
COLA: COMMUNICATION-CENSORED LINEARIZED ADMM FOR
DECENTRALIZED CONSENSUS OPTIMIZATION

Weiyu Li* Yaohua Liu** Zhi Tian† Qing Ling‡

* School of Gifted Young, University of Science and Technology of China
** Department of Automation, University of Science and Technology of China
† Department of Electrical and Computer Engineering, George Mason University

‡ School of Data and Computer Science, Sun Yat-Sen University

ABSTRACT

This paper proposes a communication- and computation-efficient al-
gorithm to solve a convex consensus optimization problem defined
over a decentralized network. A remarkable existing algorithm to
solve this problem is the alternating direction method of multipli-
ers (ADMM), in which at every iteration every node updates its
local variable through combining neighboring variables and solv-
ing an optimization subproblem. The proposed algorithm, called
as communication-censored linearized ADMM (COLA), leverages a
linearization technique to reduce the iteration-wise computation cost
of ADMM and uses a communication-censoring strategy to alleviate
the communication cost. To be specific, COLA introduces succes-
sive linearization approximations to the local cost functions such that
the resultant computation is first-order and light-weight. Since the
linearization technique slows down the convergence speed, COLA
further adopts the communication-censoring strategy to avoid trans-
missions of less informative messages. A node is allowed to trans-
mit only if the distance between the current local variable and its
previously transmitted one is larger than a censoring threshold. We
establish convergence as well as sublinear and linear rates of conver-
gence of COLA, and demonstrate its satisfactory communication-
computation tradeoff with numerical experiments.

Index Terms— Decentralized consensus optimization, alternat-
ing direction method of multipliers, communication censoring.

1. INTRODUCTION

This paper considers solving a consensus optimization problem

x̃∗ = argmin
x̃

n∑
i=1

fi(x̃), (1)

which is defined over a bidirectionally connected decentralized net-
work of n nodes. All the nodes cooperate to find an optimal argu-
ment x̃∗ of the common optimization variable x̃ ∈ Rp, but the local
cost function fi(x̃) : Rp → R held by every node i is kept private.
We focus on the scenario that the nodes cannot afford complicated
computation, while communication resources are also limited. Our
goal is to devise a communication-efficient decentralized algorithm,
which relies on light-weight computation, to solve (1).

Decentralized consensus optimization has attracted extensive in-
terest in recent years. Problems in the form of (1) are involved in
a variety of research areas, including wireless sensor networks [1],
communication networks [2], multi-robot networks [3], smart grids
[4], machine learning systems [5, 6], to name a few. Popular algo-
rithms to solve (1) span from the primal domain to the dual domain.
The primal domain algorithms, such as sub-gradient descent [7,8,9],

dual averaging [10, 11, 12] and network Newton [13], have to use
diminishing step sizes to guarantee exact convergence to an opti-
mal solution, and thus suffer from slow convergence. On the other
hand, (1) can be reformulated as a constrained optimization prob-
lem and solved by the dual domain algorithms, among which the
celebrated alternating direction method of multipliers (ADMM) is
able to achieve fast and exact convergence [1, 14, 15, 16]. When
ADMM is implemented in a synchronous manner, at every iteration,
every node solves an optimization subproblem dependent on its lo-
cal cost function, and then exchanges the calculated local variable
with its neighbors. Therefore, if the local cost functions are not in
simple forms, solving the subproblems is computationally demand-
ing. To alleviate the computation cost, the decentralized linearized
ADMM (DLM) replaces the local cost functions in ADMM by their
linear approximations, and attains a dual domain method with light-
weight computation [17, 18]. Similar techniques have also been ap-
plied to develop other first-order dual domain algorithms, such as
EXTRA [19] and NEXT [20]. If computing the inverse of a Hes-
sian matrix is affordable at a node, one can replace the local cost
functions by their quadratic approximations. The resultant second-
order algorithms, DQM and ESOM, have faster convergence than
their first-order counterparts [21, 22].

There is an essential communication-computation tradeoff in
all decentralized algorithms [23, 24, 25, 26, 27]. An algorithm with
light-weight iteration-wise computation generally needs more num-
ber of iterations, and in consequence more communication cost,
to reach a target accuracy. For example, comparing with ADMM,
DLM enjoys simple first-order computation, but suffers from rela-
tively slow convergence speed and high computation cost. In this
paper, we aim at achieving a favorable communication-computation
tradeoff in a decentralized network, where the nodes are only able
to afford first-order computation. The limitation on the compu-
tation power may come from that the nodes are equipped with
cheap computing units in a wireless sensor network, or from that
using higher-order information is prohibitively time-consuming for
finding a high-dimensional solution in a machine learning system.

Given the constraint on the computation cost, we adopt the
communication-censoring strategy to further save the communica-
tion cost. The basic idea of the communication-censoring strategy
is to only allow transmissions of informative messages over the
network. A simple yet powerful protocol is to prevent a node from
transmitting a variable that is close to its previously transmitted
one, where the “closeness” is determined by comparing the Eu-
clidean distance with a predefined time-varying censoring threshold.
The communication-censoring strategy is tightly related to event-
triggered control of continuous-time networks [28,29,30], and finds
successful applications in discrete-time decentralized optimiza-

5237978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

tion. It has been combined with primal domain methods such as
sub-gradient descent [31] and dual averaging [32], as well as dual
domain methods such as dual decomposition [33] and ADMM [34].
However, similar to their uncensored counterparts, the primal do-
main methods have to use diminishing step sizes to guarantee exact
convergence. On the other hand, the dual domain methods require
the nodes to solve computationally demanding subproblems. Our
proposed algorithm, called as communication-censored linearized
ADMM (COLA), combines the communication-censoring strategy
with the first-order dual domain method DLM. Particularly, we mod-
ify the standard communication-censoring strategy in [31,32,33,34]
to fit for the special algorithmic structure of DLM so as to attain
better performance. We rigorously establish the convergence as well
as sublinear and linear convergence rates of COLA. To the best of
our knowledge, COLA is the first communication-censored method
that only uses gradient information but achieves linear convergence.

Notations. Throughout the paper, we consider a bidirectionally
connected network G = {V,A}, where V = {1, . . . , n} denotes the
set of n nodes and A = {1, . . . ,m} is the set of m directed arcs.
Note that m is even because the network is bidirectional. Nodes i
and j are called as neighbors if (i, j) ∈ A and (j, i) ∈ A. We
denote the set of node i’s neighbors as Ni with cardinality dii =
|Ni|. Further define the extended block arc source matrix As ∈
Rmp×np containing m × n square blocks (As)e,i ∈ Rp×p. The
block (As)e,i = Ip if the arc e = (i, j) ∈ A and is null otherwise,
where Ip is the p-dimensional identity matrix. Likewise, define the
extended block arc destination matrix Ad ∈ Rmp×np, whose block
(Ad)e,j ∈ Rp×p is not null but Ip if and only if the arc e = (i, j) ∈
A terminates at node j. Then, define the extended oriented incidence
matrix asGo = As−Ad and the unoriented one asGu = As+Ad.

2. ALGORITHM DEVELOPMENT

ADMM is a powerful tool to solve a structured optimization problem
with two blocks of variables, which are separable in the cost function
and subject to a linear equality constraint. To rewrite the (1) into the
standard bivariate form, we introduce local variables xi ∈ Rp as
copies of x̃ at nodes i, and auxiliary variables zij ∈ Rp at arcs
(i, j) ∈ A. Since the network is connected, (1) is equivalent to

min
{xi},{zij}

n∑
i=1

fi(xi), s.t. xi = zij , xj = zij , ∀(i, j) ∈ A. (2)

The optimal solution of (2) satisfies x∗i = x̃∗ and z∗ij = x̃∗, where
x̃∗ is an optimal solution of (1).

Concatenating the variables as vectors x = [x1; . . . ;xn] ∈ Rnp
and z = [z1; . . . ; zm] ∈ Rmp, and introducing the aggregate func-
tion f(x) :=

∑n
i=1 fi(xi), we rewrite (2) in the matrix form

min
x,z

f(x), s.t. Ax+Bz = 0, (3)

where A := [As;Ad] ∈ R2mp×np and B := [−Imp;−Imp].
According to [16], we can solve (3) by ADMM and eliminate

the update of z under mild initial conditions. For every node i, the
resultant algorithm includes primal and dual updates

xk+1
i = argmin

xi
fi(xi) + 〈µki − c

∑
j∈Ni

(xki + xkj), xi〉+ cdiix
2
i , (4)

µk+1
i = µki + c

∑
j∈Ni

(xk+1
i − xk+1

j), (5)

where µki ∈ Rp is the local dual variable of node i.

The decentralized ADMM algorithm in (4) and (5) to solve (1)
is implemented in a synchronous manner. At time k, every node i
updates its local primal variable xk+1

i using its xki and µki , as well
as xkj from all neighbors j. Then node i broadcasts its xk+1

i to all
neighbors. Finally, node i updates its local dual variable µk+1

i using
its xk+1

i and µki , as well as xk+1
j from all neighbors j. The costs

of implementing ADMM are two-fold. The first is in computing
the local primal and dual variables xki and µki , in which the update
of xki in (4) is demanding when the local cost function fi(xi) is
complicated. The second is in transmitting the local primal variables
xk+1
i , which is expensive when the bandwidth resource is limited.

COLA adopts two strategies to improve the computation and
communication efficiency of ADMM: linearization and communica-
tion censoring. The linearization technique has been used in [17,18]
to devise DLM, a gradient-based variant of ADMM. DLM effec-
tively reduces the computational cost of solving subproblems in
ADMM, but sacrifices on the convergence speed and thus results in
high communication cost. Therefore, we use the communication-
censoring strategy to prevent transmissions of less informative
messages. Note that though the communication-censoring strat-
egy has been applied to improve the communication efficiency
of sub-gradient descent, dual averaging, dual decomposition and
ADMM [31, 32, 33, 34], we customize it in COLA so as to achieve
a satisfactory balance between communication and computation, as
we shall explain below.

Linearization. Notice that the update of the primal variables
xk+1
i in (4) dominates the computation cost of ADMM. When
fi(xi) is not in a simple form such as linear or quadratic, (4)
has no explicit solution. Therefore, a computationally demand-
ing inner loop should be used to solve xk+1

i . To address this
issue, the DLM algorithm proposed in [17, 18] linearizes the lo-
cal cost functions at every iteration. To be specific, at time k, the
function fi(xi) in (4) is replaced by its quadratic approximation
fi(x

k
i) + 〈∇fi(xki), xi − xki 〉 + ρ

2
‖xi − xki ‖2 at xi = xki , where

ρ > 0 is a positive linearization parameter, such that the update of
xk+1
i is replaced by

xk+1
i = xki −

1

2cdii + ρ

(
∇fi(xki) + c

∑
j∈Ni

(xki − xkj) + µki

)
. (6)

Note that the main computation cost of (6) is in calculating the gra-
dient ∇fi(xki), which is light-weight. The update of dual variable
keeps the same as (5) in ADMM.

Communication censoring. The linearization technique signif-
icantly reduces the computation cost of ADMM, but slows down the
convergence speed, and hence results in high communication cost.
Hence, we introduce the communication-censoring strategy to fur-
ther reduce the communication cost. Intuitively, when xk+1

i is close
to xki , it is not necessary for node i to transmit both of them to neigh-
bors. Motivated by this fact, the communication-censoring strategy
prevents transmissions of less informative messages so as to reduce
the communication cost. To rigorously explain the communication-
censoring strategy, define a state variable x̂ki ∈ Rp as the latest value
that node i has transmitted to neighbors before time k. At time k,
after calculating xk+1

i , node i evaluates the difference between x̂ki
and xk+1

i by their Euclidean distance ξk+1
i = ‖x̂ki − xk+1

i ‖, and
then compares the difference with a predefined censoring threshold
τk+1 ≥ 0. Node i is allowed to transmit xk+1

i to neighbors and
update x̂k+1

i = xk+1
i , if and only if ξk+1

i ≥ τk+1. Otherwise, the
transmission is censored and x̂k+1

i = x̂ki . With the state variable x̂ki ,

5238

Algorithm 1 COLA Run by Node i

Input: Initialize local variables to x0i = 0, µ0
i = 0, x̂0i = 0 and

x̂0j = 0 for all j ∈ Ni.
1: while stopping criterion not met do
2: Compute local primal variable xk+1

i by (7).
3: Compute ξk+1

i = ‖x̂ki − xk+1
i ‖.

4: If ξk+1
i ≥ τk+1, transmit xk+1

i to neighbors and let x̂k+1
i

5: = xk+1
i ; else do not transmit and let x̂k+1

i = x̂ki .
6: If receive xk+1

j from any neighbor j, let x̂k+1
j = xk+1

j ; else
7: let x̂k+1

j = x̂kj .
8: Update local dual variable µk+1

i by (8).
9: k = k + 1.

10: end While

COLA changes the DLM updates in (6) and (5) to

xk+1
i = xki −

1

2cdii + ρ

(
∇fi(xki) + c

∑
j∈Ni

(x̂ki − x̂kj) + µki

)
, (7)

µk+1
i = µki + c

∑
j∈Ni

(x̂k+1
i − x̂k+1

j). (8)

COLA run by node i is outlined in Algorithm 1.
The communication censoring strategy of COLA is not the stan-

dard one used in the existing communication-censored algorithms
[31, 32, 33, 34], where all the local primal variables xi are replaced
by the state variables x̂i. We customize the communication cen-
soring strategy for COLA and keep the local primal variable xki in
xki − 1

2cdii+ρ
∇fi(xki) as it is, because xki has already been avail-

able for node i, and is more up-to-date than x̂ki . Recall that the term
xki − 1

2cdii+ρ
∇fi(xki) comes from the linearization of fi(xi). In-

tuitively, linearization around xi = xki leads to faster convergence
than linearization around xi = x̂ki , which has been validated in our
preliminary numerical experiments. On the other hand, we do not
change the state variables x̂ki and x̂k+1

i by the corresponding local
primal variables xki and xk+1

i in the terms c
∑
j∈Ni

(x̂ki − x̂kj) and
c
∑
j∈Ni

(x̂k+1
i − x̂k+1

j). Note that xki and x̂ki are not equal when
communication censoring happens and the error between them is de-
termined by the censoring threshold τk, while the dual update (8) ac-
cumulates all the previous differences between the neighboring state
variables x̂ki and x̂kj . Thus, replacing the state variables x̂ki therein
by the corresponding local primal variables xki shall accumulate the
errors, and result in instability or even divergence of the recursion.

3. CONVERGENCE AND RATES OF CONVERGENCE

This section proves that COLA converges to an optimal solution of
(1) under Assumption 1, which is standard in analysis of network
optimization algorithms. Further with Assumption 2, COLA con-
verges to the unique optimal solution of (1) at a linear or sublinear
rate, depending on the choice of the censoring threshold. The proofs
are given in a longer version of this paper [35].

Assumption 1. The communication graph G = {V,A} is bidirec-
tionally connected. The local cost functions fi are proper, closed,
convex, and differentiable with Lipschitz continuous gradients, i.e.,
there exists a constant M > 0, such that ‖∇fi(x̃) − ∇fi(ỹ)‖ ≤
M‖x̃ − ỹ‖ for any i and x̃, ỹ ∈ Rp. The dual variable µ of COLA
is initialized in the column space of GTo , i.e., there exists a vector
φ0 ∈ Rmp such that µ0 = GTo φ

0.

Assumption 2. The local cost functions fi are strongly convex. That
is, there exists a constant m > 0, such that 〈∇fi(x̃)−∇fi(ỹ), x̃−
ỹ〉 ≥ m‖x̃− ỹ‖2 for any i and x̃, ỹ ∈ Rp.

Note that the initial condition in Assumption 1 can be easily
satisfied, with the simplest choice being µ0 = 0.

Theorem 1. Under Assumption 1, in COLA we choose c > 0 and
ρ > 0 such that cλmin(Lu) + ρ > M

2
, and set the censoring thresh-

old {τk} as a non-increasing non-negative summable sequence such
that

∑∞
k=0 τ

k < ∞. Then the primal variable xk converges to an
optimal solution x∗ of (3).

Theorem 1 asserts that COLA converges to an optimal solution
of (1) under mild conditions and provides guidelines for setting pa-
rameters. Fixing ρ, a network with better connectedness (namely,
larger λmin(Lu)) allows us to choose a smaller penalty constant c.
Fixing c and λmin(Lu), the linearization parameter ρ must be large
enough to guarantee convergence. Note that ρIp approximates the
Hessians of fi(xi). A large ρ over-approximates the curvature and
forces xk+1

i to be close to xki , which stabilizes the recursion. On the
contrary, a small ρ under-approximates the curvature and allows the
local variables to change quickly, at the cost of possible divergence.
Regarding the censoring threshold τk, we require it to be summable.
Intuitively, τk determines the maximal error that we introduce to the
primal update. When this error is controllable, the convergence of
COLA is guaranteed.

Theorem 2. Under Assumptions 1–2, in COLA we choose c > 0

and ρ > M2

2m
, and set the censoring threshold τk = α(β)k with

α > 0 and β ∈ (0, 1). Then there exists a positive constant δ > 0
such that the primal variable xk converges to the unique optimal
solution x∗ of (3) at a global linear rate O((1 + δ)−

k
2).

Theorem 3. Under Assumptions 1 and 2, in COLA we choose c > 0

and ρ > M2

2m
, and set the censoring threshold τk = α(k)−r with

α > 0 and r > 1. Then there exists a finite k0 such that the distance
between the primal variable xk and the unique optimal solution x∗

of (3) is upper-bounded by a sequence decaying sublinearly to 0 at
a rate of O((k)−

q
2), where q ∈ (0, 2r − 1), when k ≥ k0.

Theorems 2 and 3 indicate that, to achieve linear (or sublin-
ear) convergence, we have to impose stronger requirements on the
parameters. The sequence of censoring threshold should be not
only summable, but also linearly (or sublinearly and faster than
O((k)−1)) decaying. In addition, the parameters c and ρ should be
larger. Note that due to M ≥ m, ρ > M2

2m
≥ M

2
and consequently

cλmin(Lu) + ρ > M
2

, which is required in Theorem 1.

4. NUMERICAL EXPERIMENTS

This section provides numerical experiments to demonstrate the sat-
isfactory communication-computation tradeoff of COLA. We shall
show that COLA inherits the advantage of cheap computation from
its uncensored counterpart DLM [17, 18], but significantly reduces
the overall communication cost. Beyond DLM, we compare COLA
with the classical ADMM [16] and its censored version COCA [34],
both of which do not use the linearization technique and are not
computation-efficient. We also compare with the event-triggered
sub-gradient descent (ETSD) algorithm, which is a primal domain
first-order method. For fair comparisons, the parameters c and ρ
are tuned to be the best for the uncensored algorithms DLM and

5239

0 100 200 300 400

Number of Iterations

10
-5

10
0

A
c
c
u

ra
c
y

COLA

DLM

COCA

ADMM

0 0.5 1 1.5 2

Cumulative Communication Cost 10
4

10
-5

10
0

A
c
c
u

ra
c
y

COLA

DLM

COCA

ADMM

0 200 400 600

Number of Iterations

10
-5

10
0

A
c
c
u

ra
c
y

DLM

COLA, =0.93

COLA, =0.95

COLA, =0.97

COLA, r=2.5

ETSD

0 5000 10000 15000

Cumulative Communication Cost

10
-5

10
0

A
c
c
u

ra
c
y

DLM

COLA, =0.93

COLA, =0.95

COLA, =0.97

COLA, r=2.5

ETSD

Fig. 1. Random network for decentralized least squares.

ADMM, and kept the same in their censored counterparts, respec-
tively. We use the accuracy of the primal variable as the performance
metric, defined by ‖xk−x∗‖2/‖x0−x∗‖2. The computation cost is
evaluated by the time spent to reach a target accuracy, and the com-
munication cost is defined as the accumulated number of broadcast
messages. The numerical experiments are carried out on a laptop
with an Intel I5 processor and 4GB memory. The programming en-
vironment is Matlab R2017a in macOS Sierra.

Decentralized least squares. The decentralized least squares
problem aims at minimizing (1), where fi(x̃) = (1/2)‖A(i)x̃ −
y(i)‖22, with A(i) ∈ Rp×p and y(i) ∈ Rp being private for node
i. In the experiments, y(i) = A(i)b(i), and entries of A(i) and b(i)
follow the i.i.d. uniform distribution within [0, 1]. The size of the
network is n = 50 and the dimension of the local variables is p = 3.

First, we compare four algorithms, COLA, DLM, COCA and
ADMM, over a random network, as shown in the TOP of Fig. 1. In
the random network, 10% of all possible bidirectional edges are ran-
domly chosen to be connected. We use the linear censoring thresh-
old in the form of τk = α(β)k, where α and β are hand-tuned
in COLA and COCA so as to achieve the best communication effi-
ciency. COLA requires slightly more iterations to reach the target ac-
curacy than DLM. Among the two uncensored algorithms, ADMM
also converges faster than COCA. This observation verifies the in-
tuitive idea that linearizing the local cost functions leads to slower
convergence. On the other hand, COLA saves the overall commu-
nication cost compared with DLM. Given a target accuracy of 10−8

and compared with DLM, COLA saves∼ 1/2 communication costs.
Next, we compare the choice of the censoring threshold in

COLA over the same network. We compare four censoring thresh-

n Accuracy COLA DLM COCA ADMM
50 10−4 1.076s 0.971s 30.119s 9.629s
50 10−5 1.126s 1.055s 37.198s 12.467s

100 10−4 1.466s 1.320s 37.488s 11.175s
100 10−5 1.879s 1.721s 45.302s 15.797s

Table 1. The time spent of the four algorithms in two networks with
different numbers of nodes n and target accuracies.

olds, the linear sequences τk = α(β)k with α = 0.7 while
β = 0.93, 0.95 and 0.97, as well as the sublinear sequence
τk = α(k)−r with α = 1000 and r = 2.5. The parameters c
and ρ remain the same. As shown in the BOTTOM of Fig. 1, using
a linear censoring threshold outperforms that using a sublinear cen-
soring threshold, in terms of both communication and computation.
The reason is that the sublinear rate of the censoring threshold limits
the convergence rate of COLA, as we have theoretically analyzed
in Section 3. Regarding the different choices of the linear rate, we
observe that a smaller β needs less number of iterations to reach
a target accuracy, since it leads to faster decay of the censoring
threshold, and thus less communication censoring per iteration. In
contrast, with a larger β, we need more number of iterations and less
communication cost per iteration. Therefore, a moderate β, such as
β = 0.95 in this case, is preferred.

In the BOTTOM of Fig. 1, we also compare COLA with ETSD,
a communication-censored primal domain first-order method. ETSD
uses Metropolis-Hastings mixing matrix, a sublinear step size
O((k)−

2
3) and a linear censoring threshold α(β)k, where α and

β are hand-tuned to achieve the best communication efficiency.
ETSD requires much more number of iterations and communication
cost to reach a target accuracy comparing to COLA. The main rea-
son of the unsatisfactory performance of ETSD is the diminishing
step size, which is used to guarantee exact convergence.

Decentralized logistic regression. In the decentralized logis-
tic regression problem, the local cost function of node i is fi(x̃) =
1
li

∑li
l=1 ln

(
1+exp(−y(i)lqT(i)lx̃)

)
, where q(i)l ∈ Rp is the lth col-

umn of a matrix Q(i) ∈ Rp×li , y(i)l ∈ {−1,+1} is the lth element
of a binary vector y(i) ∈ Rli , and li is the number of samples held by
node i. In our simulation, the dimension of local variables is p = 3.
Each li is i.i.d. and uniformly chosen from integers within [1, 10].
Entries of the first two columns of Q(i) follow the i.i.d. discrete uni-
form distribution on the set {0.1w}, w = 1, 2, · · · , 10, while entries
of the last column are all set as 1. Entries of y(i) are i.i.d. and follow
the uniform distribution on {−1, 1}. Note that the primal updates of
ADMM and COCA have no explicit solutions. Therefore, we solve
the subproblems therein by a gradient descent inner loop, which ter-
minates when the `2 norm of the gradient is less than 10−8.

We conduct the numerical experiments over two random net-
works with n = 50 and n = 100 nodes, in both of which 10%
of all possible bidirectional edges are randomly chosen to be con-
nected. The censoring threshold in both COCA and COLA is set as
τk = α(β)k, and the parameters α and β are hand-tuned to obtain
the best communication efficiency. As shown in Table 1, we com-
pare the CPU time for COLA, DLM, COCA and ADMM to reach
target accuracies 10−4 and 10−5. Notice that the two linearized al-
gorithms, COLA and DLM, compute much faster than COCA and
ADMM. The time spent by COLA in both networks is a bit more
than that of DLM, since COLA requires a few more iterations to
reach a target accuracy.

Acknowledgement. Qing Ling is supported by NSF China
grant 61573331 and NSF Anhui grant 1608085QF130. Zhi Tian is
supported by NSF grant 1741338.

5240

5. REFERENCES

[1] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc
WSNs with noisy links - Part I: Distributed estimation of de-
terministic signals,” IEEE Transactions on Signal Processing,
vol. 56, no. 1, pp. 350–364, 2008

[2] G. Giannakis, Q. Ling, G. Mateos, I. Schizas, and H. Zhu, “De-
centralized learning for wireless communications and network-
ing,” In: Splitting Methods in Communication and Imaging,
Science and Engineering, Springer, 2016

[3] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent
progress in the study of distributed multi-agent coordination,”
IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp.
427–438, 2013

[4] H. Liu, W. Shi, and H. Zhu, “Distributed voltage control in dis-
tribution networks: Online and robust implementations,” IEEE
Transactions on Smart Grid, vol. 9, no. 6, pp. 6106–6117, 2018

[5] X. Zhao and A. Sayed, “Distributed clustering and learning
over networks,” IEEE Transactions on Signal Processing, vol.
63, no. 13, pp. 3285–3300, 2015

[6] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, and J.
Liu, “Can decentralized algorithms outperform centralized al-
gorithms? A case study for decentralized parallel stochastic
gradient descent,” In: Proceedings of NIPS, 2017

[7] A. Nedic and A. Ozdaglar, “Distributed subgradient methods
for multiagent optimization,” IEEE Transactions on Automatic
Control, vol. 54, no. 1, pp. 48–61, 2009

[8] D. Jakovetic, J. Xavier, and J. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59,
no. 5, pp. 1131–1146, 2014

[9] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decen-
tralized gradient descent,” SIAM Journal on Optimization, vol.
30, no. 5, pp. 1835–1854, 2016

[10] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network
scaling,” IEEE Transactions on Automatic Control, vol. 57, no.
3, pp. 592–606, 2012

[11] K. Tsianos and M. Rabbat, “Distributed dual averaging for
convex optimization under communication delays,” In: Pro-
ceedings of ACC, 2012

[12] S. Lee, A. Nedic, and M. Raginsky, “Stochastic dual averag-
ing for decentralized online optimization on time-varying com-
munication graphs,” IEEE Transactions on Automatic Control,
vol. 62, no. 12, pp. 6407–6414, 2017

[13] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton dis-
tributed optimization methods,” IEEE Transactions on Signal
Processing, vol. 65, no. 1, pp. 146–161, 2017

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, pp. 1–122, 2010

[15] G. Mateos, J. Bazerque, and G. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing,
vol. 58, no. 10, pp. 5262–5276, 2010

[16] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the ADMM in decentralized consensus opti-
mization,” IEEE Transactions on Signal Processing, vol. 62,
no. 7, pp. 1750–1761, 2014

[17] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized
linearized alternating direction method of multipliers,” IEEE
Transactions on Signal Processing, vol. 63, pp. 4051–4064,
2015

[18] T. Chang, M. Hong, and X. Wang, “Multi-agent distributed op-
timization via inexact consensus ADMM,” IEEE Transactions
on Signal Processing, vol. 63, no.2, pp. 482–497, 2015

[19] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An ex-
act first-order algorithm for decentralized consensus optimiza-
tion,” SIAM Journal on Optimization, vol. 25, no. 2, pp. 944–
966, 2015

[20] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex
optimization,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 2, no. 2, pp. 120–136, 2016

[21] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: De-
centralized quadratically approximated alternating direction
method of multipliers,” IEEE Transactions on Signal Process-
ing, vol. 64, no. 19, pp. 5158–5173, 2016

[22] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentral-
ized second-order method with exact linear convergence rate
for consensus optimization,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 2, no. 4, pp. 507–
522, 2016

[23] K. Tsianos, S. Lawlor, M. Rabbat, “Communica-
tion/computation tradeoffs in consensus-based distributed
optimization,” In: Proceedings of NIPS, 2012

[24] A. Berahas, R. Bollapragada, N. Keskar, and E. Wei, “Balanc-
ing communication and computation in distributed optimiza-
tion,” arxiv: 1709.02999, 2017

[25] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algo-
rithms for decentralized and stochastic optimization,” arxiv:
1701.03961, 2017

[26] A. Nedic, A. Olshevsky, and M. Rabbat, “Network topology
and communication-computation tradeoffs in decentralized op-
timization,” arxiv: 1709.08765, 2017

[27] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Com-
munication compression for decentralized training,” arxiv:
1803.06443, 2018

[28] D. Dimarogonas, E. Frazzoli, and K. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Trans-
actions on Automatic Control, vol. 57, no. 5, pp. 1291–1297,
2012

[29] E. Garcia, Y. Cao, H. Yu, P. Antsaklis, and D. Casbeer, “Decen-
tralised event-triggered cooperative control with limited com-
munication,” International Journal of Control, vol. 86, no. 9,
pp. 1479–1488, 2013

[30] C. Nowzari and J. Cortes, “Distributed event-triggered coor-
dination for average consensus on weight-balanced digraphs,”
Automatica, vol. 68, pp. 237–244, 2016

[31] Q. Lu and H. Li, “Event-triggered discrete-time distributed
consensus optimization over time-varying graphs,” Complex-
ity, 5385708, 2017

[32] K. Tsianos, S. Lawlor, J. Yu, and M. Rabbat, “Networked op-
timization with adaptive communication,” In: Proceedings of
GlobalSIP, 2013

[33] W. Chen and W. Ren, “Event-triggered zero-gradient-sum dis-
tributed consensus optimization over directed networks,” Au-
tomatica, vol. 65, pp. 90–97, 2016

[34] Y. Liu, W. Xu, G. Wu, Z. Tian, and Q. Ling, “COCA:
Communication-censored ADMM for decentralized consensus
optimization,” In: Proceedings of ASILOMAR, 2018

[35] W. Li, Y. Liu, Z. Tian, and Q. Ling, “Communication-
censored linearized ADMM for decentralized consensus op-
timization,” Available Online: http://home.ustc.edu.
cn/˜liweiyu/documents/COLA.pdf

5241

