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ABSTRACT

Link prediction is one of the fundamental problems in compu-

tational social science. A particularly common means to predict

existence of unobserved links is via structural similarity metrics,

such as the number of common neighbors; node pairs with higher

similarity are thus deemed more likely to be linked. However, a

number of applications of link prediction, such as predicting links

in gang or terrorist networks, are adversarial, with another party

incentivized to minimize its e�ectiveness by manipulating observed

information about the network. We o�er a comprehensive algo-

rithmic investigation of the problem of attacking similarity-based

link prediction through link deletion, focusing on two broad classes

of such approaches, one which uses only local information about

target links, and another which uses global network information.

While we show several variations of the general problem to be

NP-Hard for both local and global metrics, we exhibit a number

of well-motivated special cases which are tractable. Additionally,

we provide principled and empirically e�ective algorithms for the

intractable cases, in some cases proving worst-case approximation

guarantees.
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1 INTRODUCTION

Link prediction is a fundamental problem in social network analysis.

A common approach to predicting a target link (u,�) is to use an

observed (sub)network to infer the likelihood of the existence of this

link using a measure of similarity, or closeness, of u and � ; we call

this similarity-based link prediction [1, 11, 19, 25]. For example, if u

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and� are individuals who have many friends in common, it may be

natural to assume that they are themselves friends. Representational

power of social networks implies very broad application of link

prediction techniques, ranging from friend recommendations to

inference of criminal and terrorist ties.

A crucial assumption in conventional similarity-based link pre-

diction approaches is that the observed (sub)network is measured

correctly. However, insofar as link prediction may reveal relation-

ships which associated parties prefer to keep hidden—either for the

sake of privacy, or to avoid being apprehended by law enforcement—

it introduces incentives to manipulate network measurements in

order to reduce perceived similarity scores for target links.

In order to systematically study the ability of an “adversary” to

manipulate link prediction, we formulate attacks on link prediction

as an optimization problem in which the adversary aims to mini-

mize the total weighted similarity scores of a set of target links by

removing a limited subset of edges from the observed subnetwork.

We present a comprehensive study of this algorithmic problem,

focusing on two important subclasses of similarity metrics: local

metrics, which make use of only local information about the target

link, and global metrics, which use global network information. We

show that the problem is in general NP-Hard even for local metrics,

and our hardness results are stronger for the commonly used Katz

and ACT global similarity metrics (for example, the problem is hard

for these metrics even if there is only a single target link).

On the positive side, we exhibit a number of important special

cases when the problem is tractable. These include attacks on local

metrics when there is a single target link, or a collection of tar-

get nodes (such as gang members) with the goal of hiding links

among them. Additionally, we present practical algorithms for the

intractable cases, including global similarity metrics. In a number of

such settings, we are able to provide provable approximation guar-

antees. Finally, we demonstrate the e�ectiveness of the approaches

we develop through an extensive experimental evaluation.

Related Work. Link prediction has been extensively studied in

multiple domains such as social science [11], bioinformatics [2],

and security [7]. There are two broad classes of approaches for link

prediction: the� rst based on structural similarity [11, 13] and the

second using learning [1, 14, 18, 20]. This work is focused on the

former, which commonly use either local information [9, 28], rely
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on paths between nodes [8, 12], or make use of random walks [4]

(we view the latter two categories as examples of global metrics).

Our work is connected to several e�orts studying vulnerability of

social network analysis (SNA). Michalak et al. [15] suggest consid-

ering strategic considerations in SNA, but do not o�er algorithmic

analysis. Waniek et al. study attacks against centrality measures

and community detection [21, 22]. There is considerable literature

on hiding or anonymizing links on networks (e.g., [23, 24, 26]), but

these approaches allow arbitrary graphmodi�cations and are in any

case heuristic, often proposing randomly swapping or rerouting

edges. In contrast, we provide the� rst comprehensive algorithmic

study of the problem of hiding links by merely deleting observed

edges (i.e., preventing them from being observed), and the�rst

strong positive algorithmic results.

2 PROBLEM FORMULATION

2.1 Similarity Metrics

One of the major approaches for link prediction both in the network

science literature and in practice is via the use of similarity met-

rics [11]. Speci�cally, suppose wewish to knowwhether a particular

link (u,�) connecting nodes u and � exists. A structural similarity

metric Sim(u,�) quanti�es the extent to which the nodes u and

� have shared topological properties, such as shared neighbors,

with the idea that higher similarity scores imply greater likelihood

that u and � are connected. Below, we will distinguish two types

of similarity metrics: local, which only use information about the

nodes and their immediate neighbors, and global, which make use

of global information about the network.

2.2 Attack Model

At the high level, our goal is to remove a subset of observed edges

in order to minimize perceived similarity scores of a collection of

target (and, presumably, existing) links. This could be viewed both

from the perspective of vulnerability analysis, where the goal of

link prediction is to identify relationships among malicious parties

(such as gang members), or privacy, where the “attacker” is not

malicious, but rather aims to preserve privacy of a collection of

target relationships.

To formalize the problem, consider an underlying graph G =

(V ,E) representing a social network, where V is the set of nodes

and E is the set of edges. This graph is not fully known, and instead

an analyst obtains answers for a collection of edge queries Q from

the environment, where for each query (u,�) 2 Q , they observe the

associated edge if (u,�) 2 E, and determine that the edge doesn’t

exist otherwise. The partially constructed graph GQ = (VQ ,EQ )

based on the queries Q is then used to compute similarity metrics

Sim(u 0,� 0) for any potential edges (u 0,� 0) < Q .

An attacker has a collection of target links H they wish to hide,

and can remove a subset of at most k edgs in EQ ⌘ E \Q to this

end. While there are many ways to express the attacker’s objective

mathematically, a relatively natural and general approach is to

minimize the weighted sum of similarity scores of links in H :

min
Ea ⇢EQ

ft (Ea ) ⌘
’

(u,�)2H

wu�Sim(u,� ;Ea ), s.t. |Ea |  k, (1)

where wu� is the weight representing the relative importance of

hiding the link (u,�), and we make explicit the dependence of

similarity metrics on the set of removed edges Ea . Henceforth, we

simplify notation by keeping this dependence implicit.

3 ATTACKING LOCAL SIMILARITY METRICS

Our analysis covers nine representative local similarity metrics

(summarized in the supplement) that are commonly used in the

state-of-the-art link prediction algorithms. We� rst systematically

divide local metrics into two sub-class: Common Neighbor Degree

(CND) and Weighted Common Neighbor (WCN) metrics, depend-

ing on their special structures. Next, we show that attacking all

local metrics is NP-Hard. We follow this negative result with an

approximation algorithm exhibiting a solution-dependent bound.

Finally, we present polynomial-time algorithms for well-motivated

special cases.

We begin by introducing some notation. We denote U = {ui } as

the union of end-nodes, termed target nodes, of the target links inH .

Assume |U | = n. LetW = {w1,w2, · · · ,wm } be the set of common

neighbors of the target nodes, where each wi 2 W connects to

at least two nodes in U . Let N (ui ,uj ) denote the set of common

neighbors of ui and uj . For any node ui 2 V , let d(ui ) be its degree.

We use a decision matrix X 2 {0, 1}m⇥n to denote the states of

edges among the nodes inW and U , where the entry xi j in the

i-th row and j-th column of X equals 1 if there is an edge between

wi and uj ; otherwise, xi j = 0. We will say the attacker erases xi j
(when xi j = 1) to denote the fact that the attacker deletes the edge

betweenwi and uj (thus setting xi j as 0).

3.1 Classi�cation of Local Metrics

We now make a useful distinction between two classes of local

metrics that use somewhat di�erent local information.

De�nition 3.1. Ametric Sim is a CNDmetric if the corresponding

total similarity ft has the form
Õm
r=1Wr

Õ
i, j |(ui ,uj )2H

xr i ·xr j

fr (Sr )
, where

fr is a metric-dependent increasing function of Sr , the sum of r th

row of decision matrix X , andWr is an associated weight.

The metrics Adamic-Adar (AA), Resource Allocation (RA), and

Common Neighbors (CN) are CND metrics. We note that the sumÕ
i, j |(ui ,uj )2H xr i ·xr j is over all links inH . For simplicity, we write

the sum as
Õ
i j henceforth.

De�nition 3.2. A metric Sim is a WCN metric if

• it has the form Sim(ui ,uj ) =
|N (ui ,uj ) |

�(d (ui ),d (uj ), |N (ui ,uj ) |)
, where

� is strictly increasing in d(ui ) and d(uj ). That is �(d(ui ) �

t ,d(uj ) � s)  �(d(ui ),d(uj )) for any valid non-negative

integers t and s and any valid value of |N (ui ,uj )|.

• Sim is strictly increasing in |N (ui ,uj )|. That is, Sim(|N (ui ,uj )|�

t)  Sim(|N (ui ,uj )|), for any valid non-negative integer t

and any valid values of d(ui ) and d(uj ).

The WCN metrics include many common metrics, such as Jac-

card, Sørensen, Salton, Hub Promoted, Hub Depressed, and Leicht.

By the above de�nitions, we know a rational attacker will only

delete edges between nodes inW and nodes in U , since deleting

other types of edges will either decrease d(ui ) or d(wi ), causing the
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similarity to increase. Thus, the total similarity ft is fully captured

by the decision matrix X . As a result, attacking local similarities is

formulated as an optimization problem, termed as Prob-Local:

min
X

ft (X ), s.t. Sum(X 0 � X )  k, (2)

where X 0 is the original decision matrix and Sum(·) denotes the

element-wise summation.

3.2 Hardness Results

We start by making no restrictions on the set of target links H .

In this general case, we show that attacking all local metrics is

NP-hard.

T������3.3. Attacking local similarity metrics is NP-Hard.

P����. As attacking local similarity metrics is modelled as an

optimization problem, we consider the corresponding decision prob-

lem: can an attacker delete up to k edges such that the total similar-

ity ft is no greater than a constant �? We note that the minimum

possible ft for all local metrics in a connected graph is 0. Thus, we

consider the decision problem PL , which is to decide whether one

can we delete k edges such that ft = 0.

We use the vertex cover problem for reduction. Let PVC denote

the decision version of vertex cover, which is to decide whether

there exists a vertex cover of size k given a graph G and an integer

k .

Given an instance of vertex cover (i.e., a graph G = (V ,E) and

an integer k), we construct our decision problem PL as follows. We

�rst construct a new graph Q in the following steps:

• For each node �i 2 V , create a node �i for graph Q.

• Add another nodew to Q and connectw to each �i .

• Add n = |V | nodesu1, · · · ,un and add an edge between each

pair of nodes (ui ,�i ).

• Add an edge between (ui ,ui+1), for i = 1, 2, · · ·n � 1.

The set H of target links is then H = {(�i ,�j )} in Q if and only if

(�i ,�j ) is an edge in G. Our decision problem PL is then constructed

regarding this graph Q and target set H .

Now, we show PL and PVC are equivalent. We use CN metrics as

an example and show that the same proof can be applied to other

local metrics by slightly modifying the constructed graph Q.

First, we show if there is a vertex cover of size k in graph

G, then we can delete k edges such that ft (H ) = 0 in Q. Sup-

pose Vc is a vertex cover with |Vc | = k . Without loss of general-

ity, let Vc = {�1, · · · ,�k }. Then we show that deleting k edges

(�1,w), · · · , (�k ,w) will make ft (H ) = 0. Let (�i ,�j ) 2 H be an

arbitrary target link. Then (�i ,�j ) corresponds to an edge in G. By

the de�nition of vertex cover, we have at least one of �i and �j is

in Vc . We can assume �i 2 Vc . Since �i and �j have only one com-

mon neighborw in Q, deleting (�i ,w)will makeCN (�i ,�j ) = 0. As

(�i ,�j ) is arbitrarily selected, we haveCN (�i ,�j ) = 0 for any target

link (�i ,�j ) 2 H . Thus, we have found k edges whose deletion will

make ft (H ) = 0.

Second, we show if we can delete k edges to make ft (H ) = 0 in

Q, the we can� nd a vertex cover of size k in G. Suppose we found

k edges whose deletion will make ft (H ) = 0. Then each deleted

edge must be (w,�i ) for some i = 1, · · · ,n, since deleting other

types of edges will not decrease ft (H ). Without loss of generality,

we assume the k deleted edges are (w,�1), · · · , (w,�k ). We then

show that Vc = {�1, · · · ,�k } forms a vertex cover in G. Since

∀(�i ,�j ) 2 H ,CN (�i ,�j ) � 0, ft (H ) = 0 means thatCN (�i ,�j ) = 0

for very target link. As each target link (�i ,�j ) initially has one

common neighbor w , we know at least one of �i and �j is in set

Vc ; otherwise, CN (�i ,�j ) = 1 making ft (H ) > 0. As each (�i ,�j )

corresponds to an edge in G, we know each edge in G has at least

one end node in VC . By de�nition, Vc is a vertex cover of size k .

As a result, PL and PCV is equivalent, proving that minimiz-

ing CN metric is NP-hard. The other local metrics are di�erent

variations of CN metrics. To make the above proof applicable for

other metrics, we need to construct graph Q such that ft (H ) = 0

if and only if there is no common neighbors between each pair of

target link. To achieve this, we can slightly modify the graph Q

constructed previously for CN metric. For CNDmetrics, we can add

some isolated nodes to Q and connectw with each of the isolated

nodes. For WCN metrics, we can add some isolated nodes for each

node �i and connect each isolated node with �i to make sure that

the degree of each �i is always positive. Then the previous proof

holds for other local metrics. ⇤

3.3 Practical Attacks

Since in general attacking even local metrics is hard, we have two

ways of achieving positive results: approximation algorithms and

restricted special cases.We start with the former, and exhibit several

tractable special cases thereafter.

To obtain an approximation algorithm for the general case, we

use submodular relaxation. Speci�cally, we bound the denominator

of each term of ft by constants as if all the budget were assigned

to decrease that single term, arriving at an upper bound ftu for the

original objective ft .

For WCN metrics, let �i j be the denominator of Sim(ui ,uj ). For

each�i j , we bound it by Li j  �i j  Ui j , where Li j is obtainedwhen

k edges are deleted andUi j is obtainedwhen no edge is deleted. Take

Sørensen metric as an example, where Sim(ui ,uj ) =
2 |N (ui ,uj ) |

d (ui )+d (uj )
.

Then d0i +d
0
j �k  d(ui )+d(uj )  d0i +d

0
j , where d

0
i and d

0
j denote

the original degrees of ui and uj , respectively. In this way, each

similarity is bounded as

|N (ui ,uj )|

Ui j
 Sim(ui ,uj ) 

|N (ui ,uj )|

Li j
.

Let fWCN
tu =

Õ
i j

|N (ui ,uj ) |
Li j

and fWCN
tl

=

Õ
i j

|N (ui ,uj ) |
Ui j

. Then

fWCN
tl

 fWCN
t  fWCN

tu .

Similarly, for CND metrics, the denominator in each term fr (Sr )

is bounded by fr (S
0
r ) � k  fr (Sr )  fr (S

0
r ), where S0r denotes

the sum of the r th row of the original decision matrix X 0. Then

f CND
tl

 f CND
t  f CND

tu , where f CND
tl

=

Õm
r=1Wr

Õ
i jxr ixr j
fr (Sr )

and f CND
tu =

Õm
r=1Wr

Õ
i jxr ixr j

fr (Sr )�k
. Due to the similarity between

the structures of fWCN
t and f CND

t , we will focus on fWCN
t and

omit the superscriptWCN in the following analysis. The proposed

approximation algorithm and the associated bound analysis are

also applicable for f CND
t .
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Optimizing Bounding Function. We now consider minimizing

ftu . Let S
0 be the set of edges that the attacker chooses to delete.

Then set S 0 is associated with a decision matrix X 0. For any S ⇢

S 0, we have X � X 0, where X is the matrix associated with S

and � denotes component-wise comparison. De�ne a set function

F (S) = ftu (X
0) � ftu (X ). Clearly, F (;) = 0. Then minimizing ftup

is equivalent to

max
S ⇢EQ

F (S), s.t. |S |  k . (3)

T������3.4. F (S) is a monotone increasing submodular function.

P����. Assume S ⇢ S 0, we need to show F (S)  F (S 0). It is

equivalent to show ftu (X ) � ftu (X
0). Let Ci be the ith column of

X . Then |N (ui ,uj )| = hCi ,Cj i, where hCi ,Cj i denotes their inner

product. Now, ftu (X ) =
Õ
i j

wi j hCi ,Cj i

Li j
, where the weightswi j and

Li j are constants. Since X � X 0, we have hCi ,Cj i � hC 0
i ,C

0
j i for

every pair of i, j . Thus, ftu (X ) � ftu (X
0). That is, F (S) is monotone

increasing.

Let an edge e < S 0 be associated with the p-th row and q-th

column entry in X . Let e [ S be associated with a matrix X e , where

the only di�erence betweenX e andX is that xepq = 0 while xpq = 1.

Similarly, let e[S 0 be associated with a matrixX
0e . De�ne ∆(e |S) =

F (e [ S) � F (S) and ∆(e |S 0) = F (e [ S 0) � F (S 0). Then we need to

show ∆(e |S) � ∆(e |S 0).

∆(e |S) = ftu (X ) � ftu (X
e ) =

’

j

w jq

Ljq
hCj ,Cqi �

’

j

w jq

Ljq
hCe

j ,C
e
qi

=

’

j

w jq

Ljq
xpj · xpq �

’

j

w jq

Ljq
xepj · x

e
pq =

’

j

w jq

Ljq
xpj ,

where the sum
Õ
j is over all pairs of (j,q) such that (uj ,uq ) 2 H .

The second equality holds as deleting edge e will only a�ect the

q-th column. The last equality holds since xpq = 1 and xepq = 0.

Similarly, we can obtain ∆(e |S 0) =
Õ
j
w jq

Ljq
x 0pj . Then ∆(e |S) �

∆(e |S 0) =
Õ
j
w jq

Ljq
(xpj�x

0
pj ). Since (xpj�x

0
pj ) � 0, we have ∆(e |S)�

∆(e |S 0) � 0. By de�nition, F (S) is submodular. ⇤

Problem (3) is to maximize a monotone increasing submodular

function under cardinality constraint. The typical greedy algorithm

for such type of problems achieves a (1� 1/e)-approximation of the

maximum. In particular, the greedy algorithm will delete the edge

that will cause the largest increase in F (S) step by step until k edges

are deleted. Suppose the greedy algorithm outputs a sub-optimal

set S⇤, which corresponds to a minimizer X ⇤
u of ftu (X ). We then

take the value ft (X
⇤
u ) as the approximation of ft (X

⇤), where X ⇤ is

the optimal minimizer of ft . We term this approximation algorithm

as Approx-Local.

Bound Analysis. We theoretically analyze the performance of

our proposed approximation algorithm Approx-Local.1 Let X ⇤, X ⇤
u ,

and X ⇤
l
be the minimizers of ft , ftu , and ft l , respectively. De�ne

the gap between ft and ftu as �(X ) = ftu (X ) � ft (X ), which is a

function of the decision matrix X .

1We note that for the CN metric in particular, the set function F (S ) is the actual
objective. Consequently, the greedy algorithm above yields a (1� 1/e)-approximation
in this case.

T������3.5. The gap �(X ) is an increasing function of X .

P����. Consider a particular term of �(X ), which is denoted as

�i j (X ) =
wi j

Li j
hCX

i ,C
X
j i �

wi j

�(d (ui ),d (uj ), hC
X
i ,CX

j i)
hCX

i ,C
X
j i, where

CX
i denotes the ith column ofX . For simplicity, write �(d(ui ),d(uj ),

hCX
i ,C

X
j i) as �(X ).

Consider an edge connecting to ui is deleted. This corresponds

to the case when an entry in CX
i is erased. Denote the resulting

matrix as Y . Then X � Y . The gap at Y is �i j (Y ) = wi j (
hCY

i ,C
Y
j i

Li j
�

hCY
i ,C

Y
j i

�(Y )
).

�i j (X ) � �i j (Y )

wi j
=

hCX
i ,C

X
j i � hCYi ,C

Y
j i

Li j
+

hCYi ,C
Y
j i

�(Y )
�

hCX
i ,C

X
j i

�(X )

As � is strictly increasing in d(ui ) and d(uj ), it is increasing in

X . Then we have �(X ) � �(Y ). Thus,

�i j (X ) � �i j (Y )

wi j
�

hCX
i ,C

X
j i � hCYi ,C

Y
j i

Li j
+

hCYi ,C
Y
j i

�(Y )
�

hCX
i ,C

X
j i

�(Y )

= (hCX
i ,C

X
j i � hCYi ,C

Y
j i)(

1

Li j
�

1

�(Y )
) � 0.

The last inequality holds as Li j is the lower bound (i.e., Li j  �(Y )).

As �(X ) is the weighted sum over all pair of target links, we have

�(X ) � �(Y ). ⇤

Theorem 3.5 states that the gap between the total similarity

and its upper bound function is closing as we delete more edges

(i.e., X becomes smaller). We further provide a solution-dependent

bound of g = ft (X
⇤
u ) � ft (X

⇤), which measures the gap between

the minimum of ft output by our proposed algorithm and the real

minimum.

g  ftu (X
⇤
u ) � ft (X

⇤)  ftu (X
⇤
u ) � ft l (X

⇤)  ftu (X
⇤
u ) � ft l (X

⇤
l
).

Such a gap depends on the solutions X ⇤
u and X ⇤

l
. We evaluate the

gap through extensive experiments in Section 5.

3.4 Tractable Special Cases

We identify two important special cases for which the attack models

are signi�cantly simpli�ed. The� rst case considers attacking a

single target link and optimal attacks can be found in linear time

for all local metrics. The second case considers attacking a group

of nodes and the goal is to hide all possible links among them. We

demonstrate that optimal attacks in this case can be found e�ciently

for the class of CND metrics.

Due to the space limit, we only highlight some key observations

and present some important results. The full analysis is in the

extended version [27] of the paper.

3.4.1 A�acking a Single Link. When the target is a single link

(u,�), the attacker will focus only on the links connecting u or �

with their common neighbors, denoted as N (u,�) = {wi }
s
i=1. Let

xiu = 0 denotes that attacker chooses to delete the link between

wi and u and xiu = 1 otherwise.

P����������3.6. For CND metrics, Sim(u,�) =
Õs
i=1

xiuxi�
�(d (wi ))

,

where � is a non-decreasing function of d(wi ).
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To minimize a CND, the attacker will remove edges incident to

common neighbors w in increasing order of degree d(w). In fact,

this algorithm is optimal and has a time complexity O(|N (u,�)|).

ForWCNmetrics, consider a tuple (u,w,�)wherew is a common

neighbor ofu and� . We divide the links surrounding (u,�) into four

sets: E1 = {(u,w)}, E2 = {(�,w)}, E3 = {(u, s)}, and E4 = {(�, s)},

where s denotes a non-common neighbor ofu and� . As the attacker

deletes links from EQ , there are four possible states of the tuples

between u and � . In state 1, both (u,w) and (w,�) are deleted. In

state 2, (u,w) is deleted while (w,�) is not. In state 3, (w,�) is

deleted while (u,w) is not. In state 4, neither (u,w) not (w,�) is

deleted. We use integer variables �1,�2,�3 to denote the number of

tuples in state 1, 2, 3, respectively. Furthermore, let �4 and �5 be the

number of deleted edges from E3 and E4, respectively. In this way,

the vector (�1,�2,�3,�4,�5) fully captures an attacker’s strategy.

P����������3.7. A WCN metric can be written as Sim(u,�) =

f (�1,�2,�3,�4,�5) such that f is decreasing in �2 and �3 and f is

increasing in �4 and �5.

Our analysis shows that in an optimal attack, �⇤1 = �
⇤
4 = �

⇤
5 = 0

and �⇤2 + �
⇤
3 = k . That is, the attacker will always choose k edges

from E1 [ E2 to delete. The following theorem then speci�es how

the attacker can optimally choose edges.

T������3.8. The optimal attack on WCN metrics with a single

target link selects arbitrary�⇤2 links from E1 and (k��
⇤
2) links from E2

to delete with the constraint that for any selected links (u,w1) 2 E1
and (�,w2) 2 E2, w1 , w2. The value of �

⇤
2 is the solution of a

single-variable integer optimization problem.

The time complexity of solving the single-variable integer opti-

mization problem is bounded in O(k).

3.4.2 A�acking A Group of Nodes. We consider the special case

where 1) the target is a group of nodes U and the links between

each pair of nodes inU consist the target link set H ; 2) each link in

H has equal weight. In this case, optimal attacks on CND metrics

can be found in polynomial time.

P����������3.9. For CND metrics, the total similarity ft has the

form
Õm
i=1 fi (Si ), where Si is the sum of the ith row of X and fi (Si )

is a convex increasing function of Si .

Proposition 3.9 states that ft for CND metrics can be written

as a sum of independent functions, where each function fi is a

convex increasing function. We then propose a greedy algorithm

termed Greedy-CND to minimize f CND
t . In essence, Greedy-CND

takes as the input S0, which is the row sum of the initial decision

matrix X , and decreases an entry in S0 whose decreasing causes

the maximum decrease in f CND
t step by step until an upper bound

of k edges are deleted. This algorithm turns out to be optimal, as

we prove in the extended version of the paper.

4 ATTACKING GLOBAL METRICS

In this section, we analyze attacks on two common global similarity

metrics: Katz and ACT. We begin with attacks on a single link and

show that� nding optimal attack strategies is NP-hard even for a

single target link.

Let A 2 {0, 1}N⇥N and D be the adjacency matrix and degree

matrix of the graph GQ , respectively. The Laplacian matrix is de-

�ned as L = D �A. The pseudo-inverse of L is L† = (L � E)�1 + E,

where E is an (N ⇥N )matrix with each entry being 1
N . We use a bi-

nary vector y 2 {0, 1}M to denote the states of edges in EQ , where

�i = 0 i�the ith edge in EQ is deleted. Finally, y  y0 (A  A0) is a

component-wise inequality between vectors (matrices).

4.1 Problem Formulation for Katz Similarity

The Katz similarity is a common path-based similarity metric [8].

For a pair of nodes (u,�), Katz similarity is de�ned as

Katz(u,�) =

1’

l=1

�l |pathlu,� | = (�A + �2A2
+ �3A3

+ · · · )u� ,

where |pathlu,� | denotes the number of walks of length l between

u and� , � > 0 is a parameter and (·)u� denotes the entry in the uth

row and�th column of a matrix. By de�nition, the adjacency matrix

A is fully captured by the vector y. Thus, Katz(u,�) is a function

of y, written as Katzu� (y). As one would expect, it is an increasing

function of y.

L����4.1. Katzu� (y) is an increasing function of y.

P����. Let A and A0 be the corresponding adjacency matrices

of y and y0. If y  y0, we have A  A0. Now, consider the jth term

of the Katz similarity matrix K , which is � jAj . As every entry in

A is non-negative and � > 0, we have � jAj  � jA0j , for every j.

Thus, Katzu� (y)  Katzu� (y
0). ⇤

As a result, deleting a link will always decrease Katzu� (y), and

the attacker would therefore always delete k links in EQ (if EQ has

at least k links). Thus, minimizing Katz for a particular target link

(u,�) is captured by Prob-Katz:

min
y

Katzu� (y), s.t.

M’

i=1

�i = M � k, y 2 {0, 1}M .

4.2 Problem Formulation for ACT

The second global similarity metric we consider is based on ACT,

which measures a distance between two nodes in terms of random

walks. Speci�cally, for a pair of nodes (u,�), ACT(u,�), is the ex-

pected time for a simple random walker to travel from a node u

to node � on a graph and return to u. Since ACT(u,�) is a distance

metric, the attacker’s aim is to maximize ACT(u,�), de�ned as

ACT(u,�) = VG (L
†
uu + L

†
�� � 2L†u� ),

where VG is the volume of the graph [4].

Directly optimizing ACT(u,�) is hard. Indeed, deleting an edge

may either increase or decrease ACT(u,�), so that unlike other

metrics, ACT is not monotone in y. Fortunately, Ghosh et al. [5]

show that when edges are unweighted (as in our setting), ACT(u,�)

can be de�ned in terms of E�ective Resistance (ER): ACT(u,�) =

VGER(u,�). It is also not di�cult to see that both the volume VG
and ER can be represented in terms of y.

We begin by investigating the e�ect of deleting an edge on ER(y).

We use a well-known result by Doyle and Snell [3] to this end.
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L���� 4.2 ([3]). The e�ective resistance between two nodes is

strictly increasing when an edge is deleted.

The following lemma is then an immediate corollary.

L����4.3. ER(y) is a decreasing function of y.

As a result, maximizing ER(y) would always entail deleting all

allowed edges. Let t be the maximum number of edges that can be

deleted. Then, maximizing ER(y) can be formulated as Prob-ER:

max
y

ER(y), s.t.

M’

i=1

�i = M � t , y 2 {0, 1}M .

However, while ER(y) increases as we delete edges, volume VG =

2
ÕM
i=1 �i decreases. Fortunately, since volume is linear in the num-

ber of deleted edges, we reduce the problem of optimizing ACT to

that of solving Prob-ER by solving the latter for t = {0, . . . ,k}, and

choosing the best of these in terms of ACT. Similarly, hardness of

Prob-ER implies hardness of optimizing ACT. Consequently, the

rest of this section focuses on solving Prob-ER.

4.3 Hardness Results

We prove that minimizing Katz andmaximizing ER between a single

pair of nodes by deleting edges with budget constraint are both

NP-hard.

T������4.4. Minimizing Katz similarity and maximizing ACT

distance is NP-hard even if H contains a single target link.

P����. We consider the decision version of minimizing Katz,

termed as PK , which is to decide whether one can delete k edges to

make Katz(u,�)  q given a graph Q and a target node pair (u,�)

in Q. Similarly, we consider the decision version of maximizing ER,

termed as PE : which is to decide whether one can delete k edges to

make ER(u,�) � q given a graph Q and a target node pair (u,�) in

Q.

We use the Hamiltonian cycle problem, termed PH , for reduction.

PH is to decide whether there exists a circle that visits each nodes

in a given connected graphG exactly once (thus called Hamiltonian

circle).

By the de�nition of Katz similarity, Katz(u,�) is minimized when

the graph is a string with u and� as two end nodes and all others as

inner nodes in that string; that is the graph over that set of nodes

is a Hamiltonian path with u and � as end nodes. We denote the

minimum value of Katz(u,�) in this case asminK . Similarity, by

the de�nition of e�ective resistance, ER(u,�) is maximized when

the graph is also a Hamiltonian path over that set of nodes with u

and � as the two end nodes. We assume that all edges have equal

resistance. We denote the maximum value of ER(u,�) in this case

asmaxE .

We then set q = minK in the decision problem PE and set q =

maxE in PE . As a result, the two decision problems PE and PK are

then both equivalent to the following decision problem, termed PS :

given a graph Q and two nodes u and� in Q, can we delete k edges

such that the remaining graph S forms a string (i.e., a Hamiltonian

path) with u and � as two end nodes?

Now the reduction. Given an instance of Hamiltonian circle (i.e.,

a graph G = (V ,E)), we construct a new graph Q from G in the

following steps:

• Select an arbitrary nodew in G. Let N (w) = {l1, l2, · · · , lW }

be the neighbors ofw , whereW = |N (w)|.

• Add two nodes u and � .

• Add edge (u,w) and edges (�, li ), ∀li 2 N (w).

The resulting graph is then the graph Q in decision problem PS ,

where the budget k =W + |E | � |V |. We now show that problem

PH and problem PS are equivalent.

First, we show if there exists a Hamiltonian circle in G, then we

can delete k =W + |E |� |V | edges such that the measurement (Katz

or ER) between u and � in graph Q is q. Assume the Hamiltonian

circle travels tow through edge (li ,w) and leavesw through edge

(w, lj ). We then 1) delete (W � 1) edges (�, lt ) for each lt 2 N (W )

and lt , li ; 2) delete all |E | � |V | edges in G that do not appear in

the Hamiltonian circle; 3) delete edge (w, li ). Thus, we deleted a

total ofW + |E | � |V | edges. After deleting all these k edges, in the

remaining graph S, there exists a Hamiltonian path betweenw and

li . As u only connects tow and � only connects to li , the remaining

graph forms a Hamiltonian path between u and � . As a result, the

measurement between u and � equals q.

Second, we show if we can remove k = W + |E | � |V | edges

from Q such that the remaining graph S forms a Hamiltonian path

betweenu and� , then we can� nd a Hamiltonian circle in the graph

G. Suppose in the reaming string, � connects to li andw connects

to lj . As u connects only tow in graph Q, u must connect tow in

S. From the construction of Q, the total number of edges of Q is

|E | +W + 1. After deleting k edges, the remaining number of edges

is |V | + 1. Excluding the two edges (u,w) and (�, li ), we know there

are |V | � 1 edges among the node set V of the original graph G. As

the remaining graph is connected, there must exist a Hamiltonian

path betweenw and li . As (w, li ) is an edge in the graph G, we have

found a Hamiltonian circle in G, consisting of the Hamiltonian path

betweenw and li plus the edge (w, li ).

Thus, decision problem PS is NP-complete; minimizing Katz and

maximizing ER (ACT) are NP-hard. ⇤

4.4 Practical Attack Strategies

While computing an optimal attack on Katz and ACT is NP-Hard,

we now devise approximate approaches which are highly e�ective

in practice.

4.4.1 A�acking Katz Similarity. To attack Katz similarity, we

transform the attacker’s optimization problem into that of maximiz-

ing a monotone increasing submodular function. We begin with the

single-link case (i.e., H is a singleton), and subsequently generalize

to an arbitrary H . We de�ne a set function f (Sp ) as follows. Let

Sp ✓ EQ be a set of edges that an attacker chooses to delete. Let

Ap be the adjacency matrix of the graph GQ after all the edges in

Sp are deleted. De�ne

f (Sp ) = �Ap + �
2A2

p + �
3A3

p + · · ·

Since there is a one-to-one mapping between the set Sp and the

matrix Ap , the function f (Sp ) is well-de�ned. We note that f (Sp )

gives the Katz similarity matrix of the graph G after all the edges

in Sp are deleted. We further de�ne a set function

�u� (Sp ) = (K � f (Sp ))u� ,
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where K = f (;) (the Katz similarity matrix when no edges are

deleted) and (·)u� denotes the uth row and �th column of a matrix.

Clearly, when Sp = ;, �u� (Sp ) = 0.

Then, Prob-Katz is equivalent to

max
Sp ⇢Et

�u� (Sp ), s.t. |Sp | = k (4)

T������4.5. The set function �u� (Sp ) is monotone increasing

and submodular.

P����. To prove that �u� is monotone increasing, we need

to show that ∀Sp ⇢ Sq ⇢ Q , �u� (Sp )  �u� (Sq ). It is equiva-

lent to show (f (Sp ))u� � (f (Sq ))u� . We note that (f (Sp ))u� and

(f (Sq ))u� are the Katz similarity betweenu and� after the edges in

Sp and Sq are deleted, respectively. Theorem 4.1 states that the Katz

similarity will decrease as more edges are deleted. Since Sp ⇢ Sq ,

we have f (Sp ) � f (Sq ). Thus, �u� (Sp )  �u� (Sq ).

Next, we prove �u� is submodular. Let e 2 Et \ Sq be an edge

between node i and node j in the graph. Let G be an n ⇥ n matrix

whereGi j = G ji = 1 and the rest of the entries are 0. Then we have

the set Sp [ e is associated with Ap � G and Sq [ e is associated

withAq �G . For a set S , let ∆(e |S) = f (S [ e)� f (S). Then we need

to show

∆(e |Sp )  ∆(e |Sq ).

Denote the tth item of ∆(e |S) as ∆(t )(e |S). In the following, we

will� rst prove ∆(t )(e |Sp )  ∆
(t )(e |Sq ) by induction. Assume that

the inequality holds for t = s (it’s straightforward to verify the case

for t = 1 and t = 2). That is

�s [(Ap �G)s � (Ap )
s � (Aq �G)s + (Aq )

s ]  0. (5)

When t = s + 1, we have

(∆(s+1)(e |Sp ) � ∆
(s+1)(e |Sq ))/�

s+1

= (Ap �G)s+1 � (Ap )
s+1 � (Aq �G)s+1 + (Aq )

s+1

= (Ap �G)sAp � (Ap )
s+1 � (Aq �G)sAq + (Aq )

s+1

�[( Ap �G)s+1 � (Aq �G)s+1]G

 (Ap �G)sAp � (Ap )
s+1 � (Aq �G)sAq + (Aq )

s+1

The inequality comes from the fact that (Ap �G) � (Aq �G) when

G � 0. Furthermore, since Sp ⇢ Sq , we have Ap = Aq + F for some

F � 0. Thus,

(∆(s+1)(e |Sp ) � ∆
(s+1)(e |Sq ))/�

s+1

 (Ap �G)s (Aq + F ) � (Ap )
s (Aq + F )

� (Aq �G)sAq + (Aq )
s+1

= [(Ap �G)s � (Ap )
s � (Aq �G)s + (Aq )

s ]Aq

+ [(Ap �G)s � (Ap )
s ]F

 0

By induction, we have ∆(t )(e |Sp )  ∆
(t )(e |Sq ) for t = 1, 2, 3, · · · .

Note that when � is chosen to be less than the reciprocal of the

maximum of the eigenvalues of Aq � G, the sum will converge.

Thus, ∆(e |Sp )  ∆(e |Sq ). ⇤

Next, for the multi-link case, the total similarity ft =
Õ
i, j wi jKi j .

Let F (S) be a function of the set of deleted edges, de�ned as

F (S) = �AS + �
2A2

S + �
3A3

S + · · · ,

where AS denotes the adjacency matrix after all edges in S are

deleted. Note that F (S) gives the Katz similarity matrix when edges

in S are deleted. Further de�ne �i j (S) = (K0 � F (S))i j , where K
0 is

the original Katz similarity matrix. Let Gt (S) =
Õ
i, j wi j�i j (S). By

de�nition, we have Gt (S) =
Õ
i, j wi jK

0
i j � ft . Thus, minimizing ft

is equivalent to

max
S ⇢EQ

Gt (S), s.t. |S |  k .

The following result is then a direct corollary of Theorem 4.5.

C��������4.6. Gt (S) is monotone increasing and submodular.

P����. This is an immediate conclusion of two results. First,

�i j (S) is monotone increasing and submodular in S as proved in

Theorem 4.5. Second, a positive linear combination of submodular

functions is submodular [16]. As Gt (S) is the sum of �i j (S), Gt (S)

is monotone increasing and submodular. ⇤

As a result, minimizing the total Katz similarity is equivalent

to maximizing a monotone increasing submodular function under

cardinality constraint. We can achieve a (1� 1/e) approximation by

applying a simple iterative greedy algorithm in which we delete one

edge at a time that maximizes the marginal impact on the objective.

We call this resulting algorithm Greedy-Katz.

4.4.2 A�acking ACT. From the analysis of minimizing Katz sim-

ilarity, it is natural to investigate submodularity of the e�ective

resistance or ACT as a function of the set of edges. Unfortunately,

counter examples show that the e�ective resistance is neither sub-

modular nor supermodular.

Our� rst step is to approximate the objective function ER(u,�)

based on the results by Von Luxburg et al. [17], who show that

ER(u,�) can be approximated by 1
d (u)
+

1
d (�)

for large geometric

graphs as well as random graphs with given expected degrees.

Consequently, we use the approximation ER(u,�) ⇡ ERap (u,�) =
1

d (u)
+

1
d (�)

. Then the total e�ective resistance is approximated as

ER(H ) ⇡ ERap (H ) =
Õ
i j wi j (

1
d (ui )

+
1

d (uj )
) =

Õn
i=1

Wi

d (ui )
, where

Wi > 0 is some constant weight associated with each ui . Let Di be

the original degree of nodeui and zi be an integer variable denoting

the number of deleted edges connecting to ui . Then maximizing

ERap (H ) is equivalent to

max
z

n’

i=1

Wi

Di � zi
, s.t.

n’

i=1

zi  k, zi 2 [0,k]. (6)

We assume that deleting edges would not make the graph dis-

connected. That is ∀i 2 [1,n], k < Di .

We formulate the above problem as a linear integer program.

Speci�cally, let ∆i j be the decrease in ERap (H ) after j edges con-

necting to node ui are deleted. As any such j edges will cause the

same decrease, the value of each ∆i j for j = 0, 1, · · · ,k could be

e�ciently computed in advance. We use a binary variable hi j = 1 to

denote that the attacker chooses to delete such j edges; otherwise,

hi j = 0. Then problem (6) is equivalent to

max
h

n’

i=1

k’

j=0

(
Wi

Di
� ∆i j )hi j , s.t.

n’

i=1

k’

j=0

hi j  k,∀i,

k’

j=0

hi j  1,
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