

1 **An Accelerating Treadmill and Overlooked Contradiction in Industrial Agriculture:**
2 **Climate Change and Nitrogen Fertilizer**

3 Matthew Houser*
4 Assistant Research Scientist
5 Environmental Resilience Institute
6 Adjunct, Department of Sociology
7 Indiana University
8 mkhouser@iu.edu
9 717 E 8th Street,
10 Bloomington, IN 47408
11 *corresponding author
12
13

14 Diana Stuart
15 Associate Professor
16 Sustainable Communities Program and in the School of Earth Sciences and Environmental
17 Sustainability
18 Northern Arizona University
19

20

21 **ACCEPTED, IN PRESS AT JOURNAL OF AGRARIAN CHANGE**

22

23 **Acknowledgements:** We would like to especially thank the farmers who participated in these
24 interviews. We would also like to thank Dr. Adam Reimer and Dr. Riva Denny for conducting a
25 number of these interviews in Michigan and Iowa. Finally, we would like to acknowledge the
26 three anonymous reviewers for their insight feedback that contributed significantly toward
27 improving the overall quality of this manuscript.

28 **Funding:** This work was supported by the National Science Foundation's (NSF) Dynamics of
29 Coupled Natural and Human Systems program under Grant [1313677], with additional support
30 from NSF's Kellogg Biological Station Long Term Ecological Research Site (NSF grant no.
31 DEB 1027253) and the Environmental Resilience Institute, funded by Indiana University's
32 Prepared for Environmental Change Grand Challenge initiative.

33
34
35
36
37
38
39
40
41

42 **Title: An Accelerating Treadmill and Overlooked Contradiction in Industrial Agriculture:**
43 **Climate Change and Nitrogen Fertilizer**

45 **Abstract:** In this article we explore if and why farmers are responding to the impacts of climate
46 change with practices that increase greenhouse gas emissions. Our examination focuses on heavy
47 rainfall events and midwestern corn farmers' nitrogen fertilizer management. Due to climate
48 change, the frequency and intensity of heavy rain events is increasing across the Midwest. These
49 events increase nitrogen loss to the environment and introduces economic risks to farmers.
50 Drawing from a theoretical framework that merges O'Connor's Second Contradiction of
51 Capitalism and Schnaiberg's Treadmill of Production, we argue farmers' responses to these
52 events reflect the second contradiction, increasing contributions to climate change, and are
53 shaped by treadmill-like political-economic pressures. We examine this using a qualitative
54 sample of 154 farmers across Indiana, Iowa, and Michigan. Given profit-imperatives, adapting
55 farmers in our sample primarily used increased nitrogen application rates to reduce their
56 vulnerability to heavy rains. As nitrogen rate is directly associated with nitrous oxide emissions,
57 this adaptive strategy is effective, but increases agricultural contributions to climate change. This
58 preliminarily suggests that the political-economic structure encourages farmers to respond to
59 climate change in ways that accelerates the environmental contradictions of industrial
60 agriculture.

61
62
63
64
65
66
67
68
69
70
71
72
73 **Keywords:** Political-Economy; Climate Change; Agriculture; Adaptation; Nitrogen; Mal-
74 Adaptation

75
76
77
78
79
80
81
82
83
84
85
86
87

88 **INTRODUCTION**

89 Industrial agricultural production both contributes to and is increasingly threatened by global
90 climate change (Weis, 2010). Agriculture emits carbon dioxide, methane, and nitrous oxide,
91 accounting for 10-15 percent of global anthropogenic greenhouse gas (GHG) emissions and is
92 the sector with the largest contribution to non-carbon dioxide emissions (CCPSWG, 2011; IPCC,
93 2007). In terms of impacts, it is widely expected that climate change will dramatically alter the
94 conditions for crop growth, presenting significant challenges (Lal et al., 2011). Given these
95 realities, it is critical that agriculture transitions to a system that is both less vulnerable to
96 climatic impacts and that contributes less to the GHG emissions driving climate change (Weis,
97 2010).

98 This transition will involve the widespread adoption of management practices that both

99 reduce GHG emissions and vulnerability to the impacts of climate change (Howden et al., 2007).
100 We refer to these practices as conservation adaptive practices. In the United States (US), most of
101 these practices are outlined in guidelines provided by the US Department of Agriculture's
102 Natural Resource Conservation District as well as other conservation groups that work closely
103 with farmers to reduce environmental impacts. These practices include changes in tillage as well
104 as residue and fertilizer management (NRCS, 2018). For example, cover crops store more carbon
105 and reduce soil erosion and nutrient loss—serving to both reduce vulnerability and GHG
106 emissions. These benefits can be realized in both the short and long-term.

107 In contrast, quick-fix adaptive practices refer to agricultural practices that reduce

108 vulnerability to climate impacts but may increase GHG emissions or other sources of
109 environmental degradation. There is a long history in modern agriculture of addressing
110 environmental threats to production through quick-fixes that increase environmental degradation
111 (Clark & York, 2010; Weis, 2010). See for instance Clark and Foster's (2009) history detailing

112 how using Peruvian guano (bird droppings rich in nutrient) to overcome declining soil fertility in
113 18th century English agriculture increased nutrient pollution and led to the geographical
114 expansion of soil fertility issues.

115 In this study, we examine how, similar to 18th century farmers, today's farmers responses
116 to challenges related to climate change ultimately increase the environmental contradictions of
117 capitalist, industrial agriculture. We focus on row-crop farmers in the US Midwest and their
118 adaptive responses to the increasing intensity and frequency of heavy rain events and their
119 impact on nitrogen fertilizer use given structural conditions (see below for specific research
120 questions). Nitrogen (N) fertilizer application releases nitrous oxide gas (N₂O), a GHG that is
121 approximately 300 times more effective at heating the atmosphere than carbon dioxide. In the
122 US, agricultural fertilizer use is the primary source of N₂O emissions (EPA, 2015).

123 Our analysis draws from over 150 personal interviews with Midwestern corn farmers and
124 is guided by a theoretical framework that combines and develops the insights of O'Connor's
125 (1988, 1998) "second contradiction of capitalism" and Schnaiberg's (1980) "treadmill of
126 production." Using these theories, we ask 1) do farmers respond to threats to production imposed
127 by climate change through actions that ultimately further threaten production via increased GHG
128 emissions (illustrating the second contradiction of capitalism), and 2) why do farmers respond
129 this way and what is the role of prioritizing short-term profitability (treadmill of production)?

130 In this paper, we use interview data to empirically explore these questions among
131 Midwestern corn farmers. To begin, we provide the necessary background on N use, climate
132 change, and management practices. We then present our theoretical approach, research methods,
133 and a discussion of our findings.

134 **BACKGROUND**

135 **Nitrogen use, corn and heavy rainfall events**

136 Today, agricultural crop's N needs are primarily met through the production and application of
137 synthetic N fertilizers (Smil, 2002). Corn receives about 50% of all N fertilizer applied in the
138 US, with the majority of this N being applied in the midwestern "corn-belt" states (ERS, 2018;
139 Ribaudo et al., 2011). About half of all N applied in corn production will be lost to the
140 environment through air or water (Cassman et al., 2002). Applied N fertilizer results in the
141 release of N₂O, the powerful GHG that is the focus of our analysis. N₂O is by far the dominant
142 agricultural GHG emitted in the Midwest (Larsen et al., 2007). Approximately 70 percent of all
143 US N₂O emissions come from agriculture (EPA, 2019). To illustrate the significance of corn
144 production for N₂O emissions, we provide some statistics from Iowa, the top corn producing
145 state. While agriculture is responsible for 9% of all US GHG emissions (EPA, 2019), in Iowa
146 agriculture is responsible for 30% of all state emissions and 93% of N₂O emissions, and over
147 55% of all agricultural GHG emissions are from N₂O (DNR, 2017). Because the amount of N₂O
148 released is directly related to the quantity of N fertilizer applied (Robertson et al., 2013),
149 reducing N fertilizer application is one of the most effective climate change mitigation strategy
150 in agriculture (Kanter, 2018; Millar et al., 2010), especially in the Midwest.

151 Climate change has and will continue to present a number of challenges to agricultural N
152 management (Davidson et al., 2012). In this paper we focus on farmers' adaptive responses to N
153 loss associated with heavy rain events. Heavy rainfall events are defined as the heaviest 1% of all
154 events (Karl et al., 2009). As a result of shifts in average temperature and precipitation
155 conditions, the frequency and intensity of heavy precipitation events has increased across the
156 Midwest (Pryor et al., 2014). Relative to the heaviest 1% of all rainfall events from the 1951-
157 1980 reference period, the frequency of heavy storms occurrence in the region had increased by

158 23.6% and the amount of precipitation falling in those storms increased by 20.2% between 1981-
159 2010 (GLISA, No date). The trend of increasing frequency and intensity of heavy precipitation
160 across the Midwest is expected to continue in the future (Janssen et al., 2014).

161 The increased occurrence of heavy rain events has presented and will continue to present
162 challenges to agricultural N management. Heavy rain events increase surface runoff and leaching
163 of N and can further emissions of N₂O from agricultural soils (Davidson et al., 2012; Robertson
164 et al., 2013). The occurrence of heavy rainfall events not only increases the loss of agricultural N
165 (Mitsch et al., 2001), but in doing so poses economic risks. N loss increases the chance that
166 yields will suffer due to N deficiency (Robertson et al., 2013). Across the Midwest, the increased
167 occurrence of heavy rainfall events has been linked with declines in production efficiency (the
168 ratio of measured output, such as crops, livestock, and goods and services, per unit of measured
169 inputs, such as land, labor, capital, and resources) and total average decline in yield (Liang et al.,
170 2017). In short, heavy rainfall events present substantial challenges to agricultural producers' N
171 management.

172 **Adaptive practices**

173 A range of practices are available to farmers that can effectively reduce their vulnerability to
174 heavy rain events (among other climate change impacts). We divide these measures into two
175 categories: (1) conservation adaptive responses and (2) quick-fix adaptive responses.
176 Conservation adaptation involves practices that balance economic and environmental concerns
177 by reducing vulnerability to climatic events without increasing environmental harms in the short
178 and long term. Related to N management and heavy rainfall, these practices can include: use of
179 cover crops, which can provide organic N and reduce N loss from rain events (Blesh, 2018);
180 applying N near the crop and under the soil (injection of N); applying N at the times of the

181 season when the crop's N demand peaks (in-season application); and using N products or
182 formulations that make N more resistant to climate variability (N-inhibitors or "stabilizers")
183 (Robertson et al., 2013).¹

184 Farmers may alternatively (or additionally) undertake management practices that reduce
185 vulnerability to heavy rains, but at the expense of increasing environmental degradation,
186 particularly with regards to climate change. Noted above, we refer to these practices as quick-fix
187 adaptive responses. Related to N use, N application rates in excess of crops needs are sometimes
188 called "insurance N," a strategy to ensure (i.e. "insure") maximum yields given seasonally
189 variable weather patterns (Sheriff, 2005; Stuart et al., 2012). The logic of this strategy in
190 response to heavy rain events is that applying extra N means that a little extra N is left behind to
191 support crop growth after a rain event diminishes N levels in the soil. More N directly replaces
192 lost N and thus is highly effective at reducing N deficiencies. Because N is often much cheaper
193 than corn, this practice of adding more N is also profitable (Robertson, 1997). In this way,
194 increased N rates reduce vulnerability to seasonally variable weather, such as the occurrence of
195 heavy rain events. However, as N₂O emissions are linked to the rate at which N is applied this
196 response, if widely adopted, could dramatically increase agricultural contributions to climate
197 change in addition to other forms of pollution related to N, as even modest increases in N rates
198 can dramatically increase contributions to climate change (Hoben et al., 2011; McSwiney &
199 Robertson, 2005; Millar et al., 2010).

200 As this discussion suggests, it is possible that farmers are responding to the impacts of
201 climate change, specifically heavy rain events, in ways that increase GHG emissions from

¹ Studies of the impact of no-till use on N loss in various forms have been inconsistent and therefore the benefits of no till specific to N management as an adaptive practice are still considered unknown (Robertson et al., 2013) or largely dependent on integrating no till with a suite of practices (Daryanto, Wang & Jacinthe, 2017).

202 agriculture. Despite the significance of this potential feedback loop, little empirical work has
203 explored if farmers use quick fix adaptation practices,² if they use increased N rates to mitigate
204 weather-related risks (Arbuckle & Rosman, 2014) and overall we currently know little about
205 whether farmers are implementing practices in response to climate risks (Mase et al., 2017) as
206 the majority of the literature on adaptation practice adoption has examined behavioral intentions
207 or supportive attitudes toward conservation adaptive practices (e.g. Arbuckle et al., 2013a,
208 2013b; Roesch-McNally et al., 2017).

209 To build on this prior work, we examine the potential that political-economic context
210 does not just discourage the use of conservation adaptive practices as other studies have
211 suggested (Blesh & Wolf, 2014; Roesch-McNally et al., 2018b), but may encourage some
212 farmers to use quick-fix responses. In other words, are farmers adopting quick fixes that
213 ultimately increase future threats to production and if so, why? In particular, how do social-
214 structural conditions influence these decisions? Below, we combine O'Connor's (1988) second
215 contradiction of capitalism with Schnaiberg's (1980) treadmill of production thesis to examine
216 how farmers adapt to heavy rain events given the political-economic structure of industrial
217 agriculture and N fertilizer's central role in this structure.

218 **CONCEPTUAL BACKGROUND**

219 We examine if corn farmers responses to heavy rain events will largely follow O'Connor's
220 (1988) second contradiction of capitalism thesis. In contrast to much of the political-economy
221 literature in environmental sociology, O'Connor's (1988) second-contradiction theory has direct
222 implications for how environmental changes caused by production may influence production.

²As one exception, Roesch-McNally and colleagues (2017) find that some farmers are dealing with weather variability and extremes by using increased tillage, which would increase carbon dioxide emissions. Their analysis and discussion generally focus on farmers using conservation management practices though.

223 O'Connor argues that in a perpetual search for greater profits, capitalism does not just undermine
224 the consumer base necessary for generating demand (the first contradiction), it also undermines
225 the environmental conditions necessary for production (the second contradiction).

226 O'Connor (1988, 1998) argues that environmental degradation caused by production is a
227 growing barrier to further production. Specifically, environmental degradation increases the costs
228 of production in a number of ways—e.g. more resources must be used as production efficiency
229 declines, or resources become more expensive as they are degraded/made scarce. In response to
230 lower profits, individual firms respond in ways that aim to restore profits, but ultimately further
231 environmental degradation as these externalities are not directly considered in the decision-
232 making process. As O'Connor (1998: 162) states, individual firms, “defend or restore profits by
233 strategies that degrade or fail to maintain over time the material conditions of their own
234 production,” thereby causing further environmental degradation. Referring to this as a “cost-side
235 crises,” O'Connor (1988) sees this cycle of production-degradation-and profit-loss to be a
236 fundamental (second) contradiction of capitalism, as in the long-term it will undermine firms’
237 capacity to achieve profit-imperatives in addition to causing increased environmental
238 degradation.

239 Much of O'Connor's position is already well documented in the context of agriculture.
240 The concentration of agricultural lands and capital intensity of agricultural production has
241 rapidly grown over the last three decades (MacDonald et al., 2018) and a number of scholars
242 have pointed to how this process is accelerating environmental changes, like climate change, that
243 threaten the system's very capacity to function (e.g. Hendrickson et al. 2019; Weis, 2010). For
244 our purposes, the second contradiction of capitalism thesis has at least one key implication. It
245 suggests that the dominant adaptive response farmers implement will further environmental

246 degradation, or in our terms, it will be quick-fix adaptation, thus ultimately undermining the
247 long-term environmental and economic viability of agricultural production.

248 To explain why farmers are making decisions that could undermine production in the
249 future, we draw from the Treadmill of Production (ToP) theory to understand the drivers in the
250 capitalist industrial agricultural system. ToP theory presents a structural perspective on the
251 relationships between production and the environment within capitalist society (Schnaiberg
252 1980; Schnaiberg & Gould, 1994). ToP depicts production in capitalist society as operating in an
253 ever-expanding cycle (i.e. treadmill), with growing environmental consequences. Given the
254 structural production/profit imperatives in the ToP, each firm (or farmer in our case) competes to
255 increase production and lower costs in order to capture a larger portion of the market than
256 competitors. The treadmill involves the adoption of strategies to increase production and profits,
257 and when producers do not accelerate fast enough on the treadmill, they can be forced out of
258 business due to competition.

259 From past work, it is clear that a variety of drivers create ToP conditions, including
260 capital investment, competition, federal subsidies, crop-insurance policies, advertisement and
261 recommendations from fertilizer dealers and seed companies, and models for yield
262 maximization. These and other processes pressure farmers to increase production and seek
263 profits in a ToP pattern (Hendrickson & James, 2005; Magdoff et al., 2000; Levins & Cochrane,
264 1996; Reosch-McNally et al., 2018b; Stuart et al., 2012; Stuart & Houser, 2018). In our
265 application of this theoretical model, we strive to understand how farmers respond to the impacts
266 of climate change given their highly constrained position within the agricultural ToP. While
267 O'Connor (1988) describes the role of the profit incentives, the ToP emphasizes how systemic
268 drivers place significant pressures on individuals that can restrict decision-making to prioritize

269 profits. The ToP, especially in terms of constrained choice, helps us to explain why we might see
270 a situation that resemble the second contradiction of capitalism.

271 Applied to our case, the ToP framework suggests: (1) ToP pressures will drive farmers to
272 protect and pursue expanded production/profits³ in their N use decision making and (2) because
273 of these ToP pressures, farmers will adapt to N loss using the practice that ensures maximized
274 production/profits responses to heavy rain events, even if this adaptation choice is known to
275 increase the environmental consequences of agricultural production. In other words, how much
276 room do farmers have to respond to heavy rains with conservation adaptation practices when the
277 ToP pressures them to conform to the profit imperative in order to stay in business? While the
278 ToP influence may not drive all of farmers decisions, we posit that it has a significant influence.
279 Also, if some farmers have the ability to adopt conservation adaptation practices, what makes
280 that possible?

281 Using our novel theoretical framework that combines O'Connor's (1988) second
282 contradiction thesis with Schnaiberg's (1980) ToP framework, we can suggest not only how
283 farmers are responding to climate change (in ways that accelerate their contributions to climate
284 change), but why they are doing so, with specific attention to the role of the political-economy of
285 agriculture in shaping their decision-making toward greater environmental destruction and thus
286 barriers to production in the long-term. We draw from over 150 personal interviews with
287 Midwest farmers to examine explicitly what factors drive farmers responses.

288 **METHODS**

³ As one anonymous reviewer pointed out, production and profits are not always empirically linked. Though the two are not absolutely connected and interviewees recognized this, farmers generally "rationally" strove to expand production in a manner that achieved more profits. Our use of the term "production/profits" signifies these intended linked ends.

289 To explore if farmers are responding to heavy rain events through quick-fixes and specifically
290 why they are doing so, we used qualitative data gathered from 154 interviews with corn farmers
291 in three Midwestern US states: 53 interviews in Iowa (IA), 51 in Indiana (IN) and 50 in
292 Michigan (MI). Interviews were conducted on a one-on-one basis between a researcher and the
293 farmer between May 2014 and December 2014. The majority of interviews were done in person
294 on-farm, with a small number conducted over the phone. All interviews were audio recorded
295 with the permission of participants.

296 Initial interview participants were primarily recruited through University Extension and other
297 state resource professionals. The initial round of contacts represents a purposeful sample
298 (Cresswell & Plano Clark, 2011), where farmers who had connections to agricultural information
299 sources and were likely to be using a range of agricultural N management tools were
300 intentionally sought out. After initial contacts were gathered, we used snowball sampling, where
301 preliminary contacts are used to gain access to additional respondents, to enlarge and potentially
302 diversify this initial sample. Snowball sampling is considered a good method to contact subjects
303 who are difficult to access (Faugier & Sargeant, 1997), such as farmers.

304 Across all three states, 48 percent (N=74) of interviewed farmers were contacted through
305 extension, 34 percent (N=53) through snowball sampling, 13 percent (N=20) through state or
306 federal conservation offices or programs (e.g. Soil and Water Conservation) and 5 percent (N=7)
307 were contacted through various other relevant sources (Iowa Soybean Association, Practical
308 Farmers of Iowa⁴ and extension organized field days). Farm sizes of interviewed farmers ranged
309 from 170 to 14,000 acres, with an average acreage operated of 1,615. All farmers were white-

⁴ Practical Farmers of Iowa is a farmer-led organization that shares information and encourages and supports on-farm research on management practices with the intention to improve agricultural productivity and conservation in Iowa. For more information, see: <http://www.practicalfarmers.org>

310 males, operated family-owned farms and identified themselves as primary management decision-
311 makers. Interviewees were not asked about their age, but the vast majority appeared to be around
312 middle-age, with only a few having just started farming and or beginning to consider retirement.
313 More information is provided in Table 1.

Table 1: Sample Characteristics	
Characteristic	n
Primary Rotation Type:	
Corn-soy	95
Corn-corn	13
Corn-soy-other (e.g. corn-soy wheat; corn-corn-soy)	9
Misc (e.g. corn, soy, oats, wheat, etc.)	32
Practice use (general):	
Cover crop use	29
In-season application	101
Multiple applications of N	144
Stabilizer use	52
Total n	154

314
315 As most contacts were identified through University Extension, farmers in this sample may
316 be more familiar with conservation adaptation strategies. The bias this may introduce to our
317 sample is ultimately not an undesirable one. Since farmers in our sample may have greater
318 knowledge/current use of conservation practices, our work can assess how political-economic
319 conditions shape farmers' adaptation decisions among farmers who are knowledgeable about
320 conservation practices.

321 A semi-structured interview guide focused on farmers' N use decisions and the various
322 factors, like climate impacts, that shaped these decisions. Interviews lasted between 22 minutes
323 and 2.5 hours. Upon completion, interviews were transcribed and analyzed using NVivo
324 software. A text search of all interviews was performed in NVivo using a series of terms
325 identified during preliminary analysis of farmers' climate change adaptation and impact

326 statements.⁵

327 To identify adaptation practices and farmers' justifications for adaptation, we followed an
328 adapted version of grounded theory (Strauss & Corbin, 1990). Open coding was performed in an
329 initial round of coding until core themes began to emerge. Axial coding was used at this point to
330 identify further comments matching with (or suggesting alternative) adaptation strategies and
331 justifications (Charmaz, 2006). The lead author undertook preliminary coding of farmer
332 responses. In a second round of coding, each adaptation coding was reviewed by the co-author,
333 and any disagreements in coding theme were discussed and settled between the two authors to
334 determine final coding categories and counts.

335 Importantly, considering the coding of farmers' adaptive practice use, responses were coded
336 to reflect the above definition of adaptive practice use: farm practices undertaken to reduce
337 vulnerability to climate change and climatic events (IPCC, 2007; Smit & Skinner, 2002). This
338 definition implies intentional use of a practice to reduce vulnerabilities, and following this,
339 farmers were coded to be using an adaptive practice *only* when it was reported that this practice
340 was adopted or used because it was perceived to reduce their vulnerability to heavy rain events
341 and potential to loss N loss in some way. In consequence, practice use figures reported only
342 reflect the number of farmers using the strategy to explicitly adapt to climatic events and do not
343 reflect the total use of the practice across the sample.

344 We use our data to examine: 1) How are farmers adapting to increased rain events,
345 especially in terms of adjusting their rates of N fertilizer application? 2) What factors are
346 influencing these decisions, particularly how do structural conditions shape farmers' N

⁵ Terms used in the NVivo text searched included the following: inches, rain, rainfall, extreme, longer, temperature, weather, season, ponding, N loss, heavy, warmer, wet, hot, and dry.

347 application? For the first question we seek to understand if farmers are responding to heavy rain
348 events and N loss in ways that undermine agricultural production in the long term (via increasing
349 greenhouse gas emissions), in line with the second contradiction of capitalism. For the second
350 questions, we seek to understand what influences these choices and, focusing on how profit-
351 imperatives and competition lead to a treadmill-like model of N use that may constrain farmers'
352 responses toward short-term economic goals, rather than long-term sustainability.

353
354 **HOW ARE FARMERS ADAPTING TO HEAVY RAINS? THE SECOND**
355 **CONTRADICTION**
356 O'Connor's (1988) second contradiction predicts that barriers to production will be responded to
357 in ways that accelerate environmental destruction. In our case, this suggests farmers will adapt to
358 N loss from heavy rain events, a climate change impact, in a way that accelerates agricultural
359 contributions to climate change, what we call "quick-fixes." We explore this possibility in the
360 first results section.

361 Interviewed farmers reported increasingly experiencing the impacts of heavy rain events.
362 As one Iowa farmer described: "We've had some wild extreme [weather] here these last 5–7
363 years [...] Where we used to get a half inch to an inch of rain, now it's common to get 2–3-inch
364 rains (IA16)." Across all three states in our sample, 69 (of 154) farmers commented their N use
365 had been impacted by heavy rain events or "extreme weather," which commonly indicated heavy
366 rains. The majority of these farmers (58/69) reported experiencing N loss or were concerned
367 about N loss as a result of heavy rain events in recent years, this number varying across states,
368 possibly a result of actual geographic variations in experiences with rain events (see Table 2).

369 Given the consequences of heavy rains events for N/yield loss (noted above), farmers
370 were highly motivated to adapt to these impacts. The majority of farmers in our sample who

371 described perceiving N loss from heavy rain events also reported adopting an adaptive practice to
 372 address this issue (45 of 58). But variations existed in the types of practices farmers adopted, as
 373 shown in Table 2.

Table 2: N loss from heavy rains and adaptation by type and state

State	Reported N loss from heavy rain	Reported adapting	Conservation practice adaptation	Quick-fix adaptation
IN	18	15	4	11
IA	27	20	4	16
MI	18	9	4	5
Total n	58	44	12	32

374

Table 3: Adaptation by category

Farm sizes (ac):	Using Conservation Practices	Using Quick-Fixes
Mean	1310	2427
Std. Dev.	646	2493
Range	220-2000	200-14,000
Median	1500	1750
Total n	12	32

375

376

377 As shown in Table 2, many interviewed farmers were responding to the impact of heavy
 378 rain events with some form of conservation adaptation practice. For instance, one farmer who
 379 used multiple, in-season applications justified this practice in saying: “We feel that we can
 380 control it better that way because you put it all on at planting time and get a bunch of rain and
 381 you would lose some of it and I guess I’m too cheap” (MI19). Beyond using multiple, in-season
 382 applications, others adapted via using stabilizers, injecting N under the soil, or through planting
 383 cover crops (21% of farmers experiencing heavy rain).⁶

⁶ While most farmers reported using only one of these practices at a time (n=7), some used multiple simultaneously (n=5).

384 Though some farmers were adapting via conservation practice, most interviewed farmers
385 adapted to heavy rains by using quick-fixes either exclusively (45%) or deploying a quick fix
386 strategy alongside a conservation practice (10%). N₂O emissions are directly associated with N
387 rate (Millar et al., 2010; Robertson et al., 2013). Therefore, we view farmers who reported more
388 N use, even alongside a conservation strategy, as adapting using a quick-fix approach per our
389 definition. That a quick quick-fix response is dominant reflects the second-contradiction of
390 capitalism thesis (O'Connor, 1988).

391 Interviewed farmers used the quick-fix of more N in various ways. In the adaptation
392 literature, “timing” refers to when adaptation takes place, and can include anticipatory (i.e.
393 proactive) and responsive (i.e. reactive) actions (Smit and Skinner, 2002). A minority of the
394 farmers adapting via quick-fixes (9/32) used increased N rates in an anticipatory fashion, where
395 they assumed that N loss from a heavy rain event would occur in season and therefore, they
396 should apply extra N. Some farmers described this generally, suggesting that they built seasonal
397 weather expectations into their N use: “If we knew how much rain we was gonna get, we’d put
398 more [N] out there” (IA15). To this farmer, N rates were fundamentally determined in
399 anticipation of seasonal precipitation events and N loss and more would be used if weather was
400 expected to be more extreme. Other farmers followed a similar approach but described their
401 anticipatory use of N more specifically. As one Iowa farmer commented: “I could probably get
402 by on as little as 75 pounds of nitrogen, for corn-on-soybeans, if I didn’t have a wet year. But we
403 usually put on about 110 pounds on soybean stubble [...] just to make sure if we have a really
404 wet year . . . we still have some nitrogen left over” (IA09). An Indiana farmer stated similarly: “I
405 put on this extra 30 pounds [of N], which I’m glad we did because of the rainfall we’ve had, I
406 think we would’ve been short without it” (IN33). Implicit in these comments is farmers’

407 expectation that some of their N will be lost to rain events but putting extra N ensured they did
408 not experience yield loss. This reflects the commonly discussed practice of “insurance” N
409 application (Sheriff, 2005; Stuart et al., 2012).

410 The majority of interviewees adapting via quick-fixes (23/32) increased N rates
411 “responsively” (Smit & Skinner, 2002), or in reaction to the occurrence of heavy rain events.
412 These farmers comments reveal how heavy rains can cause N loss at any period during the
413 growing season, even after using recommended strategies to minimize the potential for in-season
414 N loss, like sidedressing. Whenever rain events were perceived to have caused N loss in the
415 season, responsive ‘quick-fixers’ used in-season application equipment to add N back. If N loss
416 occurred earlier in the growing season, equipment for applying N over smaller corn-plants, like
417 “sidedress” equipment, provided an opportunity to add more back to avoid yield loss. As
418 illustrated by one farmer: “This year we sidedressed, oh 300 or so acres [...] We thought with all
419 the rains, we probably lost some nitrogen, the corn was looking yellowish [, a sign of N
420 deficiency]” (IA16). If a heavy rain caused N loss deeper into the season, late season application
421 equipment to apply N over tall corn-plants, like “Hagies” or “highboys,” and aerial application
422 via airplanes was used. Comments illustrating both responsive timings are in Table 4. These
423 quotes indicate an important point we will return to later: even when farmers are using strategies
424 thought to minimize the potential for N loss, like in-season application (Robertson et al., 2013),
425 heavy rain events can still cause loss that farmers feel must be responded to via more N.

426 **Table 4: Farmers’ comments illustrating responsive quick-fix adaptation, in the**
427 **earlier and late season**

428
429 “[I adjust my N rate] year to year based on rainfall. That’s the big thing, just because of
430 the nitrate. It’s a very mobile nutrient and it can get flushed out of the system. Last
431 summer, no not last year, you go back two years and then probably [the past] 4-5-6 years
432 have been pretty wet [in] May and June. And just the amount of rain we’ve had has made
433 us add an additional 50 pounds of [N at] sidedress, just because the rain flushes it down

434 the system" (IA02).

435
436 "I don't know if it was an advantage or not, but some of the guys were thinking they had
437 to come back in with a later application of nitrogen because of all the rains" (IN50).

438
439 "And, like I said, the other nice part about the sidedress is you can kinda, you have a plan
440 of what you're gonna put on, you can adjust that knowing that you probably didn't lose
441 any [N, or lost some [N]. Adjust the rate to make up for those issues that we deal with on
442 managing nitrogen" (IA03).

443
444 "[I]n recent years, I don't know if you're familiar with Hagie manufacturing, [they] make
445 a tool bar...These are high clearance sprayers to sidedress [over tall, late season corn].
446 Some farmers in recent years have used it as, well, they put an extra 40-50 pounds [of N]
447 on because they felt they lost [applied N] with wet springs. That is the way most people
448 utilize it" (IA01).

449
450 "Last year, I was putting all the nitrogen on at the sidedress time and ended up with 7
451 inches of rain in the week after I put it on. And I was like, 'ok, we'll see what happens'.
452 And so when I got my corn stalk nitrate test, I could see it said that the nitrogen got
453 away" (IA04).

454
455 "[We've] had over 11 inches of rain since then, since sidedressing. So that totally
456 changes how much nitrogen [you need to apply]" (IA32).

457
458 "And then we'll follow up with [after sidedress], we'll take a test to see how much
459 rainfall we've had to see if we need to add any more with the sprayer" (IA34).

460
461 "Extreme years like this I suppose... we've got a field or two where we did decide to add
462 a little bit more and that's with the dry urea over the top with like a box, high clearance
463 buggy, so I'd say this year is pretty extreme with that case, and so we did a little bit of
464 that" (IN34).

465
466 "We have difference, of course, from season to season with annual rainfall—this year
467 [rainfall] being exceptionally high. When we have that occur, we can anticipate some
468 nitrogen loss. Especially with those that put down a lot of [N] preseason and that can
469 trigger or generate demand for late season nitrogen to try and achieve their yield goals"
470 (IA22).

471
472 Toward explaining why, some farmers were not enacting the second contraction of

473 capitalist via quick-fix adaptation, there are substantial differences in the average farm size of
474 those adapting via conservation and quick-fixes, with the latter group being, on average larger
475 farmers (see Table 3). While some outlying farm size values are exaggerating farm size

476 differences between these two groups, what is particularly suggestive of larger farmers being
477 more prone to quick-fix adaptation is the concentration of very large farmers using the quick-fix
478 approach (25% of this sub-group farmed over 2,700 acres, where no conservation-adapting
479 farmer farmed over 2,000 acres) and the concentration of very small farmers in the conservation
480 group (25% of the sub-group farmed under 1,000 acres, where only 10% of the quick-fixes
481 farmed less than 1,000). On the whole, quick-fix farmers in our sample tended to be operating
482 larger farms compared to conservation adaptation farmers. A few farmers suggested that this was
483 because operating larger made it more difficult, cognitively and in terms of time management, to
484 carefully manage N application. For instance, “The bigger you get sometimes the less efficient
485 job you can do” (IA34).

486 These findings suggest that interviewed farmers operating larger farms are adapting to
487 heavy rain events in a way that accelerates agricultural contributions to climate change (i.e.
488 quick-fix adaptation). Overall, the prevalence of quick-fix adaptation we reveal in this section
489 accords with O’Connor’s (1988) second contradiction of capitalism thesis that environmental
490 barriers to production in capitalist sectors will be overcome in a way that accelerates
491 environmental destruction, in this case climate change and the impact of heavy rain events. We
492 now turn to exploring why farmers primarily used these quick-fix strategies. Following our
493 theoretical framework, we examine the role of structural conditions and first explore if we see
494 pressures and outcomes similar to the ToP.

495
496 **HOW TREADMILL CONDITIONS SHAPE FARMERS’ N USE**
497

498 ***ToP Pressures and the need for N***
499 The ToP model depicts an agricultural system in which capitalist growth logic and competitive
500 pressures motivate and compel continual efforts to maximize production. Interviewed farmers,

501 speaking at the level of individuals within this system, frequently commented on the political-
502 economic pressures of this system and how they shaped management decisions. These pressures
503 include debt, tight profit-margins and competition for land. The sample of interview responses
504 below illustrates the presence of these pressures and their influence on their decision-making:

505

“Most of us have debt, and so I’ve tried to remember that, [...] You want to be
really cost-effective” (IN44).

“You know, just concern if it’s gonna be enough [production/profits] to get me
through [to another season]” (IA03).

“With profits being so small anymore you don’t want to change a whole lot
because it’s going to affect the bottom end” (IN20).

“It’s competition. Sure. The thing of it is, it seems like the big guys are getting
bigger, the little guys are getting smaller” (IN14).

“That farming community has disappeared because you have less farmers and they
are your competition. I don’t like sharing a whole lot of information with them
because I think they are my competition” (IA20).

506

507

ToP pressures like these farmers describe are engrained at multiple levels, translated from
508 structural goals to practical imperatives by the actions of various institutions and actors across
509 the agricultural system. Federal crop insurance bases insurance-levels on famers’ average yields
510 by field. To ensure their potential payments were high, farmers strove to ensure yields are
511 consistently maximized:

512

“Yeah, we’ve been fortunate to have a good proven yield on our farm and we want to
513 maintain that. And it does help our premium on our crop insurance, so I want to grow the
514 best crop I have out there. So, I will try to make sure I feed it [by applying enough
515 nitrogen]” (IA03).

516

517

518

519

In addition, farmers feel they are locked in by market prices and conditions making it a

requirement that they maximize production and cut costs. For example, one Iowa farmer

explained: “Everything I buy is retail and I have no control over the pricing of my end product. .

520 . I have no control over that . . . I cannot build in a margin of profit. I cannot say well I'm gonna
521 mark up my corn 20% to cover my costs here" (IA38).

522 Agricultural advisors also shape farmers' management practice decision-making and,
523 when associated with fertilizer dealers, are key personal conduits that can encourage farmers to
524 pursue greater and greater levels of production (and N fertilizer use), to the benefit of their own
525 sales (Stuart et al., 2012, 2018). One farmer, IN11, invited his fertilizer-dealer associated advisor
526 to meet with us during his interview and the advisor's comments reveal how he encouraged the
527 farmer to pursue ever greater production:

528 "People like [IN11] and other growers are looking... they're looking back and saying
529 'Hey, we are consistently raising a better crop every year, but mathematically and
530 scientifically to get to this next tier are going to have to have more nitrogen, based on
531 university results and testing.' So that's what we talked about for next year, [we] think
532 we're probably going to have to add about 20 pounds [of N per acre], maybe 30. It's
533 something we're going to have to discuss, to next year's program and continue to go from
534 there, because he is wanting to raise his yield goal, he wants to make more money, just
535 like everybody."

536
537 The advisor's discussion captures how multiple factors at multiple levels come together to
538 pressure farmers to pursue ever more yield/production: practical, individual rewards, normative
539 materialistic values, instrumental logic that more is better, competitive pressures and debt
540 burdens. But the advisor's own implicit pressure, 'you need to grow more and I can show you
541 how,' is also present.

542 These comments are not exhaustive, nor are they meant to be. They do reveal how
543 structural pressures of the ToP to maximize production/profits are translated to and reinforced in
544 farmers' decision-making through multiple processes and across multiple levels of influence.
545 Indeed, these pressures are extensive and embedded enough that without prompting, nearly half
546 of all farmers interviewed (44%) explicitly mentioned that their primary goal was to be profitable
547 and maximize production. Given the presence of these pressures, maximizing profitability is a

548 top-priority in agricultural production. The farmer working with this above quoted advisor
549 illustrates this perspective well in saying: “Profit driven, you know, productivity driven, that’s
550 the way I think you need to be if you want to be in business” (IN11).

551 N use is caught up in the pursuit of production and profits in the Midwestern row-crop
552 system. The above comments begin to suggest how the two are intertwined. Sufficient N are a
553 perquisite to maximum yields and, often, adding more N is a key means toward increasing more
554 production. Given political-economic pressures, farmers emphasized that increasing N use,
555 along with implementing other production technologies, is a key means to achieve production
556 and profit imperatives. One farmer, for instance, commented on how he used increased N rates
557 as part of an overall strategy to increase production: “...Last year we had our best corn ever
558 putting 150 pounds of nitrogen down. We averaged over 180 bushel an acre of corn. And this
559 year wanted to see if perfect storm and everything lines up again, was nitrogen the determining
560 factor from getting us higher? So bumped [our N rate] up there” (MI20). Similarly, and
561 relatedly, any reduction in N use, particularly on an annual basis, was seen as a production
562 barrier and thus profit-imperatives discouraged considerations of using less N: “This is an age-
563 old question [about] nitrogen. ‘Are we getting too much [N] in the Gulf of Mexico because we’re
564 putting too much on? Blah, blah, blah.’ And every time I’ve thought: ‘You know I can cut this
565 back 10, 15 pounds and acre,’ [but] before the year is over with, I’m wishing I hadn’t. It shows
566 up [through reduced yields/profit]” (IN30). Concern that deficient N levels was a barrier to
567 production was widely held. Across all 154 interviewees, all commented that lower N use, to any
568 extent, would put them at significant risk of not achieving maximum profits on an annual basis
569 (some did hope that future technology would allow them to reduce N use though). This is also
570 well illustrated by one farmer who discussed the consequences of any reduction in N use, saying

571 that if he was to allow N levels to be deficient in his soils: “What kind of safeguard [would] you
572 have for me from an economic reality? Do you go off my balance sheet and where I have debt,
573 and it shows I need to service that debt, do you guarantee me that I’m going to get enough corn
574 production to substantiate that?” (IN44). Some even specifically noted how this concern about
575 having enough N is caught up in the structural conditions:

576 “I guess you’d be concerned that you’re hurting yourself on the yield. We do need to live
577 with the economic system that we have, but I think, you know, that would be my concern
578 would be if I cut back too much” (IA04).

579
580 Additional quotes on the importance of sufficient N to production goals and farmers’ views that
581 even more N is a means to achieve more production are displayed in *Table 5*.

582 As these quotes suggest, to interviewed farmers it was impossible to withstand the
583 consequences of lower N use, production declines in yield. Our interviews reveal that farmers,
584 facing ToP imperatives, see sufficiently high N levels as necessary in this competitive system
585 and use N as an input to achieve and even increase production/profits in a ToP like-fashion.
586 Having established what kind of system farmers operate and use N within, we now turn to more
587 specifically exploring how because of the profit-imperatives of this system, quick-fixes are a
588 rational adaptation choice for farmers.

589
590 **Table 5: Farmers’ comments illustrating the use of sufficient/high N to achieve
591 production/profits**

592 “It seems like [nitrogen is] the most controllable and readily available way to the farmers
593 to boost yield” (IA13).

594 “When you’re talking five-dollar corn, you can’t dicker around and short yourself on
595 nitrogen. I know a lot of these people think they’re going to save their way to prosperity
596 and that’s bull crap… Anyway, we don’t screw around with nitrogen” (IN15).

597
598 “I’ve been increasing [N rate] a little bit the last couple years” (IA48).

599
600 “I’ve probably increased how much nitrogen I’ve put on. I’m probably putting on 60-70
601 units more than I used to. [...] And it paid. My yield went up quite a bit. I know corn
602 needs nitrogen if you’re gonna get good yields out of it. I can see that” (IA39).

603
604 [We've] maybe increase the [N] rates a little bit over the past few years [to enable
605 greater] yield potential" (IN39).
606
607 "I'd hate to cut back too much because you could lose quite a bit of yield" (IN36).
608
609 "If you're short of nitrogen you're going to hurt your yield. You can cheat the others a bit
610 but not the nitrogen" (MI47).
611
612 "Concern about dropping our economics enough; sacrificing net profit" (IA14).
613
614 Am I going to be able to pay my bills with less nitrogen... Is my corn going to be able to
615 produce with less nitrogen to pay the bills? I guess that's what will really influence me"
616 (IN48).

617
618 **Adaptation decision-making: quick-fixes make sense in the agricultural treadmill**
619

620 Given ToP pressures, farmers must ensure that heavy rains do not lead to deficient N levels and
621 thus threaten yields/profits. In the following sections, we examine how these pressures and the
622 need to maintain sufficient N shapes farmers' primary use of the quick-fix adaptive approach.
623 Reflecting our second premise from the ToP framework, we expect that due to ToP pressures,
624 (2a) farmers' dominant use of quick-fixes (shown above) is because conservation strategies are
625 perceived to not effectively or profitability ensure maximized production/profits as an adaptive
626 responses to heavy rain events and (2b) they will have employed quick-fixes even if farmers
627 recognize their environmental consequences because of the constraints of profit-prioritization.

628 *Ineffectiveness of conservation practices*

629 ToP pressures to ensure sufficient N and maximized profits limited farmers' reliance on
630 conservation practices adaptation practices. Farmers had widely adopted conservation N
631 management strategies as general practices to increase N use efficiency. Of the entire sample,
632 over 74% used at least one conservation N management practice generally, and 39% percent
633 used at least two—these practices aligning with those considered to be conservation adaptation
634 strategies. However, the use of these strategies did not prevent farmers from reporting N loss

635 from heavy rains in recent years—38 of the 58 farmers who reported N loss were using N
636 conservation practices (mostly multiple, in-season applications) as general practices (and not as
637 adaptive practices). Farmers' comments illustrate these experiences and suggest that the
638 unreliability, along with high costs of some conservation adaptation reduced their reliance upon
639 them as adaptive strategies.

640 In many cases, farmers expressed uncertainty over whether cover crops would provide
641 any reduction in N loss (among other agronomic benefits). As a live organism, the benefits
642 derived from cover crops depend on successful growth and development—something that is, just
643 like N loss, vulnerable to seasonal fluctuations in weather/climate (Bergtold et al., 2012).
644 Farmers noted how cover crops were not reliable: "I like cover crops; it's just they're kind of hit
645 and miss, sometimes I have very good luck with cover crops as far as establishment in the fall
646 and sometimes it's pretty scattered; that's the biggest problem with cover crops" (IN40). Another
647 farmer similarly said: "I had never done cover crops before. Last year I [enrolled] 500 acres [in a
648 federal program that paid me to plant cover crops, but] I couldn't get [them] planted because it
649 was wet" (IA47). Others noted that cover crops they had used were not, in their view, effectively
650 holding and releasing N: "To say I'm seeing benefit from nitrogen release from the cover crops
651 so far, not really" (IN10), or that they were just unsure of what the benefits of covers had been:
652 "Now I have been using cover crops, and I'm not really sure yet how much nitrogen they are
653 absorbing and providing. It's hard to tell" (IN40). Uncertainty of whether cover crops could be
654 planted or would provide benefits led some farmers to not use cover crops, while others used
655 cover but did not rely on them: "I'm not planning on using less nitrogen fertilizer next year
656 because I'm going to use cover crops this year" (IA28).

657 Like cover crops, using multiple applications suffers from dependability issues. Across
658 the sample, in-season N application was a very common practice, with 101 out of 154 of farmers
659 interviewed using in-season application methods to apply N and it was generally recognized by
660 farmers to have economic and environmental benefits. But, as we illustrated above (see page 10),
661 using multiple application timings does not ensure N loss will not occur and even when farmers
662 were using multiple timings (e.g. pre-plant, at-planting, sidedress, and/or late-season), heavy
663 rains events could lead to N loss. To affirm this point, one farmer's comment is suggestive: "Last
664 year, I was putting all the nitrogen on at the sidedress time and ended up with 7 inches of rain in
665 the week after I put it on [...] when I got my corn stalk nitrate test [results back], I could see it
666 said that the nitrogen got away" (IA04). In short, in-season application does not ensure N
667 loss will not occur. That 20 of the 32 farmers who reported increased N rates were using in-
668 season application exclusively as a general N management practice (and not as an adaptive
669 strategy) maybe best illustrates its ineffectiveness as an adaptive strategy for insuring N loss did
670 not occur from heavy rains.

671 And as with the other conservation practices, farmers noted consistency issues with N
672 stabilizers, in particular, Michigan farmers:

673 "I have [used stabilizers] in the past, but I really didn't see a lot of...a lot of difference"
674 (MI8).

675 "We've worked a little bit and looked at nitrogen inhibitors [i.e. stabilizers]. Typically,
676 what happens to us here is physical movement of material through these coarse textured
677 soils with excessive water, and that happens even if you put an inhibitor in there" (MI9)

679 "I've played with [stabilizers in the past] and never seen any difference" (MI34).

680 Adding to reliability issues was the price of stabilizers. They were seen to be expensive by
681 farmers and some discussed how high costs of stabilizers, combined with unreliability
682 discouraged reliance on this adaptive strategy:

685 “I am not sold on... Oh, like that ESN [Environmentally Smart Nitrogen] and things that
686 tie up the nitrogen [stabilizers], they seem to be awfully expensive for what you get and
687 I’ve found that... We’ve actually tested them, and I found that, you know, the same
688 amount of nitrogen did just as good [in terms of yield] whether it had that in it or not”
689 (MI17)

690
691 “N serve can help a little, but you know its maybe only 30% effective a lot of times.
692 Which is, for your money, I don’t know” (IN11).

693
694 “I have tried [stabilizers] in the past, and had very mixed results, most of the time non-
695 favorable... In a side by side comparison, you know, [my stabilized ground] was 15
696 bushels an acre less on yield and I think [it was] like around \$35 more of cost in the
697 fertility end of it” (MI3).

698
699 “We’ve experimented with stabilizers, and we actually used some a couple years ago, and
700 it’s pretty expensive, and I had absolutely zero difference in yield” (MI38).

701
702 In addition to reliability issues, other farmers noted that cost discouraged their use of
703 conservation practices. Some mention of this was made to cover crops: “Cover crops are a great
704 thing but you’re going to run into maybe \$20 or \$30 an acre worth of costs to do it” (MI21). But
705 most farmers who noted cost as an issue were focused on stabilizers: “I was willing to pay that 8
706 or 10 bucks an acre [for stabilizers, but my fertilizer dealer] didn’t feel like it was a definite pay
707 off [...] How much more nitrogen could you buy for 10 bucks an acre? More than 10 pounds...”
708 (IN23). Farmers commonly focused on how given the cost of stabilizers, they used more N in an
709 anticipatory fashion instead (see Table 6).

710 **Table 6: Farmers adapting via quick-fixes instead of stabilizers**

711 Yeah, it’s cost [that discourages my use of stabilizers]...I guess I look at it [like this]: Instead of
712 using stabilizer I’d probably put more units [of N] on to start with” (MI21).

713
714 “We utilized Agrotain, NutriSphere and one other [stabilizer...] but [we moved away from
715 them]...it comes down to is it making your money” (MI32).

716
717 “The cost of the N serve was prohibitive. It’s the same cost whether you put on 40 or 180
718 pounds. We were paying about as much as the nitrogen [per acre]. We decided that was a bad
719 deal!” (IA19).

720
721 “No, [we don’t use stabilizers]. Well, if we sidedress, you can tell where you need to put more
722 [N] on or not, usually” (IN25).

723
724
725 Noted above, ToP pressures drove farmers to feel that sufficient N levels were mandatory
726 to maintain production and profits. Conservation adaptive practices, as we have illustrated here,
727 were perceived as either unreliable and ineffective, or in the case of stabilizers, as more
728 expensive than using more N, which was equally or more effective at ensuring N deficiencies did
729 not occur. In short, these practices could not ensure sufficient N for maximized production as
730 effectively or cheaply as just adding more N (Sherriff 2005). In consequence, farmers could not
731 rely on conservation practices to adapt to heavy rain events, as doing so could lead them to fail to
732 achieve maximized profits and thus to face the consequence of ToP pressures. One farmer,
733 discussing conservation adaptation practices, particularly cover-crops, illustrates how economic
734 pressures influence this decision:

735 "And I think most farmers are in tune with wanting to do the right thing for the
736 environment, the right thing for the climate. But we also have to look at that, and our
737 margins are thin enough now that we have to look at these type of changes as, 'Is it
738 something we can add and it's not going to hurt us, not only short-term but long-term,' as
739 far as the financial picture. 'Can we include these types of practices and be
740 [economically] sustainable?'" (IN35).

741
742 Indicated by farmers' above noted adaptation via quick-fixes, the answer to this farmer's
743 question was often "no." Instead, most farmers relied on quick-fixes, often using more N, as
744 more N directly replaces N lost from heavy rain events and additional application is relatively
745 inexpensive given the price of N to corn (1/10th the price in the year if the interviews) and
746 consequently results in net profits if it boosts yield (Sherriff 2005; Robertson 1997). As this
747 section suggests, the quick-fix of more N is more widely used because it better enables farmers
748 to meet the ToP demands for maximized production and profitability.

749 *Quick fixes, the environment and constrained choices*

750 As conservation strategies were seen as ineffective or too expensive, farmers used more N to

751 ensure they are not in jeopardy of suffering at the pressures of the agricultural ToP. Farmers
752 discussed this decision as a constrained choice, noting their desires to minimize agriculture's
753 environmental impacts via N use. Only one farmer recognized that N use contributed to N₂O
754 emissions, but almost all were generally aware of and believed that N use is related, at least in
755 part, to water-pollution (144/154). Farmers commented on how despite their water-quality
756 stewardship concerns, they could not only adapt via conservation strategies, and/or simply
757 withstand the loss of N from heavy rains. Because of the need to annually maximize yields,
758 farmers felt compelled to adapt via more N, even when this ran counter to their environmental
759 ethics. As one illustrated, despite his best intentions, he discussed adding more N as a
760 constrained choice:

761 “Anytime there is adverse weather, [N rate] becomes a difficult decision, cause you
762 don’t want to be bad to the environment ... I think most farmers are thinking more about
763 the environment... most people are trying to do a good job and apply what is needed, not
764 to throw on a little extra [N] just so we don’t run out. And so that is why it makes it more
765 difficult, *if weather changes you have to add more [N] than you plan*” (IA08 [emphasis
766 added]).

767
768 This farmer represents the responsive users of quick-fixes, and his comment indicates how
769 despite best efforts to minimize N use and the potential for N loss from heavy rains (he used
770 multiple, in season applications), heavy rains still can cause N loss that demand additional N use.
771 Another commented similarly with regard to insurance, or anticipatory N rates. He stated, “you
772 never know what’s going to happen from the time you apply [N] to the time the crop needs it
773 [with regard to rain events]. While we don’t like to see [N] get into the water supply, how do you
774 know what to change it to?” The consequence of this unknown being increased N rates, which
775 he saw as “a type of insurance” (IN03). Similarly, another farmer wished to undertake system-
776 level crop diversification changes to deal with row-crop agriculture's vulnerability to climate
777 change: “I’m more of the mind that we better be diversifying, because nature’s best means of

778 survival is diversity. And corn and soybean rotation is not diverse. I don't know if that is
779 contributing to climate change, but if we're gonna survive climate change, it's gonna have to be
780 something different than corn and soybeans," However, if he felt like he had lost N in-season, he
781 ultimately added more N to ensure he did not experience yield loss: "If there has been an
782 exceedingly wet year, like last year, sometimes we'll bump up the rate in a couple spots, if we
783 think the corn will respond to it, if we think we've lost any [N]" (IA13). Even when farmers wish
784 to respond to heavy rains in ways that minimize environmental consequences, like conservation
785 strategies, they feel compelled to prioritize economic-ends and thus to use the quick-fix of more
786 N.

787 Farmers discussed how political-economic pressures and system-level profit imperatives
788 drove them to be more concerned about profits than environmental outcomes in farm decision-
789 making. In response to a question about what factors shaped his N management decisions, one
790 Indiana farmer stated: "[Y]ou don't have guys out here that completely want to ignore the
791 environment, you know; we might not always think about it first, but we aren't trying to just
792 screw things up either. We're trying to make money first, hate to say it, but ...we're in a
793 capitalist society" (IN23). Others similarly commented on the need to prioritize profitability in
794 agricultural production give ToP profit-imperatives:

795 "I mean as much as everything [i.e. the environment] is important, we're still here to
796 make a profit on the farm" (IA08).

797
798 "The water quality has definitely gone down in Iowa over the last 50 years and I think
799 that's, farmers haven't felt that it was their problem, I don't think. I think they feel like,
800 well, this is what I, what the economy is asking me to do. I'm doing what I'm supposed
801 to as a farmer. Produce the most corn that I can" (IA04).

802
803 "I wouldn't be cutting fertilizer [rate] to save the spotted toad or something like that, if
804 it's going to cost [in yields]...Especially when every neighbor around you isn't doing
805 [it]... I mean, everybody around here is [...] driving an economic train and it's very
806 competitive and you gotta be right there with it" (IN16).

807
808 “I think a lot of it boils down to the economics of it. It comes right down to we want to be
809 good stewards, but economics drive a lot” (MI45).

810
811 Farmers had a limited capacity to make decisions based on environmental concerns, given
812 system-level pressures to achieve short-term profitability. Within this ToP agricultural structure,
813 that demands consist profitability and de-emphasizes environmental concern, adaptation to heavy
814 rain events via conservation adaptive practices did not compare well with the quick-fix response
815 of adding more N. The environmental consequences of these actions, in the long-term are either
816 unknown (climate change) or cannot be considered given the need to maintain profitability in the
817 short-term.

818 **DISCUSSION**

819 Our results closely resemble the two theoretical frameworks we employ—O’Connor’s (1988)
820 model of the expanding contradictory nature of capitalism related to its environmental basis for
821 production and Schnaiberg’s (1980) Treadmill of Production (ToP). In the first section, we show
822 the majority of adapting farmers responded to heavy rains by using more N fertilizer, which
823 releases more N₂O emissions and thus further contributes to climate change and heavy rain
824 events (Hoben et al., 2011; Millar et al., 2010). Farmers’ quick fix adaptive responses to climate
825 change largely accord with the theoretical premise of O’Connor’s (1988) second contradiction
826 thesis: environmental barriers to production will be responded to in ways that ultimately further
827 contribute to environmental destruction and thus in the long-term further undermine production.

828 In contrast to an activity like clear-cutting a forest, that immediately destroys the basis of
829 production, climate change unfolds slowly over time and the specifics of outcomes are unknown.
830 The temporal distance between quick-fix adaptive actions *now* and the impacts of climate change
831 *later*, as well as the uncertainty involved in future impacts, make this case of the second

832 contradiction of capitalism seem less direct and obvious. Nitrous oxide (N₂O) from fertilizer is
833 also only one of many emissions contributing globally to climate change, making agricultural
834 emissions seem spatially diffuse. The impacts to water quality are also spatially distant (e.g., the
835 “dead zone” in the Gulf of Mexico) and therefore less obvious. While these impacts were not the
836 focus of our study and do not contribute to undermining production in the same way that GHG
837 emissions do, water pollution also illustrates the challenge in agriculture of linking
838 environmental impacts to actions given the spatial and temporal scales of the impacts. Despite
839 these differences in scale, the realities of the relationships between N fertilizer and climate
840 change match the trends depicted in O’Connor’s (1988) second contradiction.

841 In the second section, we focus on how ToP pressures shape farmers’ adaptive decisions. Results
842 indicate that one reason for adding more N in response to heavy rain events is the ToP pressures
843 drive decision-making. Interviewed farmers utilize the production input of N fertilizer in ways
844 that accord with the structural drive to accumulate in capitalism. The system-pressure to
845 maintain/expand production noted by Schnaiberg (1980) were translated to interviewed farmers
846 through various, cross-scale processes, such as competition for land, crop insurance policies and
847 sources of agricultural information and drove them to feel like sufficiently high N levels were
848 mandatory. While few studies have depicted N as a specific component in this treadmill-like
849 system of capitalist agriculture, we are in good company in considering the expansionary system
850 of capitalist agriculture as one that constrains farmers’ decision-making toward prioritizing
851 economic imperatives and ultimately is leading to ever-greater environmental degradation that
852 threatens the viability of the system in the not so long-term (Hendrickson et al., 2019;
853 McMichael, 2009; Weis, 2010). Similar to past work, our interviewees saw conservation
854 adaptation practices, including in-season application, cover crops and stabilizers, as too

855 expensive or unreliable at ensuring heavy rains did not lead to N loss and untenable deficiencies
856 (Basche & Roesch-McNally, 2017; Roesch-McNally et al., 2018c). In contrast, more N directly
857 ensures N deficiencies are not present and can do so in a more cost-effective manner, as has been
858 widely noted (Arbuckle & Rosman, 2014; Sheriff, 2005; Stuart et al., 2012). In short, the “quick-
859 fix” response is better at achieving profit-imperatives demanded by ToP pressures. Even among
860 farmers who strove to minimize their environmental impacts, they expressed the need to use
861 more N due to the need to maximize production and achieve profitability. As this suggested,
862 mal-adaptation is not just a consequence of ignorance, or willful prioritization of short-term
863 rewards. Instead, we cannot (or at least should not) disassociate farmers’ use of a quick-fix,
864 contradictory adaptive strategy from the ToP system in which they operate. In a system where N
865 is the “cornerstone” input of production (Wolf and Buttel, 1996), one cannot be without it in
866 sufficient quantities. The ToP of agriculture makes additional N a rational reaction and
867 conservation practices a riskier response. In this way, structural production imperatives
868 constrained farmers’ adaptive decision-making in response to heavy rains toward quick-fix
869 strategies, making even those who wish to prioritize long-term environmental goals focus on the
870 short-term economic realities. This suggests that the political-economic structure encourages
871 farmers to respond to the climate impact of heavy rains in ways that accelerates the
872 environmental contradictions of industrial agriculture, reflecting O’Connor’s (1988) theoretical
873 premise.

874 This finding aligns well with prior work that has revealed how even farmers who intend
875 to undertake conservation practices can be contradicted by their short-term productivity goals
876 (Roesch-McNally et al., 2018b). It also engages with the prior literature emphasizing that
877 adaptive decision making among Midwestern farmers is shaped to a great degree by system-level

878 path-dependencies (Roesch-McNally et al., 2018a), where many farmers are ‘locked-in’ to the
879 production-oriented practices and thinking of capitalist agriculture (Dentzman & Jussaume,
880 2017). While this prior research primarily highlights the barriers this system puts in place to
881 conservation adaptation practices, we reveal how it also pushes farmers to use practices that
882 reduce vulnerability to climate change, but ultimately accelerates the rate at which agricultural
883 production contributes to climate change and thus expands its contradictory nature by further
884 undermining the environmental conditions upon which the system depends to function.

885 Importantly, in terms of acres farmed, some large farmers were capable of using
886 conservation strategies and some small farmers used quick-fixes, but in general our results
887 indicate that smaller farmers in our sample were less likely than larger interviewed farmers to
888 employ quick-fix strategies (see pp. 14). Noted above, a few respondents argued this was a result
889 of smaller farmers being more able to intensively manage their land, and thus less likely to opt
890 for the ‘easier’ quick-fix approach. Additionally, smaller farmers likely derive a lower
891 percentage of their household income from their farming activities, and thus face less risk from
892 heavy rains events, because they are less dependent on annual profitability and on maintaining
893 the farm for their and their families’ livelihoods. In either case, among interviewed farmers in
894 our sample, not all were equally prone to use quick-fix adaptation. Given the qualitative nature
895 of our sample, future quantitative studies using representative samples must assess if this finding
896 is generalizable to the larger population of farmers. This work may also benefit from giving more
897 attention to why some farmers can rely exclusively on conservation practices.

898 In addition to the political-economic structure we focused on this study, other factors
899 contribute to quick-fix adaptation. In part, this is an issue of who suffers consequences of more N
900 and when those consequences will be experienced. Quick-fixes are a rational choice for any

901 individual farmer. More N both objectively improves and is perceived to improve farm-level
902 adaptive capacity to heavy rain events. However, at greater scales of aggregation (e.g. landscape
903 or regional) and at (relatively) distant points in time, this practice increases all farmers' and
904 indeed society's vulnerability to climate change. As past, adaptation literature has suggested, part
905 of the reason quick-fix practices are employed by individuals or communities is due to the
906 spatially dispersed and temporally distant consequences they sow (Moser & Ekstrom, 2010).

907 CONCLUSION

908 Reflecting O'Connor's (1988) second contradiction thesis, this study preliminarily indicates that
909 many farmers in the Midwest are responding to climate change in a 'contradictory manner', that
910 will ultimately increase GHG emissions and the likelihood of future climate related challenges.
911 Building on O'Connor, this paper reveals how farmers are undertaking this practice because the
912 competitive, treadmill-like agriculture system pressures that Schnaiberg (1980) outlines. This
913 system constrained their adaptive choices, leading many to prioritize profitability and use the
914 "quick-fix" of more N because it was the most effective means to achieve this end in response to
915 heavy rain events.

916 At this point, our findings suggest we should be concerned that many farmers' adaptive
917 practices for N management are potentially contributing to the increased severity of these climate
918 impacts and that there is a need to further explore the extent that farmers are using quick-fix
919 adaptive practices. In particular we feel survey research is needed to better assess the prevalence
920 of quick-fix adaptive strategies and the full range of strategies being employed. In this way,
921 future research can further assess the introductory arguments and findings in this paper. Recent
922 events may be making the occurrence of quick-fixes particularly acute among US corn and soy
923 farmers in the Midwest. President Trump's tariffs have substantially lowered the price of

924 soybeans for US farmers (Higgins, 2019). At the same time, heavy rains and flooding prevented
925 the planting of a significant percentage of agricultural land in the Midwest during 2019, leading
926 corn prices to rise significantly (Kliesen, 2019). The farmers that were able to plant corn will
927 likely be especially intent on ensuring further heavy rains do not limit their corn yields. In short,
928 contemporary farmers may be widely using quick-fixes given these dynamics. Future studies
929 should continue to explore this potential.

930 Future research in this area would also benefit from exploring the group of farmers this
931 study gave little attention to: Those using conservation practices to reduce their N's vulnerability
932 to climate change. Though political-economic context may constrain farmers, some farmers can
933 act within these circumstances to achieve environmental ends and short-term profit imperatives,
934 as Roesch-McNally and colleagues (2018a) also find in their study of soil conservation focused
935 adaptation efforts. Following examples like Roesch-McNally et al. (2018a), future research on
936 agricultural adaptation should build on our analysis here by giving more empirical and
937 theoretical attention to the interactive role of structural conditions and individual agency.

938 On the practical side, our results point to the need for more effective policy options to
939 sustain agriculture and reduce GHG emissions. Given the ToP (Schnaiberg 1980) and its impacts
940 on farmer adaptation choice, efforts that continue to focus on environmental education may help
941 but are unlikely to substantially increase the adoption of conservation N adaptation practices.
942 While a thorough review of policy options is beyond the scope of this paper, we conclude by
943 mentioning a few options that should be given consideration. First, N fertilizer remains
944 inexpensive making adding more an easy and economically rational choice; however,
945 eliminating subsidies, increasing N prices, or taxing fertilizer could greatly reduce N application
946 (Hamblin, 2009; Sergerson & Walker, 2002; Stuart & Gillon, 2013). Second, most of the corn

947 grown in the Midwest is not produced for human consumption but for ethanol or cattle feed –
948 both uses that should be reduced or eliminated on the basis of energy efficiency, GHG emissions,
949 and environmental impacts (Crutzen et al., 2016; Donner et al., 2008; Shepon et al., 2016). We
950 acknowledge that these strategies, while likely effective, would face considerable opposition
951 from agribusiness, especially corporations invested in fertilizer, seed, and livestock production
952 (Hauter, 2012). However, they are possible and based on likely effectiveness should be
953 increasingly considered. While the responses to climate change we identified in this study
954 represent quick-fixes that ultimately increase GHG emissions, future responses must be guided
955 by policies that reshape production systems to prioritize mitigation and adaptation along with
956 promoting changes that encourage on-farm and broader landscape-scale resilience.

957

958 **REFERENCES**

959

960 Arbuckle Jr., J. G., Prokopy, L. S., Haigh, T., Hobbs, J., Knoot, T., Knutson, C., Loy, A.,
961 Mase, A. S., McGuire, J., & Morton, L.W. (2013a). Attitudes toward adaptation and
962 mitigation among farmers in the Midwestern United States. *Climatic Change*, 117(4), 943–
963 50.

964 Arbuckle, J. G., & Rosman, H. (2014). *Iowa farmers' nitrogen management practices and*
965 *perspectives*. Extension Report PM3066. Ames, IA: Iowa State University Extension.

966 Arbuckle, J. G., Morton, L. W., & Hobbs, J. (2013b). Farmer beliefs and concerns about
967 climate change and attitudes toward adaptation and mitigation: Evidence from Iowa. *Climatic*
968 *Change*, 118(3-4), 551-563.

969 Bergtold, J. S., Duffy, P. A., Hite, D., & Raper, R. L. (2012). Demographic and management
970 factors affecting the adoption and perceived yield benefit of winter cover crops in the
971 southeast. *Journal of Agricultural and Applied Economics*, 44(1), 99–116.

972 Blesh, J. (2018). Functional traits in cover crop mixtures: Biological nitrogen fixation and
973 multifunctionality. *Journal of Applied Ecology*, 55(1), 38-48.

974 Blesh, J., & Wolf, S. A. (2014). Transitions to agroecological farming systems in the
975 Mississippi River Basin: Toward an integrated socioecological analysis. *Agriculture and*
976 *Human Values*, 31(4), 621-635.

977 [CCPSWG] Climate Change Position Statement Working Group (2011) Position statement
978 on climate change. Working Group Rep. ASA, CSSA, and SSSA, Madison.

979 Carrington, D. 2018. Avoiding meat and dairy is 'single biggest way' to reduce your impact
980 on Earth. The Guardian. May 31, 2018.
981 [https://www.theguardian.com/environment/2018/may/31/avoiding-meat-and-dairy-is-single-](https://www.theguardian.com/environment/2018/may/31/avoiding-meat-and-dairy-is-single-biggest-way-to-reduce-your-impact-on-earth)
982 [biggest-way-to-reduce-your-impact-on-earth](https://www.theguardian.com/environment/2018/may/31/avoiding-meat-and-dairy-is-single-biggest-way-to-reduce-your-impact-on-earth)

983 Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative
984 analysis. London: Sage.

985 Clark, B., & Foster, J. B. (2009). Ecological imperialism and the global metabolic rift
986 unequal exchange and the guano/nitrates trade. *International Journal of Comparative*
987 *Sociology*, 50(3-4), 311-334.

988 Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use
989 efficiency, and nitrogen management. *AMBIO: A Journal of the Human Environment*, 31(2),
990 132-141.

991 Crutzen, Paul J., Arvin R. Mosier, Keith A. Smith, and Wilfried Winiwarter. "N 2 O release
992 from agro-biofuel production negates global warming reduction by replacing fossil fuels."
993 In *Paul J. Crutzen: A pioneer on atmospheric chemistry and climate change in the*
994 *anthropocene*, pp. 227-238. Springer, Cham, 2016.

995 Cresswell J.W., Plano Clark V.L.. Designing and conducting mixed method research. 2nd
996 Sage; Thousand Oaks, CA: 2011.

997 Daryanto, S., Wang, X., & Jacinthe, A.P. (2017). Impacts of no-tillage management on
998 nitrate loss from corn, soybean and wheat cultivation: A meta-analysis. *Scientific Reports*,
999 7(1), 12117.

1000 Davidson, E. A., David, M.B., Galloway, J. N., Goodale, C. L., Haeuber, R., Harrison, J. A.,
1001 Howarth, R.W., Jaynes, D. B., Lowrance, R. R., Thomas, N. B., & Peel, J. L. (2012). Excess
1002 nitrogen in the U.S. environment: Trends, risks, and solutions. *Issues in Ecology*, 15, 1–16.

1003 Dentzman, K., & Jussaume, R. (2017). The ideology of us agriculture: how are integrated
1004 management approaches envisioned?. *Society & natural resources*, 30(11), 1311-1327
1005 DNR (2017). 2017 Iowa Statewide Greenhouse Gas Emissions Inventory Report. Iowa
1006 Department of Natural Resources. Available at:<https://www.iowadnr.gov/Environmental->
1007 Protection/Air-Quality/Greenhouse-Gas-Emissions
1008 Donner, Simon D., and Christopher J. Kucharik (2008). Corn-based ethanol production
1009 compromises goal of reducing nitrogen export by the Mississippi River. *Proceedings of the*
1010 *National Academy of Sciences* 105 (11): 4513-4518.
1011 [EPA] U.S. Environmental Protection Agency (2019). Inventory of US Greenhouse Gas
1012 Emissions and Sinks: 1900-2013. EPA Report 430-R-15-004. Washington, DC.
1013 [https://www.epa.gov/sites/production/files/2019-04/documents/us-ghg-inventory-2019-main-](https://www.epa.gov/sites/production/files/2019-04/documents/us-ghg-inventory-2019-main-text.pdf)
1014 [text.pdf](https://www.epa.gov/sites/production/files/2019-04/documents/us-ghg-inventory-2019-main-text.pdf)
1015 [ERS] Economic Research Service (2018). Fertilizer use and price. US Department of
1016 Agriculture. October 18. Retrieved from ers.usda.gov/data-products/ fertilizer-use-and-
1017 price.aspx
1018 Faugier, J., & Sargeant, M. (1997). Sampling hard to reach populations. *Journal Of*
1019 *Advanced Nursing*, 26(4), 790– 797.
1020 [GLISA] Great Lakes Integrated Sciences + Assessments. No Date. Extreme Precipitation.
1021 Available at: <http://glisa.umich.edu>
1022 Gunderson, Ryan. 2011. “The Metabolic Rifts of Livestock Agribusiness.” *Organization &*
1023 *Environment* 24(4):404-422.
1024 Hamblin, A., 2009. Policy directions for agricultural land use in Australia and other post-
1025 industrial economies. *Land Use Policy* 26, 1195–1204.
1026 Hauer, Wenonah. 2012. Foodopoly: The Battle over the Future of Food and Farming in
1027 America. New York: New Press.
1028 Hendrickson, M. K., & James, H. S. (2005). The ethics of constrained choice: How the
1029 industrialization of agriculture impacts farming and farmer behavior. *Journal of Agricultural*
1030 *and Environmental Ethics*, 18(3), 269-291.
1031 Hendrickson, Mary K., Philip H. Howard & Douglas H. Constance (2019). Power, Food and
1032 Agriculture: Implications for Farmers, Consumers and Communities. Pp. 13-61 in *In Defense*
1033 *of Farmers: The Future of Agriculture in the Shadow of Corporate Power* (Jane W. Gibson
1034 and Sara E. Alexander, eds.). Lincoln, NE: University of Nebraska Press.
1035 Higgins, J. (5/8/2019). Soybean prices near 10-year low after Trump's tariff threat to
1036 China. UPI. Available at: https://www.upi.com/Science_News/2019/07/15/NASA-chief-Moon-is-the-proving-ground-Mars-is-the-destination/7581563213783/
1037
1038 Hoben, J. P., Gehl, R. J., Millar, N., Grace, P. R., & Robertson, G. P. (2011). Nonlinear
1039 nitrous oxide (N₂O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest.
1040 *Global Change Biology*, 17(2), 1140–1152.
1041 Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H.
1042 (2007). Adapting agriculture to climate change. *Proceedings of the national academy of*
1043 *sciences*, 104(50), 19691-19696.
1044 [ICCAC] Iowa Climate Change Advisory Council. (2008). Iowa Climate Change Advisory
1045 Council Final Report. <http://www.c2es.org/us-states-regions/news/2009/iowa-releases-climate-action-plan>
1046

1047 [IPCC] Intergovernmental Panel on Climate Change (2007). Climate change 2007: synthesis
1048 report. Contribution of working groups I, II and III to the Fourth Assessment Report of the
1049 Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change,
1050 Geneva. Retrieved from: <http://www.ipcc.ch/ipccreports/ar4-syr.htm>.

1051 Janssen, E., D. J. Wuebbles, K. E. Kunkel, S. C. Olsen, & Goodman, A. (2014)
1052 Observational- and model-based trends and projections of extreme precipitation over the
1053 contiguous United States. *Earth's Future*, 2, 2013EF000185.

1054 Kanter, D.R. *Climatic Change* (2018) 147: 11. <https://doi.org/10.1007/s10584-017-2126-6>

1055 Karl, T. R., Melillo, J. M., & Peterson, T. C. (2009). Global climate change impacts in the
1056 United States. Cambridge: Cambridge University Press.

1057 Kliesen, K. (6/6/2019). Crop Prices and Flooding: Will 2019 Be a Repeat of 1993? Federal
1058 Reserve Bank of St. Louis, Economy Blog. Available at: <https://www.stlouisfed.org/on-the->
1059 economy/2019/june/crop-prices-flooding-2019-repeat-1993

1060 Lal, R., J. A. Delgado, P. M. Groffman, N. Millar, C. Dell, & Rotz, A. (2011). Management
1061 to Mitigate and Adapt to Climate Change." *Journal of Soil and Water Conservation* 66 (4):
1062 276–285. doi:10.2489/jswc.66.4.276.

1063 Larsen, J., T. DaMassa and R. Levinson 2007. "Charting the Midwest: an inventory and
1064 analysis of greenhouse gas emissions in America's heartland." O'Callaghan J (ed)
1065 Washington DC: World Resources Institute.

1066 Levins, R. A., & Cochrane, W. W. (1996). The treadmill revisited. *Land Economics*, 72(4),
1067 550-553.

1068 Liang, X. Z., Wu, Y., Chambers, R. G., Schmoldt, D. L., Gao, W., Liu, C., ... & Kennedy, J.
1069 A. (2017). Determining climate effects on US total agricultural productivity. *Proceedings of*
1070 *the National Academy of Sciences*, 114(12), E2285-E2292.

1071 Magdoff, F., Foster, J. B., & Buttel, F. (2000). Hungry for profit: The agribusiness threat to
1072 farmers, food, and the environment. New York: Monthly Review Press.

1073 Mase, A. S., Gramig, B. M., & Prokopy, L. S. (2017). Climate change beliefs, risk
1074 perceptions, and adaptation behavior among Midwestern US crop farmers. *Climate Risk*
1075 *Management*, 15, 8-17.

1076 Millar, N., Robertson, G. P., Grace, P. R., Gehl, R.J., & Hoben, J. P. (2010). Nitrogen
1077 fertilizer management for nitrous oxide (N₂O) mitigation in intensive corn (maize)
1078 production: An emissions reduction protocol for US Midwest agriculture. *Mitigation and*
1079 *Adaptation Strategies for Global Change*, 15(2), 185–204.

1080 Mitsch, W. J., Day, J. W., Gilliam, J. W., Groffman, P. M., Hey, D. L., Randall, G. W., &
1081 [NASS] U.S. Department of Agriculture-National Agricultural Statistics Service (2012).
1082 2012 U.S. Census of Agriculture: United States Summary and State Data, volume 1.
1083 Washington, DC: United States Department of Agriculture. Retrieved from:
1084 www.agcensus.usda.gov/Publications/2012/Full_Report/usv1.pdf.

1085 [NRCS] Natural Resources Conservation Service. (2018). Conservation practices that save:
1086 Nutrient management. Available at:
1087 https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/energy/conservation/?cid=nrcs143_023639

1088 O'Connor, J. R. (Ed.). (1998). *Natural causes: Essays in ecological Marxism*. New York:
1089 Guilford Press.

1090

1091

1092 O'Connor, James (1988). Capitalism, nature, socialism a theoretical introduction. In M. Koch
1093 (Ed.), Capitalism and climate change: Theoretical discussion, historical development and
1094 policy responses. New York: Palgrave Macmillan.

1095 Pryor, S. C., Scavia, D., Downer, C., Gaden, M., Iverson, L., Nordstrom, R., Patz, J., &
1096 Robertson, G. P. (2014). Chapter 18 Midwest. In J. M. Melillo, T. (T. C.) Richmond, & G.
1097 W. Yohe (Eds.), Climate change impacts in the United States: The third national climate
1098 assessment. (p. 418–440). Washington, DC: U.S. Global Change Research Program.

1099 Ribaudo, M., Delgado, J. A., Hansen, L., Livingston, M., Mosheim, R., & Williamson, J.
1100 (2011). Nitrogen in agricultural systems: implications for conservation policy. Washington,
1101 D.C., USA: U.S. Department of Agriculture, Economic Research Service.

1102 Robertson, P. G., Bruulsema, T. W., Gehl, R. J., Kanter, D., Mauzerall, D. L., Rotz, C., &
1103 Williams, C. O. (2013). Nitrogen-climate interactions in US agriculture. *Biogeochemistry*,
1104 114, 41–70.

1105 Robertson, G. P. (1997). Nitrogen use efficiency in row-crop agriculture: crop nitrogen use
1106 and soil nitrogen loss. *Ecology in Agriculture*, 347-365.

1107 Roesch-McNally, G. E., Arbuckle, J. G., & Tyndall, J. C. (2017). What would farmers do?
1108 Adaptation intentions under a Corn Belt climate change scenario. *Agriculture and Human
1109 Values*, 34(2), 333-346.

1110 Roesch-McNally, G. E., Arbuckle, J. G., & Tyndall, J. C. (2018b). Barriers to implementing
1111 climate resilient agricultural strategies: The case of crop diversification in the US Corn Belt.
1112 *Global Environmental Change*, 48, 206-215.

1113 Roesch-McNally, G., Arbuckle, J. G., & Tyndall, J. C. (2018a). Soil as social-ecological
1114 feedback: Examining the “ethic” of soil stewardship among corn belt farmers. *Rural
1115 Sociology*, 83(1), 145-173.

1116 Schewe, R., & Stuart, D. (2017). Why don't they just change? Contract farming,
1117 informational influence, and barriers to agricultural climate change mitigation. *Rural
1118 Sociology*, 82(2), 226–262.

1119 Schnaiberg, A. 1980. The environment: From surplus to scarcity. New York: Oxford
1120 University Press.

1121 Schnaiberg, A., & Gould, K. A. (1994). Environment and society: The enduring conflict.
1122 New York: St. Martin's Press.

1123 Segerson, K., & Walker, D. (2002). Nutrient pollution: an economic perspective. *Estuar- ies*
1124 25, 797–808.

1125 Shepon, Alon, Gil Eshel, Elad Noor, & Milo, R. (2016). Energy and protein feed-to-food
1126 conversion efficiencies in the US and potential food security gains from dietary
1127 changes. *Environmental Research Letters* 11(10): 105002.

1128 Sheriff, G. (2005). Efficient waste? Why farmers over-apply nutrients and the implications
1129 for policy design. *Review of Agricultural Economics* 27, 542–557.

1130 Smil, V. 2002. Nitrogen and food production: Proteins for human diets. *Ambio*, 31, 126-131.

1131 Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: a
1132 typology. *Mitigation and adaptation strategies for global change*, 7(1), 85-114.

1133 Smit, B., McNabb, D., & Smithers, J. (1996). Agricultural adaptation to climatic
1134 variation. *Climatic change*, 33(1), 7-29.

1135 Strauss, A., & Corbin, J. M. (1990). Basics of qualitative research: Grounded theory
1136 procedures and techniques. Newbury Park, CA: Sage Publications, Inc.

1137 Stuart D., Schewe, R.L. & McDermott, M. (2012). Responding to climate change: barriers to
1138 reflexive modernization in US agriculture. *Organization & Environment*, 25, 308-327.
1139 Stuart, D., & Gillon, S. (2013). Scaling up to address new challenges to conservation on US
1140 farmland. *Land Use Policy*, 31, 223-236.
1141 Stuart, D., & Houser, M. (2018). Producing compliant polluters: seed companies and
1142 nitrogen fertilizer application in US corn agriculture. *Rural Sociology*. Available at:
1143 <http://onlinelibrary.wiley.com/doi/10.1111/ruso.12212/full>
1144 Stuart, D., & Schewe, R. L. (2016). Constrained choice and climate change mitigation in us
1145 agriculture: Structural barriers to a climate change ethic. *Journal of Agricultural and*
1146 *Environmental Ethics*, 29(3), 369-385.
1147 Weis, T. (2010). The accelerating biophysical contradictions of industrial capitalist
1148 agriculture. *Journal of Agrarian Change*, 10(3), 315–341.
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

1183
1184
1185
1186
1187
1188