Distributed Optimization via Local Computation Algorithms

Palma London Niangjun Chen

ABSTRACT

We propose a new approach for distributed optimization
based on an emerging area of theoretical computer science —
local computation algorithms. The approach is fundamen-
tally different from existing methodologies and provides a
number of benefits, such as robustness to link failure and
adaptivity in dynamic settings. Specifically, we develop an
algorithm, LOCO, that given a convex optimization problem
P with n variables and a “sparse” linear constraint matrix
with m constraints, provably finds a solution as good as that
of the best online algorithm for P using only O(log(n +m))
messages with high probability. The approach is not iter-
ative and communication is restricted to a localized neigh-
borhood. In addition to analytic results, we show numeri-
cally that the performance improvements over classical ap-
proaches for distributed optimization are significant, e.g., it
uses orders of magnitude less communication than ADMM.

1. INTRODUCTION

The goal of this work is to introduce a new, fundamen-
tally different approach to distributed optimization based
on an emerging area of theoretical computer science — local
computation algorithms (LCAs) [5,8,10,11].

There are a wide variety of approaches for distributed op-
timization, which fall into the categories of dual decomposi-
tion and subgradient methods, and consensus-based schemes.
While these approaches are distributed, they are not local.
A local algorithm is one where a query about a small part of
a solution to a problem can be answered by communicating
with only a small neighborhood around the part queried.
Neither iterative descent methods nor consensus methods
are local because answering a query about a piece of the
solution requires global communication.

This work introduces an algorithm, LOCO, (LOcal Con-
vex Optimization) that is both distributed and local. It is
not an iterative method and uses far less communication to
compute the solution than iterative descent and consensus
methods. While the technique we propose is general, in this
work we focus on a canonical optimization problem: network
utility maximization. We provide worst-case guarantees on

*This is an extended abstract of [6]. All authors are with
the Department of Computing and Mathematical Sciences,
California Institute of Technology. Email:{plondon, ncchen,
svardi, adamw}@caltech.edu

Copyright is held by author/owner(s).

30

Shai Vardi Adam Wierman *

the performance of LOCO with respect to the relative error
and the number of messages it requires.

The key idea behind LOCO is an extension of recent re-
sults on LCAs; this work, for the first time, imports tech-
niques from the field of local computation algorithms into
the domain of networked control. In particular, a key in-
sight is that online algorithms can be converted into local
algorithms in graph problems with bounded degree [8]. The
technical contribution of this work is the extension of these
ideas to convex programs.

Local computation methods are well suited for distributed
optimization. For example, any failure in the system only
has local effects: if a node in a distributed system goes of-
fline while an iterative distributed algorithm is executing,
the whole process is brought to a halt; if the computations
are all local, the failure will only affect a small number of
nodes in the neighborhood of the failure. Similarly, lag in
a single edge affects the computation of the entire solution
in the iterative setting, while most computations are not af-
fected when the computations are local. Another advantage
of local computation is that it allows the system to be more
dynamic: an arrival of another node requires recomputing
the entire solution if the algorithm is not local, but requires
only a few local messages and computations if the algorithm
is local.

2. NETWORK UTILITY MAXIMIZATION

To illustrate the application of local computation algo-
rithms to distributed optimization, we focus on the classic
setting of network utility maximization (NUM). Consider a
network containing a set of links £ = {1,...,m} of capac-
ity ¢;, for j € L. A set of N = {1,...,n} sources share
the network; source i € A is characterized by (Ls, fi, z;, T;):
a path L; C £ in the network; a concave utility function
fi : Ry — R; and the minimum and maximum transmis-
sion rates of i. The optimization of aggregate utility can be
formulated as follows,

max Z fi(z:)

subject to Ar <c¢, x<ux<T7,

where A € RT*" is defined as Aj; = 1if j € L; and 0
otherwise. The goal in NUM is to maximize the sources’
aggregate utility. Source ¢ attains a concave utility f;(z;)
when it transmits at rate x; that satisfies z; < x; < Z;.
The NUM framework is general in that the choice of f;
allows for the representation of different goals of the net-

Performance Evaluation Review, Vol. 45, No. 2, September 2017



work operator. For example, using f;(z;) = z;, maximizes
throughput; setting f;(z;) = log(z;) achieves proportional
fairness among the sources; setting fi(x;) = —1/z; mini-
mizes potential delay; these are common goals in communi-
cation network applications [7,9].

Given the NUM formulation above, the algorithmic goal is
to design a protocol that efficiently finds an approximately
optimal solution. If the network is huge, it is often beneficial
to distribute the solution, as performing the entire computa-
tion on a single machine is too costly [1,12]. There is a large
literature across the networked control and communication
networks literatures that seeks to design such distributed
optimization algorithms, e.g., [3]. We compare LOCO to
the Alternating Method of Multipliers (ADMM) [1,4].

In this work we focus on the throughput maximization
case, i.e., fi(z;) = x;; in this case NUM is an LP. The classi-
cal dual decomposition approach does not work for through-
put maximization since it requires the objective function to
be strictly concave [7]. However, ADMM can be applied.

Our complexity results hinge on the assumption that the
constraint matrix A is sparse. The sparsity of A is defined
as max{«, 8}, where a and 8 denote the maximum number
of non-zero entries in a row and column of A respectively.
Formally, we say that A is sparse if the sparsity of A is
bounded by a constant. This assumption usually holds in
network control applications since « is the maximum num-
ber of sources sharing a link, which is typically small com-
pared to n, and S is the maximum number of links each
source uses, which is typically small compared to m.

3. LOCAL CONVEX OPTIMIZATION

In this section, we introduce a local algorithm for dis-
tributed convex optimization, LOcal Convex Optimization
(LOCO). In LOCO, every source in the network computes
its portion of a near optimal solution using a small number
of messages, without needing global communication or iter-
ation. This is in contrast to iterative descent methods, e.g.
ADMM, which are global, i.e., they spread the information
necessary to find an optimal solution throughout the whole
network over a series of rounds.

Distributed algorithms for NUM should perform well on
two measures. The first is message complexity: the num-
ber of messages that are sent across links of the network
in order to compute the solution. For both our algorithm
and ADMM the message length will be of order O(logn).
The second is the approrimation ratio, which measures the
quality of the solution provided by the algorithm. Specifi-
cally, an algorithm is said to a-approximate a maximization
problem if its solution is guaranteed to be at least 2L,
where OPT is the value of the optimal solution. LOCO has
provable worst-case guarantees on both its approximation
ratio and message complexity, and improves on the commu-
nication overhead of iterative descent methods by orders of
magnitude in practice when asked to compute a piece of the
optimal solution.

3.1 An overview of LOCO

The key insight in the design and analysis of LOCO is
that any natural online optimization algorithm can be con-
verted into a local, distributed optimization algorithm. Note
that the resulting distributed algorithm is for a static prob-
lem, not an online one. Further, after this conversion, the
distributed optimization algorithm has the same approxi-

Performance Evaluation Review, Vol. 45, No. 2, September 2017

mation ratio as the original online optimization algorithm.
Thus, given an optimization problem for which there exist
effective online algorithms, these online algorithms can be
converted into effective local, distributed algorithms.

More formally, to reduce a static optimization problem to
an online optimization problem, we do the following. Let
Y be the set of constraints of an optimization problem P.
Let r : Y — [0,1] be a ranking function that assigns each
constraint y; a real number between 0 and 1, uniformly at
random. We call r(y;) y;’s rank. Suppose that there is
some online algorithm that receives the constraints sequen-
tially and must augment the variables immediately and ir-
revocably so as to satisfy each arriving constraint. Suppose
furthermore that for each constraint y;, we can pinpoint a
small set of constraints S(y;) (which we call y;’s query set)
that arrived before it so that restricting the set of constraints
of P to S(y;) results in the algorithm producing exactly the
same solution for the variables that are present in y;. Then
simulating the algorithm on only S(y;) would suffice to ob-
tain the solution for the variables in constraint y;. More
specifically, the steps of LOCO are as follows.

Step 1, Generating a localized neighborhood. For clar-
ity, we break the first step into three sub-steps.

Step la, Representing the constraint matrix as a bipar-
tite graph. A boolean matrix A can be represented as a
bipartite graph G = (L, R, E’) as follows. Each row of A
is represented by a vertex vy, € L; each column by a vertex
v, € R. The edge (vg,v,) is in E’ if and only if 4, = 1.
A more intuitive way to interpret G is the following: L rep-
resents the variables, R the constraints. Edges represent
which variables appear in which constraints. Note that the
maximum degree of GG is exactly the sparsity of A.

Step 1b, Constructing the dependency graph. We con-
struct the dependency graph H = (V,E) as follows. The
vertices of the dependency graph are the vertices of R; an
edge exists between two vertices in H if the corresponding
vertices in GG share a neighbor. Intuitively, H represents the
“direct dependencies” between the constraints: changing the
value of any variable immediately affects all constraints in
which it appears, hence these constraints can be thought of
as directly dependent. The maximum degree of H is upper
bounded by the square of the sparsity of A.

Step Ic, Constructing the query set. In order to build
the query set, we generate a random ranking function on
the vertices of H, r : V. — [0,1]. Given the dependency
graph H, an initial node y € V' and the ranking function r,
we build the query set of y, denoted S(y), using a variation
of BFS, as follows. Initialize S(y) to contain y. For every
vertex v € S(y), scan v’s neighbors, denoted N (v). For each
u € N(v),if r(u) < r(v), add u to S(y). Continue iteratively
until no more vertices can be added to S(y) (that is, for every
vertex v € S(y) all of its neighbors that are not themselves
in S(y) have lower rank than v). If there are ties (i.e., two
neighbors u, v such that r(u) = r(v)), tie-break by ID.

Step 2, Simulating the online algorithm. Assume that
we have an online algorithm for the problem that we would
like LOCO to solve. In this paper we use the online packing

31



Algorithm of Buchbinder and Naor [2, chapter 14]. We pro-
vide the pseudocode in the extended version of the paper [6],
for completeness. The specific setting that the online algo-
rithm must apply to is the following: the variables of the
convex program are known in advance, as are the univariate
constraints. The rest of the constraints arrive one at a time;
the online algorithm is expected to satisfy each constraint as
it arrives, by increasing the value of some of the variables.
It is never allowed to decrease the value of any variable. We
simulate the online algorithm as follows:

In order to compute its value in the solution, source ¢ ap-
plies r to the set of constraints in which it is contained, Y ().
For y = argmax, ¢y ;) {r(2)}, it simulates the online algo-
rithm on S(y). That is, it executes the online algorithm on
the neighborhood constructed in Step 1 for the “last arriv-
ing” constraint that contains x;. The constraints arrive in
the order defined by r. The resulting x; value is identical to
its value if the online algorithm was executed on the entire
program, with the constraints arriving in the order defined
by 7.

3.2 Performance of LOCO

Our main theoretical result shows that LOCO can com-
pute solutions to convex optimization problems that are as
good as those of the best online algorithms for the problems,
while using very little communication. We then specialize
this case to throughput maximization in NUM. While we fo-
cus on NUM in this paper, the theorem and its proof apply
to a wider family of problems as well. Specifically, the con-
version from online to local outlined below can be used more
broadly for any class of optimization problems for which ef-
fective online algorithms exist.

Theorem 1. Let P be a problem with a concave objec-
tive function and linear inequality constraints, with n vari-
ables and m constraints, whose constraint matriz has spar-
sity o. Given an online algorithm for P with competitive ra-
tio h(n,m), there exists a local computation algorithm for P

with approzimation ratio h(n,m) that uses 20(e%) log (n +m)
messages with probability 1 — 1/poly(n, m).

We also have the following result for NUM with a lin-
ear objective function, which corresponds to maximizing
throughput in NUM.

Theorem 2. Let P be a throughput mazimization problem
with n variables, m constraints, and a sparse constraint ma-
triz. LOCO computes an O(logm) — approximation to the
optimal solution of P using O(log(n + m)) messages with
probability 1 — 1/ poly(n,m).

In a simulation study, we focus on the case of maximiz-
ing throughput, demonstrating the empirical performance
of LOCO on both synthetic and real networks. The results
highlight that an orders-of-magnitude reduction in commu-
nication is possible with LOCO as compared to ADMM. For
a description of our experimental setup, please see the full
version [6].

Figure 1(a) highlights that LOCO requires considerably
fewer messages than ADMM, across both small and large
n. Both the average and maximum amount of communi-
cation needed to answer a query about a specific piece of
the solution under LOCO (LOCO Avg and LOCO Max re-
spectively) are substantially lower than for ADMM. Even
answering every query (LOCO Tot) requires only the same

32

6 1
15X 10 0
° X ADMM 1 -© LOCO Tot =k LOCO Av
-+ ADMM 2 -A LOCO Max 105
1%
[0}
210 <)
=) S
& @ 10
172 w
@ 3
=5 =] a SCADMM
,++,++++—+‘+’ 10 ® LOCO Tot
] * A LOCO Max
Ol sttt ssssnsnnih 10° *LOCO Avg
0 5000 10000 15000 0 0.05 0.1 0.15 0.2
n Relative Error
(a) (b)

Figure 1: Illustration of the number of messages required by
ADMM and LOCO for the synthetic data set with results
averaged over 50 trials, for (a) various n and the (b) Pareto
optimal curve for ADMM with a range of relative tolerances.

order of magnitude as ADMM. The figure includes ADMM
with a tolerance " of 1074 (ADMM 1) and 10~% (ADMM
2) [1]. Even with suboptimal tolerance, which results in
fewer iterations, ADMM still requires orders of magnitude
more communication than LOCO.

Figure 1(b) illustrates the Pareto optimal frontier for ADMM:

the minimal messages needed in order to obtain a particular
relative error. Interestingly, the total number of messages
used by LOCO is only slightly outside the Pareto frontier
of ADMM, indicating that the local advantages that LOCO
offers do not incur much global overhead.

4['1] S%];):}g%RPI’%ﬂhC,]%SChu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and
Trends® in Machine Learning, 3(1):1-122, 2011.

[2] N. Buchbinder and J. Naor. The design of competitive online
algorithms via a primal-dual approach. Foundations and
Trends in Theoretical Computer Science, 3(2-3):93-263, 2009.

[3] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle.
Layering as optimization decomposition: A mathematical
theory of network architectures. Proceedings of the IEEE,
95(1):255-312, 2007.

[4] D. Gabay and B. Mercier. A dual algorithm for the solution of
nonlinear variational problems via finite element
approximation. Computers & Mathematics with Applications,
2(1):17-40, 1976.

[5] R. Levi, R. Rubinfeld, and A. Yodpinyanee. Brief
announcement: Local computation algorithms for graphs of
non-constant degrees. In Proceedings of the 27th ACM on
Symposium on Parallelism in Algorithms and Architectures,
SPAA, pages 59-61, 2015.

[6] P. London, N. Chen, S. Vardi, and A. Wierman. Distributed
optimization via local computation algorithms.
http://users.cms.caltech.edu/~plondon/loco.pdf, 2017.

[7] S. H. Low and D. E. Lapsley. Optimization flow control. I.
Basic algorithm and convergence. IEEE/ACM Transactions on
Networking, 7(6):861-874, Dec 1999.

[8] Y. Mansour, A. Rubinstein, S. Vardi, and N. Xie. Converting
online algorithms to local computation algorithms. In
Proceedings of 39th International Colloquium on Automata,
Languages and Programming (ICALP), pages 653-664, 2012.

[9] L. Massoulié and J. Roberts. Bandwidth sharing: objectives
and algorithms. In INFOCOM’99. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 3, pages 1395-1403.
IEEE, 1999.

[10] O. Reingold and S. Vardi. New techniques and tighter bounds
for local computation algorithms. Journal of Computer and
System Science, 82(7):1180-1200, 2016.

[11] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast local
computation algorithms. In Proc. 2nd Symposium on
Innovations in Computer Science (ICS), pages 223-238, 2011.

[12] R. Srikant. The mathematics of Internet congestion control.
Springer Science & Business Media, 2012.

Performance Evaluation Review, Vol. 45, No. 2, September 2017





