = φ(e′) so as to accomplish two goals: first,
that h(x′) returns an erroneous label (in our running example,
labels e′ as benign based on its extracted features φ(e′)), and
second, that e′ preserves the functionality of the original entity
e—which, in our example of PDF malware detection, entails
preserving malicious functionality of e. The evasion attack as
just described is presumed to transform the entity itself, such
as the malicious PDF file, albeit accounting for the effect of
such transformation on the extracted features x′ = φ(e′). We
call attacks of this kind realizable evasion attacks. The pro-
cess by which such realizable evasion attacks can be success-
fully accomplished is quite non-trivial, and typically warrants
independent research contributions (e.g., [37, 44]).

In contrast, it is natural to short-circuit the complexity in-
volved, and work directly in the feature space, as is conven-
tional in the machine learning literature. In this case, the
attacker is modeled as starting with a malicious feature vector
x (not the malicious entity e), and directly modifying the fea-
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tures to produce another feature vector x′ ∈ X, so as to yield
erroneous predictions, i.e., y′ = h(x′) (for example, being mis-
labeled as benign). Crucially, since we are no longer appealing
to original entities, we must abstract away the notion of pre-
serving (malicious) functionality. This is done through the
use of a cost function, c(x,x′), whereby the attacker is penal-
ized for greater modifications to the given feature vector x,
commonly measured using an lp norm difference between
the original malicious instance and the modified feature vec-
tor [3,23]. We term these the feature-space models of evasion
attacks. Crucially, essentially all approaches for robust ML,

particularly the most successful ones, such as those based on

robust optimization, leverage these models.

2.3 Evasion Defense

A large number of approaches have been proposed for de-
fending against evasion attacks or, more broadly, adversarial
examples (e.g., [3, 5, 6, 29, 30, 32, 40, 42, 43]). While many
have been shown inadequate [1, 7], the three generally effec-
tive approaches are: (a) game-theoretic reasoning, (b) robust
optimization (a special case of (a) where the game is zero-
sum), and (c) iterative adversarial retraining.1 Game-theoretic
methods in general, and robust optimization in particular, are
not general-purpose, as solving these directly requires special
structure, such as a continuous feature space and differentia-
bility [3, 5, 6], and often additional structure of the learning
model, such as linearity [43] or neural network architecture
and activation functions [32, 42]. Finally, to date all have
used the mathematical feature-space attack model at their
core. In contrast, retraining can be performed without making
assumptions about the nature of the learning algorithm or
the adversarial model [23]. Since our study below involves
realizable attacks (in addition to the mathematical models
of attacks), non-linear SVM and, in all cases but one, binary
features, iterative retraining is the sole defense that can be
applied uniformly (which we require to ensure that our results
are directly comparable).

3 Validating Models of ML Evasion Attacks

We have two major goals: 1) validation: to evaluate whether
robust ML approaches that make use of feature-space mod-
els of evasion attacks are, indeed, robust against real—
realizable—attacks, and 2) generalizability: to study general-
izability of evasion defenses.

We start with a conceptual model of defense and attack
as a Stackelberg game between ML (“defender”), who first
chooses a defense θ (in our case, the learned model h(x))
and the attacker, who finds an optimal attack that reacts to
the particular defense θ. An attack model captures how the

1Otherwise known as adversarial training, it can be viewed as an ap-
proach for obtaining approximate game-theoretic or robust optimization
solutions [23, 25, 40].

attacker changes behavior in response to the defense θ. The
defender’s goal is to choose the best defense θ against such
a reactive attacker, as captured by the attack model. Indeed,
this is a common way to model the adversarial evasion prob-
lem in prior literature [5, 22, 40]. This model has two useful
features. First, the attack is treated as an oracle in the sense
that it returns an attack for an arbitrary defense θ. This al-
lows us, in principle, to design a defense against an arbitrary
evasion attack, making no distinction between feature-space
attack models and realizable attacks. Second, we can sepa-
rately consider defense against a specific attack (for example,
a feature-space attack), and evaluation, which can use another
attack (e.g., a realizable attack).

To be more precise, let O(h;D) be an arbitrary attack which
returns evasions given a dataset D and a classifier h, and
let u(h;O(h;D)) be the measure that the defender wishes to
optimize (for example, accuracy on data after evasions). Then
defense against the attack O(h;D) amounts to solving the
following optimization problem:

max
h

u(h;O(h;D)). (1)

In practice, we need a means for approximately solving the
optimization problem in Equation (1) for an arbitrary attack.
To this end, we make use of iterative retraining, an approach
previously proposed for hardening classifiers against evasion
attacks [21, 23]. In particular, we use a variant of iterative
retraining with provable guarantees [23], which is outlined as
follows:

1. Start with the initial classifier.

2. Execute the evasion attack for each malicious instance
in training data to generate a new feature vector.

3. Add all new data points to training data (removing any
duplicates), and retrain the classifier.

4. Terminate after either a fixed number of iterations, or
when no new evasions can be added.

Now, we describe our approach to validation and generaliz-
ability evaluations.

In validation, consider a model of an evasion attack,
Õ(h;D) (e.g., a feature-space attack model), which is a proxy
for a “real” (realizable) attack, O(h;D); note that each attack
evades a given ML model h. We first find the defense against
Õ using the retraining procedure above; let the resulting ro-
bust classifier be h̃. Next, we evaluate h̃ by running the target
realizable attack O(h̃;D). Finally, we create a baseline h∗,
which is a robust classifier against a target realizable attack
O. We then evaluate how well h̃ performs, compared to h∗,
against the target attack. For example, if we find that h̃ is
ineffective against the target attack, we say that Õ is a poor
attack proxy, whereas if it remains robust, we view Õ as a
good proxy for the target attack O. We focus on validation in
Sections 5 and 6.
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In evaluating generalizability, the approach is slightly dif-
ferent. Again, we consider a proxy attack Õ (which may now
be either a feature-space model, or some particular realizable
attack), and find a defense h̃ against this attack. For evalu-
ation, we consider a collection of target attacks {Oi)}, and
run each of these attacks against h̃. We say that our proxy
attack is generalizable if h̃ remains robust to all, or most of
the attacks i; otherwise, it fails to generalize. We consider
generalizability in Section 7.

4 Experimental Methodology

We use malicious PDF detection as a case study to investigate
robustness of ML hardened using feature-space models of eva-
sion attacks. We now describe our experimental methodology.
We start with some background on PDF structure, and proceed
to describe the specific ML-based detectors, evasion attacks
(both realizable, and feature-space), datasets, and evaluation
metrics used in our experiments.

4.1 PDF Document Structure

The Portable Document Format (PDF) is an open standard
format used to present content and layout on different plat-
forms. A PDF file structure consists of four parts: header,
body, cross-reference table (CRT), and trailer. The header
contains information such as the magic number and format
version. The body is the most important element of a PDF
file, which comprises multiple PDF objects that constitute the
content of the file. These objects can be one of the eight basic
types: Boolean, Numeric, String, Null, Name, Array, Dictio-
nary, and Stream. They can be referenced from other objects
via indirect references. There are other types of objects, such
as JavaScript which contains executable JavaScript code. The
CRT indexes objects in the body, while the trailer points to
the CRT.

The relations between objects with cross-references can
be described as a directed graph that presents their logical
structure by using edges representing reference relations and
nodes representing different objects.As an object can be re-
ferred to by its child node, the resulting logical structure is a
directed cyclic graph. To eliminate the redundant references,
the logical structure can be reduced to a structural tree with
the breadth-first search procedure.

4.2 Target Classifiers

Several PDF malware classifiers have been proposed [8, 35,
36, 38]. For our study, we selected SL2013 [36], Hidost [38]
and two variants of PDFRate [35] (termed PDFRate-R and
PDFRate-B respectively), displayed in Table 1. SL2013 and
its revised version, Hidost, are structure-based PDF classi-
fiers, which use the logical structure of a PDF document to
construct and extract features used in detecting malicious

Classifier Feature type Number of features

SL2013 Binary 6,087
Hidost Binary 961

PDFRate-R Real-valued 135
PDFRate-B Binary 135

Table 1: Target classifiers.

PDFs. PDFRate, on the other hand, is a content-based clas-
sifier, which constructs features based on medadata and con-

tent information in the PDF file to distinguish benign and
malicious instances. Evasion attacks on both SL2013 and
PDFRate classifiers, particularly of the realizable kind, have
been developed in recent literature [36–38, 44], providing a
natural evaluation framework for our purposes.

4.2.1 Structure-Based Classifiers

SL2013: SL2013 is a well-documented and open-source ma-
chine learning system using Support Vector Machines (SVM)
with a radial basis function (RBF) kernel, and was shown to
have state-of-the-art performance [36]. It employs structural
properties of PDF files to discriminate between malicious and
benign PDFs. Specifically, SL2013 uses the presence of par-
ticular structural paths as binary features to present PDF files
in feature space. A structural path of an object is a sequence
of edges in the reduced (tree) logical structure, starting from
the catalog dictionary and ending at this object. Therefore,
the structural path reveals the shortest reference path to an
object. SL2013 uses 6,087 most common structural paths
among 658,763 PDF files as a uniform set for classification.
Hidost: Hidost is an updated version of SL2013. It inherits all
the characteristics of SL2013 and employs structual path con-

solidation (SPC), a technique to consolidate features which
have the same or similar semantic meaning in a PDF. As the
semantically equivalent structural paths are merged, Hidost
reduces polymorphic paths and still preserves the semantics
of logical structure, so as to improve evasion-robustness of
SL2013 [38].

In our work, we employ the 961 features identified in the
latest version of Hidost.

4.2.2 PDFRate: A Content-Based Classifier

The original PDFRate classifier uses a random forest algo-
rithm, and employs PDF metadata and content features. The
metadata features include the size of a file, author name, and
creation date, while content-based features include position
and counts of specific keywords. All features were manually
defined by Smutz and Stavrou [35].

PDFRate uses a total of 202 features, but only 135 of these
are publicly documented [34]. Consequently, in our work we
employ the Mimicus implementation of PDFRate which was
shown to be a close approximation [37]. Mimicus trained a
surrogate SVM classifier with the documented 135 features
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and the same dataset as PDFRate, using both the SVM and
random forest classifiers, both performing comparably. We
use the SVM implementation in our experiments to enable
more direct comparisons with the structure-based classifiers
that also use SVM. An important aspect of Mimicus is fea-

ture standardization on extracted data points performed by
subtracting the mean of the feature value and dividing by
standard deviation, transforming all features to be real-valued
and zero-mean (henceforth, PDFRate-R). This surrogate was
shown to have ∼ 99% accuracy on the test data [35]. In addi-
tion, we construct a binarized variant of PDFRate (henceforth,
PDFRate-B), where each feature is transformed into a binary
feature by assigning 0 whenever the feature value is 0, and
assigning 1 whenever the feature value is non-zero.

4.3 Realizable Evasion Attacks

4.3.1 EvadeML

The primary realizable attack in our study is EvadeML [44],
which allows insertion, deletion, and swapping of objects, and
is consequently a stronger attack than most other realizable at-
tacks in the literature, which typically only allow insertion to
ensure that malicious functionality is preserved. EvadeML as-
sumes that the adversary has black-box access to the classifier
and can only get classification scores of PDF files, and was
shown to effectively evade both SL2013 and PDFRate [44].
It employs genetic programming (GP) to search the space of
possible PDF instances to find ones that evade the classifier
while maintaining malicious features. First, an initial popula-
tion is produced by randomly manipulating a malicious PDF
repeatedly. The manipulation is either a deletion, an insertion,
or a swap operation on PDF objects. After the population
is initialized, each variant is assessed by the Cuckoo sand-
box [17] and the target classifier to evaluate its fitness. The
sandbox is used to determine if a variant preserves malicious
behavior, such as API or network anomalies. The target classi-
fier provides a classification score for each variant. If a variant
is classified as benign but displays malicious behavior, or if
GP reaches the maximum number of generations, then GP
terminates with the variant achieving the best fitness score
and the corresponding mutation trace is stored in a pool for
future population initialization. Otherwise, a subset of the
population is selected for the next generation based on their
fitness evaluation. Afterward, the variants selected are ran-
domly manipulated to generate the next generation of the
population.

We use EvadeML as the primary realizable evasion model
for the first part of the paper. We set the GP parameters in
EvadeML as the same as in the experiments by Xu et al. [44].
The population size in each generation is 48. The maximum
number of generations is 20. The mutation rate for each PDF
object is 0.1. The mutation traces that lead to successful eva-
sion and promising variants are stored and applied in our

experiments. The fitness threshold of a classifier is 0. We use
the same external benign PDF files as Xu et al. [44] to provide
ingredients for insertion and swap operations.

4.3.2 The Mimicry Attack

Mimicry assumes that an attacker has full knowledge of the
features employed by a target classifier. The mimicry attack
then manipulates a malicious PDF file so that it mimics a
particular selected benign PDF as much as possible. The
implementation of Mimicry is simple and independent of any
particular classification model.

Our mimicry attack uses the Mimicus [37] implementation,
which was shown to successfully evade the PDFRate classi-
fier. To improve its evasion effectiveness, Mimicus chooses
30 different target benign PDF files for each attack file. It
then produces one instance in feature space for each target-
attack pair by merging the malicious features with the benign
ones. The feature space instance is then transformed into a
PDF file using a content injection approach. The resulting 30
files are evaluated by the target classifier, and only the PDF
with the best evasion result is selected, which was submit-
ted to WEPAWET [8] to verify malicious functionality. To
make Mimicry consistent with our framework, we employ
the Cuckoo sandbox [17] in place of WEPAWET (which was
in any case discontinued) to validate maliciousness of the
resulting PDF file.

In addition to the original version of Mimicry, we imple-
ment an enhanced variation, Mimicry+, with two modifica-
tions. First, Mimicry+ chooses the 30 most benign PDF files
predicted by the target classifier as target files (instead of
randomly selecting those, as in Mimicry). Second, for each
attack file, all the resulting 30 files are evaluated by the sand-
box and only those verified to have malicious functionality
are selected to evade the target classifier.

4.3.3 MalGAN

MalGAN [19] is a Generative Adversarial Network [14]
framework to generate malware examples which can evade a
black-box malware detector with binary features. It assumes
that an attacker knows the features, but has only black-box
access to the detector decisions. MalGAN comprises three
main components: a generator which transforms malware to
its adversarial version, a black-box detector which returns
detection results, and a substitute detector which is used to
fit the black-box detector and train the generator. The genera-
tor and substitute detector are feed-forward neural networks
which work together to evade the black-box detector. The
results of [19] show that MalGAN is able to decrease the
True Positive Rate on the generated examples from > 90% to
0%. We note that strictly speaking, MalGAN variants are not
implemented as actual PDF files; however, we still treat it as
a realizable attack since it only adds features to a malicious
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Entry Hexadecimal Representation

/Action /#41#63#74#69#6f#6e
/Filter /#46#69#6c#74#65#72

/Length /#4c#65#6e#67#74#68
/JavaScript /#4a#61#76#61#53#63#72#69#70#74

/JS /#4a#53
/S /#53

/Type /#54#79#70#65

Table 2: Transformation of entry names in the custom attack.

file, which can be implemented (at least in structure-based
detection) by adding the associated objects into the PDF file.

4.3.4 Reverse Mimicry

The Reverse Mimicry attack assumes that an attacker has
zero knowledge of the target classifier. The basic idea is to
inject malicious payloads into target benign files to mini-
mize the structural difference between the resulting examples
and targets. Our Reverse Mimicry attack employs the adver-
sarial examples provided by Maiorca et al. [26] which was
shown to successfully evade PDF classifiers based on struc-
tural analysis. Specifically, we use the 500 PDF files produced
by injecting a malicious JavaScript code that does not con-
tain references to other objects to target benign PDF files.
We selected the 376 files out of 500 that display malicious
behaviors detected by the Cuckoo sandbox.

4.3.5 The Custom Attack

We implemented a custom attack which exploits a feature
extraction vulnerability in the Mimicus implementation of
PDFRate. Normally, the characters used in the Name objects
of a PDF file are limited to a specific set. Since PDF speci-
fication version 1.2, a lexical convention has been added to
represent a character with its hexadecimal ANSI-code, e.g.,
#xx. Such a modification enables us to create an arbitrary
string in the form of #xx#xx#xx. In our implementation, we
replaced a set of entries in the attack PDF files with their
hexadecimal representations (see Table 2). These features
were selected with the goal to obfuscate tags crucial to the
code execution in PDF, which are frequently used for feature
extraction. With this technique, the scanner would not be able
to detect malicious code without dynamically reconstructing
the PDF structure. While it is theoretically possible to replace
all the ASCII text inside the document, we chose not to do
that due to the concern on the expansion of file size.

4.4 Feature-Space Evasion Model

In typical realizable attacks, including EvadeML, a consider-
ation is not merely to move to the benign side of the classifier
decision boundary, but to appear as benign as possible. This

naturally translates into the following multi-objective opti-
mization in feature space:

minimize
x

Q(x) = f (x)+λc(xM,x), (2)

where f (x) is the score of a feature vector x, with the actual
classifier (such as SVM) g(x) = sgn( f (x)), xM the malicious
seed, x an evasion instance, c(xM,x) the cost of transforming
xM into x, and λ a parameter which determines the feature
transformation cost. We use l2 norm distance between xM and
x as the cost function: c(xM,x) = ∑i |xi−xM,i|

2. Since in most
of our experiments features are binary, the choice of l2 norm
(as opposed to another lp norm) is not critical.

As the optimization problem in Equation (2) is non-convex
and variables are binary in three of the four cases we consider,
we use a stochastic local search method designed for com-
binatorial search domains, Coordinate Greedy (alternatively
known as iterative improvement), to compute a local optimum
(the binary nature of the features is why we eschew gradient-
based approaches) [18, 23]. In this method, we optimize one
randomly chosen coordinate of the feature vector at a time,
until a local optimum is reached. To improve the quality of
the resulting solution, we repeat this process from several
random starting points. This approach has been shown to be
extremely effective for computing evasion instances in binary
domains [23].

4.5 Datasets

The dataset we use is from the Contagio Archive.2 We use
5,586 malicious and 4,476 benign PDF files for training, and
another 5,276 malicious and 4,459 benign files as the non-
adversarial test dataset. The training and test datasets also
contain 500 seeds selected by Xu et al. [44], with 400 in
the training data and 100 in the test dataset. These seeds are
filtered from 10,980 PDF malware samples and are suitable
for evaluation since they are detected with reliable malware
signatures by the Cuckoo sandbox [17]. We randomly select
40 seeds from the training data as the retraining seeds and use
the 100 seeds in the test data as the test seeds.

4.6 Implementation of Iterative Adversarial

Retraining

We made a small modification to the general iterative retrain-
ing approach described in Section 3 when it uses EvadeML
as the realizable attack O(h;D). Specifically, we used only 40
malicious seeds to EvadeML to generate evasions, to reduce
running time and make the experiment more consistent with
realistic settings where a large proportion of malicious data is
not adapting to the classifier. As shown below, this set of 40
instances was sufficient to generate a model robust to evasions
from held out 100 malicious seed PDFs.

2Available at the following URL: http://contagiodump.blogspot.
com/2013/03/16800-clean-and-11960-malicious-files.html.
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adding stickers to a stop sign to cause misclassification, or
wearing printed glass frames to fool face recognition, and
are therefore somewhat analogous to our notion of realizable
attacks [10, 33].
Evasion-Robust Classification: Dalvi et al. [9] presented
the first approach for evasion-robust classification. A series of
approaches formulate robust classification as minimizing max-
imum loss (i.e., following a robust optimization paradigm),
where maximization is attributed to the evading attacker aim-
ing to maximize the learner’s loss through small feature-space
transformations [25, 32, 39, 42, 46]. A number of alternative
methods for designing classifiers consider the interaction as a
non-zero-sum game [5, 6, 21–23]. Finally, a series of iterative
retraining procedures have been proposed, both for general
adversarial evasion [21,23], and specifically for deep learning
methods for vision [15,20,25] (note that Madry et al. [25] fall
into both robust optimization and retraining buckets, since
their approach is equivalent to retraining if stochastic gradient
descent simply continues by processing adversarial examples
as they are added). These diverse efforts share one common
property: attack models that they leverage use feature-space
manipulations, which are only a proxy for realizable attacks
on ML.

9 Discussion and Conclusion

We undertook an extensive exploration of the extent to which
robust ML that uses the conventional feature-space models
of evasion attacks remains robust to “real” attacks that can be
implemented in actual malware and preserve malicious func-
tionality (what we call realizable attacks). Our first intriguing
observation is that defense based on feature-space models
can fail to achieve satisfactory robustness. This in itself raises
some doubts about the nearly universal focus on such mod-
els as a means for ML defense, and suggests that practical
usefulness of such approaches cannot be taken for granted.
However, we also show that changing the nature of the feature
space can make a difference: robust ML with feature-space
models is quite robust in content-based detection (which uses
content, rather than structural paths, as features). Additionally,
we presented a refined version of the feature-space model that
makes use of conserved features (which we can identify auto-
matically, as shown in the Appendix), and showed that where
feature-space defense previously failed, it now succeeds. Our
final finding may well be the most intriguing: feature-space
approaches exhibit generalized robustness, in that the result-
ing robust ML (after appropriate refinement using conserved
features) exhibits robustness to multiple realizable attacks.
This contrasts with defense that is hardened using a specific

realizable attack—even one quite powerful on the surface
(EvadeML)—which can fail dramatically when faced with
a different attack. These findings demonstrate the power of
effective mathematical abstractions in security.

It is natural to wonder how our approach and results are

applied to other domains. In computer vision, the analog of
realizable malware attacks are physical attacks, whereby the
physical environment is modified, rather than the digital ob-
ject, such as an image. Here, the corresponding foundational
question is whether common robust ML methods based on
small-lp attacks successfully protect against physical attacks.
The notion of conserved features can also be seen as more
generally applicable. For example, in a bag-of-words repre-
sentation for spam filtering, these could correspond to the
existence of URL or file attachments, and in SQL injection
attacks, these may refer to the existence of specific SQL com-
mands, such as Select.

The main limitation of our study is in the specific choices
we had to make to ensure that it is tractable. We chose a par-
ticular defensive paradigm—iterative retraining. As we have
argued, it is the only paradigm that can fit every case that we
investigate; for example, there is no other general approach
for learning a robust SVM with non-linear kernels. However,
it is possible that approaches based on robust optimization,
if they were developed, can improve performance by taking
advantage of the special structure of this problem. We imple-
mented a particular class of feature-space attacks, using l2
norm to measure the attacker’s cost of feature manipulations,
and stochastic local search to compute evasions. It is possible
that better attack algorithms for generating attacks over binary
domains will be developed, and, indeed, some alternatives ex-
ist. However, prior work suggests that this approach yields
attacks that are close to optimal [23], with the use of random
restarts playing a crucial role. Finally, our study was specific
to PDF malware detection. However, our framework is quite
general, and could be used in the future to consider other simi-
lar questions, such as the effectiveness of robust deep learning
against physical attacks. Several additional limitations offer
further opportunities for future work. One example is the fact
that we only define conserved features when these are binary;
it may be that finding meaningful conserved features in con-
tinuous feature spaces is inherently more difficult. Another
issue is the surprising finding that sufficient anchoring of
feature-space defense in the domain using conserved features
allows us to achieve robustness, even when conserved features

can be circumvented. It may be that conserved features are
ultimately only a part of the solution, and only help if they
adequately capture the attack surface in the abstract feature
space. The extent to which small variations in the set of iden-
tified conserved features matters is also an open question: our
evidence is mixed, with “expert”-defined features usually, but
not always, sufficient for robustness.
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Appendix

A Identifying Conserved Features

We now describe a systematic automated procedure for iden-
tifying these. We first introduce how to identify conserved
features of SL2013, and then describe how to generalize the
approach to extract conserved features of Hidost.

The key to identifying the conserved features of a mali-
cious PDF is to discriminate them from non-conserved ones.
Since merely applying statistical approaches on training data
is insufficient to discriminate between these two classes of fea-
tures, as demonstrated above, we need a qualitatively different
approach which relies on the nature of evasions (as imple-
mented in EvadeML) and the sandbox (which determines
whether malicious functionality is preserved) to identify fea-
tures that are conserved.

We use a modified version of pdfrw [27]5 to parse the
objects of PDF file and repack them to produce a new PDF
file. We use Cuckoo [17] as the sandbox to evaluate malicious
functionality. In the discussion below, we define xi to be the
malicious file, Si the conserved feature set of xi, and Oi the
set of its non-conserved features. Initially, Si = Oi = /0.

At the high level, our first step is to sequentially delete each
object of a malicious file and eliminate non-conserved fea-
tures by evaluating the existence of a malware signature in a
sandbox for each resulting PDF, which provides a preliminary
set of conserved features. Then, we replace the object of each
corresponding structural path in the resulting preliminary set
with an external benign object and assess the corresponding
functionality, which allows us to further prune non-conserved
features. Next, we describe these procedures in detail.

A.1 Structural Path Deletion

In the first step, we filter out non-conserved features by delet-
ing each object and its corresponding structural path, and
then checking whether this eliminates malicious functionality
(and should therefore be conserved). First, we obtain all the
structural paths (objects) by parsing a PDF file. These objects
are organized as a tree-topology and are sequentially deleted.
Each time an object is removed, we produce a resulting PDF
file by repacking the remaining objects. Then, we employ the
sandbox to detect malicious functionality of the PDF after
the object deletion. If any malware signature is captured, the
corresponding structural path of the object is deleted as a
non-conserved feature, and added to Oi. On the other hand, if
no malware signature is detected, the corresponding feature
is added in Si as a possibly conserved feature.

One important challenge in this process is that features are
not necessarily independent. Thus, in addition to identifying
Si and Oi, we explore interdependence between features by

5The modified version is available at https://github.com/mzweilin/
pdfrw.

deleting objects. As the logic structure of a PDF file is with a
tree-topology, the presence of some structural path depends
on the presence of other structural paths whose object refers
to the object of the prior one. We define that a structural path
is a dependent of another if unilateral deleting the object asso-
ciated with the latter causes a flip from 1 to 0 on the feature
value of the former. For any feature j of xi, we denote the set
of features that depend on j by D

j
i . Note that for a given struc-

tural path (feature), there could be multiple corresponding
PDF objects. In such a case, these objects are deleted simulta-
neously, so as the corresponding feature value is shifted from
1 to 0.

A.2 Structural Path Replacement

In the second step, we subtract the remaining non-conserved
features in the preliminary Si and move them to Oi. Similar
to the prior step, we first obtain all the structural paths and
objects of the malicious PDF file. Then for each object of
the PDF that is in Si, we replace it with an external object
from a benign PDF file and produce the resulting PDF, which
is further evaluated in the sandbox. If the sandbox detects
any malware signature, then the corresponding structural path
of the object replaced is moved from Si to Oi. Otherwise,
the structural path is a conserved feature since both deletion
and replacement of the corresponding object removes the
malicious functionality of the PDF file. Note that in the case
of multiple corresponding and identical objects of a structural
path, all of these objects are replaced simultaneously.

After structural path deletion and replacement, for each
malicious PDF file xi, we can get its conserved feature set Si,
non-conserved feature set Oi, and dependent feature set D j

for any feature j ∈ Si∪Oi, which could be further leveraged
to design evasion-robust classifiers.

A.3 Obtaining a Uniform Conserved Feature

Set

The systematic approach discussed above provides a con-
served feature set for each malicious seed to retrain a classi-
fier. Our goal, however, is to identify a single set of conserved
features which is independent of the specific malicious PDF
seed file. We now develop an approach for transforming a
collection of Si, Oi, and D

j
i for a set of malicious seeds i into

a uniform set of conserved features.
Obtaining a uniform set of conserved features faces two

challenges: 1) minimizing conflicts among different con-
served features, as a conserved feature for one malicious in-
stance could be a non-conserved feature for another, and 2)
abiding by feature interdependence if a conserved feature
should be further eliminated.

To address these challenges, we propose a Forward Elimi-

nation algorithm to compute the uniform conserved feature
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Algorithm 1 Forward Elimination for uniform conserved fea-
ture set.
Input:

The set of conserved features for xi(i ∈ [1,n]), Si;
The set of non-conserved features for xi(i ∈ [1,n]), Oi;
The set of dependent features for j ∈ Si∪Oi , D j

i ;
Output:

The uniform conserved feature set for {x1,x2, ...,xn}, S;
1: S←

⋃n
i=1Si;

2: S
′
← S;

3: Q← /0;
4: D j =

⋃n
i=1D

j
i ;

5: for each j ∈ S
′

do

6: if j /∈ Q then

7: if ∑n
i=1✶ j∈Oi

≥ β ·∑n
i=1✶ j∈Si

then

8: S← S\ ({ j}∪D j);
9: Q← Q∪ ({ j}∪D j);

10: end if

11: end if

12: end for

13: return S;

set for a set of malicious seeds {x1,x2, ...,xn}, given the con-
served feature sets, non-conserved feature sets and dependent
sets for each seed. As Algorithm 1 shows, we first obtain a
union of the conserved feature sets. Then, we explore the
contradiction of each feature in the union with the others, by
comparing the total number of the feature being selected as
a non-conserved feature and conserved feature. If the former
one is greater than β times the latter one, then this feature,
together with its dependents, are eliminated from the union.
Otherwise, the feature is added to the uniform feature set. We
use β as a parameter to adjust the balance between conserved
and non-conserved features. Typically, β > 1 as we are in-
clined to preserve malicious functionality associated with a
conserved feature, even it could be a non-conserved feature
of another PDF file. We set β = 3 in our experiments.

A.4 Identifying Conserved Features for Other

Classifiers

Once we obtain conserved features of SL2013 for each ma-
licious seeds, we can employ these features to identify con-
served features for other classifiers using binary features. As
our approach relies on the existence of malicious functionality
and corresponding features, such a relation is not obvious for
real-valued features; we therefore leave the question of how
to define and identify conserved features in real space for
future work.
Hidost Hidost and SL2013 are similar in nature in such a
way that they employ structural paths as features. The only
difference is that Hidost consolidates features of SL2013 as
described in Section 4. Therefore, once the conserved fea-

Classifier Conserved features Involve JS?

SL2013

/Names No
/Names/JavaScript Yes

/Names/JavaScript/Names Yes
/Names/JavaScript/Names/JS Yes

/OpenAction No
/OpenAction/JS Yes
/OpenAction/S No

/Pages No

Hidost

/Names No
/Names/JavaScript Yes

/Names/JavaScript/Names Yes
/Names/JavaScript/Names/JS Yes

/OpenAction No
/OpenAction/JS Yes

/Pages No

PDFRate-B

count_box_other No
count_javascript Yes

count_js Yes
count_page No

Table 3: Conserved features and their relevance to JavaScript.

tures of SL2013 are identified, we can simply apply the PDF

structural path consolidation rules described in Srndic and
Laskov [38] to transform these features to the corresponding
conserved features for Hidost.
Binarized PDFRate We identify the conserved features for
PDFRate-B by using the conserved feature set Si of each
seed xi. For each xi, we generate |Si| PDF files, each of which
corresponds to the PDF file when an element (structural path)
in Si is deleted. We then compare PDFRate-B features of
these PDFs to the original xi. If any feature value of xi is
flipped from 1 to 0, then this feature will be added in the
conserved feature set of xi for PDFRate-B. Afterward, we
use Algorithm 1 to obtain the uniform conserved feature set.
This approach can in fact be used for arbitrary PDF malware
detectors over binary features (leveraging conserved structural
paths identified using SL2013).

A.5 Conserved Features

Table 3 presents the full list of conserved features we identi-
fied for each classifier.

A.6 Conserved vs. Regularized Features

In our experiments, we empirically adjust the SVM parameter
C to study the overlap between conserved features and those
selected by l1 regularization. We first adjust C to perform
feature reduction until the number of features is identical to
the number of conserved features. In this case, sparse versions
of both SL2013 and Hidost include only 3 of the conserved
features, while sparse PDFRate-B includes only 1. In another
experiment, we adjusted C until all conserved features were
selected. In this case, SL2013 requires 510 features, Hidost
needs 154, and PDFRate-B needs 83.
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