arXiv:1708.08327v5 [cs.CR] 10 May 2019

Improving Robustness of ML Classifiers against Realizable Evasion Attacks Using
Conserved Features

Bo Li
vloc

Liang Tong
Washington University in St. Louis

Ning Zhang
Washington University in St. Louis

Abstract

Machine learning (ML) techniques are increasingly common
in security applications, such as malware and intrusion detec-
tion. However, ML models are often susceptible to evasion
attacks, in which an adversary makes changes to the input
(such as malware) in order to avoid being detected. A con-
ventional approach to evaluate ML robustness to such attacks,
as well as to design robust ML, is by considering simplified
feature-space models of attacks, where the attacker changes
ML features directly to effect evasion, while minimizing or
constraining the magnitude of this change. We investigate
the effectiveness of this approach to designing robust ML
in the face of attacks that can be realized in actual malware
(realizable attacks). We demonstrate that in the context of
structure-based PDF malware detection, such techniques ap-
pear to have limited effectiveness, but they are effective with
content-based detectors. In either case, we show that augment-
ing the feature space models with conserved features (those
that cannot be unilaterally modified without compromising
malicious functionality) significantly improves performance.
Finally, we show that feature space models enable general-
ized robustness when faced with a variety of realizable attacks,
as compared to classifiers which are tuned to be robust to a
specific realizable attack.

1 Introduction

Machine learning (ML) has come to be widely used in a broad
array of settings, including important security applications
such as network intrusion, fraud, and malware detection, as
well as other high-stakes settings, such as autonomous driving.
A general approach is to extract a set of features, or numerical
attributes, of entities in question, collect a training data set
of labeled examples (for example, indicating which instances
are malicious and which are benign), and learn a model which
labels previously unseen instances, presented in terms of their
extracted features. Success of ML in malware detection is par-
ticularly striking, with ML-based static detection of malicious

Chen Hajaj Chaowei Xiao
Ariel University University of Michigan
Yevgeniy Vorobeychik

Washington University in St. Louis

entities at times exceeding 99% accuracy [36,37].

Nevertheless, ML-based techniques are often susceptible to
adversarial examples, an important special case of which are
evasion attacks. In a prototypical case of an evasion attack,
an adversary modifies malware code so that the resulting
malware is categorized as benign by ML, but still successfully
executes the malicious payload [12,16,26,37,44]. An even
broader class of adversarial examples features attacks that
manipulate an object, such as a stop sign, so that a computer
vision pipeline misclassifies it as another object (such as a
speed limit sign) [10, 15,33].

In response, a host of methods emerged for making ML
robust to adversarial examples, the most potent of which are
those based on game-theoretic approaches, robust optimiza-
tion (including certified robustness), and adversarial retrain-
ing [5,15,23,25,32,42,43,46]. A fundamental ingredient in
all of these are feature-space models of attacks. Specifically,
the attacker is assumed to directly modify values of features,
with either a constraint or a penalty on the aggregate feature
change measured in terms of an /, norm.

Such feature-space models of attacks are clearly abstrac-
tions of reality. First, arbitrary modifications of feature values
may not be realizable. For example, adding a benign object
to a malicious PDF (with no other changes) necessarily in-
creases its size, and so setting the associated feature to 1 (from
0) and simultaneously reducing file size may not be practi-
cally feasible. Second, the key goal for an adversary is to
create a target malicious effect, such as to execute a malicious
payload. Limiting feature modifications to be small in some
I, norm clearly need not capture this: one can insert many
no-ops (resulting in a large change according to an /, norm)
with no impact on malicious functionality, and conversely,
minimal changes (such as removing a Javascript tag) may
break malicious functionality. Nevertheless, an implicit as-
sumption in robust ML approaches is that the feature-space
models capture reality sufficiently to yield ML models that
are robust even to realizable attacks. The goal of our work
is to evaluate the validity of this implicit assumption in the
context of PDF malware detection.

Our first contribution is to evaluate feature-space evasion
attack models in the context of PDF malware detection, us-
ing EvadeML as a realizable attack [44]. Specifically, we
consider four ML-based approaches for PDF malware detec-
tion: two based on features that capture PDF file structure
(SL2013 [36] and Hidost [38]), and two based on PDF file
content (two Mimicus variants of PDFRate [35,37]). In all
cases, we show that successful defense against a given real-
izable attack is feasible (by retraining with this attack). In
the case of structure-based detectors, we demonstrate that
adversarial retraining in the feature space does not lead to
adequate robustness against realizable attacks. In contrast,
adversarial retraining in the feature space is effective in the
case of content-based detectors. In other words, the nature of
the feature space can matter a great deal.

Our second contribution is a method for boosting robust-
ness of feature-space models without compromising their
mathematical convenience (crucial for most approaches for
robust ML). The key idea is to identify conserved features,
that is, features that cannot be unilaterally modified without
compromising malicious functionality. We exhibit such fea-
tures in our setting, show that they cannot be identified with
traditional statistical methods, and develop an algorithm for
automatically extracting them. Finally, we show that by sim-
ply constraining that these features remain unmodified in ad-
versarial training, feature-space approaches become effective
even for robust structure-based PDF malware detection.

Our third contribution is to explore the extent to which
ML robustness is generalizable to multiple distinct realizable
attacks. Specifically, we expose both a robust classifier that
was retrained by using a realizable attack (EvadeML), and
a model hardened using a feature-space attack (accounting
for conserved features), to a series of realizable attacks. Our
results reveal a stark difference between the two: ML mod-
els hardened using EvadeML are quite fragile; in contrast,
ML models hardened using feature-space attacks exhibit uni-
formly high robustness to the other attacks. Remarkably, we
demonstrate that ML models hardened using feature-space at-
tacks remain robust even against realizable attacks that defeat
conserved features.

2 Machine Learning in Security

2.1 Learning and Prediction

In the (supervised) machine learning literature, it is common
to consider the problem abstractly. We are given a training
dataset D = {(x;,y;)}, where x; € X C R" are numeric feature
vectors in some feature space X and y; € L are labels in a label
space L. Each data point (or example) in D is assumed to be
generated i.i.d. according to some unknown distribution P.
We are also given a hypothesis (model) space, H, and our goal
is to identify (learn) a good model # € H in the sense that it
yields a small expected error on new examples drawn from

P. In practice, since P is unknown, one typically aims to find
h € H which (approximately) minimizes empirical error on
training data D.

In security applications—as in others—one is not given
numerical features; instead, we start with a collection of en-
tities, such as executables, along with associated labels (we
assume henceforth that these are available, as we focus here
on supervised learning problems). We must then design a
collection of feature extractors, where each feature extractor
computes a numerical value of a corresponding feature from
an input entity. For example, we extract a “size” feature by
computing the size of an executable. Applying feature extrac-
tors to each entity in our dataset, and adding associated object
labels, allow us to generate a dataset D to fit the conventional
ML framework.

In this paper we focus on PDF malware detection, where
the label space is binary: either a PDF file is benign (which
we can code as —1), or malicious (which we can code as
+1). In addition, several prior efforts presented techniques
for defining feature extractors (commonly known simply as
features) for PDF files [36,37]. Applying such feature ex-
tractors to a PDF file dataset transforms this dataset into one
comprised of numerical feature vectors and associated binary
labels. The goal is to predict whether previously unseen PDFs
(simulated by holding out a portion of our dataset as test data)
are correctly labeled as malicious or benign.

2.2 Evasion Attacks

In an evasion attack, abstractly, one is given a learned model
h(x) (e.g., a SVM or neural network) which returns a label
y = h(x) (e.g., malicious or benign) for an arbitrary feature
vector x € X (e.g., extracted from a PDF file). The attacker ad-
ditionally starts with an entity e (such as a malicious PDF file),
from which we can extract a feature vector ¢(e). The attacker
then transforms e into another entity, ¢’, with an associated
feature vector X' = ¢(e’) so as to accomplish two goals: first,
that h(x’) returns an erroneous label (in our running example,
labels ¢’ as benign based on its extracted features ¢(e’)), and
second, that ¢’ preserves the functionality of the original entity
e—which, in our example of PDF malware detection, entails
preserving malicious functionality of e. The evasion attack as
just described is presumed to transform the entity itself, such
as the malicious PDF file, albeit accounting for the effect of
such transformation on the extracted features x' = ¢(e’). We
call attacks of this kind realizable evasion attacks. The pro-
cess by which such realizable evasion attacks can be success-
fully accomplished is quite non-trivial, and typically warrants
independent research contributions (e.g., [37,44]).

In contrast, it is natural to short-circuit the complexity in-
volved, and work directly in the feature space, as is conven-
tional in the machine learning literature. In this case, the
attacker is modeled as starting with a malicious feature vector
x (not the malicious entity e), and directly modifying the fea-

tures to produce another feature vector X’ € X, so as to yield
erroneous predictions, i.e., y’ = h(x") (for example, being mis-
labeled as benign). Crucially, since we are no longer appealing
to original entities, we must abstract away the notion of pre-
serving (malicious) functionality. This is done through the
use of a cost function, ¢(x,x), whereby the attacker is penal-
ized for greater modifications to the given feature vector x,
commonly measured using an /, norm difference between
the original malicious instance and the modified feature vec-
tor [3,23]. We term these the feature-space models of evasion
attacks. Crucially, essentially all approaches for robust ML,
particularly the most successful ones, such as those based on
robust optimization, leverage these models.

2.3 Evasion Defense

A large number of approaches have been proposed for de-
fending against evasion attacks or, more broadly, adversarial
examples (e.g., [3,5, 6,29, 30,32,40,42,43]). While many
have been shown inadequate [1, 7], the three generally effec-
tive approaches are: (a) game-theoretic reasoning, (b) robust
optimization (a special case of (a) where the game is zero-
sum), and (c) iterative adversarial retraining." Game-theoretic
methods in general, and robust optimization in particular, are
not general-purpose, as solving these directly requires special
structure, such as a continuous feature space and differentia-
bility [3, 5, 6], and often additional structure of the learning
model, such as linearity [43] or neural network architecture
and activation functions [32, 42]. Finally, to date all have
used the mathematical feature-space attack model at their
core. In contrast, retraining can be performed without making
assumptions about the nature of the learning algorithm or
the adversarial model [23]. Since our study below involves
realizable attacks (in addition to the mathematical models
of attacks), non-linear SVM and, in all cases but one, binary
features, iterative retraining is the sole defense that can be
applied uniformly (which we require to ensure that our results
are directly comparable).

3 Validating Models of ML Evasion Attacks

We have two major goals: 1) validation: to evaluate whether
robust ML approaches that make use of feature-space mod-
els of evasion attacks are, indeed, robust against real—
realizable—attacks, and 2) generalizability: to study general-
izability of evasion defenses.

We start with a conceptual model of defense and attack
as a Stackelberg game between ML (“defender”), who first
chooses a defense 0 (in our case, the learned model A(x))
and the attacker, who finds an optimal attack that reacts to
the particular defense 8. An attack model captures how the

'Otherwise known as adversarial training, it can be viewed as an ap-
proach for obtaining approximate game-theoretic or robust optimization
solutions [23,25,40].

attacker changes behavior in response to the defense 6. The
defender’s goal is to choose the best defense 0 against such
a reactive attacker, as captured by the attack model. Indeed,
this is a common way to model the adversarial evasion prob-
lem in prior literature [5,22,40]. This model has two useful
features. First, the attack is treated as an oracle in the sense
that it returns an attack for an arbitrary defense 0. This al-
lows us, in principle, to design a defense against an arbitrary
evasion attack, making no distinction between feature-space
attack models and realizable attacks. Second, we can sepa-
rately consider defense against a specific attack (for example,
a feature-space attack), and evaluation, which can use another
attack (e.g., a realizable attack).

To be more precise, let O(h; D) be an arbitrary attack which
returns evasions given a dataset D and a classifier &, and
let u(h; O(h; D)) be the measure that the defender wishes to
optimize (for example, accuracy on data after evasions). Then
defense against the attack O(h;D) amounts to solving the
following optimization problem:

m}?xu(h;O(h; D)). (1)

In practice, we need a means for approximately solving the
optimization problem in Equation (1) for an arbitrary attack.
To this end, we make use of iterative retraining, an approach
previously proposed for hardening classifiers against evasion
attacks [21, 23]. In particular, we use a variant of iterative
retraining with provable guarantees [23], which is outlined as
follows:

1. Start with the initial classifier.

2. Execute the evasion attack for each malicious instance
in training data to generate a new feature vector.

3. Add all new data points to training data (removing any
duplicates), and retrain the classifier.

4. Terminate after either a fixed number of iterations, or
when no new evasions can be added.

Now, we describe our approach to validation and generaliz-
ability evaluations.

In validation, consider a model of an evasion attack,
O(h;D) (e.g., a feature-space attack model), which is a proxy
for a “real” (realizable) attack, O(h;D); note that each attack
evades a given ML model /. We first find the defense against
O using the retraining procedure above; let the resulting ro-
bust classifier be &. Next, we evaluate h by running the target
realizable attack 0(71; D). Finally, we create a baseline h*,
which is a robust classifier against a target realizable attack
0. We then evaluate how well performs, compared to h*,
against the target attack. For example, if we find that % is
ineffective against the target attack, we say that O is a poor
attack proxy, whereas if it remains robust, we view Oasa
good proxy for the target attack O. We focus on validation in
Sections 5 and 6.

In evaluating generalizability, the approach is slightly dif-
ferent. Again, we consider a proxy attack O (which may now
be either a feature-space model, or some particular realizable
attack), and find a defense h against this attack. For evalu-
ation, we consider a collection of target attacks {0;)}, and
run each of these attacks against 7. We say that our proxy
attack is generalizable if 7 remains robust to all, or most of
the attacks i; otherwise, it fails to generalize. We consider
generalizability in Section 7.

4 Experimental Methodology

We use malicious PDF detection as a case study to investigate
robustness of ML hardened using feature-space models of eva-
sion attacks. We now describe our experimental methodology.
We start with some background on PDF structure, and proceed
to describe the specific ML-based detectors, evasion attacks
(both realizable, and feature-space), datasets, and evaluation
metrics used in our experiments.

4.1 PDF Document Structure

The Portable Document Format (PDF) is an open standard
format used to present content and layout on different plat-
forms. A PDF file structure consists of four parts: header,
body, cross-reference table (CRT), and trailer. The header
contains information such as the magic number and format
version. The body is the most important element of a PDF
file, which comprises multiple PDF objects that constitute the
content of the file. These objects can be one of the eight basic
types: Boolean, Numeric, String, Null, Name, Array, Dictio-
nary, and Stream. They can be referenced from other objects
via indirect references. There are other types of objects, such
as JavaScript which contains executable JavaScript code. The
CRT indexes objects in the body, while the trailer points to
the CRT.

The relations between objects with cross-references can
be described as a directed graph that presents their logical
structure by using edges representing reference relations and
nodes representing different objects.As an object can be re-
ferred to by its child node, the resulting logical structure is a
directed cyclic graph. To eliminate the redundant references,
the logical structure can be reduced to a structural tree with
the breadth-first search procedure.

4.2 Target Classifiers

Several PDF malware classifiers have been proposed [8, 35,
36, 38]. For our study, we selected SL2013 [36], Hidost [38]
and two variants of PDFRate [35] (termed PDFRate-R and
PDFRate-B respectively), displayed in Table 1. SL2013 and
its revised version, Hidost, are structure-based PDF classi-
fiers, which use the logical structure of a PDF document to
construct and extract features used in detecting malicious

| Classifier | Feature type | Number of features

SL2013 Binary 6,087

Hidost Binary 961
PDFRate-R | Real-valued 135
PDFRate-B Binary 135

Table 1: Target classifiers.

PDFs. PDFRate, on the other hand, is a content-based clas-
sifier, which constructs features based on medadata and con-
tent information in the PDF file to distinguish benign and
malicious instances. Evasion attacks on both SL.2013 and
PDFRate classifiers, particularly of the realizable kind, have
been developed in recent literature [36-38,44], providing a
natural evaluation framework for our purposes.

4.2.1 Structure-Based Classifiers

SL2013: SL2013 is a well-documented and open-source ma-
chine learning system using Support Vector Machines (SVM)
with a radial basis function (RBF) kernel, and was shown to
have state-of-the-art performance [36]. It employs structural
properties of PDF files to discriminate between malicious and
benign PDFs. Specifically, SL2013 uses the presence of par-
ticular structural paths as binary features to present PDF files
in feature space. A structural path of an object is a sequence
of edges in the reduced (tree) logical structure, starting from
the catalog dictionary and ending at this object. Therefore,
the structural path reveals the shortest reference path to an
object. SL2013 uses 6,087 most common structural paths
among 658,763 PDF files as a uniform set for classification.
Hidost: Hidost is an updated version of SL2013. It inherits all
the characteristics of SL2013 and employs structual path con-
solidation (SPC), a technique to consolidate features which
have the same or similar semantic meaning in a PDF. As the
semantically equivalent structural paths are merged, Hidost
reduces polymorphic paths and still preserves the semantics
of logical structure, so as to improve evasion-robustness of
SL2013 [38].

In our work, we employ the 961 features identified in the
latest version of Hidost.

4.2.2 PDFRate: A Content-Based Classifier

The original PDFRate classifier uses a random forest algo-
rithm, and employs PDF metadata and content features. The
metadata features include the size of a file, author name, and
creation date, while content-based features include position
and counts of specific keywords. All features were manually
defined by Smutz and Stavrou [35].

PDFRate uses a total of 202 features, but only 135 of these
are publicly documented [34]. Consequently, in our work we
employ the Mimicus implementation of PDFRate which was
shown to be a close approximation [37]. Mimicus trained a
surrogate SVM classifier with the documented 135 features

and the same dataset as PDFRate, using both the SVM and
random forest classifiers, both performing comparably. We
use the SVM implementation in our experiments to enable
more direct comparisons with the structure-based classifiers
that also use SVM. An important aspect of Mimicus is fea-
ture standardization on extracted data points performed by
subtracting the mean of the feature value and dividing by
standard deviation, transforming all features to be real-valued
and zero-mean (henceforth, PDFRate-R). This surrogate was
shown to have ~ 99% accuracy on the test data [35]. In addi-
tion, we construct a binarized variant of PDFRate (henceforth,
PDFRate-B), where each feature is transformed into a binary
feature by assigning 0 whenever the feature value is 0, and
assigning 1 whenever the feature value is non-zero.

4.3 Realizable Evasion Attacks
4.3.1 EvadeML

The primary realizable attack in our study is EvadeML [44],
which allows insertion, deletion, and swapping of objects, and
is consequently a stronger attack than most other realizable at-
tacks in the literature, which typically only allow insertion to
ensure that malicious functionality is preserved. EvadeML as-
sumes that the adversary has black-box access to the classifier
and can only get classification scores of PDF files, and was
shown to effectively evade both SL.2013 and PDFRate [44].
It employs genetic programming (GP) to search the space of
possible PDF instances to find ones that evade the classifier
while maintaining malicious features. First, an initial popula-
tion is produced by randomly manipulating a malicious PDF
repeatedly. The manipulation is either a deletion, an insertion,
or a swap operation on PDF objects. After the population
is initialized, each variant is assessed by the Cuckoo sand-
box [17] and the target classifier to evaluate its fitness. The
sandbox is used to determine if a variant preserves malicious
behavior, such as API or network anomalies. The target classi-
fier provides a classification score for each variant. If a variant
is classified as benign but displays malicious behavior, or if
GP reaches the maximum number of generations, then GP
terminates with the variant achieving the best fitness score
and the corresponding mutation trace is stored in a pool for
future population initialization. Otherwise, a subset of the
population is selected for the next generation based on their
fitness evaluation. Afterward, the variants selected are ran-
domly manipulated to generate the next generation of the
population.

We use EvadeML as the primary realizable evasion model
for the first part of the paper. We set the GP parameters in
EvadeML as the same as in the experiments by Xu et al. [44].
The population size in each generation is 48. The maximum
number of generations is 20. The mutation rate for each PDF
object is 0.1. The mutation traces that lead to successful eva-
sion and promising variants are stored and applied in our

experiments. The fitness threshold of a classifier is 0. We use
the same external benign PDF files as Xu et al. [44] to provide
ingredients for insertion and swap operations.

4.3.2 The Mimicry Attack

Mimicry assumes that an attacker has full knowledge of the
features employed by a target classifier. The mimicry attack
then manipulates a malicious PDF file so that it mimics a
particular selected benign PDF as much as possible. The
implementation of Mimicry is simple and independent of any
particular classification model.

Our mimicry attack uses the Mimicus [37] implementation,
which was shown to successfully evade the PDFRate classi-
fier. To improve its evasion effectiveness, Mimicus chooses
30 different target benign PDF files for each attack file. It
then produces one instance in feature space for each target-
attack pair by merging the malicious features with the benign
ones. The feature space instance is then transformed into a
PDF file using a content injection approach. The resulting 30
files are evaluated by the target classifier, and only the PDF
with the best evasion result is selected, which was submit-
ted to WEPAWET [8] to verify malicious functionality. To
make Mimicry consistent with our framework, we employ
the Cuckoo sandbox [17] in place of WEPAWET (which was
in any case discontinued) to validate maliciousness of the
resulting PDF file.

In addition to the original version of Mimicry, we imple-
ment an enhanced variation, Mimicry+, with two modifica-
tions. First, Mimicry+ chooses the 30 most benign PDF files
predicted by the target classifier as target files (instead of
randomly selecting those, as in Mimicry). Second, for each
attack file, all the resulting 30 files are evaluated by the sand-
box and only those verified to have malicious functionality
are selected to evade the target classifier.

4.3.3 MalGAN

MalGAN [19] is a Generative Adversarial Network [14]
framework to generate malware examples which can evade a
black-box malware detector with binary features. It assumes
that an attacker knows the features, but has only black-box
access to the detector decisions. MalGAN comprises three
main components: a generator which transforms malware to
its adversarial version, a black-box detector which returns
detection results, and a substitute detector which is used to
fit the black-box detector and train the generator. The genera-
tor and substitute detector are feed-forward neural networks
which work together to evade the black-box detector. The
results of [19] show that MalGAN is able to decrease the
True Positive Rate on the generated examples from > 90% to
0%. We note that strictly speaking, MalGAN variants are not
implemented as actual PDF files; however, we still treat it as
a realizable attack since it only adds features to a malicious

| Entry [Hexadecimal Representation

/Action [#41#63#74#694#06f#6e
[Filter [HAGHOOHOCHTAHOSHT2
/Length [HACHOSHOSHOTHTAHO8
/JavaScript | /#4a#61#76#6 1#53#063#T2#69#70#74
/IS [#4a#53
/S #53
/Type [#54#T9#TO#65

Table 2: Transformation of entry names in the custom attack.

file, which can be implemented (at least in structure-based
detection) by adding the associated objects into the PDF file.

4.3.4 Reverse Mimicry

The Reverse Mimicry attack assumes that an attacker has
zero knowledge of the target classifier. The basic idea is to
inject malicious payloads into target benign files to mini-
mize the structural difference between the resulting examples
and targets. Our Reverse Mimicry attack employs the adver-
sarial examples provided by Maiorca et al. [26] which was
shown to successfully evade PDF classifiers based on struc-
tural analysis. Specifically, we use the 500 PDF files produced
by injecting a malicious JavaScript code that does not con-
tain references to other objects to target benign PDF files.
We selected the 376 files out of 500 that display malicious
behaviors detected by the Cuckoo sandbox.

4.3.5 The Custom Attack

We implemented a custom attack which exploits a feature
extraction vulnerability in the Mimicus implementation of
PDFRate. Normally, the characters used in the Name objects
of a PDF file are limited to a specific set. Since PDF speci-
fication version 1.2, a lexical convention has been added to
represent a character with its hexadecimal ANSI-code, e.g.,
#xx. Such a modification enables us to create an arbitrary
string in the form of #xx#xx#xx. In our implementation, we
replaced a set of entries in the attack PDF files with their
hexadecimal representations (see Table 2). These features
were selected with the goal to obfuscate tags crucial to the
code execution in PDF, which are frequently used for feature
extraction. With this technique, the scanner would not be able
to detect malicious code without dynamically reconstructing
the PDF structure. While it is theoretically possible to replace
all the ASCII text inside the document, we chose not to do
that due to the concern on the expansion of file size.

4.4 Feature-Space Evasion Model

In typical realizable attacks, including EvadeML, a consider-
ation is not merely to move to the benign side of the classifier
decision boundary, but to appear as benign as possible. This

naturally translates into the following multi-objective opti-
mization in feature space:

minixmize 0(x) = f(x) + Ac(xp,x),)

where f(x) is the score of a feature vector x, with the actual
classifier (such as SVM) g(x) = sgn(f(x)), x» the malicious
seed, x an evasion instance, ¢(xp,x) the cost of transforming
xp into x, and A a parameter which determines the feature
transformation cost. We use [, norm distance between x;, and
x as the cost function: ¢(xy7,x) = ¥; |x; — xpr,;|*. Since in most
of our experiments features are binary, the choice of /; norm
(as opposed to another /, norm) is not critical.

As the optimization problem in Equation (2) is non-convex
and variables are binary in three of the four cases we consider,
we use a stochastic local search method designed for com-
binatorial search domains, Coordinate Greedy (alternatively
known as iterative improvement), to compute a local optimum
(the binary nature of the features is why we eschew gradient-
based approaches) [18,23]. In this method, we optimize one
randomly chosen coordinate of the feature vector at a time,
until a local optimum is reached. To improve the quality of
the resulting solution, we repeat this process from several
random starting points. This approach has been shown to be
extremely effective for computing evasion instances in binary
domains [23].

4.5 Datasets

The dataset we use is from the Contagio Archive.” We use
5,586 malicious and 4,476 benign PDF files for training, and
another 5,276 malicious and 4,459 benign files as the non-
adversarial test dataset. The training and test datasets also
contain 500 seeds selected by Xu et al. [44], with 400 in
the training data and 100 in the test dataset. These seeds are
filtered from 10,980 PDF malware samples and are suitable
for evaluation since they are detected with reliable malware
signatures by the Cuckoo sandbox [17]. We randomly select
40 seeds from the training data as the retraining seeds and use
the 100 seeds in the test data as the test seeds.

4.6 Implementation of Iterative Adversarial
Retraining

We made a small modification to the general iterative retrain-
ing approach described in Section 3 when it uses EvadeML
as the realizable attack O(h; D). Specifically, we used only 40
malicious seeds to EvadeML to generate evasions, to reduce
running time and make the experiment more consistent with
realistic settings where a large proportion of malicious data is
not adapting to the classifier. As shown below, this set of 40
instances was sufficient to generate a model robust to evasions
from held out 100 malicious seed PDFs.

2 Available at the following URL: http://contagiodump.blogspot.
com/2013/03/16800-clean-and-11960-malicious-files.html.

We distribute both retraining and adversarial test tasks on
two servers (Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz,
18 cores and 64 GB memory, running Ubuntu 16.04). For
retraining using EvadeML as the attack, we assign each server
20 seeds; each seed is processed by EvadeML to produce the
adversarial evasion instances. We then add the 40 examples
obtained to the training data, retrain the classifier, and then
split the seeds between the two servers in the next iteration.
In the evaluation phase, we assign each server 50 seeds from
the 100 test instances, and each seed is further used to evade
the classifier by using EvadeML.

4.7 Evaluation Metrics

We evaluate performance in two ways: 1) evaluation of eva-
sion robustness (which is central to our specific inquiry), and
2) traditional evaluation. To evaluate robustness, we compute
the proportion of 100 malicious test seed PDFs for which
EvadeML successfully evades the classifier; this is our metric
of evasion robustness, evaluated with respect to EvadeML.
Thus, evasion robustness of 0% means that the classifier is suc-
cessfully evaded in every instance, while evasion robustness
of 100% means that evasion fails every time. Our traditional
evaluation metric uses test data of malicious and benign PDFs,
where no evasions are attempted. On this data, we compute
the ROC (receiver operating characteristic) curve and the
corresponding AUC (area under the curve).

5 Efficacy of Feature-Space Attack Models

We now undertake our first task: evaluation of the effective-
ness of robust ML obtained by using the abstract feature-
space models of attack. We compare to a baseline classifier
obtained by retraining with the most potent attack on our
menu, EvadeML (which, in addition to inserting content, as
done by other attacks [19,26,37], also allows the attacker to
delete and swap PDF objects). We can think of our baseline as
assuming that the defender knows that EvadeML is employed
by the attacker, along with its hyperparameters. Throught this
and next section, we also use EvadeML to evaluate the effec-
tiveness of classifiers hardened using a feature-space model,
in comparison with the above baseline.

5.1 Structure-Based PDF Malware Classifica-
tion

Our first case study uses a state-of-the-art PDF malware classi-
fier which engineers features based on PDF structure. Indeed,
we evaluate two versions of this classifier: an earlier version,
which we call SL2013, and a more recent version, which we
call Hidost. The experiments by Xu et al. [44] demonstrate
that SL2013 can be successfully evaded. Since Hidost was a
recent redesign attempting in part to address its vulnerability
to mimicry attacks by significantly reducing the feature space,

@ 0 1.0f=——=

8 1.0 ©

] x (0.8

Bos °

200 Sos

o ‘@ —— Original (AUC = 0.9999)
504 £0.4 RAR (AUC = 0.9999)

@) —— FSR-A; (AUC = 0.9994)
g 02 E 021 "1 repor, (AUC = 0.9947)
wo.0 0.0,

0 0.005 0.01 0.015 0.02
False Positive Rate

riginal RAR FSR-A; FSR-A;
Classifier

Figure 1: Evasion robustness under EvadeML test (left) and
performance on non-adversarial data (right) of different clas-
sifiers for SL2013.

no data exists on its vulnerability to evasion attacks. Below we
demonstrate that Hidost is also vulnerable to evasion attacks
(indeed, more so than SL.2013).

From the perspective of defense, we show that it is possible
to harden both SL2013 and Hidost against a powerful real-
izable EvadeML attack by simply retraining with this attack
(RAR, for realizable-attack retraining, henceforth refers to a
model hardened using EvadeML). This serves as a baseline
we use to evaluate the efficacy of a retraining defense with
a feature-space attack model (henceforth, FSR for feature-
space retraining). We then show that for both SL.2013 and
Hidost, FSR significantly underperforms RAR.

In our experiments, we empirically set the RBF param-
eters for training both SL2013 and Hidost to C = 12 and
v =0.0025.

5.1.1 SL2013

Retraining with a Powerful Realizable Attack First, we
replicated the EvadeML attack on the original SL.2013; the
classifier achieves only a 16% evasion robustness.”’ Next, to
create a baseline, we conduct experiments in which EvadeML
is employed to retrain SL2013. The process terminated after
10 iterations at which point no evasive variants of the 40
retraining seeds could be generated. We observe (Figure |
(left)) that the retrained classifier (RAR) obtained by this
approach achieves a 96% evasion robustness. Moreover, RAR
is essentially as accurate as the baseline SL.2013 on non-
adversarial data (Figure | (right)). Thus, it is clearly possible
to be highly robust to this evasion attack without significantly
compromising effectiveness on data not featuring explicit
evasion attacks.

Figure 2 (left) shows the gradual improvement of evasion
robustness over the 10 retraining iterations. This plot demon-
strates non-trivial effectiveness of EvadeML.: the first few
iterations are clearly insufficient, as re-running EvadeML cre-
ates many new evasions that cannot be correctly detected by

3This result differs from the experiments in [44] which show a 0% evasion
robustness. We found a flaw in the implementation of feature extraction in
EvadeML which causes evaluation to be performed using the wrong feature
vectors. This bug has been fixed in the GitHub version of EvadeML.

9 0 1.00
Q1.0]

S S
B0.8 3 0.981X
Q Q
206 20.96
€04 c

o o
202 £0.94
> >
HO0E =02 6 8 10 w0925 15 15 20

RAR iterations

Attack generations

Figure 2: Evasion robustness with retraining iterations (left)
and generations of the EvadeML attack test (right).

the classifier. Only after 6 iterations does EvadeML optimiza-
tion loop begin to show significant signs of failing. Figure 2
(right) shows how increasing the number of generations in
EvadeML attacks affects robustness of the RAR classifier. At
this point, we can see that increasing the capability of the
attack has minimal impact.

Feature-Space Retraining Next, we experimentally evalu-
ate the effectiveness of retraining with a feature-space model
of evasion attacks in obtaining robust ML in the face of the
EvadeML realizable attack. We consider the setting with
A =0.05 and A = 0.005 in Equation 2 (henceforth, FSR-A;
and FSR-L,).

The robustness results are shown in Figure | (left). Com-
pared to the SL.2013 baseline, feature-space retraining (FSR)
boosts evasion robustness from 16% to 62%. Crucially, the
robustness of the resulting classifier is far below the classifier
achieved by RAR. This illustrates that defense that relies on
feature-space models of adversarial examples may not in fact
lead to robustness when it is faced with a real attack.

We again consider performance of FSR classifier on non-
adversarial test data (Figure 1 (right)). We can see that ro-
bustness boosting again does not much degrade performance,
with AUC remaining above 99%. However, we do see a sub-
stantial degradation as we move from A = 0.05 to 0.005; thus,
as we increase adversarial power in the feature-space model,
while we do obtain a slightly more robust model, we incur a
nontrivial hit in performance on non-adversarial data.

5.1.2 Hidost

We now repeat our experiments above with another structure-
based classifier, Hidost. We set the retraining parameter A =
0.005, which appears to strike a reasonable balance between
robustness and accuracy on non-adversarial data. As before,
we first evaluated the robustness of the original Hidost [38] by
EvadeML. The result shows a 2% robustness—remarkably,
significantly worse than SL.2013.

Evasion robustness of Hidost, as well as improvements
achieved by RAR and FSR, are shown in Figure 3 (left), and
the results are consistent with our observations for SL2013.
First, by retraining with the realizable attack, evasion robust-

wn
0 o 1.0
8 1.0 0.98 E 08
-~ .
508 0.70 Q 0.6
Q =
206 2
g 04 8 0.4y Original (area = 0.9997)
$os S0z fm oo
o 0.02 £ 0.0 area = 0.
200l
00Griginal RAR FSR %6 0.005 0.01 0.015 0.02

Classifier False Positive Rate

Figure 3: Evasion robustness under EvadeML test (left) and
performance on non-adversarial data (right) of different clas-
sifiers for Hidost.

ness is boosted to 98%, a rather dramatic improvement, and
clear demonstration that successful defense is possible. In
contrast, FSR achieves a 70% evasion robustness, a signifi-
cant boost over the original Hidost, to be sure, but far below
the evasion robustness of RAR.

Evaluating these classifiers on non-adversarial test data in
terms of ROC curves (Figure 3 (right)), we can observe that
RAR achieves comparable accuracy (> 99.9% AUC) with
the original Hidost classifier on non-adversarial data, and
provides even better True Positive Rate (TPR) when False
Positive Rate (FPR) is close to zero. On the other hand, FSR
achieves > 99% AUC, but yields a significant degradation of
TPR when FPR< 0.01.

5.2 Content-Based PDF Malware Classifica-
tion

Our next case study concerns another two PDF malware classi-
fiers which use features based on PDF file content, rather than
logical structure. We trained both real-valued and binarized
PDFRate (henceforth, PDFRate-R and PDFRate-B) on the
same dataset as SL.2013 and Hidost, and achieved > 99.9%
AUC for both classifiers on test data. In our experiments,
we empirically set the SVM RBF parameters for training to
C =10 and y= 0.01. In our evaluation of ML robustness, we
again set the feature-space model parameter A to be 0.005.

5.2.1 PDFRate with Real-Valued Features

We begin with the variant of PDFRate—PDFRate-R—which
has been constructed in previous evaluations and shown com-
parable in performance to the original implementation [37].
We again begin by replicating the EvadeML evasion robust-
ness evaluation of the baseline classifier. As expected, we find
the classifier quite vulnerable, with only 2% evasion robust-
ness.

Next, we retrain PDFRate-R with EvadeML for 10 itera-
tions (RAR baseline), and perform feature-space retraining
using the conventional feature space model above. Our re-
sults are shown in Figure 4 (left). Observe that while RAR

wn
10 0.96 1.00 2 1.0
s x 0.8
408 [}
So06 206
c? G
504 & 0.41 _ original (AUC = 0.9998)
g 02 g 0.2 ;RSARR (:UC_= 1.0000)
g 0.02 E o= (AUC = 0.9895)
w
00Griginal RAR FSR %0 0.005 0.01 0.015 0.02
Classifier False Positive Rate

Figure 4: Evasion robustness under EvadeML test (left) and
performance on non-adversarial data (right) of different clas-
sifiers for PDFRate-R.

a 01.0
§ 10l 100 1.00 2
b= < 0.8
g0.8 Q
-§0.6 :% 0.6
S04 £04
£os e T
o 2 " — Fsrauc = 0.0088)
wo.0 0.0
" Original FSR 0 0.005 0.01 0.015 0.02

Classifier False Positive Rate

Figure 5: Evasion robustness under EvadeML test (left) and
performance on non-adversarial data (right) of different clas-
sifiers for PDFRate-B.

indeed achieves a highly robust classifier (96% robustness),
FSR actually performs even better, with 100% robustness.

Comparing RAR and FSR performance on non-adversarial
data (Figure 4 (right)), we observe that the high robustness
of FSR does incur a cost: while RAR remains exception-
ally effective (>99.99% AUC), FSR achieves AUC slightly
lower than 99%, although most significantly, the degradation
is rather pronounced for low FPR regions (below 0.015).

5.2.2 PDFRate with Binarized Features

One of our great surprises is the robustness of the binarized
PDFRate: despite the fact that the real-valued PDFRate is
quite vulnerable, the same classifier using binary features was
100% robust to EvadeML (Figure 5 (left)). Consequently, this
will serve as our robust baseline (equivalently, RAR would ter-
minate with no iterations). Feature-space retrained PDFRate-
B also exhibits 100% evasion robustness, although it does
require a number of iterations to converge.

Considering now the performance of PDFRate-B and FSR
on non-adversarial test data (Figure 5 (right)), we can make
two interesting observations. First, the baseline PDFRate-B is
remarkably good even on this data; in a sense, it appears to hit
the sweet spot of adversarial robustness and non-adversarial
performance. Second, FSR retrained classifier is competitive
in terms of AUC (~ 99.9%), but is observably worse than the
baseline classifier for very low false positive rates.

6 Evasion-Robust Classification with Con-
served Features

Thus far, we had observed that ML hardened with the stan-
dard mathematically convenient feature-space evasion attack
model may in some cases not yield satisfactory robustness
against real attacks. The key issue is that feature-space models
are entirely disembodied from the domain. This is crucial to
enable us to have mathematical formulations of attacks, but
clearly has limitations. The key question is whether we can
devise a simple way of anchoring feature-space attacks in the
application domain to allow us to meaningfully and minimally
constrain abstract attacks to reflect some of the constraints
that real attacks face. Next, we propose a refinement of the
feature-space model that aims to do just that.

Specifically, we introduce the idea of conserved features,
which we define to be features, the unilateral modification
of which compromises malicious functionality. We develop
this idea specifically for binary features, as this notion is
particularly crisp in such a case (e.g., such features tend to
correspond to the existence of particular objects in PDF).

Next, we present three major findings. First, conserved fea-
tures do exist in all three of our classifiers over the binary
feature space, and can be effectively identified (see our al-
gorithm for identifying conserved features in Appendix A).
Second, conserved features cannot be recovered using statisti-
cal feature reduction (in our case, sparse regularization), and
feature reduction methods do not lead to robust classifiers.
The reason is that conservation is connected to the relationship
between features and malicious functionality, rather than sta-
tistical properties of non-evasion data; for example, features
which are strongly correlated with malicious behavior are
often a consequence of attacker “laziness” (such as whether a
PDF file has an author), and are easy for attackers to change.
Third, we demonstrate that the limitations of feature-space
robust ML can be substantially alleviated by incorporating
conserved features as attack invariants in the feature-space
evasion model.

To develop intuition about the nature of conserved features,
consider SL2013, which employs structural paths as features
to discriminate between malicious and benign PDFs. On the
one hand, the structural paths like /Type are unessential to
preserve malicious behaviors, and we do not expect them
to be conserved. On the other hand, as the shellcode which
triggers malicious functionality is embedded in certain PDF
objects, those corresponding structural paths are likely to be
conserved in each variant crafted from the same malicious
seed (e.g., /OpenAction/JS). In addition, structural paths
that facilitate embedded script in PDF files also can be con-
served features as removing them can break the script (e.g.,
/Names and /Pages). This further illustrates that conserved
features are not necessarily optimal for statistically distin-
guishing benign and malicious instances (indeed, these may
be common to both); rather, they serve to anchor the feature-

wn
s 0.96 1.00 R R —
21.0 g 08
Bos o ——]
So6 £06
e 0
c04 204 RAR (AUC = 0.9999)
'§ 0.2 L2 g 029 (L:ize(zl:rij:(? f?:;so)
> = e
uwo.0 n 0.0

RAR CF Linear 0 0.005 0.01 0.015 0.02

Classifier False Positive Rate

Figure 6: Classifying with conserved features: comparing
evasion robustness (left) and ROC curves (right).

space attack model in the domain by connecting features to
malicious functionality.

6.1 Classifying Using Only Conserved Fea-
tures

We begin by exploring the effectiveness of using only con-
served features for classification. We identified 8 conserved
features for SL2013 (out of ~6000), 7 for Hidost (out of
~1000), and 4 for PDFRate-B (out of 135); these are detailed
in Table 3 of the appendix, while our algorithm for identifying
conserved features is presented in Appendix A.

We start by considering four natural questions pertaining to
conserved features: 1) are they sufficient to make a classifier
robust to evasions, 2) do they effectively discriminate between
benign and malicious instances, 3) can they be identified using
standard statistical methods (such as sparse regularization),
and 4) are they just detecting the presence of JavaScript in
PDF?

We explore these for SL2013. Specifically, we trained a
classifier using only the 8 conserved features (CF henceforth).
As we can see in Figure 6 (left), this classifier is 100% robust
to EvadeML attacks, appearing to resolve the first question.
However, we emphasize that conserved features alone need
not capture the full spectrum of adversarial behavior and con-
straints. Indeed, in Section 7 we show that classifiers based
solely on conserved features can also be evaded, particularly
if attacks are specifically designed to evade them. Rather, as
we show presently, they provide a sufficient anchoring in the
problem domain for feature-space attack models to succeed.

To address question (2), consider Figure 6 (right): clearly,
if we desire a low false positive rate, using only conserved
features for classification yields subpar performance on non-
adversarial data. To address the third question, we learn a lin-
ear SVM classifier for SL2013 with /; regularization (hence-
forth, Linear) where we empirically adjust the SVM parameter
C to perform feature reduction until the number of the fea-
tures is also 8; we find that only 3 of these are conserved
features (see Appendix A.6 for a more detailed analysis of the
relationship between statistically useful and conserved fea-
tures). As we can see in Figure 6 (left), this classifier exhibits
poor robustness; thus, statistical methods are insufficient to

10

identify good conserved features.

To address the fourth question, we create a classifier using
only one boolean feature which identifies the presence of
JavaScript in a PDF file (henceforth, we refer to this feature
as JS). We find that this classifier is also robust to EvadeML.
On non-adversarial data, JS achieves FPR of 0.04 and FNR
of 0.14 (in other words, 4% of the benign files in the non-
adversarial dataset use JavaScript, while 14% of malicious
instances use alternative attacks to Javascript).* To create
an apples-to-apples comparison with the CF classifier, we
empirically adjust the classification threshold of CF until we
get the same FPR with JS. The resulting CF classifier exhibits
FNR of 0.11, considerably better than JS. Nevertheless, it is
clear that using either CF (only conserved features), or only JS,
is impractical, since both FNR and FPR of these are quite high.
Moreover, as we show in Section 7, classifiers based only on
conserved features can be defeated by other realizable attacks.
Next, we show that identification of conserved features is
nevertheless crucial in creating highly effective feature-space
attack models.

6.2 Feature-Space Model with Conserved Fea-
tures

As discussed above, the feature-space evasion model in Equa-
tion (2) may not sufficiently boost ML robustness. Since con-
served features allow us to minimally tie the abstract feature-
space representation to malicious functionality, we offer a
natural modification of the model in Equation (2), imposing
the constraint that conserved features cannot be modified by
the attacker. We formally capture this in the new optimiza-
tion problem in Equation (3), where S is the set of conserved
features:

minimize Q(x) = f(x) + Ac(xm,x),
* 3)

subjectto x; =xp;, Vi €S.

Other than this modification, we use the same Coordinate
Greedy algorithm with random restarts as before to compute
adversarial examples. We adopt the evasion model in Equation
(3) to retrain the target classifier using the retraining proce-
dure from Section 4. We denote the classifier obtained by the
retraining procedure using a feature-space model grounded by
conserved features by CFR. We also study the effectiveness
of our automated procedure for identifying conserved features
as compared to using a subset that only considers Javascript
features (we can think of these as expert-identified conserved
features, as this is what an expert would naturally consider).
To this end, we repeat the procedure above by replacing the
conserved feature set S in Eq. 3 with a subset that involves
Javascript. The classifier resulting from such restricted adver-

4We observe similar results for 5,000 benign PDFs obtained by using
Google web searches [37], where 3% of benign files use Javacript.

] 01.0
810 - I—”
S < 0.8
$0.8 o
So06 £0.6
o 0 —— Original (AUC = 0.9999)
£04 £04 RAR (AUC = 0.9999)
@0.2 g 0.1 EE;}:L(JEUZ ll909?;)97)
> = e
wo.0 0.0

“Original RAR CFR CFR-JS "0 0.005 0.01 0.015 0.02

Classifier False Positive Rate

Figure 7: Evasion robustness (left) and performance on non-
adversarial data (right) of different variants of SL2013.

sarial retraining with “expert”-identified conserved features
is termed CFR-JS.

6.2.1 SL2013

We now evaluate the robustness and effectiveness of the fea-
ture space retraining approach, which uses conserved features.
We set the parameter A = 0.005 as before. The robustness
results are presented in Figure 7 (left). Observe that CFR
now significantly improves robustness of the original classi-
fier, with evasion robustness rising from 16% to 87%. More-
over, CFR-JS achieves a 100% evasion robustness against
EvadeML. These results demonstrate that by leveraging the
conserved features, the feature-space evasion models are now
quite effective as a means to boost evasion robustness of
SL2013.

In Figure 7 (right) we evaluate the quality of these clas-
sifiers on non-adversarial test data in terms of ROC curves.
In all cases, be it original, RAR, CFR, and CFR-JS, AUC is
> 99.9%, although we can see a slight degradation of CFR
for extremely low false positive rates compared to the others.
It is noteworthy that CFR performs much better than FSR
(robust ML using a standard feature-space approach, recall
Figure 1 (right)).

6.2.2 Hidost

Next, we evaluate the effectiveness of CFR for Hidost. The
results are shown in Figure 8 (left) and are largely consistent
with SL2013. In particular, CFR boosts evasion robustness
from 2% to 100% (slightly better than RAR), well above
conventional FSR (recall Figure 3 (left)). In contrast, CFR-JS
only boosts robustness to 53%, showing that our algorithmic
approach can in some cases offer a considerable advantage to
expert-chosen conserved features.

Evaluating the performance of CFR and CFR-JS on non-
adversarial test data in terms of ROC curves in Figure 8 (right),
we find that the CFR classifier can achieve ~ 99.8% AUC.
This is somewhat worse than RAR, particularly for very low
false positive rates, but better than CFR-JS—again, in this
case using the full batch of conserved features exhibits a
significant advantage over solely looking for Javascript.

11

@ @ 1.0f—

g10 5

5 x (0.8

‘:'; 0.8 o

o6 506

o) —— Original (AUC = 0.9997)

S04 £04 RAR (AUC = 0.9997)

g 0.2 g 0217 CFR (AUC = 0.9982)

2™ 0.02 g —— CFRJS (AUC = 0.9965)

w 1

0%riginal RAR CFR CFRJS 0-00"0.605 0.01 0.615 0.02

Classifier False Positive Rate

Figure 8: Evasion robustness (left) and performance on non-
adversarial data (right) of different variants of Hidost.

wn
0 1.00 01l.0
010 5 |
5 0.8
£0.8 Q
Sos6 506
S04 &£ 0.41 — original (AUC = 1.0000)
LE 2 0.2] T e taUc = 010687
> = 0.0 -JS (=0.)
w
00Griginal CFR CFRS %0 0.005 0.01 0.015 0.02

Classifier False Positive Rate

Figure 9: Evasion robustness (left) and performance on non-
adversarial data (right) of different variants of PDFRate-B.

6.2.3 Binarized PDFRate

Finally, we evaluate the effectiveness of the CFR variants
of PDFRate-B. We observe that both the CFR and CFR-JS
classifiers in the PDFRate-B family achieve 100% evasion
robustness against EvadeML (Figure 9 (left)), just as the RAR
and FSR counterparts had.

However, a close look at Figure 9 (right) demonstrates
that CFR and CFR-JS achieve far better performance on non-
adversarial data, with >99.9% AUC, where improvements are
particularly significant for small false positive rates compared
to FSR (recall Figure 5 (right)). Moreover, in this experi-
ment, CFR achieves slightly higher TPR than CFR-JS for
low FPR regions (below 0.003). The main takeaway here
is that although the feature-space approach already yields
high robustness in this setting, introducing conserved fea-
tures significantly mitigates its degradation in performance
on non-adversarial data.

7 Additional Realizable Evasion Attacks

So far we used EvadeML as the primary realizable attack
in our experiments. This choice is defensible, as EvadeML
explores a significantly larger attack space than many other
evasion methods (e.g., Mimicry [37]), allowing deletions and
swaps, in addition to insertions. Nevertheless, it is natural to
wonder whether classifiers robust to EvadeML remain robust
to other classes of evasion attacks. A particularly intriguing
question is how the classifiers hardened against EvadeML fare
in comparison with classifiers hardened against feature-space
models, when faced with different realizable attacks.

wn wn

3 0.94 31.0

2 1.0 . 2L

508 0 0.8

So.6 S0.6

@ @

504 504

@02 0.2

> >

w w 1

007 RAR FSR 00"RAR FSR CFR CFRJS
Classifier Classifier

Figure 10: Robustness to Mimicry attack. Left: PDFRate-R
(note that our notion of CFR is not applicable here). Right:
PDFRate-B.

wn wn

wn w0

21.0 21.0

Gos Go.s

So.6 S06

< o

_5 0.4 _g 0.4

vo0.2 202

o 0.06 <

> >

w 1 w 1

007" RAR FSR 007RAR FSR CFR CFR-JS
Classifier Classifier

Figure 11: Robustness to Mimicry+ attack. Left: PDFRate-R
(note that our notion of CFR is not applicable here). Right:
PDFRate-B.

To answer these questions, we consider five additional real-
izable attacks: Mimicry [37], which was one of the first real-
izable attacks on PDF malware detectors, Mimicry+, an en-
hanced variant of Mimicry, MalGAN [19], which uses Gener-
ative Adversarial Networks (GANS) to create evasion attacks
(but only targets binary classifiers), Reverse Mimicry [26],
which inserts malicious payloads into target benign files, and
a new custom attack aimed at defeating PDFRate-B conserved
features. The Mimicry/Mimicy+ attacks are designed specifi-
cally for PDFRate, and cannot be usefully applied to SL2013
or Hidost, whereas the Reverse Mimicry attack and our cus-
tom attack require zero knowledge of target classifiers.

7.1 Mimicry and Mimicry+ Attacks

We start by considering the Mimicry and Mimicry+ attacks
for both real-valued and binarized variants of PDFRate, with
the same 100 malicious seeds employed in Section 5 and 6 as
attack files.

The results are shown in Figures 10 and 11, and offer
two noteworthy findings. First, as can be seen in Figure
11, RAR classifiers (hardened specifically against EvadeML,
recall that the original PDFRate-B classifier is equivalent
to RAR) can be quite vulnerable to the Mimicry+ attack,
whereas both FSR and CFR classifiers remain robust. Second,
Mimicry+ is indeed a much stronger attack than Mimicry: the
original Mimicry fails to significantly degrade RAR perfor-
mance, whereas Mimicry+ largely evades the RAR variant of
PDFRate-R, and is somewhat more potent against PDFRate-B

12

1.00 1.00 1.00 1.00

Evasion Robustness

© 00 0 0 R

Evasion Robustness

o O O © O ¥

0.00
RAR

© N » O ® O
o N »d o »® o

CFR
Classifier

CFR-JS CFR

Classifier

CFR-JS

Evasion Robustness

© 0 0 o o m
o N B o @ O

“RAR

FSR
Classifier

CFR CFR-JS

Figure 12: Robustness to MalGAN attack. SL2013 (top left),
Hidost (top right), PDFRate-B (bottom).

than Mimicry. This demonstrates that besides its mathemati-
cal elegance, the abstract feature-space evasion models, once
appropriately anchored to the domain, are rather generally
robust to evasion attacks.

7.2 MalGAN Attack

Next, we consider the MalGAN attack on the three classifiers
over binary feature space we have previously studied: SL.2013,
Hidost, and PDFRate-B, with RAR and FSR/CFR versions
that have been shown robust to EvadeML.

The results, shown in Figure 12, demonstrate that despite
EvadeML being a powerful attack, the RAR approaches which
use it for hardening (with resulting classifiers no longer very
vulnerable to EvadeML) are highly vulnerable to MalGAN,
with evasion robustness of 0% in most cases. In contrast, CFR
models which use conserved features remain highly robust
(100% in all cases), just as we had observed earlier.

7.3 Reverse Mimicry Attack

Next, we employ the Reverse Mimicry attack on the EvadeML-
robust variants of all the classifier types (SL2013, Hidost,
PDFRate-R, and PDFRate-B).

Figure 13 presents the results, which are revealing in sev-
eral ways. First, we again observe that RAR (hardened specif-
ically against EvadeML) is roundly defeated in most cases.
Second, consider the robustness results for the classifier us-
ing only the conserved features (CF), we can see that re-
verse mimicry succeeds in defeating conserved features for
a non-trivial proportion of instances. It does so by including
Javascript tags in structural paths that are not used as features
by SL2013/Hidost (since these classifiers only consider com-
monly occurring sets of structural paths). Thus, this attack
reveals an important vulnerability in the feature extraction

@ a

1.0 0.89 1.0 097 0.3

s : o077 082 b= 0.79

20.8 . 20.8 :

2 2

n°: 0.6 g 0.6

_5 041 ¢ _s 0.41 g

vo0.2 wo.2

'3 0.0 '-'>-' 0.0°

RAR CFR CFRJS CF RAR CFR CFRJS CF

Classifier Classifier

@ 1.00 @ 1.00 1.00 1.00

210 . 01.0{097 038 b o o

= S

208 vo0.8

Q Q

2 0.6 g 0.6

S 0.4 0.32 g 0.4

go.2 0.2

> >

wo.0 w 0.0

RAR FSR RAR FSR CFR CFR-JS CF

Classifier Classifier

Figure 13: Robustness to Reverse Mimicry attack. SL2013
(top left), Hidost (top right), PDFRate-R (bottom left),
PDFRate-B (bottom right). Note that our notions of CFR
and CF for PDFRate-R is not applicable here.

wn w

n 1. n 1. 1. 1.

810 00 810 00 1.00 98 1.00

Gos Gos

3V 3V

Q Q

n°: 0.6 g 0.6

g 0.4 0.30 g 0.4

§ 0.2 § 0.2 000
007 RAR FSR 00°RAR FSR CFR CFR-JS CF

Classifier Classifier

Figure 14: Robustness to the custom attack. Left: PDFRate-R
(note that our notions of CFR and CF are not applicable here).
Right: PDFRate-B.

approach employed by these classifiers; indeed, it suggests
that structure-based classifiers may be inherently difficult to
harden. Remarkably, CFR remains more robust than CF de-
spite these vulnerabilities. The case of Hidost is particularly
stark: CFR is nearly 20% more robust than CF!

7.4 The Custom Attack

Our final attack specifically targets a feature extraction bug in
the Mimicus implementation of PDFRate in order to defeat
the corresponding CF classifier.

The results are shown in Figure 14. We find that after this
attack, CF robustness is 0. We also observe that the robust-
ness of RAR classifier for PDFRate-R also drops, although
to 0.3 rather than 0. Significantly, the FSR classifiers for
both PDFRate-R and PDFRate-B remain 100% robust, and
the CFR variant of PDFRate-B has nearly perfect robustness
(0.98) against this attack. Our latter observation is particu-
larly remarkable: although the conserved features are roundly
defeated by this attack, the use of these as a part of a holis-

13

tic retraining approach yields a classifier that remains robust.
Thus, not only is it possible to construct a robust malware
classifier without unduly relying on conserved features, but
we can accomplish this through iterative retraining in feature
space.

8 Related Work

Below we briefly describe some of the related literature on ad-
versarial evasion or adversarial example attacks and defenses;
we refer readers to Vorobeychik and Kantarcioglu [40] for
a broader and more in-depth treatment of the subject of ML
attacks and defenses.

Evasion and Adversarial Example Attacks: An early real-
izable evasion attack on machine learning was devised by
Fogla et al. [11, 12], who developed an attack on anomaly-
based intrusion detection systems. Srndic and Laskov [37]
present a case study of an evasion attack on a state-of-the-
art PDF malware classifier, PDFRate. Xu et al. [44] propose
EvadeML, a fully realizable attack on PDF malware clas-
sifiers which generates evasion instances by using genetic
programming to modify PDF source directly, using a sandbox
to ensure that malicious functionality is preserved. Grosse
et al. [16] develop a method for generating evasion attacks
against a deep learning-based Android malware classifier, us-
ing a gradient-based approach which is also a form of iterative
improvement heuristics, but chooses the best coordinate to
improve in each iteration as evaluated by the gradient, rather
than random coordinate as in our case. Their approach likely
requires fewer steps than coordinate greedy, but since we
run coordinate greedy until convergence, this difference isn’t
important in our study. Moreover, we also optimize among
several local optima through random restarts, which is likely
to obtain better evasion solutions (Grosse et al. [16] stop as
soon as an evasion is found, rather than trying to identify the
most benign looking malware). This particular attack can be
viewed as realizable, even though it wasn’t implemented and
evaluated in actual malware, since the attack space is signifi-
cantly restricted to only add features that do not interfere with
others already present. Similarly, MalGAN, an evasion attack
based on generative adversarial networks developed by Hu
and Tan [19], only adds features from benign to malicious
malware, and we treat it as a realizable attack (since it’s not
difficult to implement).

In addition to classifier evasion methods which change
the actual malicious instances (or are relatively direct to im-
plement as such), a number of techniques have sprouted for
modeling adversarial examples in feature space [1-4,7,9, 15,
21,21-24,28,41,45]. Moreover, a series of efforts explore
evasion in the context of image classification by deep neural
networks [15, 20, 31, 33], although Gilmer et al. [13] ques-
tion the common threat models used in these works. Several
recent approaches attempt to generate adversarial examples
against computer vision systems in physical space, such as

adding stickers to a stop sign to cause misclassification, or
wearing printed glass frames to fool face recognition, and
are therefore somewhat analogous to our notion of realizable
attacks [10, 33].

Evasion-Robust Classification: Dalvi et al. [9] presented
the first approach for evasion-robust classification. A series of
approaches formulate robust classification as minimizing max-
imum loss (i.e., following a robust optimization paradigm),
where maximization is attributed to the evading attacker aim-
ing to maximize the learner’s loss through small feature-space
transformations [25, 32,39,42,46]. A number of alternative
methods for designing classifiers consider the interaction as a
non-zero-sum game [5,6,21-23]. Finally, a series of iterative
retraining procedures have been proposed, both for general
adversarial evasion [21,23], and specifically for deep learning
methods for vision [15,20,25] (note that Madry et al. [25] fall
into both robust optimization and retraining buckets, since
their approach is equivalent to retraining if stochastic gradient
descent simply continues by processing adversarial examples
as they are added). These diverse efforts share one common
property: attack models that they leverage use feature-space
manipulations, which are only a proxy for realizable attacks
on ML.

9 Discussion and Conclusion

We undertook an extensive exploration of the extent to which
robust ML that uses the conventional feature-space models
of evasion attacks remains robust to “real” attacks that can be
implemented in actual malware and preserve malicious func-
tionality (what we call realizable attacks). Our first intriguing
observation is that defense based on feature-space models
can fail to achieve satisfactory robustness. This in itself raises
some doubts about the nearly universal focus on such mod-
els as a means for ML defense, and suggests that practical
usefulness of such approaches cannot be taken for granted.
However, we also show that changing the nature of the feature
space can make a difference: robust ML with feature-space
models is quite robust in content-based detection (which uses
content, rather than structural paths, as features). Additionally,
we presented a refined version of the feature-space model that
makes use of conserved features (which we can identify auto-
matically, as shown in the Appendix), and showed that where
feature-space defense previously failed, it now succeeds. Our
final finding may well be the most intriguing: feature-space
approaches exhibit generalized robustness, in that the result-
ing robust ML (after appropriate refinement using conserved
features) exhibits robustness to multiple realizable attacks.
This contrasts with defense that is hardened using a specific
realizable attack—even one quite powerful on the surface
(EvadeML)—which can fail dramatically when faced with
a different attack. These findings demonstrate the power of
effective mathematical abstractions in security.

It is natural to wonder how our approach and results are

14

applied to other domains. In computer vision, the analog of
realizable malware attacks are physical attacks, whereby the
physical environment is modified, rather than the digital ob-
ject, such as an image. Here, the corresponding foundational
question is whether common robust ML methods based on
small-/,, attacks successfully protect against physical attacks.
The notion of conserved features can also be seen as more
generally applicable. For example, in a bag-of-words repre-
sentation for spam filtering, these could correspond to the
existence of URL or file attachments, and in SQL injection
attacks, these may refer to the existence of specific SQL com-
mands, such as Select.

The main limitation of our study is in the specific choices
we had to make to ensure that it is tractable. We chose a par-
ticular defensive paradigm—iterative retraining. As we have
argued, it is the only paradigm that can fit every case that we
investigate; for example, there is no other general approach
for learning a robust SVM with non-linear kernels. However,
it is possible that approaches based on robust optimization,
if they were developed, can improve performance by taking
advantage of the special structure of this problem. We imple-
mented a particular class of feature-space attacks, using [,
norm to measure the attacker’s cost of feature manipulations,
and stochastic local search to compute evasions. It is possible
that better attack algorithms for generating attacks over binary
domains will be developed, and, indeed, some alternatives ex-
ist. However, prior work suggests that this approach yields
attacks that are close to optimal [23], with the use of random
restarts playing a crucial role. Finally, our study was specific
to PDF malware detection. However, our framework is quite
general, and could be used in the future to consider other simi-
lar questions, such as the effectiveness of robust deep learning
against physical attacks. Several additional limitations offer
further opportunities for future work. One example is the fact
that we only define conserved features when these are binary;
it may be that finding meaningful conserved features in con-
tinuous feature spaces is inherently more difficult. Another
issue is the surprising finding that sufficient anchoring of
feature-space defense in the domain using conserved features
allows us to achieve robustness, even when conserved features
can be circumvented. It may be that conserved features are
ultimately only a part of the solution, and only help if they
adequately capture the attack surface in the abstract feature
space. The extent to which small variations in the set of iden-
tified conserved features matters is also an open question: our
evidence is mixed, with “expert”-defined features usually, but
not always, sufficient for robustness.

Acknowledgments

This work was partially supported by the Army Research
Office (W911NF1610069) and NSF CAREER award (IIS-
1649972).

Appendix
A Identifying Conserved Features

We now describe a systematic automated procedure for iden-
tifying these. We first introduce how to identify conserved
features of SL2013, and then describe how to generalize the
approach to extract conserved features of Hidost.

The key to identifying the conserved features of a mali-
cious PDF is to discriminate them from non-conserved ones.
Since merely applying statistical approaches on training data
is insufficient to discriminate between these two classes of fea-
tures, as demonstrated above, we need a qualitatively different
approach which relies on the nature of evasions (as imple-
mented in EvadeML) and the sandbox (which determines
whether malicious functionality is preserved) to identify fea-
tures that are conserved.

We use a modified version of pdfrw [27]° to parse the
objects of PDF file and repack them to produce a new PDF
file. We use Cuckoo [17] as the sandbox to evaluate malicious
functionality. In the discussion below, we define x; to be the
malicious file, S; the conserved feature set of x;, and O; the
set of its non-conserved features. Initially, S; = O; = 0.

At the high level, our first step is to sequentially delete each
object of a malicious file and eliminate non-conserved fea-
tures by evaluating the existence of a malware signature in a
sandbox for each resulting PDF, which provides a preliminary
set of conserved features. Then, we replace the object of each
corresponding structural path in the resulting preliminary set
with an external benign object and assess the corresponding
functionality, which allows us to further prune non-conserved
features. Next, we describe these procedures in detail.

A.1 Structural Path Deletion

In the first step, we filter out non-conserved features by delet-
ing each object and its corresponding structural path, and
then checking whether this eliminates malicious functionality
(and should therefore be conserved). First, we obtain all the
structural paths (objects) by parsing a PDF file. These objects
are organized as a tree-topology and are sequentially deleted.
Each time an object is removed, we produce a resulting PDF
file by repacking the remaining objects. Then, we employ the
sandbox to detect malicious functionality of the PDF after
the object deletion. If any malware signature is captured, the
corresponding structural path of the object is deleted as a
non-conserved feature, and added to O;. On the other hand, if
no malware signature is detected, the corresponding feature
is added in S; as a possibly conserved feature.

One important challenge in this process is that features are
not necessarily independent. Thus, in addition to identifying
S; and O;, we explore interdependence between features by

5The modified version is available at https://github.com/mzweilin/
pdfrw.

15

deleting objects. As the logic structure of a PDF file is with a
tree-topology, the presence of some structural path depends
on the presence of other structural paths whose object refers
to the object of the prior one. We define that a structural path
is a dependent of another if unilateral deleting the object asso-
ciated with the latter causes a flip from 1 to O on the feature
value of the former. For any feature j of x;, we denote the set
of features that depend on j by D?. Note that for a given struc-
tural path (feature), there could be multiple corresponding
PDF objects. In such a case, these objects are deleted simulta-
neously, so as the corresponding feature value is shifted from
1toO.

A.2 Structural Path Replacement

In the second step, we subtract the remaining non-conserved
features in the preliminary S; and move them to O;. Similar
to the prior step, we first obtain all the structural paths and
objects of the malicious PDF file. Then for each object of
the PDF that is in S;, we replace it with an external object
from a benign PDF file and produce the resulting PDF, which
is further evaluated in the sandbox. If the sandbox detects
any malware signature, then the corresponding structural path
of the object replaced is moved from S; to O;. Otherwise,
the structural path is a conserved feature since both deletion
and replacement of the corresponding object removes the
malicious functionality of the PDF file. Note that in the case
of multiple corresponding and identical objects of a structural
path, all of these objects are replaced simultaneously.

After structural path deletion and replacement, for each
malicious PDF file x;, we can get its conserved feature set S;,
non-conserved feature set O;, and dependent feature set D j
for any feature j € S; U O;, which could be further leveraged
to design evasion-robust classifiers.

A.3 Obtaining a Uniform Conserved Feature
Set

The systematic approach discussed above provides a con-
served feature set for each malicious seed to retrain a classi-
fier. Our goal, however, is to identify a single set of conserved
features which is independent of the specific malicious PDF
seed file. We now develop an approach for transforming a
collection of S;, O;, and D{ for a set of malicious seeds i into
a uniform set of conserved features.

Obtaining a uniform set of conserved features faces two
challenges: 1) minimizing conflicts among different con-
served features, as a conserved feature for one malicious in-
stance could be a non-conserved feature for another, and 2)
abiding by feature interdependence if a conserved feature
should be further eliminated.

To address these challenges, we propose a Forward Elimi-
nation algorithm to compute the uniform conserved feature

Algorithm 1 Forward Elimination for uniform conserved fea-
ture set.
Input:

The set of conserved features for x;(i € [1,n]), S;;

The set of non-conserved features for x;(i € [1,n]), O;;

The set of dependent features for j € S; UO; , D{ ;
Output:
The uniform conserved feature set for {x;,x2,...,x,}, S;
S« :1:1 S,';
S +S;
Q<0 _
D/ =UiL, D)
for each j € S do

if j ¢ Q then
if Y Ljeo, > B- X Ljes; then
S S\({jrub/);
Q< QU({j}uDb);
end if
end if

. end for
: return S;

R A A R ol S

— e e
w NN = O

set for a set of malicious seeds {x1,x2,...,X, }, given the con-
served feature sets, non-conserved feature sets and dependent
sets for each seed. As Algorithm | shows, we first obtain a
union of the conserved feature sets. Then, we explore the
contradiction of each feature in the union with the others, by
comparing the total number of the feature being selected as
a non-conserved feature and conserved feature. If the former
one is greater than [} times the latter one, then this feature,
together with its dependents, are eliminated from the union.
Otherwise, the feature is added to the uniform feature set. We
use [as a parameter to adjust the balance between conserved
and non-conserved features. Typically, B > 1 as we are in-
clined to preserve malicious functionality associated with a
conserved feature, even it could be a non-conserved feature
of another PDF file. We set § = 3 in our experiments.

A.4 Identifying Conserved Features for Other
Classifiers

Once we obtain conserved features of SL2013 for each ma-
licious seeds, we can employ these features to identify con-
served features for other classifiers using binary features. As
our approach relies on the existence of malicious functionality
and corresponding features, such a relation is not obvious for
real-valued features; we therefore leave the question of how
to define and identify conserved features in real space for
future work.

Hidost Hidost and SL.2013 are similar in nature in such a
way that they employ structural paths as features. The only
difference is that Hidost consolidates features of SL2013 as
described in Section 4. Therefore, once the conserved fea-

16

[Classifier | Conserved features [Involve JS? |
/Names No
/Names/JavaScript Yes
/Names/JavaScript/Names Yes
/Names/JavaScript/Names/JS Yes
SL2013 /OpenAction No
/OpenAction/JS Yes
/OpenAction/S No
/Pages No
/Names No
/Names/JavaScript Yes
/Names/JavaScript/Names Yes
Hidost /Names/JavaScript/Names/JS Yes
/OpenAction No
/OpenAction/JS Yes
/Pages No
count_box_other No
PDFRate-B count_j ava§cnpt Yes
count_js Yes
count_page No

Table 3: Conserved features and their relevance to JavaScript.

tures of SL2013 are identified, we can simply apply the PDF
structural path consolidation rules described in Srndic and
Laskov [38] to transform these features to the corresponding
conserved features for Hidost.

Binarized PDFRate We identify the conserved features for
PDFRate-B by using the conserved feature set S; of each
seed x;. For each x;, we generate |S;| PDF files, each of which
corresponds to the PDF file when an element (structural path)
in S; is deleted. We then compare PDFRate-B features of
these PDFs to the original x;. If any feature value of x; is
flipped from 1 to 0O, then this feature will be added in the
conserved feature set of x; for PDFRate-B. Afterward, we
use Algorithm 1 to obtain the uniform conserved feature set.
This approach can in fact be used for arbitrary PDF malware
detectors over binary features (leveraging conserved structural
paths identified using SL2013).

A.5 Conserved Features

Table 3 presents the full list of conserved features we identi-
fied for each classifier.

A.6 Conserved vs. Regularized Features

In our experiments, we empirically adjust the SVM parameter
C to study the overlap between conserved features and those
selected by [/; regularization. We first adjust C to perform
feature reduction until the number of features is identical to
the number of conserved features. In this case, sparse versions
of both SL2013 and Hidost include only 3 of the conserved
features, while sparse PDFRate-B includes only 1. In another
experiment, we adjusted C until all conserved features were
selected. In this case, SL2013 requires 510 features, Hidost
needs 154, and PDFRate-B needs 83.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

ATHALYE, A., CARLINI, N., AND WAGNER, D. Ob-
fuscated gradients give a false sense of security: Cir-
cumventing defenses to adversarial examples. In In-
ternational Conference on Machine Learning (2018),
pp. 274-283.

BARRENO, M., NELSON, B., SEARS, R., JOSEPH,
A.D., AND TYGAR, J. D. Can machine learning be
secure? In ACM Asia Conference Computer and Com-
munications Security (2006), pp. 16-25.

BIGGI0, B., CORONA, I., MAIORCA, D., NELSON, B.,
SRNDIC, N., LASKOV, P., GIACINTO, G., AND ROLI,
F. Evasion attacks against machine learning at test
time. In European Conference on Machine Learning
and Knowledge Discovery in Databases (2013), pp. 387—
402.

BIGGIO, B., FUMERA, G., AND ROLI, F. Security
evaluation of pattern classifiers under attack. [/EEE

Transactions on Knowledge and Data Engineering 26,
4 (2014), 984-996.

BRUCKNER, M., AND SCHEFFER, T. Stackelberg
games for adversarial prediction problems. In ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2011), pp. 547-555.

BRUCKNER, M., AND SCHEFFER, T. Static prediction
games for adversarial learning problems. Journal of
Machine Learning Research, 13 (2012), 2617-2654.

CARLINI, N., AND WAGNER, D. Towards evaluating
the robustness of neural networks. In IEEE Symposium
on Security and Privacy (2017), pp. 39-57.

Cova, M., KRUEGEL, C., AND VIGNA, G. Detection
and analysis of drive- by-download attacks and mali-

cious javascript code. In International Conference on
World Wide Web (2010), pp. 281-290.

DALVI, N., DOMINGOS, P., MAUSAM, SANGHAI S.,
AND VERMA, D. Adversarial classification. In SIGKDD
International Conference on Knowledge Discovery and
Data Mining (2004), pp. 99-108.

EYKHOLT, K., EVTIMOV, 1., FERNANDES, E., LI, B.,
RAHMATI, A., XIAO, C., PRAKASH, A., KOHNO, T.,
AND SONG, D. Robust physical-world attacks on deep
learning visual classification. In Computer Vision and
Pattern Recognition (2018).

FoGLA, P., AND LEE, W. Evading network anomaly
detection systems: Formal reasoning and practical tech-
niques. In ACM Conference on Computer and Commu-
nications Security (2006), pp. 59-68.

17

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

FOGLA, P., SHARIF, M., PERDISCI, R., KOLESNIKOV,
O., AND LEE, W. Polymorphic blending attacks. In
USENIX Security Symposium (2006).

GILMER, J., ADAMS, R. P., GOODFELLOW, I. J., AN-
DERSEN, D., AND DAHL, G. E. Motivating the rules
of the game for adversarial example research. arXiv
preprint.

GOODFELLOW, I., POUGET, J., MIRZA, M., XU, B.,
WARDE, D., OZAIR, S., COURVILLE, A., AND BEN-
GIO, Y. Generative adversarial nets. In Neural Informa-
tion Processing Systems (2014), pp. 2672-2680.

GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C.
Explaining and harnessing adversarial examples. In

International Conference on Learning Representations
(2015).

GROSSE, K., PAPERNOT, N., MANOHARAN, P.,
BACKES, M., AND MCDANIEL, P. Adversarial
perturbations against deep neural networks for malware
classification. In European Symposium on Research in
Computer Security (2017).

GUARNIERI, C., TANASI, A., BREMER, J., AND
SCHLOESSER, M. Cuckoo sandbox: A malware analy-
sis system, 2012. http://www.cuckoosandbox.org/.

Hoos, H. H., AND STUTZLE, T. Stochastic Local

Search : Foundations & Applications. Morgan Kauf-
mann, 2004.

Hu, W., AND TAN, Y. Generating adversarial malware
examples for black-box attacks based on GAN. arXiv
preprint.

HuaNG, R., XU, B., SCHUURMANS, D., AND
SZEPESVARI, C. Learning with a strong adversary. In
International Conference on Learning Representations
(2016).

KANTCHELIAN, A., TYGAR, J. D., AND JOSEPH, A. D.
Evasion and hardening of tree ensemble classifiers. In

International Conference on Machine Learning (2016),
pp- 2387-2396.

LI, B., AND VOROBEYCHIK, Y. Feature cross-
substitution in adversarial classification. In Neural In-
formation Processing Systems (2014), pp. 2087-2095.

L1, B., AND VOROBEYCHIK, Y. Evasion-robust clas-
sification on binary domains. ACM Transactions on
Knowledge Discovery from Data (2018).

LowD, D., AND MEEK, C. Adversarial learning. In
ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining (2005), pp. 641-647.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

MADRY, A., MAKELOV, A., SCHMIDT, L., TSIPRAS,
D., AND VLADU, A. Towards deep learning models
resistant to adversarial attacks. In International Confer-
ence on Learning Representations (2018).

MAIORCA, D., CORONA, I., AND GIACINTO, G. Look-
ing at the bag is not enough to find the bomb: an evasion
of structural methods for malicious PDF files detection.
In ACM Asia Conference on Computer and Communi-
cations Security (2013), pp. 119-130.

MAUPIN, P. Pdfrw: A pure python library that reads and
writes pdfs. https://github.com/pmaupin/pdfrw, 2017.
Accessed: 2017-05-18.

NELSON, B., RUBINSTEIN, B. I., HUANG, L., JOSEPH,
A. D., LEE, S. J., RAO, S., AND TYGAR, J. Query
strategies for evading convex-inducing classifiers. Jour-
nal of Machine Learning Research (2012), 1293-1332.

PAPERNOT, N., MCDANIEL, P., SINHA, A., AND
WELLMAN, M. Towards the science of security and
privacy in machine learning. In IEEE European Sympo-
sium on Security and Privacy (2018).

PAPERNOT, N., MCDANIEL, P., WU, X., AND JHA,
S. Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE Symposium on
Security and Privacy, (2016).

PAPERNOT, N., MCDANIEL, P. D., AND GOODFEL-
Low, I. J. Transferability in machine learning: from
phenomena to black-box attacks using adversarial sam-
ples, 2016. arxiv preprint.

RAGHUNATHAN, A., STEINHARDT, J., AND LIANG,
P. Certified defenses against adversarial examples. In

International Conference on Learning Representations
(2018).

SHARIF, M., BHAGAVATULA, S., BAUER, L., AND RE-
ITER, M. K. Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition. In ACM
SIGSAC Conference on Computer and Communications
Security (2016), ACM, pp. 1528-1540.

SMUTZ, C., AND STAVROU, A. Malicious pdf detection
using matadata and structural features. Tech. rep., 2012.

SMUTZ, C., AND STAVROU, A. Malicious pdf detection
using matadata structural features. In Annual Computer
Security Applications Conference (2012), pp. 239-248.

18

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

SRNDIC, N., AND LASKOV, P. Detection of malicious
PDF files based on hierarchical document structure. In
Network and Distributed System Security Symposium
(2013).

SRNDIC, N., AND LASKOV, P. Practical evasion of a
learning-based classifier: A case study. In IEEE Sympo-
sium on Security and Privacy (2014), pp. 197-211.

SRNDIC, N., AND LASKOV, P. Hidost: a static machine-
learning-based detector of malicious files. EURASIP
Journal on Information Security 2016, 1 (2016), 22.

TEO, C. H., GLOBERSON, A., ROWEIS, S., AND
SMOLA, A. J. Convex learning with invariances. In
Neural Information Processing Systems (2007).

VOROBEYCHIK, Y., AND KANTARCIOGLU, M. Ad-
versarial Machine Learning. Morgan and Claypool,
2018.

VOROBEYCHIK, Y., AND LI, B. Optimal randomized
classification in adversarial settings. In International

Conference on Autonomous Agents and Multiagent Sys-
tems (2014), pp. 485-492.

WONG, E., AND KOLTER, J. Z. Provable defenses
against adversarial examples via the convex outer adver-
sarial polytope. In International Conference on Machine
Learning (2018).

XU, H., CARAMANIS, C., AND MANNOR, S. Ro-
bustness and regularization of support vector machines.
Journal of Machine Learning Research 10 (2009), 1485—
1510.

XU, W., QL Y., AND EVANS, D. Automatically evading
classifiers: A case study on PDF malware classifiers. In
Network and Distributed System Security Symposium
(2016).

ZHANG, F., CHAN, P., BIGGIO, B., YEUNG, D., AND
RoLI, F. Adversarial feature selection against evasion
attacks. IEEE Transactions on Cybernetics (2015).

ZHOU, Y., KANTARCIOGLU, M., THURAISINGHAM,
B. M., AND XI, B. Adversarial support vector ma-
chine learning. In ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (2012),

pp. 1059-1067.

