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Abstract: Mathematical analysis of the well known model of a piezoelectric energy harvester is
presented. The harvester is designed as a cantilever Timoshenko beam with piezoelectric layers
attached to its top and bottom faces. Thin, perfectly conductive electrodes are covering the top
and bottom faces of the piezoelectric layers. These electrodes are connected to a resistive load.
The model is governed by a system of three partial differential equations. The first two of them are
the equations of the Timoshenko beam model and the third one represents Kirchhoff’s law for the
electric circuit. All equations are coupled due to the piezoelectric effect. We represent the system as
a single operator evolution equation in the Hilbert state space of the system. The dynamics generator
of this evolution equation is a non-selfadjoint matrix differential operator with compact resolvent.
The paper has two main results. Both results are explicit asymptotic formulas for eigenvalues of
this operator, i.e., the modal analysis for the electrically loaded system is performed. The first set
of the asymptotic formulas has remainder terms of the order O( 1

n ), where n is the number of an
eigenvalue. These formulas are derived for the model with variable physical parameters. The second
set of the asymptotic formulas has remainder terms of the order O( 1

n2 ), and is derived for a less
general model with constant parameters. This second set of formulas contains extra term depending
on the electromechanical parameters of the model. It is shown that the spectrum asymptotically
splits into two disjoint subsets, which we call the α-branch eigenvalues and the θ-branch eigenvalues.
These eigenvalues being multiplied by “i” produce the set of the vibrational modes of the system.
The α-branch vibrational modes are asymptotically located on certain vertical line in the left half of
the complex plane and the θ-branch is asymptotically close to the imaginary axis. By having such
spectral and asymptotic results, one can derive the asymptotic representation for the mode shapes
and for voltage output. Asymptotics of vibrational modes and mode shapes is instrumental in the
analysis of control problems for the harvester.

Keywords: partial differential equation; boundary—value problem; differential operator; eigenvalues;
right reflection matrix; left reflection matrix

1. Introduction

Energy harvesting, an extremely popular topic in contemporary engineering literature and
practice, is understood as the process and result of converting the energy available in the environment
into electrical energy, which can be consumed or stored for later use. There are different types of
vibration-based energy harvesters, e.g., piezoelectric, electromagnetic and electrostatic. An advantage
of a piezoelectric vibration energy harvester is the ability of piezoelectric material to convert the
mechanical energy directly to electrical energy without external input. This in turn allows simpler
practical designs for piezoelectric energy harvesters compared to their electromagnetic and electrostatic
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counterparts. Piezoelectric materials create an electric charge in response to a mechanical stress
(the direct piezoelectric effect) and, in the reciprocal process, these materials develop mechanical strain
in response to the electrical potential (the inverse piezoelectric effect). Since the charge generated in
the piezoelectric material is proportional to the applied stress, an energy harvester is designed to
maximize stress under a certain mechanical load. The most commonly used geometric structure is
the cantilever beam, since this structure provides the highest average strain for a given input force.
Ambient vibrations are coupled to the cantilever–mass system through the base of the cantilever
causing the structure to oscillate. The alternating bending strains, due to oscillations, are converted to
an alternating voltage by the piezoelectric material. To maximize the voltage output, ambient vibration
frequencies should be close to the natural oscillation frequency of the beam.

In the present work, we analyze a mathematical model of the harvester. This model consists
of a system of three coupled partial differential equations describing the dynamics of a cantilever
Timoshenko beam whose top and bottom faces are covered by very thin piezoelectric layers.
The system of equations is equipped with the standard sets of the boundary and initial conditions
(see Equations (1)–(5) of Section 2). It is important to emphasize that in our previous works on energy
harvesting models (see Shubov [1–3], Shubov and Shubov [4]), we considered the Euler-Bernoulli
beam model as a vibrating structure. In the present work, we deal with the Timoshenko beam model,
which makes mathematical treatment much more challenging. Before we turn to the mathematical
statements and results, we would like to mention several research directions closely related to the topic
of the present paper.

The development of micro and nano technologies, smart sensors, and health monitoring
devices created the need of independent energy sources for small devices and self-powered sensors.
Stoykov et al. [5] studied the electro-mechanical system of vibrational energy harvester, where the
beam is excited by external and kinematic periodic forces and damped by an electrical resistor through
the coupled piezoelectric transducer. Nonlinearities are introduced by stoppers limiting the transverse
displacement of the beam, and the action of the stoppers is modeled as Winkler elastic foundation.
To study the composite beam, the authors used the geometrical nonlinear version of Timoshenko beam
theory [5]. Using their models, the authors can capture discontinuities of structural parameters such as
thickness discontinuities or impact of stoppers, which is important in engineering practice.

Michelin and Doare [6] discussed the way by which self-sustained oscillations resulting from
air-solid instabilities, such as flutter of a flexible flag in an axial air flow, can be used for energy harvesting.
Piezoelectric patches attached to the surface of the flag transform the solid deformation into an electric
current powering purely resistive output circuits. A flexible plate becomes unstable due to flutter
above the critical flow velocity which depends on the plate’s properties (e.g., density and rigidity) and
can be chosen to be lower than the typical flow velocity, which leads to self-sustained large-amplitude
flapping of the plate. The study is focused on numerical analysis of the nonlinear dynamics of the
system and on determination of its harvesting efficiency and robustness of the process.

In the review paper, Abdelkefi [7] discussed different issues on the energy harvesting from aeroelastic
vibrations. These harvesters can be placed in such areas as high wind spaces, ventilation outlets, ducts of
buildings, lifting surfaces of aircraft structures, and biomedical implants. Qualitative and quantitative
characteristics of various types of flow-induced vibrations energy harvesters are presented in the paper.
Limitations and recommendations on mechanical and aerodynamic modeling, power conditioning
circuits optimization, and prototypes fabrications are discussed in detail.

Anton and Inman [8] performed a concept study on piezoelectric energy harvesting in unmanned
air vehicle (UAV) applications through flight testing of a remote controlled aircraft. It is stated that
the choice of their particular plane is of primary importance because of its long wingspan and flexible
foam wings, which provide a good environment for piezoelectric vibration harvesting using wing
deflections. It is reported that a small battery can be fully charged when increasing the volume of
piezoelectric material. Briant and Garcia [9] are among the first researchers who analyzed theoretically
and experimentally a two-degree-of-freedom typical section model as a power harvesting device driven
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by aeroelastic vibrations. In [9], a time-domain switching energy extracting scheme is considered in
order to increase the level of the harvested power. A wind tunnel testing demonstrates that the wing
section geometry does not affect the linear flutter speed and its frequency. The authors show that the
optimal wing profile depends on the operating range of wind speeds and on the required level of
harvested power.

Elvin and Elvin [10] performed a linear analysis for a cantilever pipe to investigate the effects of
passive piezoelectric damping with a load resistance on the flutter speed. They demonstrated that
the mechanical stiffening effects of the open-circuit cause an increase in the flutter speed compared
to the short-circuit. The authors showed that the larger the piezoelectric electromechanical coupling
coefficient, the higher the flutter speed. For the open circuit case, it is indicated that an increase in the
piezoelectric capacitance is accompanied by a decrease in the flutter speed.

Erturk et al. [11] presented a frequency domain analysis and experimental validations for a two-
degree-of-freedom typical section as a wing-based piezoaeroelastic energy harvester. They focused on
the problem of harvesting energy at the flutter boundary and analyze the effects of the piezoelectric
coupling on the linear flutter speed. In their mathematical modeling, they introduced a piezoelectric
coupling to the plunge degree of freedom and considered a load resistance in the electrical field.
They presented the modified lumped-parameter aeroelastic equations. As for the aerodynamic lift
and moment modeling, a two-dimensional unsteady representation is based on the Theodorsen’s
approach. It is indicated that a good agreement between the mathematical model and the experimental
measurements is obtained. It is shown that the generated voltage increases when increasing the
electrical load resistance. Furthermore, there is an optimum value of the electrical load resistance in
which the harvested power is maximized.

De Marqui et al. [12] presented a time-domain piezoaeroelastic modeling and numerical simulations of
a generator wing with embedded piezoceramics for continuous—and segmented-electrode configurations.
Their wing-based piezoaeroelastic energy harvester model is obtained by combining an electromechanically
coupled finite element model based on the classical plate theory with an unsteady vortex-lattice model [13]
representing the aerodynamic loads. They reported that, when using segmented electrodes, torsional
motions of the coupled modes become more important and therefore change the flutter speed which
improves the broad band performance of the harvester.

Doare and Michelin [14] presented theoretical analysis of harvesting energy from the flutter of
a flexible plate subjected to an axial flow. They presented local and global stability analyses based on the
global coupled electromechanical equations of motion. Other linear analyses are performed in [15,16].
The authors presented theoretically and experimentally a guideline to design piezoaeroelastic energy
harvesters that can generate energy at low freestream velocities. The effects of varying the mass and
stiffness parameters on the linear flutter speed and frequency are investigated. They reported that
the linear flutter speed is more sensitive to the flap center of mass location, the flap mass moment
of inertia, and the flap mass. In [15,16], a semi-empirical nonlinear model is used to determine the
unsteady aerodynamic loads for large flap deflections.

Dias et al. [17] considered an aeroelastic system for which they study the possibility of harvesting
energy from both piezoelectric transduction and electromagnetic induction, named hybrid energy
harvesting. The authors presented the linear governing equations of a hybrid aeroelastic energy harvester
and investigate in detail the effects of the electrical and aeroelastic properties on the linear flutter speed
and performance of the harvester at the flutter boundary. It is demonstrated that a reduction in the
radius of gyration and frequency ratio and an increase in the eccentricity result in a decrease in the linear
flutter speed and an increase in the harvested power at the flutter boundary. A three-degree-of-freedom
hybrid (piezoelectric and electromagnetic) aeroelastic energy harvester that includes control surface in
the airfoil (flap effect), was considered by Dias et al. [18]. A linear coupled lumped-parameter model is
presented including both the piezoelectric and electromagnetic couplings. Theoretical results show that
the linear flutter speed decreases for large values of the eccentricity and plunge-to-pitch frequency ratio.
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Abdelkefi et al. [19] proposed various mathematical models for beam energy harvesters: lumped-
parameter and distributed-parameter models. They designed and studied a unimorph cantilever
beam-based harvester that undergoes bending-torsion vibrations by creating an offset between its
center of gravity and the shear center, thereby leading to a coupling between the bending and
torsion vibrations. The offset is created by placing two masses asymmetrically at the tip of the
beam. The beam-mass system is modeled using the Euler–Bernoulli beam theory and Hamilton’s
principle to derive the coupled governing equations of motion and associated boundary conditions
for a base excitation. The exact mode shapes and natural frequencies of the harvester are calculated
and used as basis functions in Galerkin’s scheme to derive a reduced-order model. Closed-form
expressions are obtained for all needed outputs. It is demonstrated that, when the lowest global
frequencies are close to each other, an interesting broadband frequency harvester appears. It is also
shown that, when the asymmetry between the two masses increases, the electrical harvested power as
well as the produced voltage increases.

Bibo and Daqaq [20] investigated the harvester which consists of a rigid airfoil supported by
nonlinear flexural and torsional springs which is placed in an incompressible air flow and subjected
to a harmonic base excitation in the plunge direction. The flow field sets the elastic structure into
limit-cycle oscillations that induce an alternating strain, and, hence, a charge in the piezoelectric
laminates. The paper investigates the transduction of piezoaeroelastic energy harvesters under the
combination of vibratory base excitations and aerodynamic loadings. An approximate analytical
solution describing the harvester response is obtained using the center manifold reduction and the
method of normal forms. The analytical solution is used in conjunction with numerical simulations to
investigate the harvester’s performance below and above the flutter speed.

Toprak and Tigli [21] presented a comprehensive review on the history and current state-of-the
art piezoelectric energy harvesting. A brief theory section presents the basic principles of piezoelectric
energy conversion and introduces the most commonly used mechanical architectures. The theory
section is followed by a literature survey on piezoelectric energy harvesters, which are classified into
three groups depending on the size of the devise. The size of a harvester affects parameters such as its
weight, fabrication method, achievable power output level, and potential application.

Having in mind potential applications of piezoelectric energy harvesters, it is important to extend
the thin-beam models to reasonably thick-beam configurations as well as to varying geometries
of the harvesters. The dynamics of a beam-like flexible structure strongly depends on its aspect
ratio and the operating frequency range. The Euler–Bernoulli model is the classical model for
slender beam configurations with sufficiently high length-to-thickness aspect ratio so that the shear
distortion and rotary inertia effects can be neglected. The Rayleigh model introduces the effect of
rotary inertia to the Euler–Bernoulli model but it neglects the effect of transverse shear distortion.
The Timoshenko beam model accounts for both the shear distortion and rotary inertia effects and
is widely used for modeling the dynamics of moderate length-to-thickness ratio beams. Erturk [22]
presents approximate analytical distributed-parameter electromechanical modeling of cantilevered
piezoelectric energy harvesters based on the Euler–Bernoulli, Rayleigh, and Timoshenko beam theories.
The technique of [22] is an electromechanical version of the assumed-modes method. After deriving
the distributed-parameter energy expressions, the extended Hamilton’s principle is employed to obtain
the discretized electromechanical Lagrange’s equations. An axial displacement variable is kept in
the formulation to account for its coupling with the transverse displacement (in the Euler–Bernoulli
and Rayleigh models) or cross-section rotation (in the Timoshenko model) due to possible structural
asymmetry. The steady-state electromechanical response expressions are obtained for harmonic base
excitation. Experimental validations are given for the thin-beam case by comparing the assumed-mode
predictions with the experimental and analytical results.

The motivation of the present research is the fact that there exist many well-developed mathematical
models of energy harvesters whose rigorous analytical treatment would be very desirable. Our main
goal is to present rigorous mathematical analysis of a piezoelectric energy harvester with the Timoshenko
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beam model as a substructure. We consider two cases: (i) the beam model with variable structural
parameters; and (ii) the beam model with constant structural parameters. Our goal is to derive the
asymptotic approximation for the infinite set of the natural frequencies of the model. To this end,
we perform asymptotic analysis of the corresponding set of three partial differential equations subject to
four boundary conditions, and homogeneous initial conditions. We would like to obtain the answer to
the following question: In which way do the parameters of piezoelectric layers and the electric circuit (such as the
piezoelectric coupling constant θ, the capacitance of the layers C, and the resistance of the external load R) enter the
asymptotic formulas describing the distribution of the natural frequencies? The answer to this question is the
following: The asymptotic formula for the frequency distribution has the leading term, the second order term, and
the remainder term. Based on our analysis, we obtain that the leading asymptotical term contains contribution only
from the structural part of the model, the second order term contains contributions from piezoelectric and circuitry
parts of the model (see Theorems 5 and 6 below). To prove such results, we have to derive refined asymptotic
approximations for the vibrational modes. However, obtaining higher order asymptotics for the case of
variable parameters structure is quite involved and extremely lengthy. That is why we consider two
models of the harvester, one contains the structural part of the model with variable parameters, for which
we derive the first order asymptotic approximation for the modes (that contains only the leading term
and the remainder term), and the second model that contains constant parameter structural part of the
model, for which we derive higher order asymptotic approximation for the modes (that contains the
leading term, the second order term, and the remainder term).

Now, we are in a position to describe the content of the present paper. In Section 2, the initial
boundary-value problem is formulated in the form of a system of three coupled partial-differential
equations (see Equations (1)–(5) below), in which Equation (2) contains the distributional terms.
We represent the problem in an equivalent form so that there are no distributional terms in the
equations but there is an additional term in the boundary conditions. In Section 3, the problem is
reformulated and is given in the form of a first order in time evolution equation in the Hilbert state
space corresponding to the model. The dynamics generator is the main object of interest for the rest of
the paper. Its properties are presented in Theorem 1. The importance of the dynamics generator is
that the set of its eigenvalues being multiplied by “i” (the imaginary unit) coincides with the set of the
natural frequencies of the harvester model.

In Section 4, we analyze asymptotic and spectral properties of the polynomial operator pencil
whose eigenvalues coincide with the dynamics generator eigenvalues. We describe the fundamental
system of solutions for the pencil equation. In Section 5, we construct two special matrices, which we
call the left reflection matrix and the right reflection matrix. Using these matrices, we can construct the
solution of the pencil equation that satisfies four boundary conditions. The asymptotic approximation
for the vibrational modes as the number of a mode tends to infinity is justified in Theorem 5 of Section 6.
This theorem together with the method of its proof is the first main result of the paper. Finally, Sections 7
and 8 are devoted to the constant parameter case and refined asymptotic approximations for the modes
that are proven in Theorem 6. This theorem is the second main result of the paper. The proof is given
for the constant coefficient case since the derivation of the refined asymptotic formulas in the general
variable coefficient case would require significant increase of the length of the paper.

In the conclusion of the Introduction, we emphasize that the goal of the present manuscript is to
provide rigorous derivation of the analytical formulas for two cases, i.e., for the structure with variable
parameters and for the one with constant parameters. The derivations of all the formulas are quite
lengthy and complicated. The corresponding numerical results will be presented in the forthcoming
work. Preliminary numerical results show very good agreement with the analytical formulas obtained
in the paper. In author’s opinion, analytical formulas are important since they can provide insights not
available from purely numerical results.
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2. Statement of the Energy Harvester Problem

In this section, we present a formulation of the initial-boundary value problem describing the
dynamics of a specific model of an energy harvester. The electromechanical equations of motion are
presented in transverse and rotational vibrations using Timoshenko beam theory. The beam is assumed
to be excited by small (not necessary harmonic) transverse motion of the base. The schematic diagram
of the piezoelectric, vibration-based energy harvester considered in this study is shown on Figure 1.

Figure 1. Cantilevered vibration energy harvester in parallel bimorph configuration.

It is a bimorph configuration consisting of a piezoelectric material layer bonded to both surfaces
of a supporting, inactive core. Electrodes are assumed to cover the upper and lower surfaces of each
layer and they are wired together in a parallel configuration. The voltage across each layer is assumed
to be equal, and the charge displaced by each layer is additive. Because each layer experiences opposite
strains (i.e., one layer is in tension while the other is in compression), they must be in the same direction
to avoid charge cancellation. It is assumed that the electrodes and connecting wires have negligible
resistance and that the resistivity of the piezoelectric material is significantly higher than that of the
external circuitry (i.e., an insulator). In what follows, the equations of motion for the electromechanical
system are derived through force, moment, and charge balances adopting the Timoshenko beam
assumptions (see Inman [23], Timoshenko et al. [24], Shubov [25]).

Now, we are in a position to present mathematical statement of the problem. The model is
governed by a system of three coupled partial differential equations for the following unknown
functions: W(x, t): the relative transverse deflection of the beam with respect to its base; Φ(x, t): the
rotation angle of the beam cross-section; and v(t): the voltage across the energy harvester.

To describe the dynamics of the non-homogeneous Timoshenko beam with the piezoelectric
patches, we need the following notations: EI(x) is the flexural rigidity of a beam, ρ(x) is the mass
density, S is the cross-sectional area of beam, and K(x) is the shear stiffness of a cross-section (as in
Benaroya [26], Rao [27], Elishakoff [28], and Elishakoff et al. [29]). For the electrical circuit part,
we denote by C the net clamped (i.e., constant strain) capacitance of the piezoelectric material.
The electrical load attached to the energy harvester is assumed to be presented by a simple resistor
with resistance R; and θ is the electromechanical coupling coefficient. The following boundary–value
problem for the electromechanical system is valid:

ρ(x)Wtt(x, t) +
d

dx

(
K(x)

(
Φ(x, t)−Wx(x, t)

))
= −ρ(x)ytt(t), (1)

SρΦtt(x, t)− d
dx

(
EI(x)Φx(x, t)

)
+

K(x)
(

Φ(x, t)−Wx(x, t)
)
+ θv(t)

(
δ(x)− δ(x− L)

)
= 0,

(2)
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vt(t) +
θ

C
Φt(L, t) +

1
CR

v(t) = 0. (3)

In Equation (1), y(t) is the absolute transverse base displacement, and δ(·) is the delta function in
Equation (2). Since we consider the clamped–free model, the boundary conditions are (see [18,30]):

W(0, t) = Φ(0, t) = 0, (4)

Φ(L, t)−Wx(L, t) = 0, Φx(L, t) = 0. (5)

Note that the base excitation only directly contributes to the transverse dynamics of Equation (1);
it does not appear in the rotational dynamics equation of Equation (2). Furthermore, the transverse
dynamics is coupled to the rotational dynamics, and the rotational dynamics is coupled to the electrical
dynamics, but the electrical dynamics is not directly coupled to the transverse dynamics. This set of
pairwise coupled equations is in contrast to the Euler–Bernoulli formulation in which the transverse
dynamics is directly coupled to the electrical dynamics (see Dietl [30], Erturk and Inman [31,32],
Shubov [1–3], Shubov and Shubov [4], and Stoykov et al. [5]). In our first statement, we justify the
reformulation of the boundary-value problem in Equations (1)–(5) in the form that does not contain
any distributional terms.

Proposition 1. The boundary-value problem given by Equations (1)–(5) is equivalent to the following
boundary-value problem:

ρ(x)Wtt(x, t) +
d

dx

(
K(x)

(
Φ(x, t)−Wx(x, t)

))
= −ρ(x)ytt(t), (6)

SρΦtt(x, t)− d
dx

(
EI(x)Φx(x, t)

)
+ K(x)

(
Φ(x, t)−Wx(x, t)

)
= 0, (7)

vt(t) +
θ

C
Φt(L, t) +

1
CR

v(t) = 0. (8)

The boundary conditions are:
W(0, t) = Φ(0, t) = 0; (9)

Φ(L, t)−Wx(L, t) = 0, EI(L)Φx(L, t) = θv(t). (10)

Remark 1. The only difference between Equations (1)–(3) and Equations (7)–(8) is that the distributional term,

θv(t)
(

δ(x)− δ(x− L)
)

, in Equation (2) is replaced by an additional term θv(t) in the right-hand side of the
boundary condition in Equation (10).

Proof of Proposition 1. To show that the two problems are equivalent, we check that their weak
(variational) formulations coincide. Consider the following class of functions:

P =
{

ϕ ∈ C∞[0, L], ϕ(0) = 0.
}

Multiplying Equation (1) by ϕ ∈ P and integrating, we have

∫ L

0
ρ(ξ)Wtt(ξ, t)ϕ(ξ)dξ +

∫ L

0
K(ξ)

(
Φ(ξ, t)−Wx(ξ, t)

)′
ϕ(ξ)dξ =

−
∫ L

0
ρ(ξ)ytt ϕ(ξ)dξ.

(11)
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Taking into account that Φ(0, t) = 0, and the first condition of Equation (10), we obtain that

∫ L

0

(
Wtt(ξ, t) + ytt(t)

)
ρ(ξ)ϕ(ξ)dξ =

∫ L

0
K(ξ)

(
Φ(ξ, t)−W ′(ξ, t)

)
ϕ′(ξ)dξ. (12)

Now, we multiply Equation (2) by ψ ∈ P and integrate to have

∫ L

0
Sρ(ξ)Φtt(ξ, t)ψ(ξ)dξ −

∫ L

0

(
EI(ξ)Φ′(ξ, t)

)′
ψ(ξ)dξ+∫ L

0
K(ξ)

(
Φ(ξ, t)−W ′(ξ, t)

)
ψ(ξ)dξ + θv(t)

(
δ(0)− δ(L)

)
= 0.

(13)

Taking into account that ψ(0) = 0 and Φ(L, t) = 0, we reduce Equation (13) to

∫ L

0
Sρ(ξ)Φtt(ξ, t)ψ(ξ)dξ +

∫ L

0
EI(ξ)Φ′(ξ, t)ψ′(ξ)dξ+∫ L

0
K(ξ)

(
Φ(ξ, t)−W ′(ξ, t)

)
ψ(ξ)dξ − θv(t)δ(L) = 0.

(14)

Thus, Equations (3), (12) and (14) constitute the weak formulation of the problem given by
Equations (1)–(3). To obtain the weak formulation of the problem given by Equations (7)–(8), we multiply
Equation (7) by ϕ(ξ) and integrate, which immediately yields Equation (13). Finally, we multiply
Equation (10) by ψ(ξ) and integrate to have

∫ L

0
Sρ(ξ)Φtt(ξ, t)ψ(ξ)dξ +

∫ L

0
EI(ξ)Φ′(ξ, t)ψ′(ξ)dξ+∫ L

0
K(ξ)

(
Φ(ξ, t)−W ′(ξ, t)

)
ψ(ξ)dξ − EI(L)Φ′(L, t)ψ(L) + EI(0)Φ′(0, t)ψ(0) = 0.

(15)

If we take into account that ψ(0) = 0 and the second boundary condition from Equation (10),
we immediately reduce Equation (15) to the form of Equation (14). The fact that weak formulation in
Equations (14), (15), (4), and (5) is the same for both problems in Equation (1)–(3), (4), (5), and (7)–(8)
with Equations (9) and (10) implies that these two problems are equivalent.

3. Operator Reformulation of the Problem

Since we are interested in the asymptotic approximation for the natural frequencies of the system,
we place y(t) = 0 (where y(t) is an external force), and arrive at the following system of partial
differential equations governing the harvester dynamics:

Φtt(x, t) =
1

Sρ(x)

[
d

dx

(
EI(x)Φx(x, t)

)
− K(x)

(
Φ(x, t)−Wx(x, t)

)]
, (16)

Wtt(x, t) = − 1
ρ(x)

d
dx

(
K(x)

(
Φ(x, t)−Wx(x, t)

))
, (17)

vt(t) = −
θ

C
Φt(L, t)− 1

CR
v(t). (18)

The boundary conditions are given in Equation (9) and (10).



Appl. Sci. 2018, 8, 1434 9 of 45

LetH be the set of five-component vector-valued functions F =
(

ϕ0(x), ϕ1(x), ϕ2(x), ϕ3(x), ϕ4

)T

obtained as a closure of smooth functions satisfying the conditions ϕ0(0) = ϕ2(0) = 0 in the following
energy norm:

∥∥F∥∥2
H =

1
2

{ ∫ L

0

[
ρ(x)

∣∣ϕ3(x)
∣∣2 + K(x)

∣∣ϕ0(x)− ϕ2x(x)
∣∣2+

Sρ(x)
∣∣ϕ1(x)

∣∣2 + EI(x)
∣∣ϕ0x(x)

∣∣2]dx +
∣∣ϕ4
∣∣2}.

(19)

If we introduce a new vector-valued function F by the rule:

F(x, t) =
(

Φ(x, t), Φt(x, t), W(x, t), Wt(x, t), v(t)
)T

,

then it can be easily checked that the problem in Equations (16)–(18), (9) and (10) can be written as
a first order in time linear system in the energy space, i.e.,

Ft(x, t) = i
(
LF
)
(x, t), (20)

F(x, t)
∣∣∣
t=0

= F0(x) ≡
(

ϕ0
0(x), ϕ0

1(x), ϕ0
2(x), ϕ0

3(x), ϕ0
4

)T
, (21)

where the superscript “0” stands for the notation of the initial state. The operator L (the dynamics
generator) can be given by the following differential expression:

L = −i



0 1 0 0 0
1

Sρ(x)

[
d

dx

(
EI(x) d

dx ·
)
− K(x) ·

]
0 K(x)

Sρ(x)
d

dx · 0 0

0 0 0 1 0

− 1
ρ(x)

d
dx

(
K(x) ·

)
0 1

ρ(x)
d

dx

(
K(x) d

dx ·
)

0 0

0 − θ
C AL 0 0 − 1

CR


, (22)

defined on the domain

D(L) =
{

Ψ ∈ H : ψ0, ψ2 ∈ H2(0, L), ψ1, ψ3 ∈ H1(0, L), ψ4 ∈ C,

ψ0(0) = ψ2(0) = 0, ψ1(0) = ψ3(0) = 0, ψ0(L)− ψ2x(L) = 0, EI(L)ψ0x(L) = θψ4

}
.

(23)

The operation AL means that AL f = f (L).

Remark 2. We introduce the imaginary unit “i” into the definition in Equation (22) of the dynamics generator
and into Equation (20) for convenience. As is shown below, L is a finite-rank perturbation of a selfadjoint
operator. Thus, owing to this factor, we deal with a selfadjoint operator rather than with a skew-selfadjoint one.

Properties of the coefficients:

there exist two constants 0 < C0 ≤ C1 < ∞ such that

C0 ≤ ρ(x) ≤ C1, C0 ≤ EI(x) ≤ C1, C0 ≤ K(x) ≤ C1 for x ∈ [0, L]; (24)

EI ∈ H3(0, L), K ∈ H3(0, L), ρ ∈ H4(0, L). (25)

Derivation of the formula for the adjoint operator L∗.
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Lemma 1. The operator L∗ is defined by the differential expression obtained from Equation (22) in which the
second column is replaced with the column

(
1, 0, 0, 0, θAL

)T . This operator is defined on the domain

D
(
L∗
)
=

{
Ψ ∈ H : ψ0, ψ2 ∈ H2(0, L); ψ1, ψ3 ∈ H1(0, L), ψ4 ∈ C; ψ0(0) = ψ2(0) = 0,

ψ1(0) = ψ3(0) = 0, ψ0(L)− ψ′2(L) = 0, EI(L)ψ′0(L) = − θ

C
ψ4

}
.

(26)

Proof. We have to derive the matrix differential expression and the boundary conditions in such a way
that, for any F ∈ D

(
L
)

and G ∈ D
(
L∗
)
, the following relation holds:(
LF,G

)
H
=
(
F,L∗G

)
H

. (27)

Let F =
(

ϕ0(x), ϕ1(x), ϕ2(x), ϕ3(x), ϕ4

)T
and G =

(
g0(x), g1(x), g2(x), g3(x), g4

)T
. We have

for any F ∈ H:

(
LF
)
(x) = −i



ϕ1(x)
1

Sρ(x)

((
EI(x)ϕ′0(x)

)′
− K(x)ϕ0(x)

)
+ K(x)

Sρ(x) ϕ′2(x)

ϕ3(x)

− 1
ρ(x)

(
K(x)ϕ0(x)

)′
+ 1

ρ(x)

(
K(x)ϕ′2(x)

)′
− θ

C ϕ1(L)− 1
CR ϕ4


≡


ϕ̃0(x)
ϕ̃1(x)
ϕ̃2(x)
ϕ̃3(x)

ϕ̃4

 . (28)

Evaluating the inner product induced by norm (Equation (19)) yields

(
LF,G

)
H
=− i




ϕ̃0(x)
ϕ̃1(x)
ϕ̃2(x)
ϕ̃3(x)

ϕ̃4

 ,


g0(x)
g1(x)
g2(x)
g3(x)

g4




H

= − i
2

{ ∫ L

0
ρ(ξ)ϕ̃3(ξ)g3(ξ)dξ+

∫ L

0
Sρ(ξ)ϕ̃1(ξ)g1(ξ)dξ +

∫ L

0
EI(ξ)ϕ̃′0(ξ)g′0(ξ)dξ+

∫ L

0
K(ξ)

(
ϕ̃0(ξ)− ϕ̃′2(ξ)

)(
g0(ξ)− g′2(ξ)

)
dξ + ϕ̃4g4

}
≡ − i

2

5

∑
j=1

Ij.

(29)

Now, we modify the integrals Ij, j = 1, ..., 5. Evaluating the first integral, we have

I1 =
∫ L

0
ρ(ξ)

[
− 1

ρ(ξ)

(
K(ξ)ϕ0(ξ)

)′
+

1
ρ(ξ)

(
K(ξ)ϕ′2(ξ)

)′]
g3(ξ)dξ

= −K(ξ)ϕ0(ξ)g3(ξ)
∣∣∣L
0
+ K(ξ)ϕ′2(ξ)g3(ξ)

∣∣∣L
0
+
∫ L

0

(
ϕ0(ξ)− ϕ′2(ξ)

)
g′3(ξ)dξ

= −K(L)
(

ϕ0(L)− ϕ′2(L)
)

g′3(L) + K(0)
(

ϕ0(0)− ϕ′2(0)
)

g3(0)+∫ L

0
K(ξ)

(
ϕ0(ξ)− ϕ′2(ξ)

)
g3(ξ)dξ.

(30)

Since F ∈ D(L), i.e., ϕ0(L)− ϕ′2(L) = 0, and G ∈ D(L), i.e., g3(0) = 0, we simplify I1:

I1 =
∫ L

0
K(ξ)

(
ϕ0(ξ)− ϕ′2(ξ)

)
g3(ξ)dξ. (31a)
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Evaluating the second integral from Equation (29), we get

I2 =
∫ L

0
Sρ(ξ)

[
1

Sρ(ξ)

((
EI(ξ)ϕ′0(ξ)

)′
− K(ξ)ϕ0(ξ)

)
+

K(ξ)
Sρ(ξ)

ϕ′2(ξ)

]
g1(ξ)dξ

= EI(L)ϕ′0(L)g1(L)−
∫ L

0
EI(ξ)ϕ′0(ξ)g′1(ξ)dξ −

∫ L

0
K(ξ)

[
ϕ0(ξ)− ϕ′2(ξ)

]
g1(ξ)dξ.

Since F ∈ D(L), i.e., EI(L)ϕ′0(L) = θϕ4, we obtain for I2

I2 = θϕ4g1(L)−
∫ L

0
EI(ξ)ϕ′0(ξ)g′1(ξ)dξ −

∫ L

0
K(ξ)

[
ϕ0(ξ)− ϕ′2(ξ)

]
g1(ξ)dξ. (31b)

For the integrals I3, I4 and I5 , we have

I3 =
∫ L

0
EI(ξ)ϕ′1(ξ)g′0(ξ)dξ, (31c)

I4 =
∫ L

0
K(ξ)

(
ϕ1(ξ)− ϕ′3(ξ)

)(
g0(ξ)− g′2(ξ)

)
dξ, (31d)

I5 =

(
− θ

C
ϕ1(L)− 1

CR
ϕ4

)
g4. (31e)

Collecting Equations (31a)–(31e), we get from Equation (29)

2i
(
LF,G

)
H
=
∫ L

0
K(ξ)

(
ϕ0(ξ)− ϕ′2(ξ)

)
g′3(ξ)dξ −

∫ L

0
K(ξ)

(
ϕ0(ξ)− ϕ′2(ξ)

)
g1(ξ)dξ−∫ L

0
EI(ξ)ϕ′0(ξ)g1(ξ)dξ + θϕ4g1(L) +

∫ L

0
EI(ξ)ϕ′1(ξ)g′0(ξ)dξ+∫ L

0
K(ξ)

(
ϕ1(ξ)− ϕ′3(ξ)

)(
g0(ξ)− g′2(ξ)

)
dξ − θ

C
ϕ1(L)g4 −

1
CR

ϕ4g4.

(32)

Thus, rearranging the terms in Equation (32), we obtain

2i
(
LF,G

)
H
=−

∫ L

0
K(ξ)

(
ϕ0(ξ)− ϕ′2(ξ)

)(
g1(ξ)− g′3(ξ)

)
dξ+∫ L

0
K(ξ)

(
ϕ1(ξ)− ϕ′3(ξ)

)(
g0(ξ)− g′2(ξ)

)
dξ+∫ L

0
EI(ξ)

(
ϕ′1(ξ)g′0(ξ)− ϕ′0(ξ)g′1(ξ)

)
dξ−

θ

C
ϕ1(L)g4 −

1
CR

ϕ4g4 + θϕ4g1.

(33)

Now, we use the definition of L∗ to evaluate
(
F,L∗G

)
H

and have

(
L∗G

)
(x) = −i



g1(x)
1

Sρ(x)

((
EI(x)g′0(x)

)′
− K(x)g0(x)

)
+ K(x)

Sρ(x) g′2(x)

g3(x)

− 1
ρ(x)

(
K(x)g0(x)

)′
+ 1

ρ(x)

(
K(x)g′2(x)

)′
Θg1(L)− 1

CR g4


=


g̃0(x)
g̃1(x)
g̃2(x)
g̃3(x)

g̃4

 . (34)
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Evaluating an inner product induced by the norm in Equation (19) yields

(
F,L∗G

)
H
=

i
2

{ ∫ L

0

[
ρ(ξ)ϕ3(ξ)g̃3(ξ) + Sρ(ξ)ϕ1(ξ)g̃1(ξ) + EI(ξ)ϕ′0(ξ)g̃′0(ξ)

+ K(ξ)
(

ϕ0(ξ)− ϕ′2(ξ)
)(

g̃0(ξ)− g̃′2(ξ)
)]

dξ + θg1(L)ϕ4 −
1

CR
g4 ϕ4

}
≡ i

2

5

∑
j=1

I∗j ,

(35)

where I∗1 =
∫ L

0 ρ(ξ)ϕ3(ξ)g̃3(ξ)dξ, I∗2 =
∫ L

0 Sρ(ξ)ϕ1(ξ)g̃1(ξ)dξ, I∗3 =
∫ L

0 EI(ξ)ϕ′0(ξ)g̃′0(ξ)dξ,

I∗4 =
∫ L

0 K(ξ)
(

ϕ0(ξ)− ϕ′2(ξ)
)(

g̃0(ξ)− g̃′2(ξ)
)

dξ, and I∗5 = θg1(L)ϕ4 − 1
CR g4 ϕ4.

Evaluating the first integral, we have

I∗1 =
∫ L

0
ρ(ξ)ϕ3(ξ)

(
− 1

ρ(x)

(
K(ξ)g0(ξ)

)′
+

1
ρ(ξ)

(
K(ξ)g′2(ξ)

)′)
dξ

= −K(ξ)g0(ξ)ϕ3(ξ)
∣∣∣L
0
+ K(ξ)g′2(ξ)ϕ3(ξ)

∣∣∣L
0
+
∫ L

0
K(ξ)

(
g0(ξ)− g′2(ξ)

)
ϕ′3(ξ)dξ

+ K(L)ϕ3(L)
(

g′2(L)− g0(L)
)
+ K(0)ϕ3(0)g0(0)− K(0)ϕ3(0)g2(0).

Since G ∈ D(L∗), i.e., g0(L)− g′2(L) = 0 and F ∈ D(L), i.e., ϕ3(0) = 0, we obtain that

I∗1 =
∫ L

0
K(ξ)

(
g0(ξ)− g′2(ξ)

)
ϕ3(ξ)dξ. (36a)

Evaluating the second integral from Equation (35), we get

I∗2 =
∫ L

0

[(
EI(ξ)g0

′(ξ)
)′
− K(ξ)g0(ξ) + K(ξ)g2

′(ξ)

]
ϕ1(ξ)dξ

= EI(L)g0
′(L)ϕ1(L)−

∫ L

0
EI(ξ)g0

′(ξ)ϕ′1(ξ)dξ −
∫ L

0
K(ξ)

(
g0(ξ)− g2

′(ξ)
)

ϕ1(ξ)dξ.

(36b)

For integrals I∗3 , I∗4 and I∗5 , we obtain the following expressions:

I∗3 =
∫ L

0
EI(ξ)g′1(ξ)ϕ′0(ξ)dξ, (36c)

I∗4 =
∫ L

0
K(ξ)

(
ϕ0(ξ)− ϕ′2(ξ)

)(
g1(ξ)− g3

′(ξ)
)

dξ, (36d)

I∗5 = θg1(L)ϕ4 −
1

CR
g4 ϕ4. (36e)

Collecting Equations (36a)–(36e), we obtain from Equation (34)

−2i
(
F,L∗G

)
H
=
∫ L

0
K(ξ)

(
g0(ξ)− g2

′(ξ)
)

ϕ′3(ξ)dξ −
∫ L

0
EI(ξ)g0

′(ξ)ϕ′1(ξ)dξ−∫ L

0
K(ξ)

(
g0(ξ)− g2

′(ξ)
)

ϕ1(ξ)dξ +
∫ L

0
EI(ξ)g1

′(ξ)ϕ′0(ξ)dξ+∫ L

0
K(ξ)

(
ϕ0(ξ)− ϕ′2(ξ)

)(
g1(ξ)− g3

′(ξ)
)

dξ + θg1(L)ϕ4−

1
CR

g4 ϕ4 −
θ

C
g4 ϕ1(L).

(37)

Comparing Equation (33) with Equation (37) yields the result.
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Theorem 1. The operator L has the following properties.

(i) L is an unbounded closed non-selfadjoint operator inH.
(ii) The inverse operator L−1 exists and is a compact operator inH. Therefore, L has purely discrete spectrum

of normal eigenvalues (see Gohberg and Krein [33]).

Proof. The fact that L is non-selfadjoint is due to two reasons: the matrix differential expressions for
L and L∗ are different and the domains D(L) and D(L∗) are different (see Equations (23) and (26)).
Let us prove that L−1 exists and is compact. To this end, we consider the equation

LΨ = Y, Y ∈ H (38)

and prove that this equation has a unique solution Ψ =
(
ψ0(x), ψ1(x), ψ2(x), ψ3(x), ψ4

)T ∈ D(L) for

any Y ∈ H, Y ≡
(
y0(x), y1(x), y2(x), y3(x), y4

)T . Rewriting Equation (38) component-wise, we obtain
the following system:

(i) ψ1(x) = iy0(x),

(ii) ψ3(x) = iy2(x),

(iii)
(
EI(x)ψ′0(x)

)′ − K(x)ψ0(x) + K(x)ψ′2(x) = iSρ(x)y1,

(iv) −
(
K(x)ψ0(x)

)′
+
(
K(x)ψ2(x)

)′
= iρ(x)y3(x),

(v) − θ

C
ψ1(L)− 1

CR
ψ4 = iy4.

(39)

Integrating Equation (39) (iv) and using the condition ψ0(L)− ψ2x(L) = 0, we obtain

K(x)
(
ψ0(x)− ψ′2(x)

)
= i

∫ L

x
ρ(τ)y3(τ)dτ. (40)

Substituting Equation (40) into Equation (39) (iii), we get

(
EI(x)ψ′0(x)

)′
= K(x)

(
ψ0(x)− ψ′2(x)

)
+ iSρ(x)y1(x) = i

∫ L

x
ρ(τ)y3(τ)dτ + iSρ(x)y1(x).

Integrating this equation and taking into account that E(L)ψ′0(L) = θψ4, we obtain

EI(x)ψ′0(x) = θψ4 − i
∫ L

x
dτ
∫ L

τ
ρ(η)y3(η)dη − iS

∫ L

x
ρ(τ)y1(τ)dτ. (41)

Using Equation (39) (i) we derive from Equation (39) (v) that

ψ4 = −CR
(

iy4 −
θ

C
ψ1(L)

)
= −iR

(
Cy4 − θy0(L)

)
. (42)

Substituting this result into Equation (41), we obtain the following representation

ψ′0(x) = − iRθ

EI(x)

(
Cy4 − θy0(L)

)
−

i
EI(x)

∫ L

x
dτ
∫ L

τ
ρ(η)y3(η)dη − iS

EI(x)

∫ L

x
ρ(τ)y1(τ)dτ,
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which upon integration yields the formula for ψ0, i.e.,

ψ0(x) =− iRθ
(

Cy4 − θy0(L)
) ∫ x

0

dτ

EI(τ)
− i

∫ x

0

dτ

EI(τ)

∫ L

τ
dη
∫ L

η
ρ(ξ)y3(ξ)dξ

− iS
∫ x

0

dτ

EI(τ)

∫ L

τ
ρ(η)y1(η)dη.

(43)

Integrating ψ′2 from Equation (40), we derive that

ψ2(x) =
∫ x

0
ψ0(τ)dτ − i

∫ x

0

dτ

K(τ)

∫ L

τ
ρ(η)y3(η)dη. (44)

Collecting together Equations (39) (i), (39) (ii), and (42)–(44), one can see that the following
formula for the solution of Equation (38) is valid:

Ψ(x) =




− iRθ

(
Cy4 − θy0(L)

) ∫ x

0

dτ

EI(τ)
− i

∫ x

0

dτ

EI(τ)

∫ L

τ
dη
∫ L

η
ρ(ξ)y3(ξ)dξ

− iS
∫ x

0

dτ

EI(τ)

∫ L

τ
ρ(η)y1(η)dη


iy0(x)∫ x

0 ψ0(τ)dτ − i
∫ x

0
dτ

K(τ)

∫ L
τ ρ(η)y3(η)dη

−iR
(

Cy4 − θy0(L)
)


. (45)

It is clear that L−1 is defined on each Y ∈ H. To show that L−1 is compact we notice that the
domain of L−1 is a closed subspace of the space H1 = H1(0, L)× L2(0, L)× H1(0, L)× L2(0, L)×C
while the range of L−1 is a closed subspace of the space H2 = H2(0, L) × H1(0, L) × H2(0, L) ×
H1(0, L)×C. As follows from the above proof, the operator L−1 is a bounded operator fromH into
D(L) if D(L) is equipped with the norm of H2. Since the embedding H2 ↪→ H1 is compact, we get
the compactness of the operator L−1.

4. Non-Selfadjoint Operator Pencil Generated by the Harvester System

We perform an asymptotic analysis of the fourth order parameter-dependent ordinary differential
equation associated to the harvester system (Marcus [34]). We consider the eigenvalue-eigenvector
equation for the operator L. Let Ψ =

(
ϕ0, ϕ1, ϕ2, ϕ3, ϕ4

)T

LΨ = λΨ, Ψ ∈ D(L), λ ∈ C. (46)

Rewriting Equation (46) component-wise and eliminating ψ1 and ψ3, we get the system of two
coupled ordinary differential equations equipped with four boundary conditions:

λ2ρ(x)ψ2(λ, x) +
(

K(x)ψ2x(λ, x)
)

x
−
(

K(x)ψ0(λ, x)
)

x
= 0, (47)

λ2Sρ(x)ψ0(λ, x) +
(

EI(x)ψ0x(λ, x)
)

x
− K(x)

(
ψ0(λ, x)− ψ2x

)
= 0. (48)

The boundary conditions are
ψ0(λ, 0) = ψ2(λ, 0) = 0, (49)

ψ0(λ, L)− ψ2x(λ, L) = 0, (50)

EI(L)ψ0x(λ, L) = θψ4. (51)
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Our goal is to eliminate the unknowns ψ2 and ψ4 from the system in Equations (47) and (48) and
from the boundary conditions in Equation (49)–(51) and write the pencil eigenvalue problem in terms
of ψ0. It is technically convenient to deal with new functions f0 and f2 defined by

f0(λ, x) = K(x)ψ0(λ, x), f2(λ, x) = K(x)ψ2x(λ, x). (52)

Before we present the spectral problem for the pencil, let us complete some preliminary steps.
First, we note that

EIψ′0(λ, x) = EI(x)
(

1
K(x)

K(x)ψ0(λ, x)
)′

=
EI(x)
K(x)

f ′0(λ, x)− EI(x)K′(x)
K2(x)

f0(λ, x). (53)

Substituting Equation (53) into Equation (48), we get

λ2Sρ(x)
K(x)

f0(λ, x) +
(

EI(x)
K(x)

f ′0(λ, x)− EI(x)K′(x)
K2(x)

f0(λ, x)
)′
−
(

f0(λ, x)− f2(λ, x)
)
= 0.

From this equation, we have

f0(λ, x)− f2(λ, x) = λ2 Sρ(x)
K(x)

f0(λ, x) +
(

EI(x)
K(x)

f ′0(λ, x)− EI(x)K′(x)
K2(x)

f0(λ, x)
)′

. (54)

Now, we turn to Equation (47). Dividing it by ρ(x) and then differentiating, we get a new equation

λ2ψ2x(λ, x) +
((

ρ(x)
)−1
)

x

(
K(x)ψ2x(λ, x)

)
x +

(
ρ(x)

)−1(K(x)ψ2x(λ, x)
)

xx−((
ρ(x)

)−1
)

x

(
K(x)ψ0(λ, x)

)
x −

(
ρ(x)

)−1(K(x)ψ0(λ, x)
)

xx = 0.
(55)

Using the notation in Equation (52), we rewrite Equation (55) in terms of f0 and f2 as

λ2 f2(λ, x) + K(x)
((

ρ(x)
)−1
)

x
f2x(λ, x) + K(x)

((
ρ(x)

)−1
)

f2xx(λ, x)

− K(x)
((

ρ(x)
)−1
)

x
f0x(λ, x)− K(x)

((
ρ(x)

)−1
)

f0xx(λ, x) = 0,

which can be represented in the form

λ2 f2(λ, x)− K(x)
((

ρ(x)
)−1
)

x

(
f0(λ, x)− f2(λ, x)

)
x

− K(x)
(
ρ(x)

)−1
(

f0(λ, x)− f2(λ, x)
)

xx
= 0.

In the sequel, we will work with the following equation:

K(x)
ρ(x)

(
f0(λ, x)− f2(λ, x)

)
xx
− K(x)ρ′(x)

ρ2(x)

(
f0(λ, x)− f2(λ, x)

)
x
+

λ2
(

f0(λ, x)− f2(λ, x)
)
− λ2 f0(λ, x) = 0.

(56)

It is convenient to introduce new notations:

a(x) =
K(x)
ρ(x)

, b(x) =
K(x)ρ′(x)

ρ2(x)
, c(x) =

EI(x)
K(x)

, d(x) =
EI(x)K′(x)

K2(x)
. (57)

In these notations, Equations (54) and (56) become

f0(λ, x)− f2(λ, x) = λ2S
(
a(x)

)−1 f0(λ, x) +
(

c(x) f ′0(λ, x)− d(x) f0(λ, x)
)′

, (58)
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λ2
(

f0(λ, x)− f2(λ, x)
)
+ a(x)

(
f0(λ, x)− f2(λ, x)

)
xx
−

b(x)
(

f0(λ, x)− f2(λ, x)
)

x
− λ2 f0(λ, x) = 0.

(59)

Substituting Equation (58) into Equation (59), we obtain the desired form of the pencil equation:

λ2(G(λ, x)
)
+ a(x)

(
G(λ, x)

)
xx − b(x)

(
G(λ, x)

)
x − λ2 f0(λ, x) = 0. (60)

where
G(λ, x) = λ2S

(
a(x)

)−1 f0(λ, x) +
(

c(x) f ′0(λ, x)− d(x) f0(λ, x)
)

x
. (61)

Thus, our main equation (Equation (60)) is given in terms of f0(λ, x) = K(x)ψ0(λ, x). Now,
we have to rewrite the boundary conditions in terms of f0(λ, x).

The boundary conditions for the function f0(λ, x). Using Equations (49) and (52), we get the
first left-end condition

f0(λ, 0) = 0. (62)

From Equation (48), we get

K(x)ψ2x(λ, x) = K(x)ψ0(λ, x)− λ2Sρ(x)ψ0(λ, x)−
(
EI(x)ψ0x

)
x. (63)

Substituting Equation (63) into Equation (47), we obtain

λ2ρ(x)ψ(λ, x) =−
(

K(x)ψ2x(λ, x)
)

x
+
(

K(x)ψ0(λ, x)
)

x
= −

(
K(x)ψ0(λ, x)

)
x
+

λ2S
(

ρ(x)ψ0(λ, x)
)

x
+
(

EI(x)ψ0x

)
xx

+
(

K(x)ψ0(λ, x)
)

x

=λ2S
(

ρ(x)ψ0(λ, x)
)

x
+
(

EI(x)ψ0x

)
xx

.

(64)

From Equation (64), we obtain the second condition at x = 0 in terms of f0(λ, x) (see Equation (53)):

λ2S
(

ρ(x)
(
K(x)

)−1 f0(λ, x)
)

x

∣∣∣
x=0

+

(
EI(x)
K(x)

f ′0(λ, x)− EI(x)K′(x)
K2(x)

f0(λ, x)

)
xx

∣∣∣∣∣
x=0

= 0. (65)

The right-hand side boundary conditions. From now on, we replace Equation (50) with the
more general condition in Equation (66) containing a parameter α. This helps us to separate the
spectral branches in the future, i.e., we consider the first right-hand side condition as

K(L)
(

ψ0(L)− ψ2x(L)
)
= iλαψ2(L). (66)

The condition in Equation (50) is obtained from Equation (66) by setting α = 0. From Equation (66),
we have

f0(λ, L)− f2(λ, L) = iλαψ2(L).

We use Equation (63) for f2 and Equation (64) for ψ2 to have

f0(λ, L)− f0(λ, L) + λ2S
ρ(L)
K(L)

f0(λ, L) +

(
EI(x)
K(x)

f ′0(λ, x)− EI(x)K′(x)
K2(x)

f0(λ, x)

)
x

∣∣∣∣∣
x=L

=iλα

(
S

ρ(x)

(
ρ(x)
K(x)

f0(λ, x)
)

x
+

1
λ2ρ(x)

(
EI(x)
K(x)

f ′0(λ, x)− EI(x)K′(x)
K2(x)

f0(λ, x)
)

xx

)∣∣∣∣∣
x=L

.
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Modifying this equation, we get

λ3Sρ2(L)
(
K(L)

)−1 f0(λ, L) + λρ(L)
(

EI(x)
K(x)

f ′0(λ, x)− EI(x)K′(x)
K2(x)

f0(λ, x)
)

x

∣∣∣∣
x=L

=iλ2αS
(

ρ(x)
(
K(x)

)−1 f0(λ, x)
)

x

∣∣∣
x=L

+ iα
(

EI(x)
K(x)

f ′0(λ, x)− EI(x)K′(x)
K2(x)

f0(λ, x)
)

xx

∣∣∣∣
x=L

.
(67)

Finally, we rewrite the condition in Equation (51) in terms of f0. From Equation (46), it follows that

− θ

C
ψ1(λ, L)− 1

CR
ψ4 = iλψ4.

Since ψ1 = iλψ0, we get

iλ
θ

C
ψ0(λ, L) +

1
CR

ψ4 = −iλψ4. (68)

Now, we take into account the condition in Equation (51) and rewrite Equation (68) as

EI(L)ψ0x(λ, L) = − iλθ2

C
(

1
CR + iλ

)ψ0(λ, L).

Using Equation (53), we modify this equation to the form

EI(L) f ′0(λ, L)− EI(L)K′(L)
K(L)

f0(λ, L) = − iλθ2

C
(

1
CR + iλ

) f0(λ, L). (69)

Hence, our goal is to find the solution of the pencil Equation (60) satisfying the left-end boundary
conditions in Equations (62) and (65) and the right-end boundary conditions in Equations (67) and (69).

Fundamental system of solutions of the pencil equation (Equation (60)).
Let us rewrite Equation (60) in the form of a polynomial with respect to λ ( Marcus [34])

λ4S
(
a(x)

)−1 f0(λ, x) + λ2
[(

c(x) f ′0(λ, x)− d(x) f0(λ, x)
)

x
+

Sa(x)
((

a(x)
)−1 f0(λ, x)

)
xx
− Sb(x)

((
a(x)

)−1 f0(λ, x)
)

x
− f0(λ, x)

]
+

a(x)
(

c(x) f ′0(λ, x)− d(x) f0(λ, x)
)

xxx
− b(x)

(
c(x) f ′0(λ, x)− d(x) f0(λ, x)

)
xx

= 0.

(70)

This equation can be written in the form

4

∑
n=0

4

∑
m=0

m+n≤4

λnwnm(x)
dmψ(λ, x)

dxm = 0. (71)

Coefficients wnm(x) can be easily found from Equation (70) (see Naimark [35]). Following the
terminology of Fedoruk [36] and Olver [37], the terms of Equation (70) that satisfy the condition
n + m = 4 are called the leading terms of Equation (70) and the remaining terms are called the lower
order terms. Let us rewrite Equation (60) keeping the leading terms at the left-hand side and moving
the lower order terms to the right-hand side. We have

λ4S
(
a(x)

)−1
ψ(λ, x) + λ2(S + c(x)

)
ψxx(λ, x) + a(x)c(x)ψxxxx(λ, x) = S(λ, x), (72)
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where

S(λ, x) =
3

∑
n=0

3

∑
m=0

m+n≤3

λnwnm(x)
dmψ(λ, x)

dxm . (73)

Now, we impose the following assumption on the structural parameters:

SK(x) 6= EI(x), for all x ∈ [0, L]. (74)

The next statement is concerned with the fundamental system of solutions of Equation (70). To this
end, we perform an asymptotic analysis when the spectral parameter λ tends to infinity. Similar analysis
can be found in the works by Shubov [38,39]. However, to keep the paper self-contained, we outline the
proof of the next statement.

Theorem 2. (1) Under the assumptions in Equations (24), (25) and (74), Equation (72) has four linearly
independent solutions with the following asymptotic approximations as |λ| → ∞:

ψ1(λ, x) = 4

√
K(x)
ρ(x)

exp
(
iλη(x)

)(
1 + O

(
|λ|−1)), (75)

ψ2(λ, x) = 4

√
EI(x)
Rρ(x)

exp
(
iλη̂(x)

)(
1 + O

(
|λ|−1)), (76)

ψ3(λ, x) = 4

√
K(x)
ρ(x)

exp
(
− iλη(x)

)(
1 + O

(
|λ|−1)), (77)

ψ4(λ, x) = 4

√
EI(x)
Rρ(x)

exp
(
− iλη̂(x)

)(
1 + O

(
|λ|−1)), (78)

where

η(x) =
∫ x

0

√
ρ(τ)

K(τ)
dτ, η̂(x) =

∫ x

0

√
Rρ(τ)

EI(τ)
dτ. (79)

All estimates O
(
|λ|−1) in (75)–(78) are uniform with respect to x ∈ [0, L]. The functions ψj(λ, x),

j = 1, 2, 3, 4 are analytic functions of λ.
(2) Each function ψj(λ, x) has four continuous derivatives with respect to x ∈ [0, L] and these derivatives

can be approximated as follows when |λ| → ∞:

(
d

dx

)n

ψj(λ, x) = (iλ)n(γj(x)
)n∣∣(γj(x))

∣∣−1/4 exp

(
iλ
∫ x

0
γj(τ)dτ

)(
1 + O

(
|λ|−1)),

n = 1, 2, 3, 4, j = 1, 2, 3, 4,

(80)

where

γ1,3(x) = ±

√
ρ(x)
K(x)

and γ2,4(x) = ±

√
Sρ(x)
EI(x)

. (81)

All estimates O
(
|λ|−1) in Equation (80) are uniform with respect to x ∈ [0, L].

Proof. First, we consider the equation obtained from Equation (72) in which the right-hand side
has been replaced with zero. For the latter equation, we prove that it has four linearly independent
solutions with the approximations given precisely by Equations (75)–(78). Secondly, we refer to the
standard methods of asymptotic analysis (see Fedoruk [36], Miller [40], Olver [37]) to prove that the
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lower order terms do not destroy the asymptotic behavior of the solutions given by Equations (75)–(78).
Thus, we consider the equation

y′′′′ + λ2(A(x) + B(x)
)
y′′ + λ4 A(x)B(x) = 0, (82)

where B(x) = Sρ(x)/EI(x) and A(x) = ρ(x)/K(x). Let us reduce this equation to the first order
linear system, i.e., we consider the linearization of Equation (82) with respect to λ (see Marcus [34] and
Fedoruk [36]). To this end, we make the substitutions

y(x) = y1(x), y′1(x) = λy2(x), y′2(x) = λy3(x), y′3(x) = λy4(x). (83)

Equation (82) can be rewritten in the following form:

Y′(x) = λA(x)Y(x), (84)

where

A(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−A(x)B(x) 0 −
(

A(x) + B(x)
)

0

 , Y(x) =


y1(x)
y2(x)
y3(x)
y4(x)

 . (85)

In the next step, we reduce the system in Equation (84) to the asymptotically diagonal form.
To this end, we have to calculate the eigenvalues and the eigenvectors of the matrix A(x). For the
eigenvalues, we have the following equation:

det
(
λI −A(x)

)
= λ4 + λ2(A(x) + B(x)

)
+ A(x)B(x) = 0. (86)

Due to Equation (74), Equation (86) has four different roots given by the formulas

λ1,3(x) = ±i
√

A(x), λ2,4(x) = ±i
√

B(x). (87)

The eigenvector Fj(x), corresponding to the eigenvalue λj(x), has the form

Fj(x) =
[
1, λj(x), λ2

j (x), λ3
j (x)

]T
, j = 1, 2, 3, 4. (88)

Let T0(x) be the following Vandermonde matrix:

T0(x) =


1 1 1 1

λ1(x) λ2(x) λ3(x) λ4(x)
λ2

1(x) λ2
2(x) λ2

3(x) λ2
4(x)

λ3
1(x) λ3

2(x) λ3
3(x) λ3

4(x)



=


1 1 1 1

iA1/2(x) −iA1/2(x) iB1/2(x) −iB1/2(x)
−A(x) −A(x) −B(x) −B(x)
−iA3/2(x) iA3/2(x) −iB3/2(x) iB3/2(x)

 .

(89)

The matrix T0(x) reduces A(x) to the diagonal form, i.e.,

T−1
0 (x)A(x)T0(x) ≡ Λ0(x) =


i
√

A(x) 0 0 0
0 −i

√
A(x) 0 0

0 0 i
√

B(x) 0
0 0 0 −i

√
B(x)

 . (90)
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One can show by a straightforward calculation that

det T0(x) = −4
√

A(x)B(x)
(

A(x)− B(x)
)2. (91)

Since due to Equation (74), A(x) 6= B(x), there exists T−1
0 (x). Let us look for a solution of

Equation (84) in the form
Y(x) = T0(x)Z(x).

Rewriting Equation (84) with respect to Z, we have

T0(x)Z′(x) = λA(x)T0(x)Z(x)− dT0(x)
dx

Z(x). (92)

Applying matrix T−1
0 (x) from the left, we obtain from Equation (92) the following equation

for Z(x):

Z′(x) = λΛ0(x)Z(x)− T−1
0 (x)

dT0(x)
dx

Z(x) (93)

with Λ0(x) being introduced in Equation (90). It is convenient to look for Z in the following form [36]:

Z(x) =
(

I + λ−1T1(x)
)

W(x), (94)

where 4× 4 matrix T1(x) is chosen below. Equation (93) can be rewritten for W as

W ′(x) =
(

I + λ−1T1(x)
)−1

(
λΛ0(x)− T−1

0 (x)
dT0(x)

dx

)(
I + λ−1T1(x)

)
W(x)

− λ−1
(

I + λ−1T1(x)
)dT1(x)

dx
W(x).

(95)

If we assume that T1(x) and its first derivative exist and are bounded as functions of x ∈ [−L, 0],
then for large |λ|, the matrix of the system in Equation (95) has the following asymptotical form:

(
I− λ−1T1(x) + O

(
λ−2))(λΛ0(x)− T−1

0 (x)
dT0(x)

dx

)(
I + λ−1T1(x)

)
+ O

(
λ−1)

=λΛ0(x) +
[
Λ0(x), T1(x)

]
− T−1

0 (x)
dT0(x)

dx
+ O

(
λ−1), (96)

where
[
Λ0(x), T1(x)

]
is the commutator of Λ0(x) and T1(x). Now, we are in a position to choose the

matrix T1(x). We do this in such a way that the matrix B(x) defined by

B(x) =
[
Λ0(x), T1(x)

]
− T−1

0 (x)
dT0(x)

dx
(97)

is a diagonal matrix. Let us fix the choice of T1(x) by the following conditions:

(
T1
)

jj = 0 and
(
T1
)

jk =
(
λj(x)− λk(x)

)−1
(

T−1
0 (x)

dT0(x)
dx

)
jk

, j, k = 1, 2, 3, 4, (98)

where
{

λj(x)
}4

j=1 are given in Equations (87). Note, since A(x) 6= B(x), the matrix T1(x) from
Equation (98) is well-defined. It can be verified by a straightforward calculation that B(x), defined by
Equation (97), is diagonal if T1(x) is defined by Equation (98).
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We use the notation Λ1(x) for the matrix B(x) with the aforementioned choice of T1(x). With this
choice of T1, Equation (95) for W can be modified to the following equation:

W ′(x) =
[
λΛ0(x) + Λ1(x) + O

(
λ−1)]W(x), |λ| → ∞, (99)

where the estimate O
(
λ−1) is uniform with respect to x ∈ [0, L] and Λ1(x) is a diagonal matrix whose

diagonal elements are equal to:

µj(x) = −
[

T−1
0 (x)

dT0(x)
dx

]
jj

, j = 1, 2, 3, 4. (100)

Using standard methods of asymptotic analysis (such as in Fedoruk [36], Miller [40], Olver [37]),
we obtain that the solutions Wj(λ, x) of the system in Equation (99) are asymptotically close to the
solutions W0

j (λ, x) of the following system:

W ′(x) =
[
λΛ0(x) + Λ1(x)

]
W(x). (101)

(Explicit formulas for W0
j (λ, x), j = 1, 2, 3, 4, are given in Equation (104) below.) Namely, the

following relations are valid:

Wj(λ, x) = W0
j (λ, x)

(
1 + O

(
λ−1)), j = 1, 2, 3, 4, |λ| → ∞, (102)

and the estimates O
(
λ−1) are uniform with respect to x ∈ [0, L]. To complete the proof, we have to

calculate the diagonal elements of the matrix T−1
0 (x) dT0(x)

dx . Straightforward calculations yield the
following results:

µ1(x) = µ3(x) = − A′(x)
4A(x)

, µ2(x) = µ4(x) = − B′(x)
4B(x)

. (103)

Substituting Equation (103) into the system in Equation (101) and taking into account
Equation (90), we immediately obtain the following expression for the k-th component of the
four-vector W0

j (λ, x):

[
W0

j (λ, x)
]

k =


0, k 6= j,(

A(x)
)−1/4 exp

{
λ
∫ x

0
λj(t)dt

}
, k = j, j = 1, 3;

(104)

[
W0

j (λ, x)
]

k =


0, k 6= j,(

B(x)
)−1/4 exp

{
λ
∫ x

0
λj(t)dt

}(
1 + O

(
|λ|−1)), k = j, j = 2, 4;

(105)

Using Equations (102), (104) and (105), we immediately obtain the asymptotic approximations
for the solutions of Equation (99). Since Yj(λ, x) = T0(x)Z(λ, x) and Z(λ, x) is given by Equation (94),
we obtain

Yj(λ, x) = T0(x)
[
I+ λ−1T1(x)

]
Wj(λ, x), j = 1, 2, 3, 4.

Taking into account the explicit Equation (89) for T0(x), we obtain that the first components
of the vectors Yj(λ, x), j = 1, 2, 3, 4 are given exactly by the formulas from the second line of (105).
Statement 1 of Theorem 2 is completely shown.

The results of Statement 2 are almost straightforward consequences of Equations (83) and the
explicit form of the matrix T0(x).
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5. Asymptotics of the Spectrum of the Operator L. Reflection Matrices at the Ends of the Beam

In this section, we derive asymptotic approximations for two special matrices that we call the left-
reflection matrix and the right-reflection matrix. We apply the method of reflection matrices developed
in a series of our earlier papers: Shubov and Peterson [41], Shubov [25,38,39]. This method is very
efficient in completing mathematical calculations which are extremely lengthy when using direct
approach. Using these matrices, we obtain two equations (see Equations (157) and (158) below)
generating two branches of the eigenvalues. Since both the operator L and the pencil P(λ) have the
same spectra, we will derive the aforementioned equations for the pencil. To this end, we look for
a solution of Equation (70) in the form of a linear combination of the fundamental set of solutions in
Equations (75)–(78)

Ψ(λ, x) =
2

∑
j=1

Cj(λ)ψj(λ, x) +
2

∑
j=1

Dj(λ)ψj+2(λ, x), (106)

where Cj(λ) , and Dj(λ), j = 1, 2 are arbitrary functions of λ. Note that physically, in the first sum
of Equation (106), there are the Fourier representations for the terms corresponding to the waves moving
from right to left and in the second sum—the Fourier representations for the terms corresponding to the
waves moving from left to right (see Equations (75)–(78)).

Theorem 3. For the solution Ψ(λ, x) of Equation (106) to satisfy the left-end boundary conditions in
Equations (62) and (65), the coefficients Cj(λ), Dj(λ), j = 1, 2, must be related by

[
C1(λ)

C2(λ)

]
=

 1 + O
(
λ−1) O

(
λ−1)

−2
(

SK(0)
EI(0)

)1/4(
1 + O

(
λ−1)) −

(
1 + O

(
λ−1))

 [ D1(λ)

D2(λ)

]
. (107)

The matrix at the right-hand side of Equation (107) is called the left reflection matrix as in Shubov and
Peterson [35], Shubov [36–38] and denoted as Rl(λ).

Proof. We look for a solution Ψ(λ, x), which satisfies two boundary conditions in Equations (62)
and (65). Substituting Equation (106) into the boundary conditions in Equations (62) and (65) related
to the end x = 0, we obtain two equations for four unknown coefficients Cj(λ), and Dj(λ), j = 1, 2. It is
convenient to represent the asymptotical approximations for the derivatives of the function Ψ(λ, x)

Ψx(λ, x) =iλ

(
ρ(x)
K(x)

)1/4
{

C1(λ)eiλη(x)
(

1 + O
(

1
λ

))
+

C2(λ)

(
SK(x)
EI(x)

)1/4

eiλη̂(x)
(

1 + O
(

1
λ

))
− D1(λ)e−iλη(x)

(
1 + O

(
1
λ

))
−

D2(λ)

(
SK(x)
EI(x)

)1/4

e−iλη̂(x)
(

1 + O
(

1
λ

))}
,

(108)

Ψxx(λ, x) = −λ2

(
ρ(x)
K(x)

)3/4
{

C1(λ)eiλη(x)
(

1 + O
(

1
λ

))
+

C2(λ)

(
SK(x)
EI(x)

)3/4

eiλη̂(x)
(

1 + O
(

1
λ

))
+ D1(λ)e−iλη(x)

(
1 + O

(
1
λ

))
+

D2(λ)

(
SK(x)
EI(x)

)3/4

e−iλη̂(x)
(

1 + O
(

1
λ

))}
,

(109)
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Ψxxx(λ, x) = −iλ3

(
ρ(x)
K(x)

)5/4
{

C1(λ)eiλη(x)
(

1 + O
(

1
λ

))
+

C2(λ)

(
SK(x)
EI(x)

)5/4

eiλη̂(x)
(

1 + O
(

1
λ

))
− D1(λ)e−iλη(x)

(
1 + O

(
1
λ

))
−

D2(λ)

(
SK(x)
EI(x)

)5/4

e−iλη̂(x)
(

1 + O
(

1
λ

))}
.

(110)

Using Equation (106) we obtain that the first boundary condition in Equation (62) at x = 0 has
the form

C1(λ)
(

K(0)
)1/4

(
1 + O

(
1
λ

))
+ C2(λ)

(
EI(0)

S

)1/4(
1 + O

(
1
λ

))
=

−D1(λ)
(

K(0)
)1/4

(
1 + O

(
1
λ

))
+ D2(λ)

(
EI(0)

S

)1/4(
1 + O

(
1
λ

))
.

(111)

The asymptotical form for the second boundary condition in Equation (65) at x = 0 is

λ2Sρ(0)Ψx(λ, 0) + EI(0)Ψxxx(λ, 0)
(

1 + O
(

1
λ

))
= 0. (112)

Using Equations (108) and (110) we rewrite Equation (112) as follows:

λ2Sρ(0)
(
iλ
)( ρ(0)

K(0)

)1/4
{

C1(λ)

(
1 + O

(
1
λ

))
+ C2(λ)

(
SK(0)
EI(0)

)1/4(
1 + O

(
1
λ

))
−

D1(λ)

(
1 + O

(
1
λ

))
− D2(λ)

(
SK(0)
EI(0)

)1/4(
1 + O

(
1
λ

))}
+

EI(0)
(
− iλ3

)( ρ(0)
K(0)

)5/4
{

C1(λ)

(
1 + O

(
1
λ

))
+ C2(λ)

(
SK(0)
EI(0)

)5/4(
1 + O

(
1
λ

))
−

D1(λ)

(
1 + O

(
1
λ

))
− D2(λ)

(
SK(0)
EI(0)

)5/4(
1 + O

(
1
λ

))}
= 0.

Simplifying this equation and collecting like terms, we have

C1(λ)

[
Sρ(0)− EI(0)ρ(0)

K(0)
+ O

(
1
λ

)]
+

C2(λ)

[
Sρ(0)

(
SK(0)
EI(0)

)1/4

− EI(0)ρ(0)
K(0)

(
SK(0)
EI(0)

)5/4

+ O
(

1
λ

)]
−

D1(λ)

[
Sρ(0)− EI(0)ρ(0)

K(0)
+ O

(
1
λ

)]
−

D2(λ)

[
Sρ(0)

(
SK(0)
EI(0)

)1/4

− EI(0)ρ(0)
K(0)

(
SK(0)
EI(0)

)5/4

+ O
(

1
λ

)]
= 0.

We rewrite this equation in the desired form as

C1(λ)

[
S− EI(0)

K(0)
+ O

(
1
λ

)]
+ C2(λ) O

(
1
λ

)
−

D1(λ)

[
S− EI(0)

K(0)
+ O

(
1
λ

)]
− D2(λ) O

(
1
λ

)
= 0.

(113)
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Taking into account the assumption in Equation (74)
(

SK(0) 6= EI(0)
)

, we combine Equations (111)
and (113) in a system and have

C1(λ)

(
1 + O

(
1
λ

))
+ C2(λ)

(
SK(0)
EI(0)

)1/4(
1 + O

(
1
λ

))
=

−D1(λ)

(
1 + O

(
1
λ

))
− D2(λ)

(
SK(0)
EI(0)

)1/4(
1 + O

(
1
λ

))
,

(114)

C1(λ)
(

SK(0)− EI(0)
)(

1 + O
(

1
λ

))
+ C2(λ)O

(
1
λ

)
=

D1(λ)
(

SK(0)− EI(0)
)(

1 + O
(

1
λ

))
+ D2(λ)O

(
1
λ

)
.

(115)

This system can be written in a matrix form as 1 + O
(
λ−1) O

(
λ−1)

1 + O
(
λ−1) (

EI(0)
SK(0)

)1/4(
1 + O

(
λ−1))

 [ C1(λ)

C2(λ)

]
=

 1 + O
(
λ−1) O

(
λ−1)

−
(

1 + O
(
λ−1)) −

(
EI(0)
SK(0)

)1/4(
1 + O

(
λ−1))

 [ D1(λ)

D2(λ)

]
.

(116)

Taking the inverse of the left-hand side matrix and applying it to the right-hand side, we finally
obtain the desired result (Equation (108)).

Using the boundary conditions at the right end of the beam, we derive the representation for the
right-reflection matrix Rr(λ). We need the notations

e(λ) = exp
(
iλη(L)

)
, ê(λ) = exp

(
iλη̂(L)

)
, E(λ) = diag{e(λ), ê(λ)}, (117)

with η(L) and η̂(L) being given in Equation (79). The following result holds.

Theorem 4. Let

Θ(λ) =
K′(L)
K(L)

− iλθ2

EI(L)C
(

1
CR + iλ

) . (118)

Assume that the parameter α satisfies the following condition:

|α| 6=
√

ρ(L)K(L). (119)

For the solution Ψ(λ, x) of Equation (106) to satisfy the right-end boundary conditions in Equations (67)
and (69), the coefficients Cj(λ), Dj(λ), j = 1, 2, must be related by means of the right-reflection matrix Rr(λ):[

C1(λ)

C2(λ)

]
= Rr(λ)

[
D1(λ)

D2(λ)

]
, (120)

with Rr(λ) being given by

Rr(λ) = E−1(λ)

[
d11(λ) d12(λ)

d21(λ) d22(λ)

]
E−1(λ). (121)
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The following asymptotic approximations are valid for the entries djk(λ), j = 1, 2, k = 1, 2, as |λ| → ∞:

d11(λ) =
α−

√
K(L)ρ(L)

α +
√

K(L)ρ(L)

(
1 + O

(
1
λ

))
, d12(λ) = O

(
1
λ

)
,

d21(λ) =
2 4
√

EI(L)K(L)/S
α/
√

ρ(L) +
√

K(L)

(
1 + O

(
1
λ

))
, d22(λ) = 1 + O

(
1
λ

)
.

(122)

Proof. Let us represent the condition in Equation (67) in the asymptotical form:

λ3Sρ(L)Ψ(λ, L) + λEI(L)Ψxx(λ, L)
(

1 + O
(
λ−1)) =

iα
EI(L)
ρ(L)

Ψxxx(λ, L)
(

1 + O
(
λ−1))+ iαλ2SΨx(λ, L)

(
1 + O

(
λ−1)).

(123)

Setting

V =

(
SK(L)
EI(L)

)1/4

, (124)

we modify asymptotic Equations (108)–(110) taken for x = L to the form

Ψx(λ, L) =iλ
(

ρ(L)
K(L)

)1/4{
C1(λ)e(λ)

(
1 + O

(
λ−1))+ C2(λ) V ê(λ)

(
1 + O

(
λ−1))

−D1(λ)
(
e(λ)

)−1
(

1 + O
(
λ−1))− D2(λ) V

(
ê(λ)

)−1
(

1 + O
(
λ−1))},

(125)

Ψxx(λ, L) = −λ2
(

ρ(L)
K(L)

)3/4{
C1(λ)e(λ)

(
1 + O

(
λ−1))+ C2(λ) V3 ê(λ)

(
1 + O

(
λ−1))

+D1(λ)
(
e(λ)

)−1
(

1 + O
(
λ−1))+ D2(λ) V3 (ê(λ))−1

(
1 + O

(
λ−1))},

(126)

Ψxxx(λ, L) = −iλ3
(

ρ(L)
K(L)

)5/4{
C1(λ)e(λ)

(
1 + O

(
λ−1))+ C2(λ) V5 ê(λ)

(
1 + O

(
λ−1))

−D1(λ)
(
e(λ)

)−1
(

1 + O
(
λ−1))− D2(λ) V5 (ê(λ))−1

(
1 + O

(
λ−1))},

(127)

Substituting the approximations in Equations (125)–(127) into Equation (123), we obtain the
asymptotical form of the condition in Equation (67)

λ3Sρ(L)

{(
K(L)
ρ(L)

)1/4

C1(λ)e(λ)
(

1 + O
(
λ−1))+(EI(L)

Sρ(L)

)1/4

C2(λ)ê(λ)
(

1 + O
(
λ−1))

+

(
K(L)
ρ(L)

)1/4

D1(λ)
(
e(λ)

)−1
(λ)
(

1 + O
(
λ−1))+(EI(L)

Sρ(L)

)1/4

D2(λ)
(
ê(λ)

)−1
(λ)
(

1 + O
(
λ−1))}

−λ3EI(L)
(

ρ(L)
K(L)

)3/4{
C1(λ)e(λ)

(
1 + O

(
λ−1))+ C2(λ) V3 ê(λ)

(
1 + O

(
λ−1))

+D1(λ)
(
e(λ)

)−1
(

1 + O
(
λ−1))+ D2(λ) V3 (ê(λ))−1

(λ)
(

1 + O
(
λ−1))} =

−iα
EI(L)
ρ(L)

(
iλ3)( ρ(L)

K(L)

)5/4{
C1(λ)e(λ)

(
1 + O

(
λ−1))+ C2(λ) V5 ê(λ)

(
1 + O

(
λ−1))

−D1(λ)
(
e(λ)

)−1
(

1 + O
(
λ−1))− D2(λ) V5 (ê(λ))−1

(
1 + O

(
λ−1))}

+iαλ2S
(
iλ
)( ρ(L)

K(L)

)1/4{
C1(λ)e(λ)

(
1 + O

(
λ−1))+ C2(λ) V ê(λ)

(
1 + O

(
λ−1))−

D1(λ)
(
e(λ)

)−1
(

1 + O
(
λ−1))− D2(λ) V

(
ê(λ)

)−1
(

1 + O
(
λ−1))}.

(128)
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Collecting coefficients for C1(λ)e(λ) and using Equation (124), we get

λ3

[
S
(
K(L)

)1/4(
ρ(L)

)3/4 − EI(L)
(

ρ(L)
K(L)

)3/4

+ α

(
S
(

ρ(L)
K(L)

)1/4

−
EI(L)

(
ρ(L)

)1/4(
K(L)

)5/4

)
+ O

(
1
λ

)]

=λ3
(

K(L)
ρ(L)

)1/4

ρ(L)
[

S− EI(L)
K(L)

] 1 +
α(

K(L)ρ(L)
)1/2

(1 + O
(

1
λ

))
.

(129)

Collecting coefficients for C2(λ)ê(λ) and using Equation (124), we get

λ3

{
Sρ(λ)

(
EI(L)
Sρ(L)

)1/4

− EI(L)
(

ρ(L)
K(L)

)3/4(SK(L)
EI(L)

)3/4

+ O
(

1
λ

)}
+

αλ3

{
S
(

ρ(L)
K(L)

)1/4(SK(L)
EI(L)

)1/4

− EI(L)
ρ(L)

(
ρ(L)
K(L)

)5/4(SK(L)
EI(L)

)5/4

+ O
(

1
λ

)}
=λ3

{
S3/4(ρ(λ))3/4(EI(L)

)1/4 − S3/4(ρ(λ))3/4(EI(L)
)1/4

+ O
(
λ−1)}+

αλ3
{

S5/4(ρ(λ))1/4(EI(L)
)−1/4 − S5/4(ρ(λ))1/4(EI(L)

)−1/4
+ O

(
λ−1)}

=λ3 O
(
λ−1).

(130)

Collecting coefficients for D1(λ)
(
e(λ)

)−1, we get[
S
(
K(L)

)1/4(
ρ(L)

)3/4 − EI(L)
(

ρ(L)
K(L)

)3/4
]
− α

[
S
(

ρ(L)
K(L)

)1/4

− EI(L)

(
ρ(L)

)1/4(
K(L)

)5/4

]
+ O

(
1
λ

)

=
(
K(L)

)1/4(
ρ(L)

)3/4
[

S− EI(L)
K(L)

] 1− α(
K(L)ρ(L)

)1/2

(1 + O
(

1
λ

))
.

(131)

Collecting coefficients for D2(λ)
(
ê(λ)

)−1, we get

λ3

{
Sρ(L)

(
EI(L)
Sρ(L)

)1/4

− EI(L)
(

ρ(L)
K(L)

)3/4(SK(L)
EI(L)

)3/4

+

α

[
EI(L)
ρ(L)

(
ρ(L)
K(L)

)5/4(SK(L)
EI(L)

)5/4

− S
(

ρ(L)
K(L)

)1/4(SK(L)
EI(L)

)1/4
]
+ O

(
1
λ

)}

=λ3

{[
S3/4(ρ(L)

)3/4(EI(L)
)1/4 − S3/4(ρ(L)

)3/4(EI(L)
)1/4

]
+

α

[(
EI(L)

)−1/4(
ρ(L)

)1/4S5/4 −
(
EI(L)

)−1/4(
ρ(L)

)1/4S5/4
]
+ O

(
1
λ

)}
= λ3O

(
1
λ

)
.

(132)

Collecting together Equations (129)–(132), we obtain the following asymptotic approximation for
the first right-end boundary condition:(

1 + α
(

ρ(L)K(L)
)−1/2

)
C1(λ)e(λ)

(
1 + O

(
1/λ

))
+ C2(λ)ê(λ) O

(
1/λ

)
+(

1− α
(

ρ(L)K(L)
)−1/2

)
D1(λ)

(
e(λ)

)−1
(

1 + O
(
1/λ

))
+ D2(λ)

(
ê(λ)

)−1 O
(
1/λ

)
= 0.

(133)
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Now, we turn to the condition in Equation (69) that can be given in the form

EI(L)Ψx(λ, L)−

EI(L)K′(L)
K(L)

− iλθ2

C
(

1
CR + iλ

)
Ψ(λ, L) = 0. (134)

Using Equations (75)–(78) and (108), we represent this equation in the asymptotical form as

EI(L)
(
iλ
)( ρ(L)

K(L)

)1/4
{

C1(λ)e(λ)
(

1 + O
(
1/λ

))
+ C2(λ)

(
SK(L)
EI(L)

)1/4

ê(λ)
(

1 + O
(
1/λ

))
−

D1(λ)
(
e(λ)

)−1
(

1 + O
(
1/λ

))
− D2(λ)

(
SK(L)
EI(L)

)1/4(
ê(λ)

)−1
(

1 + O
(
1/λ

))}
−EI(L)K′(L)

K(L)
− iλθ2

C
(

1
CR + iλ

)
(K(L)

ρ(L)

)1/4
{

C1(λ)e(λ)
(

1 + O
(
1/λ

))
+

C2(λ)

(
EI(L)
SK(L)

)1/4

ê(λ)
(

1 + O
(
1/λ

))
+ D1(λ)

(
e(λ)

)−1
(

1 + O
(
1/λ

))
+

D2(λ)

(
EI(L)
SK(L)

)1/4(
ê(λ)

)−1
(

1 + O
(
1/λ

))}
= 0.

(135)

Collecting coefficients for C1(λ)e(λ), we get(iλ)EI(L)
(

ρ(L)
K(L)

)1/4

−
(

K(L)
ρ(L)

)1/4
EI(L)K′(L)

K(L)
− iλθ2

C
(

1
CR + iλ

)


(

1 + O
(

1
λ

))
. (136)

Collecting coefficients for C2(λ)ê(λ), we get(iλ)EI(λ)
(

Sρ(L)
EI(L)

)1/4

−
(

EI(L)
Sρ(L)

)1/4
EI(L)K′(L)

K(L)
− iλθ2

C
(

1
CR + iλ

)


(

1 + O
(

1
λ

))
. (137)

Collecting coefficients for D1(λ)e−1(λ), we get−(iλ)EI(L)
(

ρ(L)
K(L)

)1/4

−
(

K(L)
ρ(L)

)1/4
EI(L)K′(L)

K(L)
− iλθ2

C
(

1
CR + iλ

)


(

1 + O
(

1
λ

))
. (138)

Collecting coefficients for D2(λ)ê −1(λ), we get−(iλ)EI(λ)
(

Sρ(L)
EI(L)

)1/4

−
(

EI(L)
Sρ(L)

)1/4
EI(L)K′(L)

K(L)
− iλθ2

C
(

1
CR + iλ

)


(

1 + O
(

1
λ

))
. (139)
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Collecting together Equations (136)–(139) and using Equation (118), we obtain the following
asymptotic approximation for the second right end boundary condition:{(

iλ
)( ρ(L)

K(L)

)1/4

−
(

K(L)
ρ(L)

)1/4

Θ(λ)

}
C1(λ)e(λ)

(
1 + O

(
1/λ

))
+{(

iλ
)(Sρ(L)

EI(L)

)1/4

−
(

EI(L)
Sρ(L)

)1/4

Θ(λ)

}
C2(λ)ê(λ)

(
1 + O

(
1/λ

))
=

{(
iλ
)( ρ(L)

K(L)

)1/4

+

(
K(L)
ρ(L)

)1/4

Θ(λ)

}
D1(λ)

(
e(λ)

)−1
(

1 + O
(
1/λ

))
+{(

iλ
)(Sρ(L)

EI(L)

)1/4

+

(
EI(L)
Sρ(L)

)1/4

Θ(λ)

}
D2(λ)

(
ê(λ)

)−1
(

1 + O
(
1/λ

))
.

(140)

Let

A =

(
ρ(L)
K(L)

)1/4

, B =

(
Sρ(L)
EI(L)

)1/4

, F = (ρ(L)K(L))−1/2. (141)

Using Notations (141), we rewrite the right-end boundary conditions in Equations (133) and (140)
as the following system: (

1 + αF)
(

1 + O
(
1/λ

))
C1e(λ) + C2 ê(λ) O

(
1/λ

)
= −

(
1− αF)

(
1 + O

(
1/λ

))
D1e−1(λ)− D2 ê −1(λ) O

(
1/λ

)
,[(

iλ
)

A− A−1Θ(λ)
]
C1(λ)e(λ)

(
1 + O

(
1/λ

))
+[(

iλ
)

B− B−1Θ(λ)
]
C2(λ)ê(λ)

(
1 + O

(
1/λ

))
=
[(

iλ
)

A + A−1Θ(λ)
]

D1(λ)
(
e(λ)

)−1
(

1 + O
(
1/λ

))
+[(

iλ
)

B + B−1Θ(λ)
]

D2(λ)
(
ê(λ)

)−1
(

1 + O
(
1/λ

))
.

(142)

The system can be written in a matrix form as (
1+αF

)(
1+O

(
1/λ
))

O
(

1/λ
)[(

iλ
)

A−A−1Θ(λ)

](
1+O

(
1/λ
)) [(

iλ
)

B−B−1Θ(λ)

](
1+O

(
1/λ
))

E(λ) [ C1(λ)

C2(λ)

]
=

 −
(

1−αF
)(

1+O
(

1/λ
))

O
(

1/λ
)[(

iλ
)

A−A−1Θ(λ)

](
1+O

(
1/λ
)) [(

iλ
)

B−B−1Θ(λ)

](
1+O

(
1/λ
))

E−1(λ)

[
D1(λ)

D2(λ)

]
,

(143)

where E(λ) is defined in Equation (117). Let A(λ) be the matrix at the left-hand side of Equation (143)
and B(λ) be the matrix at the right hand-side; then, Equation (143) becomes

A(λ)E(λ)
[

C1(λ)

C2(λ)

]
= B(λ)E−1(λ)

[
D1(λ)

D2(λ)

]
. (144)

Now, we derive the formulas for the entries of A−1(λ). We have

detA(λ) =
(
1 + αF

)[
iλB− B−1Θ(λ)

](
1 + O

(
1/λ

))
−
[
iλA− A−1Θ(λ)

](
1 + O

(
1/λ

))
O
(
1/λ

)
.

(145)
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Taking into account that
∣∣Θ(λ)

∣∣ � 1 (i.e., C1 ≤
∣∣Θ(λ)

∣∣ ≤ C2, where C1, C2 > 0 are some constants)
for |λ| � 1 we obtain that

detA(λ) = iλ
(

1 + αF
)

B− B−1Θ(λ) + O
(
1
)
= iλ

(
1 + αF

)(
1 + O

(
1/λ

))
6= 0,

which means that the matrix A−1(λ) exists. Direct calculations yield the following results for the
entries of A−1(λ) =

{
Aij
}2

i,j=1:

A11 =

(
1

1 + αF
− Θ(λ)

iλB2
(
1 + αF

))(1 + O
(

1
λ

))
=

1
1 + αF

(
1 + O

(
1
λ

))
,

A12 =
O
(
1/λ

)
iλ
(
1 + αF

)
B
= O

(
1

λ2

)
,

A21 =
iλA− A−1Θ(λ)

iλ
(
1 + αF

)
B

(
1 + O

(
1
λ

))
=

A(
1 + αF

)
B

(
1 + O

(
1
λ

))
,

A22 =

(
1 + αF

)(
1 + O

(
1/λ

))
iλ
(
1 + αF

)
B
(

1 + O
(
1/λ

)) =
1 + O

(
1/λ

)
iλB

= O
( 1

λ

)
.

(146)

Let D(λ) be the notation for the product A−1(λ)B(λ). If D(λ) =
{

dij
}2

i,j=1, then the following
formulas hold:

d11(λ) = −
(
1− αF

)[ 1
1 + αF

− Θ(λ)

iλB2
(
1 + αF

)](1 + O
(

1
λ

))
= −1− αF

1 + αF

(
1 + O

(
1
λ

))
,

d12(λ) = O
( 1

λ

)
, d21(λ) =

2A
(1 + αF)B

(
1 + O

(
1
λ

))
,

d22(λ) =
iλB + B−1Θ(λ)

iλB

(
1 + O

(
1
λ

))
= 1 + O

(
1
λ

)
.

(147)

Thus, we finally obtain[
C1(λ)

C2(λ)

]
= E−1(λ)

(
A−1B

)
(λ)E−1(λ)

[
D1(λ)

D2(λ)

]
. (148)

Taking into account Equations (107) and (141), we arrive at the desired result of the theorem.

6. The Spectral Asymptotics

In this Section, we derive the asymptotic distribution of the eigenvalues as the number of
an eigenvalue tends to infinity. To this end, we derive the spectral equation whose solutions coincide
with the problem eigenvalues. Let us represent Equations (107) and (119) in the forms[

C1(λ)

C2(λ)

]
= Rr(λ)

[
D1(λ)

D2(λ)

]
,

[
D1(λ)

D2(λ)

]
= R−1

l (λ)

[
C1(λ)

C2(λ)

]
, (149)

where

R−1
l (λ) =

 1 + O
(
λ−1) O

(
λ−1)

−2
(

SK(0)
EI(0)

)1/4(
1 + O

(
λ−1)) −

(
1 + O

(
λ−1))

 . (150)
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From Equation (149), it follows that[
C1(λ)

C2(λ)

]
= Rr(λ)R

−1
l (λ)

[
C1(λ)

C2(λ)

]
. (151)

This equation has nontrivial solutions if and only if

det
(
Rr(λ)R

−1
l (λ)− I

)
= 0, (152)

where I is the identity matrix. In the sequel, we need the following result.

Lemma 2. The set of roots of Equation (152) is located in a strip parallel to the real axis.

Proof. Notice Equation (152) has the same set of roots as the following equation:

det
(
D(λ)−E(λ)R−1

l (λ)E(λ)
)
= 0, (153)

where E(λ) is defined in Equation (117). Using the contradiction argument, assume that there

exists a sequence of roots of Equation (153) denoted by
{

λm

}∞

m=1
such that xm = <λm → ∞ and

ym = =λm → ∞ as m→ ∞. Rewriting Equation (153) for λ = λm, we obtain (see Equation (119)):

[
d11
(
λm
)
− e2(λm

)(
1 + O

(
1

λm

))][
d22
(
λm
)
− ê2(λm

)(
1 + O

(
1

λm

))]
−[

d12
(
λm
)
−O

(
1

λm

)
e
(
λm
)
ê
(
λm
)][

d21
(
λm
)
+ 2
(

SK(0)
EI(0)

)1/4(
1 + O

(
1

λm

))
e
(
λm
)
ê
(
λm
)]

= 0.
(154)

It can be readily checked that, when ym → ∞, we have e
(
λm
)
→ 0 and ê

(
λm
)
→ 0. Hence,

Equation (154) can be written in the form

d11
(
λm
)
d22
(
λm
)
− d12

(
λm
)
d21
(
λm
)
= o(1),

which means that the left-hand side approaches its limit:

lim
m→∞

d11
(
λm
)
d22
(
λm
)
=

α−
√

K(L)ρ(L)
α +

√
K(L)ρ(L)

6= 0,

while the right-hand side approaches 0 as m→ ∞. This contradiction means that the set of all roots
that belongs to the upper half-plane can be located in a strip parallel to the real axis. Using a similar
argument, we can show that the set of all roots that belongs to the lower half-plane can be located in
a strip parallel to the real axis as well.

In the following, we consider Equation (153) in a strip on the complex plane parallel to the real
axis. Let us multiply matrices D(λ) of (148) and E−1(λ)Rl(λ)E−1(λ). As the result, we reduce the
spectral equation (Equation (153)) to the form

det


(

d11(λ)
(

e(λ)
)−2
−1
)(

1+O
(

λ−1
))

O
(

λ−1
)(

e(λ)ê(λ)
)−1(

d21

(
λ
)
−2
(

SK(0)
EI(0)

)1/4

d12

(
λ
))(

e(λ)ê(λ)
)−1
(

1+O
(

λ−1
))

−
(

d22(λ)
(

ê(λ)
)−2

+1
)(

1+O
(

λ−1
))

 = 0. (155)
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Due to Lemma 2, when λ belongs to the strip parallel to the real axis, we have
∣∣e(λ)∣∣ � 1 and∣∣ê(λ)∣∣ � 1; therefore, the asymptotical form of the spectral equation becomes[

d11(λ)
(
e(λ)

)−2 − 1
][

d22(λ)
(
ê(λ)

)−2
+ 1
]
= d21(λ)

(
e(λ)ê(λ)

)−1O
(
λ−1). (156)

Using Equations (117) for e(λ) and ê(λ), and Equations (147) for d11(λ) and d22(λ), we can readily
check that Equation (156) splits up into the following two equations:

exp

[
2iλ

∫ L

0

√
ρ(τ)

K(τ)
dτ

]
=

α−
√

ρ(L)K(L)
α +

√
ρ(L)K(L)

+ O
(

1
λ

)
. (157)

exp

(
2iλ

∫ L

0

√
Sρ(τ)

EI(τ)
dτ

)
= −1 + O(1/λ). (158)

Each equation has a countable set of solutions. The solutions of Equation (157) we call the
α-spectral branch and the solutions of Equation (158) we call the θ-spectral branch.

In the statement below (Theorem 5), we provide the formulation of the results on the asymptotical
distribution of the roots of Equations (157) and (158). We do not present the proof of the theorem since
very detailed proofs of similar results can be found in Shubov [2,3], Shubov and Shubov [4], Shubov
and Peterson [41], and Shubov [25,38].

Theorem 5. (1) The following asymptotic approximation is valid for the α-branch of the spectrum:

λα
n =

( ∫ L

0

√
ρ(τ)

K(τ)
dτ

)−1

π n + i

(
2
∫ L

0

√
ρ(τ)

K(τ)
dτ

)−1

ln

(
α +

√
ρ(L)K(L)

α−
√

ρ(L)K(L)

)
+ O

(
1
n

)
,

n→ ∞, λα
−n = −λα

n.

(159)

(2) The following asymptotic approximation is valid for the θ-branch of the spectrum:

λθ
m = π

(
m +

1
2

)( ∫ L

0

√
Sρ(τ)

EI(τ)
dτ

)−1

+ O
(

1
m

)
, m→ ∞, λθ

−m = −λθ
m. (160)

Conclusion. If the harvester model is based on the cantilever beam as a substructure, then the
leading asymptotical terms are not affected by the piezoelectric parameters. For the Timoshenko beam,
this conclusion follows from Equations (159) and (160). For the Euler-Bernoulli beam, it follows from
the asymptotic formulas derived in Shubov [1–3] and Shubov and Shubov [4].

7. The Harvester Model with Constant Physical Parameters. The Left Reflection Matrix

As shown in Sections 1–6, for the harvester model with the Timoshenko beam as a substructure,
the asymptotic distribution of the vibrational modes has the following important property: the leading
asymptotical term does not depend on the properties of the piezoceramic patches. It means that the
perturbation induced by these patches is, in some sense, small. At the same time, the entire effect of the
energy harvesting takes place exactly due to the physical properties of the piezoelectricity. Therefore,
it is important to figure out the level of accuracy in the asymptotical formulas for the spectrum so
that the contribution of the piezoelectric patches physical parameters will be revealed. To this end,
we consider the same model of the harvester based on the Timoshenko beam substructure with constant
(not variable) physical parameters. We derive refined asymptotic approximations for the vibrational
modes and show that the second asymptotical term (next to the leading one) contains contribution
from the electrical circuit of the model. Similar results can be obtained for the case of the variable
structural parameters of the beam. However, preliminary calculations show that the derivation of the
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formulas is extremely lengthy and the result does not provide any additional insight into the physics
of the problem.

We consider the following system of equations

ρ Wtt(x, t) = −K
(

Φx(x, t)−Wxx(x, t)
)

, (161)

Sρ Φtt(x, t) = EI Φxx(x, t)− K
(

Φ(x, t)−Wx(x, t)
)

, (162)

equipped with the boundary conditions:

Φ(0, t) = W(0, t) = 0; (163)

EI Φx(L, t) = −θv(t). K
(

Φ(x, t)−Wx(x, t)
)
= α Wt(L, t), α > 0. (164)

In this section, we use the standard engineering approach and look for the solutions of the
boundary-value problem in the form

W(x, t) = eiλtw(λ, x), Φ(x, t) = eiλt ϕ(λ, x). (165)

Substituting these representations into Equations (161) and (162), we obtain a system for w and ϕ

− ρλ2w(λ, x) + K
(

ϕ′(λ, x)− w′′(λ, x)
)
= 0, (166)

− Sρλ2 ϕ(λ, x)− EIϕ′′(λ, x) + K
(

ϕ(λ, x)− w′(λ, x)
)
= 0. (167)

To eliminate w from the system and write a new equation in terms of ϕ, we have to complete
some preliminary steps. First, we derive from Equation (167) that

w′(λ, x) = ϕ(λ, x)− λ2 Sρ

K
ϕ(λ, x)− EI

K
ϕ′′(λ, x). (168)

Then, we differentiate Equation (166) once and use Equation (168) to get

−ρλ2w′(λ, x) + K
(

ϕ′′(λ, x)− w′′′(λ, x)
)
= 0,

which yields the desired form of the equation for ϕ

ϕ′′′′(λ, x) + λ2
(

Sρ

EI
+

ρ

K

)
ϕ′′(λ, x) +

ρ

EI

(
λ4 Sρ

K
− λ2

)
ϕ(λ, x) = 0. (169)

The corresponding characteristic equation is

z4 + λ2
(

Sρ

EI
+

ρ

K

)
z2 +

ρ

EI

(
λ4 Sρ

K
− λ2

)
= 0. (170)

The roots of the biquadratic equation are

(
z2
)

1,2
= −λ2

2

(
Sρ

EI
+

ρ

K

)
±

√
λ4

4

(
Sρ

EI
+

ρ

K

)2

− λ4 Sρ2

KEI
+ λ2 ρ

EI

= −λ2

2

(
Sρ

EI
+

ρ

K

)
±

√
λ4

4

(
Sρ

EI
− ρ

K

)2

+ λ2 ρ

EI
.

(171)
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At this moment, it is convenient to introduce new notations:

A =
ρ

2K
, B =

Sρ

2EI
, C =

ρ

EI
, (172)

and represent the roots of Equation (171) in the form(
z2
)

1,2
= −λ2(A + B

)
±
√

λ4(A− B)2 + λ2C. (173)

For definiteness, we assume A > B. Then, the following asymptotic approximations are valid for
the roots of Equation (171):

(
z2
)

1,2
= −λ2(A + B

)
± λ2(A− B)

(
1 +

C
λ2(A− B)2

)1/2

= −λ2(A + B
)
± λ2(A− B)

(
1 +

C
2λ2(A− B)2 + O

(
1

λ4

))
.

(174)

Rewriting Equation (174) in terms of the physical parameters of the structure, we get

(
z2
)

1
= −λ2 ρ

K
− 1

EI/K− S
+ O

(
1

λ2

)
, (175)

(
z2
)

2
= −λ2 Sρ

EI
+

1
EI/K− S

+ O
(

1
λ2

)
. (176)

Let Λ(λ) and Λ̃(λ) be defined by

Λ(λ) = −λ2(A + B
)
−
√

λ4(A− B)2 + λ2C, (177)

Λ̃(λ) = −λ2(A + B
)
+
√

λ4(A− B)2 + λ2C. (178)

The general solution of Equation (169) can be given as the following linear combination of
the exponentials:

Ω(λ, x) = C1(λ) exp
(√

Λ(λ)x
)
+ C2(λ) exp

(√
Λ̃(λ)x

)
+ D1(λ) exp

(
−
√

Λ(λ)x
)
+ D2(λ) exp

(
−
√

Λ̃(λ)x
)

,
(179)

where Cj(λ) and Dj(λ), j = 1, 2, are arbitrary functions of λ.
Now, we establish two constraints on the coefficients in order to satisfy the left-end boundary

conditions in Equation (163). First, we rewrite these conditions
(

ϕ(λ, 0) = w(λ, 0) = 0
)

in terms of ϕ.
To this end, we use Equation (166) and have

w(λ, x) =
K

ρλ2

(
ϕ′(λ, x)− w′′(λ, x)

)
and also from Equation (167) we have

ϕ(λ, x)− w′(λ, x) =
Sρ

K
λ2 ϕ(λ, x) +

EI
K

ϕ′′(λ, x).
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Differentiating this equation once and substituting the result for
(

ϕ′ − w′′
)

into the formula for
w, we obtain

w(λ, x) =
K

ρλ2

(
Sρ

K
λ2 ϕ′(λ, x) +

EI
K

ϕ′′′(λ, x)
)
= Sϕ′(λ, x) +

EI
λ2ρ

ϕ′′′(λ, x). (180)

Therefore, the second boundary condition at the left end becomes:

λ2Sρϕ′(λ, 0) + EIϕ′′′(λ, 0) = 0. (181)

Now, use the general solution of Equation (169) in the form of Equation (179) and obtain that,
for the solution to satisfy the left-end boundary conditions, the coefficients must satisfy the following
linear system:

C1(λ) + D1(λ) + C2(λ) + D2(λ) = 0.

λ2Sρ
(√

Λ(λ) C1(λ)−
√

Λ(λ) D1(λ) +
√

Λ̃(λ) C2(λ)−
√

Λ̃(λ) D1(λ)
)

+ EI
(

Λ3/2(λ) C1(λ)−Λ3/2(λ) D1(λ) + Λ̃3/2(λ) C2(λ)− Λ̃3/2(λ) D2(λ)
)
= 0.

(182)

The second equation can be modified as√
Λ(λ)

(
λ2Sρ + Λ(λ)EI

)
C1(λ) +

√
Λ̃(λ)

(
λ2Sρ + Λ̃(λ)EI

)
C2(λ)

−
√

Λ(λ)
(

λ2Sρ + Λ(λ)EI
)

D1(λ)−
√

Λ̃(λ)
(

λ2Sρ + Λ̃(λ)EI
)

D2(λ) = 0.
(183)

Introducing a new notation

S(λ) =

√
Λ̃(λ)

Λ(λ)

λ2Sρ + Λ̃(λ)EI
λ2Sρ + Λ(λ)EI

(184)

we reduce the system of Equations (182) to the following form:{
C1(λ) + C2(λ) + D1(λ) + D2(λ) = 0

C1(λ) + S(λ)C2(λ)− D1(λ)− S(λ)D2(λ) = 0.
(185)

By subtracting the first equation from the second one we immediately obtain that C2(λ) can be
represented as a linear combination of the coefficients D1(λ) and D2(λ):

C2(λ) =
2

S(λ)− 1
D1(λ) +

S(λ) + 1
S(λ)− 1

D2(λ). (186)

Rewriting Equations (185) in the form
C1(λ) + C2(λ) + D1(λ) + D2(λ) = 0

1
S(λ)C1(λ) + C2(λ)−

1
S(λ)D1(λ)− D2(λ) = 0

(187)

we obtain C1(λ) as a linear combination of the coefficients D1(λ) and D2(λ)

C1(λ) = −
S(λ) + 1
S(λ)− 1

D1(λ)−
2S(λ)
S(λ)− 1

D2(λ). (188)
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Rewriting Equations (186) and (188) as as one matrix equation, we obtain

[
C1(λ)

C2(λ)

]
=


− S(λ)+1
S(λ)−1 − 2S(λ)

S(λ)−1

2
S(λ)−1

S(λ)+1
S(λ)−1


[

D1(λ)

D2(λ)

]
. (189)

The matrix at the right of this equation we will call the left reflection matrix and denote it by Rl(λ).
Asymptotic approximations for the entries of Rl(λ) as |λ| → ∞.
In the sequel, we need the asymptotic approximation for S(λ) as |λ| → ∞. Using Equations (172),

(175) and (177), we obtain

√
Λ(λ) = iλ

√
ρ

K

1 +
1

λ2
(
ρ/K

)(
EI/K− S

) + O
(

1
λ4

)
1/2

= iλ
√

ρ

K

1 +
1

2λ2
(
ρ/K

)(
EI/K− S

) + O
(

1
λ4

) .

(190)

Using Equations (172), (176) and (178), we obtain

√
Λ̃(λ) = iλ

√
Sρ

EI

1− 1

λ2
(
Sρ/EI

)(
EI/K− S

) + O
(

1
λ4

)
1/2

= iλ

√
Sρ

EI

1− 1

2λ2
(

Sρ/K− S2ρ/EI
) + O

(
1

λ4

) .

(191)

Equations (190) and (191) yield the following result:

√
Λ̃(λ)

Λ(λ)
=

√
Sρ · K
EI · ρ

1− 1

2λ2
(

Sρ/K− S2ρ/EI
) + O

(
1

λ4

)×
1 +

1

2λ2
(
ρ/K

)(
EI/K− s

) + O
(

1
λ4

)
−1

.

(192)

Thus, √
Λ̃(λ)

Λ(λ)
=

√
SK
EI

(
1−

K
(
EI + SK

)
2λ2Sρ

(
EI − SK

) + O
(

1
λ4

))

=

√
S

EI/K

(
1− EI/K + S

2λ2
(
Sρ/K

)(
EI/K− S

) + O
(

1
λ4

))
.

(193)

Now, we evaluate Q defined by

Q(λ) =
λ2Sρ + Λ̃(λ) EI
λ2Sρ + Λ(λ) EI

=
1 + EI

Sρ
Λ̃(λ)

λ2

1 + EI
Sρ

Λ(λ)
λ2

. (194)
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First, we use Equation (178) and evaluate EIΛ̃(λ)/
(
Sρλ2) and have

EI
Sρ

Λ̃(λ)

λ2 = − EI
Sρλ2

λ2 Sρ

EI

1− 1

λ2
(

Sρ/K− S2ρ/EI
) + O

(
1

λ4

)


= −1 +
EI

λ2Sρ
(
EI/K− S

) + O
(

1
λ4

)
.

(195)

Next, we use Equation (177) and evaluate EIΛ(λ)/
(
Sρλ2) and have

EI
Sρ

Λ(λ)

λ2 = − EI
Sρλ2

λ2 ρ

K

1 +
1

λ2
(
ρ/K

)(
EI/K− S

) + O
(

1
λ4

)


= − EI
SK

1 +
K2

λ2ρ
(

EI − SK
) + O

(
1

λ4

)
= −EI/K

S
− EI

λ2Sρ
(
EI/K− S

) + O
(

1
λ4

)
.

(196)

Using Equations (195) and (196), we obtain the following asymptotic approximation for Q:

Q(λ) =

K·EI
λ2Sρ

(
EI−KS

) + O
(

1
λ4

)
1− EI

SK + O
(

1
λ2

) =

K·EI
λ2Sρ

(
EI−KS

)(1 + O
(

1
λ2

))
SK−EI

SK

(
1 + O

(
1

λ2

))
= − K2EI

λ2ρ
(
EI − SK

)2

(
1 + O

(
1

λ2

))
= − EI

λ2ρ
(
EI/K− S

)2

(
1 + O

(
1

λ2

))
.

(197)

Finally, using Equations (184), (193) and (197), we obtain the approximation for S(λ):

S(λ) = −
√

S · EI · K
λ2ρ

(
EI/K− S

)2 + O
(

1
λ4

)
. (198)

Let

R =

√
S · EI · K

ρ
(
EI/K− S

)2 , (199)

then

S(λ) = − R
λ2

(
1 + O

(
1

λ2

))
, (200)

and the entries of the left reflection matrix Rl(λ) can be represented as follows when |λ| → ∞:

(i)
S(λ) + 1
S(λ)− 1

= −1−R/λ2

1 +R/λ2

(
1 + O

(
1/λ4)) =

(
1− 2R

λ2

)(
1 + O

(
1

λ4

))
,

(ii)
1

S(λ)− 1
= − 1

1 +R/λ2

(
1 + O

(
1/λ4)) =

(
1− R

λ2

)(
1 + O

(
1

λ4

))
,

(iii)
S(λ)

S(λ)− 1
=

R/λ2

1 +R/λ2

(
1 + O

(
1/λ2)) =

R
λ2

(
1 + O

(
1

λ2

))
.

(201)
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Substituting Equations (201) (i)–(iii) into the left reflection matrix of Equation (189), we obtain

Rl(λ) =

 (
1− 2R

λ2

)(
1 + O

(
1

λ4

))
− 2R

λ2

(
1 + O

(
1

λ2

))
−2
(

1− R
λ2

)(
1 + O

(
1

λ4

))
−
(

1− 2R
λ2

)(
1 + O

(
1

λ4

))  . (202)

8. The Right Reflection Matrix. The Spectral Asymptotics

In this section, we derive the constraints on the coefficients Ci(λ) and Di(λ), i = 1, 2, that follow
from the fact that the general solution in Equation (179) has to satisfy two right-hand side boundary
conditions. As we already know, the boundary conditions at the right end of the beam are

K
(

ϕ(λ, L)− w′(λ, L)
)
= iλαw(λ, L), α > 0, (203)

EIϕ′(λ, L) =
iλθ

C
(

1
CR + iλ

) ϕ(λ, L), θ, C, R > 0. (204)

To rewrite the first condition in terms of ϕ, we use Equations (180) for w and (166) for w′ to get
the equation

λ2Sρϕ(λ, L) + EIϕ′′(λ, L) = iλαSϕ′(λ, L) +
iα
λ

EI
ρ

ϕ′′′(λ, L). (205)

Using Equations (177) and (178), we derive the general solution derivatives:

Ψ(λ, x) = C1(λ) exp
(√

Λ(λ)x
)
+ D1(λ) exp

(
−
√

Λ(λ)x
)
+

C2(λ) exp
(√

Λ̃(λ)x
)
+ D2(λ) exp

(
−
√

Λ̃(λ)x
)

,

Ψ′(λ, x) =
√

Λ(λ) C1(λ) exp
(√

Λ(λ)x
)
−
√

Λ(λ) D1(λ) exp
(
−
√

Λ(λ)x
)
+√

Λ̃(λ) C2(λ) exp
(√

Λ̃(λ)x
)
−
√

Λ̃(λ) D2(λ) exp
(
−
√

Λ̃(λ)x
)

,

Ψ′′(λ, x) =Λ(λ)C1(λ) exp
(√

Λ(λ)x
)
+ Λ(λ)D1(λ) exp

(
−
√

Λ(λ)x
)
+

Λ̃(λ)C2(λ) exp
(√

Λ̃(λ)x
)
+ Λ̃(λ)D2(λ) exp

(
−
√

Λ̃(λ)x
)

,

Ψ′′′(λ, x) =
(

Λ(λ)
)3/2

C1(λ) exp
(√

Λ(λ)x
)
−
(

Λ(λ)
)3/2

D1(λ) exp
(
−
√

Λ(λ)x
)
+(

Λ̃(λ)
)3/2

C2(λ) exp
(√

Λ̃(λ)x
)
−
(

Λ̃(λ)
)3/2

D2(λ) exp
(
−
√

Λ̃(λ)x
)

.

(206)

Substituting Equations (206) into the condition in Equation (205), we obtain

C1(λ)e(λ)
[

λ3Sρ2 + λρEI Λ(λ)− iλ2αSρ
√

Λ(λ)− iαEI Λ3/2(λ)

]
+

D1(λ)e−1(λ)

[
λ3Sρ2 + λρEI Λ(λ) + iλ2αSρ

√
Λ(λ) + iαEI Λ3/2(λ)

]
+

C2(λ)ê(λ)
[

λ3Sρ2 + λρEI Λ̃(λ)− iλ2αSρ

√
Λ̃(λ)− iαEI Λ̃3/2(λ)

]
+

D2(λ)ê −1(λ)

[
λ3Sρ2 + λρEI Λ̃(λ) + iλ2αSρ

√
Λ̃(λ) + iαEI Λ̃3/2(λ)

]
= 0.

(207)
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It is convenient to introduce new notations. Namely, let

a(λ) = λ3Sρ2 + λρEIΛ(λ), ã(λ) = λ3Sρ2 + λρEIΛ̃(λ),

b(λ) = iλ2αSρ
√

Λ(λ) + iαEIΛ3/2(λ), b̃(λ) = iλ2αSρ

√
Λ̃(λ) + iαEIΛ̃3/2(λ).

(208)

Rewriting Equation (207) in terms of Equation (208), we have

C1(λ)e(λ)
[

a(λ)− b(λ)
]
+ D1(λ)e−1(λ)

[
a(λ) + b(λ)

]
+

C2(λ)ê(λ)
[

ã(λ)− b̃(λ)
]
+ D2(λ)ê −1(λ)

[
ã(λ) + b̃(λ)

]
= 0.

(209)

Now, we turn to the second boundary condition in Equation (204). Let

Θ(λ) =
λθ2

C
(

1
CR + iλ

) . (210)

Then, Equation (204) becomes

EIϕ′(λ, L) = Θ(λ)ϕ(λ, L). (211)

The second boundary condition generates the second relation between Ci(λ) and Di(λ), i = 1, 2

C1(λ)e(λ)
[

EI
√

Λ(λ)− iΘ(λ)
]
− D1(λ)

(
e(λ)

)−1
[

EI
√

Λ(λ) + iΘ(λ)
]

+C1(λ)ê(λ)
[

EI
√

Λ̃(λ)− iΘ(λ)
]
− D1(λ)

(
ê(λ)

)−1
[

EI
√

Λ̃(λ) + iΘ(λ)
]
= 0.

(212)

Let us introduce two two-vectors:

C(λ) =
[

C1(λ)

C2(λ)

]
, D(λ) =

[
D1(λ)

D2(λ)

]
. (213)

Equations (209) and (212) can be written in a matrix form as

A(λ)E(λ)
[

C1(λ)

C2(λ)

]
= B(λ)E−1(λ)

[
D1(λ)

D2(λ)

]
, (214)

where

A(λ) =
[

a(λ)− b(λ) ã(λ)− b̃(λ)

EI
√

Λ(λ)− iΘ(λ) EI
√

Λ̃(λ)− iΘ(λ)

]
, (215)

B(λ) =
[
−a(λ) + b(λ) −ã(λ) + b̃(λ)

EI
√

Λ(λ)− iΘ(λ) EI
√

Λ̃(λ)− iΘ(λ)

]
, (216)

andE(λ) is a diagonal matrix: E(λ) = diag
{

e(λ), ê(λ)
}

. The matrix that relates vectorsC(λ) andD(λ)
of Equation (213), given by Rr(λ) = E−1(λ)A−1(λ)B(λ)E−1(λ), is called the right reflection matrix.

The next statement is the main result of this Section.
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Theorem 6. (1) The initial-boundary value problem in Equations (161)–(164) has a countable set of complex
vibrational modes, which belongs to a strip parallel to the real axis and can accumulate only at infinity. There
may be only a finite number of multiple modes of a finite algebraic multiplicity each.

(2) The entire set of modes asymptotically splits into two disjoint subsets: we call them the α-branch and
the θ-branch and denote them by

{
λα

n
}

n∈Z′ and
{

λθ
m
}

m∈Z′ , Z
′ = Z�

{
0
}

. If <α ≥ 0, then the α-branch is
asymptotically close to a horizontal line in the upper half-plane and the second branch is asymptotically close to
the real axis.

(3) The following asymptotic approximations are valid for the spectral branches:

λα
n =

πn
ρL/K

+
i

2ρL/K
ln

α +
√

ρK
α−

√
ρK

+ O
(

1
n2

)
, n→ ∞, λα

−n = −λα
n; (217)

λθ
m =

π
(
m + 1/2

)
SρL/EI

−
θ2
√

EI/Sρ

πmCL
+ O

(
1

m2

)
, m→ ∞, λθ

−m = −λθ
m; (218)

Proof. It is convenient to introduce a new structural parameter

γ =
1

EI/K− S
. (219)

Asymptotic approximations for the functions a(λ), ã(λ), b(λ), and b̃(λ). Using the definition
in Equation (177) and Equations (175) and (190), we obtain the following formulas as |λ| → ∞:

(i) Λ(λ) = −λ2 ρ

K
− 1

EI/K− S
+O

(
1

λ2

)
= −λ2 ρ

K
−γ+O

(
1

λ2

)
,

(ii)
√

Λ(λ) = iλ
√

ρ

K

[
1 +

1

2λ2
(
ρ/K

)(
EI/K− S

) + O
(

1
λ4

)]

= iλ
√

ρ

K
+

i
√

Kγ

2λ
√

ρ
+ O

(
1

λ3

)
,

(220)

(iii)
(
Λ(λ)

)3/2
= −iλ3

(
ρ

K

)3/2
[

1 +
1

λ2
(
ρ/K

)(
EI/K− S

) + O
(

1
λ4

)]3/2

= −iλ3
(

ρ

K

)3/2

− λ
3i
√

ργ

2
√

K
+ O

(
1
λ

)
.

Using the definition in Equation (178), and Equations (176) and (191), we obtain:

(i) Λ̃(λ) = −λ2 Sρ

EI
+

1
EI/K− S

+ O
(

1
λ2

)
= −λ2 Sρ

EI
+ γ + O

(
1

λ2

)
,

(ii)
√

Λ̃(λ) = iλ

√
Sρ

EI

1− EI

2Sρ
(

EI/K− S
)

λ2
+ O

(
1

λ4

)
= iλ

√
Sρ

EI
− i
√

EIγ

2λ
√

Sρ
+ O

(
1

λ3

)
,

(221)
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(iii)
(

Λ̃(λ)
)3/2

= −iλ3
(

Sρ

EI

)3/2
1− 3EI

2Sρ
(

EI/K− S
)

λ2
+ O

(
1

λ4

)
= −iλ3

(
Sρ

EI

)3/2

+ λ
3i
√

Sργ

2
√

EI
+ O

(
1
λ

)
.

The following asymptotic approximations hold for the functions a(λ), ã(λ), b(λ), b̃(λ).
Using Equations (220)(i) and (221)(i), we obtain from Equation (208)

a(λ) = λ3ρ2
(

S− EI
K

)
− λγρEI + O

(
1
λ

)
= −λ3ρ2

γ
− λγρEI + O

(
1
λ

)
. (222)

ã(λ) = λ3Sρ2 + λρEI
[
− λ2 Sρ

EI
+ γ + O

(
1

λ2

)]
= λγρEI + O

(
1
λ

)
. (223)

Using Equations (220)(ii), (220)(iii), (221)(ii), and (221)(iii), we obtain from Equation (208)

b(λ) =iλ2αSρ

[
iλ
√

ρ

K
+

i
√

Kγ

2λ
√

ρ
+ O

(
1

λ3

)]
+ iαEI

[
− iλ3

(
ρ

K

)3/2

− λ
3i
√

ργ

2
√

K
+ O

(
1
λ

)]
=

λ3αρ3/2

γ
√

K
+

λαγ

2
√

K
√

ρ
[
3EI − SK

]
+ O

(
1
λ

)
.

(224)

b̃(λ) =iλ2αSρ

[
iλ

√
Sρ

EI
− i
√

EIγ

2λ
√

EI
+ O

(
1

λ3

)]
+ iαEI

[
− iλ3

(
Sρ

EI

)3/2

+ λ
3i
√

Sργ

2
√

EI
+ O

(
1
λ

)]
=

1
2

αγ
√

Sρ
√

EI − 3
2

αγ
√

Sρ
√

EI + O
(

1
λ

)
= −αγ

√
Sρ
√

EI + O
(

1
λ

)
.

(225)

Asymptotic approximations for the entries of the matrix A(λ) defined in Equation (215)

Using Equations (222) and (224), we get

a(λ)± b(λ) =

[
− λ3ρ2

γ
± λ3αρ3/2

γ
√

K

]
+

[
− λγρEI ±

λαγ
√

ρ

2
√

K

(
3EI − SK

)]
+ O

(
1
λ

)
= λ3δ± + λσ± + O

(
1
λ

)
,

(226)

where

δ± =
ρ3/2

γ

[
−√ρ± α√

K

]
, (227)

σ± = γ
√

ρ

[
−√ρEI ±

α
(
3EI − SK

)
2
√

K

]
. (228)

Using Equations (223) and (225), we get

ã(λ)± b̃(λ) = λγ
√

EIρ
(√

EIρ∓ α
√

S
)
+ O

(
1
λ

)
. (229)
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It is convenient to collect all ingredient for the spectral equation (Equation (219)). Namely,

a(λ)± b(λ) =
(

λ3δ± + λσ±
)(

1 + O
(

1
λ4

))
, (230)

ã(λ)± b̃(λ) = γλ
√

EI · ρ
(√

EI · ρ∓ α
√

S
)(

1 + O
(

1
λ2

))
, (231)

EI
√

Λ(λ)± iΘ(λ) =

[
iλEI

√
ρ

K
+

iEI
√

Kγ

2λ
√

ρ
± iΘ(λ)

]
+ O

(
1

λ3

)
(232)

= iλEI

[√
ρ

K
+

√
Kγ

2λ2√ρ
± Θ(λ)

λEI

](
1 + O

(
1

λ4

))
,

EI
√

Λ̃(λ)± iΘ(λ) = iλEI

[√
Sρ

EI
− γ

2λ2

√
EI
Sρ
± Θ(λ)

λEI

](
1 + O

(
1

λ4

))
. (233)

The spectral equation follows from Equation (214):

det
[
A(λ)E(λ)Rl(λ)−B(λ)E−1(λ)

]
= 0, (234)

where A(λ) is defined in (215), B(λ) is defined in (216) and Rl(λ) is defined in (202). Let

Rl(λ) = E(λ)Rl(λ)E(λ), (235)

then the spectral equation (Equation (234)) can be written in the following form:

det
[
A(λ)Rl(λ)−B(λ)

]
= 0. (236)

To deal with the matrix having bounded entries, we apply the diagonal matrix diag
{

λ−3,
(
iλEI

)−1
}

and obtain a new equation having the same set of roots as Equation (236)

det


 λ−3 0

0
(

iλEI
)−1

 (A(λ)Rl(λ)−B(λ)
) = 0. (237)

Applying this matrix to the matrices A(λ) and B(λ), we obtain

A(λ) ≡ diag
{

λ−3,
(
iλEI

)−1
}
A(λ) =

(
δ− + σ−

λ2

)(
1 + O

(
1

λ4

))
γ
λ2

√
EI · ρ

(√
EI · ρ + α

√
S
)(

1 + O
(

1
λ2

))
(√

ρ
K + γ

2λ2

√
K
ρ −

Θ(λ)
λEI

)(
1 + O

(
1

λ4

)) (√
Sρ
EI −

γ
2λ2

√
EI
Sρ −

Θ(λ)
λEI

)(
1 + O

(
1

λ4

))
 ,

(238)

B(λ) ≡ diag
{

λ−3,
(
iλEI

)−1
}
B(λ) = −

(
δ+ + σ+

λ2

)(
1 + O

(
1

λ4

))
− γ

λ2

√
EI · ρ

(√
EI · ρ− α

√
S
)(

1 + O
(

1
λ2

))
(√

ρ
K + γ

2λ2

√
K
ρ + Θ(λ)

λEI

)(
1 + O

(
1

λ4

)) (√
Sρ
EI −

γ
2λ2

√
EI
Sρ + Θ(λ)

λEI

)(
1 + O

(
1

λ4

))
 ,

(239)

Rl(λ) ≡ diag
{

λ−3,
(
iλEI

)−1
}
Rl(λ) =


(

1− 2R
λ2

)
e2(λ) − 2R

λ2 e(λ)ê(λ)

−2
(

1− R
λ2

)
e(λ)ê(λ) −

(
1− 2R

λ2

)
ê 2(λ)

 . (240)
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Then, the spectral equation can be written in the asymptotical form as follows:

det
[
A(λ)Rl(λ)−B(λ)

]
= O

(
1

λ4

)
. (241)

Let D(λ) be the notation for A(λ)Rl(λ)−B(λ), i.e., let D(λ) =
[
dij

]i=2, j=2

i=1, j=1
. Let us evaluate the

asymptotic approximation for each entry of the matrix D(λ) with the accuracy O
(

λ−2
)

. We have

d11 =

(
δ− +

σ−
λ2

)(
1− 2R

λ2

)
e2(λ)− 2γ

λ2

√
EI · ρ

(√
EI · ρ + α

√
S
)(

1− R
λ2

)
e(λ)ê(λ)+

(
δ+ +

σ+
λ2

)
=

(
δ− +

σ−
λ2 −

2Rδ−
λ2

)
e2(λ)−

2γ
√

EI · ρ
(√

EI · ρ + α
√

S
)

λ2 e(λ)ê(λ)+(
δ+ +

σ+
λ2

)
+ O

(
1

λ4

)
= δ−e(λ) + δ+ + O

(
1

λ2

)
,

(242)

d12 =− δ−
2R
λ2 e(λ)ê(λ)− γ

λ2

√
EI · ρ

(√
EI · ρ + α

√
S
)

ê 2(λ)+

γ

λ2

√
EI · ρ

(√
EI · ρ− α

√
S
)
+ O

(
1

λ4

)
= O

(
1

λ2

)
.

(243)

d21 =

[√
ρ

K
+

γ

2λ2

√
K
ρ
− Θ(λ)

λEI
− 2R

λ2

√
ρ

K

]
e2(λ)−

2

[√
Sρ

EI
− γ

2λ2

√
EI
Sρ
− Θ(λ)

λEI
− R

λ2

√
Sρ

EI

]
e(λ)ê(λ)−(√

ρ

K
+

γ

2λ2

√
K
ρ
+

Θ(λ)

λEI

)
+ O

(
1

λ3

)
=

(√
ρ

K
− Θ(λ)

λEI

)
e2(λ)−

2

(√
Sρ

EI
− Θ(λ)

λEI

)
e(λ)ê(λ)−

(√
ρ

K
+

Θ(λ)

λEI

)
+ O

(
1

λ2

)
,

(244)

d22 =− 2R
λ2

√
ρ

K
e(λ)ê(λ)−

[√
Sρ

EI
− γ

2λ2

√
EI
Sρ
− Θ(λ)

λEI
− 2R

λ2

√
Sρ

EI

]
ê 2(λ)−[√

Sρ

EI
− γ

2λ2

√
EI
Sρ

+
Θ(λ)

λEI

]
+ O

(
1

λ3

)

=−
(√

Sρ

EI
− Θ(λ)

λEI

)
ê 2(λ)−

(√
Sρ

EI
+

Θ(λ)

λEI

)
+ O

(
1

λ2

)
.

(245)

Using these formulas, we obtain the following approximation for the determinant of
Equation (241):

d11(λ)d22(λ)− d12(λ)d21(λ) = d11(λ)d22(λ) + O
(

1
λ2

)
.

Therefore, the asymptotic form for the spectral equation becomes

(
δ−e2(λ) + δ+

)[(√Sρ

EI
− Θ(λ)

λEI

)
ê2(λ) +

(√
Sρ

EI
+

Θ(λ)

λEI

)]
= O

(
1

λ2

)
, (246)
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which yields the following two equations:

e2(λ) = − δ+
δ−

+ O
(

1
λ2

)
= −

√
ρK− α√
ρK + α

+ O
(

1
λ2

)
. (247)

ê 2(λ) = −

√
Sρ
EI +

Θ(λ)
λEI√

Sρ
EI −

Θ(λ)
λEI

+ O
(

1
λ2

)
= −1− 2Θ(λ)

λ
√

Sρ · EI

[
1 +

Θ(λ)
√

EI
λEI

√
Sρ

+ O
(

1
λ2

)]

= −1− 2Θ(λ)

λ
√

Sρ · EI
+ O

(
1

λ2

)
.
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Using Equation (210) for Θ, we get

Θ(λ) =
λθ2

C
(

1
CR + iλ

) =
λθ2

iCλ
(

1
iCRλ + 1

) =
−iθ2

C

[
1− 1

iCRλ
+ O

(
1

λ2

)]

= − iθ2

C
+

θ2

λC2R
+ O

(
1

λ2

)
,

(249)

which reduces Equation (248) to the form

ê 2(λ) = −1 +
2iθ2

λC
√

Sρ · EI
+ O

(
1

λ2

)
. (250)

Using the standard methods of Asymptotic Analysis as in Fedoruk [36], Miller [40], and Olver [37],
we immediately obtain Equation (217) for the α-branch of the spectrum and Equation (218) for
the θ-branch. (For detailed calculations, see Shubov [2,3], Shubov and Shubov [4], Shubov and
Peterson [41], and Shubov [25,38].)

9. Conculsions

In the paper, a mathematical model of a piezoelectric energy harvester with a Timoshenko
beam as a substructure is considered. The model is represented in the form of three coupled partial
differential equations equipped with the boundary conditions at the left and right ends of the flexible
structure. Two cases are considered: (i) the first case is concerned with the beam with spatially variable
structural parameters; and (ii) the second case is concerned with the beam with constant structural
parameters. In both cases the asymptotic distributions of the natural frequencies have been derived
for electrically loaded harvesters. In Case (i). the leading asymptotical term and the remainder term
have been obtained. The derivation of the higher order asymptotical terms for a variable parameter
model becomes technically very complicated and lengthy. In Case (ii), the two-term asymptotical
approximation for the natural frequencies of the model has been obtained. It is shown that the leading
asymptotical terms do not contain the piezoelectric parameters, while the second order asympotical
term contains the piezoelectric coupling coefficient.
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