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Abstract. Dry deposition is a major sink of tropospheric
ozone. Increasing evidence has shown that ozone dry depo-
sition actively links meteorology and hydrology with ozone
air quality. However, there is little systematic investigation on
the performance of different ozone dry deposition parameter-
izations at the global scale and how parameterization choice
can impact surface ozone simulations. Here, we present the
results of the first global, multidecadal modelling and eval-
uation of ozone dry deposition velocity (vd) using multiple
ozone dry deposition parameterizations. We model ozone dry
deposition velocities over 1982–2011 using four ozone dry
deposition parameterizations that are representative of cur-
rent approaches in global ozone dry deposition modelling.
We use consistent assimilated meteorology, land cover, and
satellite-derived leaf area index (LAI) across all four, such
that the differences in simulated vd are entirely due to differ-
ences in deposition model structures or assumptions about
how land types are treated in each. In addition, we use the
surface ozone sensitivity to vd predicted by a chemical trans-
port model to estimate the impact of mean and variability
of ozone dry deposition velocity on surface ozone. Our es-
timated vd values from four different parameterizations are
evaluated against field observations, and while performance
varies considerably by land cover types, our results suggest
that none of the parameterizations are universally better than
the others. Discrepancy in simulated mean vd among the pa-
rameterizations is estimated to cause 2 to 5 ppbv of discrep-
ancy in surface ozone in the Northern Hemisphere (NH) and
up to 8 ppbv in tropical rainforests in July, and up to 8 ppbv in

tropical rainforests and seasonally dry tropical forests in In-
dochina in December. Parameterization-specific biases based
on individual land cover type and hydroclimate are found to
be the two main drivers of such discrepancies. We find sta-
tistically significant trends in the multiannual time series of
simulated July daytime vd in all parameterizations, driven by
warming and drying (southern Amazonia, southern African
savannah, and Mongolia) or greening (high latitudes). The
trend in July daytime vd is estimated to be 1 % yr−1 and leads
to up to 3 ppbv of surface ozone changes over 1982–2011.
The interannual coefficient of variation (CV) of July daytime
mean vd in NH is found to be 5 %–15 %, with spatial distri-
bution that varies with the dry deposition parameterization.
Our sensitivity simulations suggest this can contribute be-
tween 0.5 to 2 ppbv to interannual variability (IAV) in surface
ozone, but all models tend to underestimate interannual CV
when compared to long-term ozone flux observations. We
also find that IAV in some dry deposition parameterizations
is more sensitive to LAI, while in others it is more sensitive to
climate. Comparisons with other published estimates of the
IAV of background ozone confirm that ozone dry deposition
can be an important part of natural surface ozone variability.
Our results demonstrate the importance of ozone dry depo-
sition parameterization choice on surface ozone modelling
and the impact of IAV of vd on surface ozone, thus mak-
ing a strong case for further measurement, evaluation, and
model–data integration of ozone dry deposition on different
spatiotemporal scales.
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1 Introduction

Surface ozone (O3) is one of the major air pollutants that
poses serious threats to human health (Jerrett et al., 2009) and
plant productivity (Ainsworth et al., 2012; Reich, 1987; Wit-
tig et al., 2007). Ozone exerts additional pressure on global
food security and public health by damaging agricultural
ecosystems and reducing crop yields (Avnery et al., 2011;
McGrath et al., 2015; Tai et al., 2014). Dry deposition, by
which atmospheric constituents are removed from the atmo-
sphere and transferred to the Earth’s surface through turbu-
lent transport or gravitational settling, is the second-largest
and terminal sink of tropospheric O3 (Wild, 2007). Terrestrial
ecosystems are particularly efficient at removing O3 via dry
deposition through stomatal uptake and other non-stomatal
pathways (Wesely and Hicks, 2000) (e.g. cuticle, soil, re-
action with biogenic volatile organic compounds (BVOCs);
Fares et al., 2010; Wolfe et al., 2011). Meanwhile, stomatal
uptake of O3 inflicts damage on plants by initiating reactions
that impair their photosynthetic and stomatal regulatory ca-
pacity (Hoshika et al., 2014; Lombardozzi et al., 2012; Reich,
1987). Widespread plant damage has the potential to alter the
global water cycle (Lombardozzi et al., 2015) and suppress
the land carbon sink (Sitch et al., 2007), as well as generate
a cascade of feedbacks that affect atmospheric composition
including ozone itself (Sadiq et al., 2017; Zhou et al., 2018).
Ozone dry deposition is therefore key in understanding how
meteorology (Kavassalis and Murphy, 2017), climate, and
land cover change (Fu and Tai, 2015; Ganzeveld et al., 2010;
Geddes et al., 2016; Heald and Geddes, 2016; Sadiq et al.,
2017; Sanderson et al., 2007; Young et al., 2013) can affect
air quality and atmospheric chemistry at large.

Analogous to other surface–atmosphere exchange pro-
cesses (e.g. sensible and latent heat flux), O3 dry deposition
flux (FO3 ) is often expressed as the product of ambient O3
concentrations at the surface ([O3]) and a transfer coefficient
(dry deposition velocity, vd) that describes the efficiency of
transport (and removal) to the surface from the measurement
height:

FO3 =− [O3]vd. (1)

Also analogous to other surface fluxes, FO3 , [O3], and hence
vd, can be directly measured by the eddy covariance (EC)
method (e.g. Fares et al., 2014; Gerosa et al., 2005; Lamaud
et al., 2002; Munger et al., 1996; Rannik et al., 2012) with
random uncertainty of about 20 % (Keronen et al., 2003;
Muller et al., 2010). Apart from EC, FO3 and vd can also
be estimated from the vertical profile of O3 by exploiting
flux–gradient relationship (Foken, 2006) (termed the gradi-
ent method, GM) (e.g. Gerosa et al., 2017; Wu et al., 2015,
2016). A recent study (Silva and Heald, 2018) complied 75
sets of ozone deposition measurement from the EC and GM
across different seasons and land cover types over the past
30 years.

At the site level, ozone dry deposition over various ter-
restrial ecosystems can be simulated comprehensively by 1-
D chemical transport models (Ashworth et al., 2015; Wolfe
et al., 2011; Zhou et al., 2017), which are able to simulate
the effects of vertical gradients inside the canopy environ-
ment, and gas-phase reaction with BVOCs in addition to
surface sinks. Regional and global models, which lack the
fine-scale information (e.g. vertical structure of canopy, in-
canopy BVOC emissions) and horizontal resolution for re-
solving the plant canopy in such detail, instead represent
plant canopy foliage as one to two big leaves, and vd is pa-
rameterized as a network of resistance, which accounts for
the effects of turbulent mixing via aerodynamic (Ra), molec-
ular diffusion via quasi-laminar sublayer resistance (Rb), and
surface sinks via surface resistance (Rc):

vd =
1

Ra +Rb+Rc
. (2)

A diverse set of parameterizations of ozone dry deposi-
tion is available and used in different models and monitor-
ing networks. Examples include the Wesely parameterization
(1989) and modified versions of it (e.g. Wang et al., 1998),
the Zhang et al. (2003) parameterization (Zhang et al., 2003),
the Deposition of O3 for Stomatal Exchange model (Ember-
son et al., 2000; Simpson et al., 2012), and the Clean Air Sta-
tus and Trends Network (CASTNET) deposition estimates
(Meyers et al., 1998). The calculation of Ra (mostly based
on Monin–Obukhov similarity theory) and Rb across these
parameterizations often follow a standard formulation from
micrometeorology (Foken, 2006; Wesely and Hicks, 1977,
2000; Wu et al., 2011) and thus does not vary significantly.
The main difference between the ozone dry deposition pa-
rameterizations lies on the surface resistance, Rc. This resis-
tance includes stomatal resistance (Rs), which can be com-
puted by a Jarvis-type multiplicative algorithm (Jarvis, 1976)
where Rs is the product of its minimum value and a series
of response functions to individual environmental conditions.
Such conditions typically include air temperature (T ), pho-
tosynthetically available radiation (PAR), vapour pressure
deficit (VPD), and soil moisture (θ), with varying complexity
and functional forms.

Such formalism is empirical in nature and does not ade-
quately represent the underlying ecophysiological processes
affecting Rs (e.g. temperature acclimation). An advancement
of these efforts includes harmonizing Rs with that computed
by land surface models (Ran et al., 2017a; Val Martin et
al., 2014), which calculate Rs by coupled photosynthesis–
stomatal conductance (An–gs) models (Ball et al., 1987; Col-
latz et al., 1991, 1992). Such coupling should theoretically
give a more realistic account of ecophysiological controls on
Rs. Indeed, it has been shown that the above approach may
better simulate vd than the multiplicative algorithms that only
consider the effects of T and PAR (Val Martin et al., 2014;
Wu et al., 2011).
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The non-stomatal part of Rc often consists of cuticular
(Rcut), ground (Rg), and other miscellaneous types of resis-
tance (e.g. lower canopy resistance (Rlc) in Wesely, 1989).
Due to very limited measurements and mechanistic under-
standing towards non-stomatal deposition, non-stomatal re-
sistance is often constant (e.g. Rg) or simply scaled with leaf
area index (LAI) (e.g. Rcut) (Simpson et al., 2012; Wang et
al., 1998; Wesely, 1989), while some of the parameteriza-
tions (Zhang et al., 2003; Zhou et al., 2017) incorporate the
observation of enhanced cuticular O3 uptake under leaf sur-
face wetness (Altimir et al., 2006; Potier et al., 2015, 2017;
Sun et al., 2016).

Furthermore, terrestrial atmosphere–biosphere exchange
is also directly affected by CO2, as CO2 can drive increases
in LAI (Zhu et al., 2016) while inhibiting gs (Ainsworth and
Rogers, 2007). These can have important implications on vd,
as shown by Sanderson et al. (2007), where doubling cur-
rent CO2 level reduces gs by 0.5–2.0 mm s−1, and by Wu
et al. (2012) where vd increases substantially due to CO2
fertilization at 2100. Observations from the Free Air CO2
Enrichment (FACE) experiments also confirm CO2 fertiliza-
tion and inhibition of gs effects, but the impacts are variable
and species specific such that extrapolation of these effects
to global forest cover is cautioned (Norby and Zak, 2011).

Various efforts have been made to evaluate and assess the
uncertainty in modelling ozone dry deposition using field
measurements. Hardacre et al. (2015) evaluate the perfor-
mance of simulated monthly mean vd and FO3 by 15 chemi-
cal transport models (CTMs) from the Task Force on Hemi-
spheric Transport of Air Pollutant (TF HTAP) against seven
long-term site measurements, 15 short-term site measure-
ments, and modelled vd from 96 CASTNET sites. This work
suggests that the difference in land cover classification is the
main source of discrepancy between models. In this case,
most of the models in TF HTAP use the same class of dry de-
position parameterization (Wang et al., 1998; Wesely, 1989),
so a global evaluation of different deposition parameteriza-
tions was not possible. Also, the focus in this intercompari-
son study was on seasonal but not other (e.g. diurnal, daily,
interannual) timescales. Using an extended set of measure-
ments, Silva and Heald (2018) evaluate the vd output from
the Wang et al. (1998) parameterization used by the GEOS-
Chem chemical transport model. They show that diurnal and
seasonal cycles are generally well captured, while the daily
variability is not well simulated. They find that differences in
land type and LAI, rather than meteorology, are the main rea-
son behind model–observation discrepancy at the seasonal
scale, and eliminating this model bias results in up to 15 %
change in surface O3. This study is also limited to a single
parameterization. Using parameterizations that are explicitly
sensitive to other environmental variables (e.g. Simpson et
al., 2012; Zhang et al., 2003) could conceivably lead to dif-
ferent conclusions.

Other efforts have been made to compare the perfor-
mance of different parameterizations. Centoni (2017) find

that two different dry deposition parameterizations, We-
sely (1989) versus Zhang et al. (2003), implemented in the
same chemistry–aerosol model (United Kingdom Chemistry
Aerosol, UKCA, model), result in up to a 20 % difference
in simulated surface O3 concentration. This study demon-
strates that uncertainty in vd can have a large potential ef-
fect on surface O3 simulation. Wu et al. (2018) compare vd
simulated by five North American dry deposition parame-
terizations to a long-term observational record at a single
mixed forest in southern Canada and find a large spread be-
tween the simulated vd, with no single parameterization uni-
formly outperforming others. They further acknowledge that
as each parameterization is developed with its own set of lim-
ited observations, it is natural that their performance can vary
considerably under different environments, and advocate for
an “ensemble” approach to dry deposition modelling. This
highlights the importance of parameterization choice as a
key source of uncertainty in modelling ozone dry deposition.
Meanwhile, in another evaluation at a single site, Clifton
et al. (2017) show that the GEOS-Chem parameterization
largely underestimates the interannual variability (IAV) of
vd in Harvard Forest based on the measurement from 1990
to 2000, although they do not show how the IAV of vd may
contribute to the IAV of O3.

These developments have made a substantial contribution
to our understanding of the importance of O3 dry deposition
in atmospheric chemistry models. Still, pertinent questions
remain about the impact of a dry deposition model on simu-
lations of the global distribution of ozone and its long-term
variability. Here, we build on previous works by posing and
answering the following questions:

1. How does the global distribution of mean vd vary with
different dry deposition parameterizations, and what
drives the discrepancies among them? How much might
the choice of deposition parameterization affect spatial
distribution of surface ozone concentration simulated by
a chemical transport model?

2. How are the IAV and long-term trends of vd different
across deposition parameterizations, and what drives the
discrepancies among them? Do they potentially con-
tribute different predictions of the long-term temporal
variability in surface ozone?

The answers to such question could have important conse-
quences on our ability to predict long-term changes in at-
mospheric O3 concentrations as a function of changing cli-
mate and land cover characteristics. In general, there is a
high computational cost to thorough and large-scale evalu-
ations of different dry deposition parameterizations embed-
ded in CTMs. In this study, we explore these questions using
a strategy that combines an offline dry deposition modelling
framework incorporating long-term assimilated meteorologi-
cal and land surface remote sensing data, in combination with
a set of CTM sensitivity simulations.
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2 Method

2.1 Dry deposition parameterization

Here, we consider several “big-leaf” models commonly used
by global chemical transport models. More complex multi-
layer models require the vertical profiles of leaf area density
for different biomes which are generally not available for re-
gional and global models. From the wide range of literature
on dry deposition studies, we observe that Rs is commonly
modelled through one of the following approaches:

1. a multiplicative algorithm that considers the effects of
LAI, temperature, and radiation (Wang et al., 1998);

2. a multiplicative algorithm that considers the effects of
LAI, temperature, radiation, and water stress (e.g. Mey-
ers et al., 1998; Pleim and Ran, 2011; Simpson et al.,
2012; Zhang et al., 2003); or

3. a coupled An–gs model, which exploits the strong em-
pirical relationship between photosynthesis (An) and
stomatal conductance (gs) (e.g. Ball et al., 1987; Lin et
al., 2015) and simulates An and gs = 1/Rs simultane-
ously (e.g. Ran et al., 2017b; Val Martin et al., 2014).

Similarly, their functional dependence of non-stomatal sur-
face resistance can be classified into two classes:

1. mainly scaling with LAI, with in-canopy aerodynamics
parameterized as function of friction velocity (u∗) or ra-
diation (Meyers et al., 1998; Simpson et al., 2012; Wang
et al., 1998); and

2. additional dependence of cuticular resistance on relative
humidity (Pleim and Ran, 2011; Zhang et al., 2003)

With these considerations, we identify four common param-
eterizations that are representative of the types of approaches
described above:

1. the version of Wesely (1989) with the modification
from Wang et al. (1998) (hereafter referred to as W98),
which is used extensively in global CTMs (Hardacre et
al., 2015) and comprehensively discussed by Silva and
Heald (2018) – this represents Type 1 in both stomatal
and non-stomatal parameterizations;

2. the Zhang et al. (2003) parameterization (hereafter re-
ferred to as Z03), which is used in many North Amer-
ican air quality modelling studies (e.g. Huang et al.,
2016; Kharol et al., 2018) and Canadian Air and Pre-
cipitation Monitoring Network (CAPMoN) (e.g. Zhang
et al., 2009) – this represents Type 2 in both stomatal
and non-stomatal parameterizations;

3. W98 with Rs calculated from a widely used coupled
An–gs model, the Ball–Berry model (hereafter referred
to as W98_BB) (Ball et al., 1987; Collatz et al., 1991,

1992), which is similar to that proposed by Val Martin
et al. (2014), and therefore the current parameterization
in Community Earth System Model (CESM) – this rep-
resents Type 3 in stomatal and Type 1 in non-stomatal
parameterizations; and

4. Z03 with the Ball–Berry model (Z03_BB), which is
comparable to the configuration in Centoni (2017) im-
plemented in the UKCA model – this represents Type
3 in stomatal and Type 2 in non-stomatal parameteriza-
tions.

Another important consideration in choosing Z03 and W98
is that they both have parameters for all major land types over
the globe, making them widely applicable in global mod-
elling. We extract the source code (Wang et al., 1998) and
parameters (Baldocchi et al., 1987; Jacob et al., 1992; Ja-
cob and Wofsy, 1990; Wesely, 1989) of W98 from GEOS-
Chem CTM (http://wiki.seas.harvard.edu/geos-chem/index.
php/Dry_deposition, last access: 24 January 2019). The
source code of Z03 was obtained through personal communi-
cation with Zhiyong Wu and Leiming Zhang, which follows
the series of papers that described the development and for-
malism of the parameterization (Brook et al., 1999; Zhang et
al., 2001, 2002, 2003). The Ball–Berry An–gs model (Ball et
al., 1987; Collatz et al., 1991, 1992; Farquhar et al., 1980)
and its solver are largely based on the algorithm of CLM
(Community Land Model) version 4.5 (Oleson et al., 2013),
which is numerically stable (Sun et al., 2012). We use iden-
tical formulae of Ra and Rb (Paulson, 1970; Wesely and
Hicks, 1977) for each individual parameterization, allowing
us to focus our analysis on differences in parameterizations
of Rc alone. Table S1 in the Supplement gives a brief de-
scription on the formalism of each of the dry deposition pa-
rameterizations.

2.2 Dry deposition model configuration, inputs, and
simulation

The above parameterizations are re-implemented in R lan-
guage (R core team, 2017) in the modelling framework of
the Terrestrial Ecosystem Model in R (https://github.com/
amospktai/TEMIR, last access: 15 November 2019) and
driven by gridded surface meteorology and land surface
datasets. The meteorological forcing chosen for this study
is the Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) (Gelaro et al., 2017), an
assimilated meteorological product at hourly time resolution
spanning from 1980 to the present day. MERRA-2 contains
all the required surface meteorological fields except VPD and
RH, which can be readily computed from T , specific humid-
ity (q), and surface air pressure (P ). We use the CLM land
surface dataset (Lawrence and Chase, 2007), which contains
information for land cover, per-grid cell coverage of each
plant functional type (PFT), and PFT-specific LAI, which
are required to drive the dry deposition parameterizations,
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and soil property, which is required to drive the An–gs model
in addition to PFT and PFT-specific LAI. CLM land types
are mapped to the land type of W98 following Geddes et
al. (2016). The mapping between CLM and Z03 land types is
given in Table S2. Other relevant vegetation and soil param-
eters are also imported from CLM 4.5 (Oleson et al., 2013),
while land-cover-specific roughness length (z0) values fol-
low Geddes et al. (2016). Leaf is set to be wet when either la-
tent heat flux < 0 W m−2 or precipitation > 0.2 mm h−1. Frac-
tional coverage of snow for Z03 is parameterized as a land-
type-specific function of snow depth following the original
paper of Z03, while W98 flags grid cells with albedo > 0.4 or
permanently glaciated as snow covered.

As the IAV of LAI could be an important factor in sim-
ulating vd, the widely used third-generation Global Inven-
tory Modelling and Mapping Studies leaf area index product
(GIMMS LAI3g, abbreviated as LAI3g in this paper) (Zhu et
al., 2013), which is a global time series of LAI with 15 d tem-
poral frequency and 1/12◦ spatial resolution spanning from
late 1981 to 2011, is incorporated in this study. We derive the
interannual scaling factors that can be applied to scale the
baseline CLM-derived LAI (Lawrence and Chase, 2007) for
each month over 1982 to 2011. All the input data are aggre-
gated into horizontal resolution of 2◦× 2.5◦ to align with the
CTM sensitivity simulation described in the next subsection.
To represent subgrid land cover heterogeneity, grid-cell-level
vd is calculated as the sum of vd over all subgrid land types
weighted by their percentage coverage in the grid cell (a.k.a
tiling or mosaic approach, e.g. Li et al., 2013). This reduces
the information loss when land surface data are aggregated to
coarser spatial resolution and allows us to retain PFT-specific
results for each grid box in the offline dry deposition simula-
tions.

We run three sets of 30-year (1982–2011) simulations with
the deposition parameterizations to investigate how vd simu-
lated by different parameterizations responds to different en-
vironmental factors over multiple decades. The settings of
the simulations are summarized in Table 1. The first set,
[Clim], focuses on meteorological variability alone, driven
by MERRA-2 meteorology and a multiyear (constant) mean
annual cycle of LAI derived from LAI3g. The second set,
[Clim+LAI], combines the effects of meteorology and IAV
in LAI, driven by the same MERRA-2 meteorology plus
the LAI time series from LAI3g. As the increase in atmo-
spheric CO2 level over multidecadal timescales may lead to
significant reduction in gs as plants tend to conserve water
(e.g. Franks et al., 2013; Rigden and Salvucci, 2017), we
introduce the third set of simulations, [Clim+LAI+CO2],
which is driven by varying meteorology and LAI, plus the
annual mean atmospheric CO2 level measured in Mauna
Loa (Keeling et al., 2001) (for the first two sets of sim-
ulations, atmospheric CO2 concentration held constant at
390 ppm). Since W98 and Z03 do not respond to changes
in CO2 level, only W98_BB and Z03_BB are run with
[Clim+LAI+CO2] to evaluate this impact. We focus on

the daytime (solar elevation angle > 20◦) vd, as both vd and
surface O3 concentration typically peak around this time.
We calculate monthly means, filtering out the grid cells with
monthly total daytime < 100 h.

In summary, we present for the first time a unique set
of global dry deposition velocity predictions over the last
30 years driven by identical meteorology and land cover, so
that discrepancies (in space and time) among the predicted
vd are a result specifically of dry deposition parameteriza-
tion choice or assumptions about how land cover is treated in
each.

2.3 Chemical transport model sensitivity experiments

We quantify the sensitivity of surface O3 to variations in vd
using a global 3-D CTM, GEOS-Chem version 11.01 (http:
//acmg.seas.harvard.edu/geos/, last access: 20 June 2019),
which includes comprehensive HOx–NOx–VOC–O3–BrOx
chemical mechanisms (Mao et al., 2013) and is widely used
to study tropospheric ozone (e.g. Hu et al., 2017; Travis et
al., 2016; Zhang et al., 2010). The model is driven by the as-
similated meteorological data from the GEOS-FP (forward
processing) Atmospheric Data Assimilation System (GEOS-
5 ADAS) (Rienecker et al., 2008), which is jointly developed
by National Centers for Environmental Prediction (NCEP) of
National Oceanic and Atmospheric Administration (NOAA)
and the Global Modelling and Assimilation Office (GMAO).
The model is run with a horizontal resolution of 2◦×2.5◦

and 47 vertical layers. The dry deposition module, which has
been discussed above (W98), is driven by the monthly mean
LAI retrieved from Moderate Resolution Imaging Spectro-
radiometer (MODIS) (Myneni et al., 2002) and the 2001
version of Olson land cover map (Olson et al., 2001). Both
of the maps are remapped from their native resolutions to
0.25◦× 0.25◦.

We propose to estimate the sensitivity of surface O3 con-
centrations to uncertainty/changes in vd by the following
equation:

1O3 = β
1vd

vd
,

where 1O3 is the response of monthly mean daytime sur-
face O3 to fractional change in vd (1vd/vd), and β accounts
for the sensitivity of surface O3 concentration in a grid box
to the perturbation in vd within that grid box. To estimate
β, we run two simulations for the year 2013: one with the
default setting and another where we perturb vd by +30 %.
Thus, this approach could represent a conservative estimate
of O3 sensitivity to vd if the impacts on other species result
in additional effects on O3. We use this sensitivity to iden-
tify areas where local uncertainty and variability in vd is ex-
pected to affect local surface O3 concentration, and we use
the assumption of linearity to estimate those impacts to a first
order (e.g. Wong et al., 2018). In the Supplement, we justify
this first-order assumption mathematically, as well as demon-
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Table 1. List of vd simulations with input data.

vd simulation Meteorology LAI Atmospheric CO2 concentration

[Clim]
MERRA-2 meteorology

LAI3g monthly climatology 390 ppm
[Clim+LAI] LAI3g monthly time series 390 ppm
[Clim+LAI+CO2] LAI3g monthly time series Mauna Loa time series

strate the impact of using a second-order approximation, and
estimate the uncertainty using an assumption of linearity to
be within 30 %. However, we note this first-order assumption
may not be able to capture the effects of chemical transport,
changes in background ozone, and non-linearity in chem-
istry, which can contribute to response of O3 concentration to
vd. Our experiment could help identify regions where more
rigorous modelling efforts could be targeted in future work.
We limit our analysis to grid cells where the monthly aver-
age vd is greater than 0.25 cm s−1 in the unperturbed GEOS-
Chem simulation, since changes in surface O3 elsewhere are
expected to be attributed more to change in background O3
rather than the local perturbation of vd (Wong et al., 2018).

3 Evaluation of dry deposition parameterizations

We first compare our offline simulations of seasonal mean
daytime average vd that result from the four parameteriza-
tions in the [Clim] and [Clim+LAI] scenarios with an obser-
vational database largely based on the evaluation presented
in Silva and Heald (2018). We do not include the evaluation
of vd from the [Clim+LAI+CO2] scenario, as we find that
the impact of CO2 concentration on vd is negligible over the
period of concern, as we will show in subsequent sections.
We use two unbiased and symmetrical statistical metrics,
normalized mean bias factor (NMBF) and normalized mean
absolute error factor (NMAEF), to evaluate our parameteri-
zations. Positive NMBF indicates that the parameterization
overestimates the observations by a factor of 1+NMBF and
the absolute gross error is NMAEF times the mean observa-
tion, while negative NMBF implies that the parameterization
underestimates the observations by a factor of 1−NMBF and
the absolute gross error is NMAEF times the mean model
prediction (Yu et al., 2006). We use the simulated subgrid
land-type-specific predictions of vd that correctly match the
land type and the averaging window indicated by the obser-
vations. We exclude instances where the observed land type
does not have a match within the model grid box. While this
removes one-third of the original datasets used in Silva and
Heald (2018), this means that mismatched land cover types
can be ignored as a factor in model bias.

Figure 1 shows the fractional coverage within each grid
cell and the geographic locations of O3 flux observation sites
for each major land type. Nearly all the observations are
clustered in Europe and North America, except three sites
in the tropical rainforest and one site in a tropical decidu-

ous forest in Thailand. For most major land types, there are
significant mismatches between the locations of flux mea-
surements and the dominant land cover fraction, which may
hinder the spatial representativeness of our evaluation. The
resulting NMBF and NMAEF for five major land-type cat-
egories are shown in Table 2, and the list of sites and their
descriptions are given in Table S3. In general, the numeri-
cal ranges of both NMBF and NMAEF are similar to that
of Silva and Heald (2018), and no single parameterization of
the four parameterizations outperforms the others across all
five major land types.

The performance metrics of each parameterization at each
land type are summarized in Table 2. Comparing the two
multiplicative parameterizations (W98 and Z03), we find that
W98 performs satisfactorily over deciduous forests and trop-
ical rainforests, while strongly underestimating daytime vd
over coniferous forests. In contrast, Z03 performs better in
coniferous forests but worse in tropical rainforests and de-
ciduous forests. The severe underestimation of daytime vd by
Z03 over tropical rainforests has previously been attributed to
persistent canopy wetness and hence stomatal blocking im-
posed by the parameterization (Centoni, 2017). We also note
that even for the same location, vd can vary significantly be-
tween seasons (Rummel et al., 2007) and management prac-
tices (Fowler et al., 2011), which models may fail to capture
due to limited representations of land cover. Given the small
sample size (N = 5), diverse environments, and large anthro-
pogenic intervention in the tropics, the disparity in perfor-
mance metrics may not fully reflect the relative model per-
formance. Baseline cuticular resistance in Z03 under dry and
wet canopy is 1.5 and 2 times that of coniferous forests, re-
spectively (Zhang et al., 2003), such that the enhancement of
cuticular uptake by wetness may not compensate the reduced
gs over tropical rainforests, and, to a lesser extent, deciduous
forests.

Over grasslands, W98 has higher positive biases, while
Z03 has higher absolute errors. This is because for datasets at
high latitudes, the dominant grass PFT is arctic grass, which
is mapped to “tundra” land type (Geddes et al., 2016). While
tundra is parameterized similarly to grasslands in W98, this
is not the case in Z03. Combined with the general high bi-
ases at other sites for these parameterizations, the large low
biases for “tundra” sites in Z03 lower the overall high biases
but lead to higher absolute errors.

Over croplands, the positive biases and absolute errors are
relatively large for both W98 and Z03 (with Z03 performing
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Figure 1. Fractional coverage of each major land type at each grid cell. Blue dots indicate the locations of the observational sites.

Table 2. Performance metrics (NMBF and NMAEF) for daytime average vd simulated by the four dry deposition parameterizations, with
N referring to number of data points (one data point indicates one seasonal mean). “Static LAI” is the result from the [Clim] run, which
uses 1982–2011 Advanced Very High Resolution Radiometer (AVHRR) monthly climatological LAI, while “dynamic LAI” is the result of
[Clim+LAI], which uses 1982–2011 AVHRR LAI time series. Dec indicates deciduous forest, Con indicates coniferous forest, Tro indicates
tropical rainforest, Gra indicates grassland, and Cro indicates cropland. N indicates the number of observational datasets involved in that
particular land type. The best performing parameterization for each land type has its performance metrics in bold text.

Land types Metrics Static LAI Dynamic LAI

W98 Z03 W98_BB Z03_BB W98 Z03 W98_BB Z03_BB

Dec (N = 8)
NMBF 0.134 −0.367 −0.287 −0.142 0.119 −0.376 −0.299 −0.153
NMAEF 0.322 0.369 0.305 0.215 0.319 0.376 0.321 0.226

Con (N = 16)
NMBF −0.362 −0.217 −0.252 −0.025 −0.355 −0.209 −0.248 −0.023
NMAEF 0.448 0.455 0.483 0.399 0.427 0.458 0.470 0.394

Tro (N = 5)
NMBF 0.080 −0.808 −0.086 −0.438 0.075 −0.813 −0.090 −0.441
NMAEF 0.423 0.831 0.404 0.569 0.422 0.832 0.399 0.567

Gra (N = 10)
NMBF 0.276 0.015 0.175 0.097 0.294 0.011 0.186 0.110
NMAEF 0.392 0.479 0.307 0.318 0.396 0.467 0.302 0.311

Cro (N = 11)
NMBF 0.297 0.360 0.241 0.282 0.318 0.371 0.255 0.292
NMAEF 0.473 0.541 0.474 0.570 0.485 0.550 0.480 0.576

worse in general than W98). The functional and physiolog-
ical diversity with the “crop” land type also contributes to
the general difficulty in simulating vd over cropland. Even
though Z03 has individual parameterizations for four spe-
cific crop types (rice, sugar, maize, and cotton), this advan-
tage is difficult to fully leverage, as most global land cover
datasets do not resolve croplands in such detail. Having land
cover maps that distinguish between more crop types could
potentially improve the performance of Z03. The evaluation
for herbaceous land types also suggests that as CLM PFTs
do not have exact correspondence with W98 and Z03 land
types, our results over herbaceous land types are subject to
the uncertainty in land-type mapping (e.g. tundra vs. grass-
land, specific vs. generic crops, C3 vs. C4 grass).

Substituting the native gs in W98 and Z03 by that sim-
ulated by the Ball–Berry model (the W98_BB and Z03_BB
runs) generally, though not universally, leads to improvement
in model performance against the observations. W98_BB has
considerably smaller biases and absolute errors than W98
over grassland. While having little effect on the absolute er-
ror, W98_BB improves the biases over coniferous forest and
cropland compared to W98 but worsens the biases over rain-
forests and deciduous forests. In contrast, Z03_BB is able to
improve the model–observation agreement over all five land
types when compared to Z03. This finding echoes that from
Wu et al. (2011), who explicitly show the advantage of re-
placing the gs of Wesely (1989) with the Ball–Berry model in
simulating vd over a forest site and in addition show the po-
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Figure 2. The 1982–2011 July mean daytime vd (solar elevation
angle > 20◦) over vegetated land surface simulated by W98.

tential of the Ball–Berry model in improving the spatial dis-
tribution of mean vd. The different responses to substituting
native gs with that from the Ball–Berry model highlight the
significant differences in parameterizing non-stomatal up-
take between W98 and Z03, which further suggests that the
uncertainty in non-stomatal deposition should not be over-
looked.

The minimal impact that results from using LAI that
matches the time of observation is not unexpected, since the
meteorological and land cover information from a 2◦× 2.5◦

grid cell may not be representative of the typical footprint
of a site measurement (on the order of 10−3 to 101 km2,
e.g. Chen et al., 2009, 2012). The mismatch between model
resolution and the footprint of site-level measurements has
also been highlighted in previous evaluation efforts in global-
scale CTMs (Hardacre et al., 2015; Silva and Heald, 2018).
Furthermore, the sample sizes for all land types are small
(N ≤ 16) and the evaluation may be further compromised by
inherent sampling biases.

In addition to the evaluation against field observation, we
find good correlation (R2

= 0.94) between the annual mean
vd from GEOS-Chem at 2013 and the 30-year mean vd of
W98 run with static LAI, providing further evidence that our
implementation of W98 is reliable. Overall, our evaluation
shows that the quality of our offline simulation of dry depo-
sition across the four parameterizations in this work is largely
consistent with previous global modelling evaluation efforts.

4 Impact of dry deposition parameterization choice on
long-term averages

Here, we summarize the impact that the different dry deposi-
tion parameterizations may have on simulations of the spatial
distribution of vd and on the inferred surface O3 concentra-
tions. We begin by comparing the simulated long-term mean
vd across parameterizations, then use a chemical transport
model sensitivity experiment to estimate the O3 impacts.

Figure 2 shows the 30-year July daytime average vd sim-
ulated by W98 over vegetated surfaces (defined as the grid
cells with > 50 % plant cover), and Fig. 3 shows the differ-
ence between the W98 and the W98_BB, Z03, and Z03_BB
predictions, respectively. We first focus on results from July
because of the coincidence of high surface O3 level, bio-
spheric activity, and vd in the Northern Hemisphere (NH)
and will subsequently discuss the result for December, when
such a condition holds for the Southern Hemisphere (SH).
W98 simulates the highest July mean daytime vd in Ama-
zonia (1.2 to 1.4 cm s−1), followed by other major tropical
rainforests, and temperate forests in the northeastern US. July
mean daytime vd in other temperate regions in North Amer-
ica and Eurasia typically ranges from 0.5 to 0.8 cm s−1, while
in South American and the African savannah, and most parts
of China, daytime vd is around 0.4 to 0.6 cm s−1. In India,
Australia, the western US, polar tundra, and Mediterranean
region, July mean daytime vd is low (0.2–0.5 cm s−1).

The other three parameterizations (W98_BB, Z03,
Z03_BB) simulate substantially different spatial distributions
of daytime vd. In North America, we find W98_BB, Z03,
and Z03_BB produce lower vd (by −0.1 to −0.4 cm s−1)
compared to W98 in the deciduous-forest-dominated north-
eastern US and slightly higher vd in boreal-forest-dominated
regions of Canada. Z03 and Z03_BB produce noticeably
lower vd (by up to −0.2 cm s−1) in arctic tundra and
grasslands in the western US. In the southeastern US,
W98_BB and Z03_BB simulate a slightly higher vd (by up
to +0.1 cm s−1), while Z03 suggests a slightly lower vd (by
up to −0.1 cm s−1). W98_BB simulates a lower (−0.1 to
−0.4 cm s−1) vd in tropical rainforests, with larger reductions
concentrated in southern Amazonia, where July is within the
dry season, while the northern Amazonia is not (Malhi et
al., 2008). Z03 and Z03_BB simulate much smaller (−0.4
to −0.6 cm s−1) vd in all tropical rainforests.

Over the midlatitudes in Eurasia, Australia, and South
America except Amazonia, W98_BB, Z03, and Z03_BB
generally simulate a lower daytime vd by up to 0.25 cm s−1,
possibly due to the dominance of grasslands and deciduous
forests, where W98 tends to be more high biased than other
parameterizations when compared to the observations of vd.
In the southern African savannah, W98_BB and Z03_BB
suggest a much lower daytime vd (by −0.1 to −0.4 cm s−1)

because of explicit consideration of soil moisture limitation
to An and gs (demonstrated by the spatial overlap with soil
moisture stress factors shown in Fig. S2). Z03_BB simulates
a particularly high daytime vd over the high-latitude conifer-
ous forests (+0.1 to +0.3 cm s−1). W98_BB and Z03_BB
produce higher daytime vd (up to +0.15 cm s−1) in India
and south China due to temperature acclimation (Kattge and
Knorr, 2007), which allows more stomatal opening under the
high temperature that would largely shut down the stomatal
deposition in W98 and Z03, as long as the soil does not be-
come too dry to support stomatal opening. This is guaranteed
by the rainfall from summer monsoon in both regions. Low
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Figure 3. Differences of 1982–2011 July mean daytime vd (1vd) between three other parameterizations (Z03, W98_BB, and Z03_BB) and
W98 over vegetated land surface.

vd is simulated by Z03 and Z03_BB in the grasslands near the
Tibetan Plateau because the grasslands are mainly mapped to
the tundra land type, which typically has low vd as discussed
in Sect. 3.

Our results suggest that the global distribution of simu-
lated mean vd depends substantially on the choice of dry de-
position parameterization, driven primarily by the response
to hydroclimate-related parameters such as soil moisture,
VPD, and leaf wetness, in addition to land-type-specific pa-
rameters, which could impact the spatial distribution of sur-
face ozone predicted by chemical transport models. To esti-
mate the impact on surface ozone of an individual parameter-
ization “i” compared to the W98 predictions (which we use
as a baseline), we apply the following equation:

1O3,i ≈ β
1vd,i

vdW98

, (3)

where 1O3,i is the estimated impact on simulated O3 con-
centrations in a grid box,1vd,i is the difference between pa-
rameterization i and W98 simulated mean daytime vd in that
grid box, vdW98 is W98 output mean daytime vd for that grid
box, and β is the sensitivity of surface ozone to vd calculated
by the method outlined in Sect. 2.3.

Figure 4 shows the resulting estimates of 1O3 globally.
We find 1O3 is the largest in tropical rainforests for all the
parameterizations (up to 5 to 8 ppbv). Other hotspots of sub-
stantial differences are boreal coniferous forests, the eastern
US, continental Europe, Eurasian steppe, and the grassland
in southwestern China, where 1O3 is either relatively large
or the signs disagree among parameterizations. In India, In-
dochina, and south China, 1O3 is relatively small but still
reaches up to up to −2 ppbv. We find that 1O3 is not negli-
gible (1–4 ppbv) in many regions with relatively high popu-
lation density, which suggests that the choice of dry deposi-
tion parameterization can be relevant to the uncertainty in the
study of air quality and its implication on public health. We
note that we have not estimated 1O3 for some regions with
low GEOS-Chem-predicted vd (< 0.25 cm s−1, as described
in Sect. 2.3) but where the disagreement in vd between pa-
rameterizations can be large (e.g. the southern African sa-

vannah; see Fig. 3). Given this limitation, the impacts on O3
we have summarized may therefore be spatially conservative.

To explore the impact of different prediction of vd on sur-
face O3 in different seasons, we repeat the above analyses for
December. Figure 5 shows the 1982–2011 mean December
daytime vd predicted by W98, while Fig. 6 shows the dif-
ference between W98 and the Z03, W98_BB, and Z03_BB,
respectively. High latitudes in the NH are excluded due to
the small number of daytime hours. Z03 and Z03_BB sim-
ulate substantially lower in daytime vd at NH midlatitudes
because Z03 and Z03_BB allow partial snow cover but W98
and W98_BB only allow total or no snow cover. At mid-
latitudes, the snow cover is not high enough to trigger the
threshold of converting vegetated to snow-covered ground in
W98 and W98_BB, resulting in lower surface resistance, and
hence higher daytime vd compared to Z03 and Z03_BB; in
Amazonia, the hotspot of difference in daytime vd shifts from
the south to the north relative to July, which is in the dry sea-
son (Malhi et al., 2008). These results for December, together
with our findings from July, suggest that the discrepancy in
simulated daytime vd between W98 and other parameteriza-
tions is due to the explicit response to hydroclimate in the
former compared to the latter. Given that field observations
indicate a large reduction of vd in dry season in Amazonia
(Rummel et al., 2007), the lack of dependence of hydrocli-
mate can be a drawback of W98 in simulating vd in Amazo-
nia.

Figure 7 shows the resulting estimates of 1O3 globally
for December using Eq. (3). In all major rainforests, 1O3 is
smaller in December due to generally lower sensitivity com-
pared to July. A surprising hotspot of both daytime 1vd and
1O3 is the rainforest/tropical deciduous forest in Myanmar
and its eastern bordering region, which also has distinct wet
and dry seasons. The proximity of December to the dry sea-
son, which starts in January (e.g. Matsuda et al., 2005), in-
dicates that the consistent 1vd between W98 and other pa-
rameterizations is driven by hydroclimate as in Amazonia.
Comparison with field measurements (Matsuda et al., 2005)
suggests that the W98_BB and Z03_BB capture daytime vd
better than W98, while Z03 may overemphasize the effect
of such dryness. The above reasoning also explains some of
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Figure 4. Estimated difference in July mean surface ozone (1O3) due to the discrepancy of simulated July mean daytime vd among the
parameterizations.

Figure 5. The 1982–2011 December mean daytime vd (solar ele-
vation angle > 20◦) over vegetated land surface simulated by W98.
The data over high latitudes over Northern Hemisphere are invalid
due to insufficient daytime hours over the month (< 100 h month−1).

the 1vd in India and south China across the three param-
eterizations. These findings identify hydroclimate as a key
driver of process uncertainty of vd over tropics and subtrop-
ics, and therefore its impact on the spatial distribution of sur-
face ozone concentrations, independent of land-type-based
biases, in these regions.

Overall, these results demonstrate that the discrepancy in
the spatial distribution of simulated mean daytime vd result-
ing from choice of dry deposition parameterization can have
an important impact on the global distribution of surface O3
predicted by chemical transport models. We find that the re-
sponse to hydroclimate by individual parameterization not
only affects the mean of predicted surface ozone but also has
different impacts in different seasons, which is complemen-
tary to the findings of Kavassalis and Murphy (2017) that
mainly focus on how shorter-term hydrometeorological vari-
ability may modulate surface O3 through dry deposition.

5 Impact of dry deposition parameterization choice on
trends and interannual variability

Here, we explore the impact that different dry deposition pa-
rameterizations may have on predictions of IAV and trends
in vd and on the inferred surface O3 concentrations. We use
the Theil–Sen method (Sen, 1968), which is less suscepti-
ble to outliers than least-square methods, to estimate trends
in July daytime vd (and any underlying meteorological vari-
ables) and use p value < 0.05 to estimate significance.

Figure 8 shows the trend in July mean daytime vd from
1982 to 2011 predicted by each of the parameterizations and
scenarios ([Clim], [Clim+LAI], and [Clim+LAI+CO2]).
Figure 9 shows the potential impact of these trends in vd on
July daytime surface ozone, which we estimate to a first order
using the following equation:

1O330y,i ≈ β ×mvd,i × 30, (4)

where 1O330y,i and mvd,i are the absolute change in ozone
inferred to a first order as a result of the trend of vd and the
normalized Theil–Sen slope (% yr−1) of vd for parameteriza-
tion i over the 30 years (1982–2011).

In [Clim] simulations (where LAI is held constant), signif-
icant decreasing trends in July daytime vd are simulated by
the Z03, W98_BB, and Z03_BB in Mongolia, where signif-
icant increasing trend in T (warming) and decreasing trend
in RH (drying) detected in the MERRA-2 surface meteoro-
logical field in July daytime. This trend is not present in the
W98 parameterization as this formulation does not respond
to the long-term drying. We find some decreasing trends in
vd across parts of central Europe and the Mediterranean to
varying degrees across the parameterizations. In the SH, we
find consistent decreasing trends across all four parameteri-
zations in southern Amazonia and southern African savannah
due to warming and drying, which we estimate could pro-
duce a concomitant increase in July mean surface ozone of
between 1 to 3 ppbv (Fig. 9).

In [Clim+LAI] scenario, all four parameterizations sim-
ulate a significant increasing trend of vd over high latitudes,
which is consistent with the observed greening trend over
the region (Zhu et al., 2016). We estimate this could pro-
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Figure 6. Differences of 1982–2011 December mean daytime vd (1vd) between three other parameterizations (Z03, W98_BB, and Z03_BB)
and W98 over vegetated land surface.

Figure 7. Estimated difference in December mean surface ozone (1O3) due to the discrepancy of simulated December mean daytime vd
among the parameterizations.

duce a concomitant decrease in July mean surface ozone
of between 1 and 3 ppbv. The parameterizations generally
agree in terms of the spatial distribution of these trends in
O3. Exceptions include a steeper decreasing trend in most of
Siberia predicted by W98, while the trend is more confined in
eastern and western Siberia in the other three parameteriza-
tions. Including the effect of CO2-induced stomatal closure
([Clim+LAI+CO2] runs) partially offsets the increase of
vd in high latitudes but does not lead to large changes in both
the magnitudes and spatial patterns of vd trend. We find neg-
ligible trends in daytime vd for December in all cases. These
results show that across all dry deposition model parameteri-
zations, LAI and climate, more than increasing CO2, can po-
tentially drive significant long-term changes in vd and should
not be neglected when analysing the long-term change in air
quality over 1982–2011. We note that the importance of the
CO2 effect could grow as the period of study extends to allow
a larger range of atmospheric CO2 concentrations (Hollaway
et al., 2017; Sanderson et al., 2007).

We go on to explore the impact of parameterization choice
in calculations of IAV in vd. Figure 10 shows the coefficient
of variation of linearly detrended July daytime vd (CVvd ).
Figure 11 shows the potential impact this has on IAV in sur-
face ozone, which we estimate to a first order by the follow-
ing equation:

σO3,i ≈ β ×CVvd,i , (5)

where σO3,i is the estimated interannual standard deviation
in surface ozone resulting from IAV in vd given predicted
by dry deposition parameterization i. In both cases, we show
only the [Clim] and [Clim+LAI] runs, since IAV in CO2 has
negligible impact on interannual variability in vd.

Using the W98 parameterization, IAV in predicted vd and
O3 is considerably smaller in the [Clim] run than that for the
[Clim+LAI] run, since both the stomatal and non-stomatal
conductance in W98 are assumed to be strong functions of
LAI rather than meteorological conditions. This implies that
long-term simulations with W98 and constant LAI can po-
tentially underestimate the IAV of vd and surface ozone. In
contrast, IAV in vd calculated by the Z03 parameterization
is nearly the same for the [Clim] and [Clim+LAI] runs. In
Z03, gs is also directly influenced by VPD in addition to tem-
perature and radiation, and non-stomatal conductance in Z03
is much more dependent on meteorology than W98, leading
to high sensitivity to climate. Though the Ball–Berry model
also responds to meteorological conditions, it considers rel-
atively complex An–gs regulation and includes temperature
acclimation, which could dampen its sensitivity to meteoro-
logical variability compared to the direct functional depen-
dence on meteorology in the Z03 multiplicative algorithm.
Thus, the climate sensitivity of W98_BB and Z03_BB is in
between Z03 and W98, as is indicated by a more moderate
difference between σO3,i from [Clim] and [Clim+LAI] runs
in Fig. 11.
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Figure 8. Trends of July mean daytime vd during 1982–2011 over vegetated land surface. Black dots indicate statistically significant trends
(p < 0.05).

Figure 9. Estimated impact of trends of July mean daytime vd on July mean surface ozone (1O330y ) during 1982–2011 over vegetated land
surface. Only grid points with statistically significant trends (p < 0.05) in July mean daytime vd are considered.

For regional patterns of CVvd and σO3 , we focus on the
[Clim+LAI] runs (Figs. 10e to h and 11e to h) as they allow
for a comparison of all four parameterizations and contain
all the important factors of controlling vd. In North America,
we estimate modest IAV in vd across all four parameteriza-
tions (CVvd < 15 %) in most places. We find this results in
relatively low σO3 in the northeastern US and larger σO3 in
the central and southeast US (in the range of 0.3 to 2 ppbv).
These results are of a similar magnitude to the standard devi-
ation of summer mean background ozone suggested by Fiore
et al. (2014) over similar time period, suggesting that IAV of
dry deposition can be a potentially important component of
the IAV of surface ozone in summer over North America.

All parameterizations produce larger CVvd (and there-
fore larger σO3) in southern Amazonia compared to northern

and central Amazonia, but we find substantial discrepancies
across parameterizations. The estimated impact on IAV in
O3 in southern Amazonia ranges from less than 1 ppbv, pre-
dicted by the W98 and W98_BB parameterizations, to ex-
ceeding 1.5–2.5 ppbv predicted by the Z03 parameterization.
IAV is also relatively large in central Africa. We find that
the parameterizations which include a Ball–Berry formula-
tion (W98_BB and Z03_BB) estimate higher IAV in this re-
gion (with σO3 varying between 1 and 4 ppbv), compared to
the W98 and Z03 parameterizations (σO3 up to 2 ppbv). We
also note that the Ball–Berry formulations show more spa-
tial heterogeneity compared to W98 and Z03. In our imple-
mentation of the Ball–Berry model, impact of soil moisture
on gs is parameterized as a function of root-zone soil matric
potential, which makes gs very sensitive to variation in soil
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Figure 10. Interannual coefficient of variation of linearly detrended July mean daytime vd (CVvd ) during 1982–2011 over vegetated land
surface.

Figure 11. Estimated contribution of IAV in July mean daytime vd to IAV of July mean surface ozone (σO3 ) during 1982–2011 over vegetated
land surface.

wetness when its climatology is near the point that triggers
limitation onAn and gs. Given the large uncertainty in global
soil property map (Dai et al., 2019), such sensitivity could
be potentially artificial, which should be taken into consid-
eration when implementing Ball–Berry parameterizations in
large-scale models despite their relatively good performance
in site-level evaluation (Wu et al., 2011).

Across Europe, the magnitudes of IAV predicted by all
four parameterizations show relatively good spatial consis-
tency. Simulated CVvd is relatively low in western and north-
ern Europe (< 10 %), which we estimate translates to less
than 1 ppbv of σO3 . We find larger CVvd (and therefore large
σO3) over parts of southern Russia and Siberia (σO3 up to
2.5 ppbv) from all parameterizations except W98. The local
geographic distribution of CVvd and σO3 also significantly
differs among the parameterizations there. Z03 and Z03_BB
simulate larger CVvd in eastern Siberia than W98_BB, while
W98 BB and Z03_BB predict larger CVvd over the southern
Russian steppe then Z03. Finally, all four parameterizations
estimate relatively low CVvd and σO3 in India, China, and
southeast Asia.

We compare the simulated IAV July CVvd from all four
deposition parameterizations with those recorded by publicly
available long-term observations. Hourly vd is calculated us-
ing Eq. (1) from raw data. We filter out the data points with
extreme (> 2 cm s−1) or negative vd, and without enough tur-
bulence (u∗ < 0.25 m s−1). As vd values in each daytime hour
are not uniformly sampled in the observational datasets, we
calculate the mean diurnal cycle and then calculate the day-
time average July vd for each year from the mean diurnal
cycle, from which CVvd can be calculated.

The IAV predicted by all four parameterizations at Har-
vard Forest is between 3 % and 7.9 %, which is 2 to 6 times
lower than that presented in the observations (18 %). We find
similar underestimations by all four parameterizations com-
pared to the long-term observation from Hyytiälä (Junninen
et al., 2009; Keronen et al., 2003; https://avaa.tdata.fi/web/
smart/smear/download, last access: 25 July 2019), where ob-
served CVvd (16 %) is significantly higher than that predicted
by the deposition parameterizations (3.5 %–7.1 %). In Blod-
gett Forest, we find that the models underestimate the ob-
served annual CVvd more seriously (∼ 1 %–3 % compared to
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18 % in the observations). This suggests that the IAV of vd
may be underestimated across all deposition parameteriza-
tions we investigated (and routinely used in simulations of
chemical transport). Clifton et al. (2019) attribute this to the
IAV in deposition to wet soil and dew-wet leaves, and in-
canopy chemistry under stressed conditions for forests over
the northeastern US. Some of these processes (e.g. in-canopy
chemistry, wetness slowing soil ozone uptake) are not rep-
resented by existing parameterizations, contributing to their
difficulty in reproducing the observed IAV. The scarcity of
long-term ozone flux measurements (Fares et al., 2010, 2017;
Munger et al., 1996; Rannik et al., 2012) limits our ability to
benchmark the IAV in our model simulations with observa-
tional datasets.

In summary, when both the variability in LAI and climate
are considered, the IAV in simulated vd translates to IAV in
surface O3 of 0.5–2 ppbv in July for most regions. Such vari-
ability is predicted to be particularly strong in southern Ama-
zonian and central African rainforest, where the predicted
IAV in July surface O3 due to dry deposition can be as high
as 4 ppbv. This suggests that IAV of vd can be an important
part of the natural variability of surface O3. The estimated
magnitude of IAV is also dependent of the choice of vd pa-
rameterization, which highlights the importance of vd param-
eterization choice on modelling IAV of surface O3.

6 Discussion and conclusion

We present the results of multidecadal global modelling of
ozone dry deposition using four different ozone deposition
parameterizations that are representative of the major types
of approaches of gaseous dry deposition modelling used in
global chemical transport models. The parameterizations are
driven by the same assimilated meteorology and satellite-
derived LAI, which minimizes the uncertainty of model input
across parameterization and simplifies interpretation of inter-
model differences. The output is evaluated against field ob-
servations and shows satisfactory performance. One of our
main goals was to investigate the impact of dry deposition
parameterization choice on long-term averages, trends, and
IAV in vd over a multidecadal timescale and estimate the po-
tential concomitant impact on surface ozone concentrations
to a first order using a sensitivity simulation approach driven
by the GEOS-Chem chemical transport model.

We find that the performance of the four dry deposition
parameterizations against field observations varies consider-
ably over land types, and these results are consistent with
other evaluations, reflecting the potential issue that dry de-
position parameterizations can often be overfit to a partic-
ular set of available observations, requiring caution in their
application at global scales. We also find that using more
ecophysiologically realistic output gs predicted by the Ball–
Berry model can generally improve model performance but
at the cost of high sensitivity to relatively unreliable soil data.

However, the number of available datasets of ozone dry de-
position observation is still small and concentrated in North
America and Europe. We know of only one multi-season di-
rect observational record in Asia (Matsuda et al., 2005) and
none in Africa, where air quality can be an important issue.
To better constrain regional O3 dry deposition, effort must be
made in making new observations of gaseous dry deposition
(Fares et al., 2017) especially in the undersampled regions.
Evaluation and development of ozone dry deposition param-
eterizations will continue to benefit from publicly available
ozone flux measurements and related micrometeorological
variables that allow for partitioning measured flux into in-
dividual deposition pathways (e.g. Clifton et al., 2017, 2019;
Fares et al., 2010; Wu et al., 2011, 2018).

We find substantial disagreement in the spatial distribution
between the mean daytime vd predicted by the different pa-
rameterizations we tested. We find that these discrepancies
are in general a function of both location and season. In NH
summer, vd values simulated by the four parameterizations
are considerably different in many regions over the world.
We estimate that this could lead to around 2 to 5 ppbv in un-
certainty of surface ozone concentration simulations over a
vast majority of land in the NH. In tropical rainforests, where
leaf wetness is prevalent and the dry–wet season dynamics
can have a large impact on vd (Rummel et al., 2007), we es-
timate the uncertainty due to dry deposition model choice
could even lead to an uncertainty in surface ozone of up to
8 ppbv. We also find noticeable impacts in parameterization
choice during SH summer, but we note that due to the unre-
liability of β at low vd, we have not assessed its impact on
surface ozone in many high-latitude regions of the NH. In
general, we find hydroclimate to be an important driver of
the uncertainty. This demonstrates that the potential impact
of parameterization choice (or process uncertainty) of vd is
neither spatiotemporally uniform nor negligible in many re-
gions over the world. More multi-seasonal observations are
especially needed over seasonally dry ecosystems where the
role of hydroclimate in deposition parameterizations needs to
be evaluated. Recently, standard micrometeorological mea-
surements have been used to derive gs and stomatal deposi-
tion of O3 over North America and Europe (Ducker et al.,
2018), highlighting the potential of using global networks of
micrometeorological observation (e.g. FLUXNET; Baldoc-
chi et al., 2001) to benchmark and calibrate gs of dry deposi-
tion parameterizations, which could at least increase the spa-
tiotemporal representativeness, if not the absolute accuracy,
of dry deposition parameterizations, since it would be diffi-
cult to constrain non-stomatal sinks with this method. Further
research is required to more directly verify whether better-
constrained gs leads to improved vd simulation.

Over the majority of vegetated regions in the NH, we esti-
mate the IAV of mean daytime vd is generally on the order of
5 % to 15 % and may contribute between 0.5 and 2 ppbv of
IAV in July surface O3 over the 30-year period considered
here, with each parameterization simulating different geo-
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graphic distribution of where IAV is highest. The predicted
IAV from all four models is smaller than what long-term ob-
servations suggest, but its potential contribution to IAV in O3
is still comparable to the long-term variability of background
ozone over similar timescales in US summer (Brown-Steiner
et al., 2018; Fiore et al., 2014). This would seem to confirm
that vd may be a substantial contributor to natural IAV of O3
in summer, at least in the US. In the Southern Hemisphere,
the IAV mainly concentrates in the drier part of tropical rain-
forests. The Ball–Berry parameterizations simulate large and
spatially discontinuous CVvd and σO3 due to their sensitivity
to soil wetness. Globally, we find that IAV of vd in W98 is
mostly driven by LAI, while in other parameterizations cli-
mate generally plays a more important role. We therefore em-
phasize that temporal matching of LAI is important for con-
sistency when W98 is used in long-term simulations. While
our results show notable impacts across the globe, in many
regions there are no available long-term observations to eval-
uate the model predictions over interannual timescales. This
information is helpful in designing and identifying sources
of error in model experiments that involve variability of vd.

We are also able to detect statistically significant trends
in July daytime vd over several regions. The magnitudes of
trends are up to 1 % per year and both climate and LAI con-
tribute to the trend. All four deposition parameterizations
identify three main hotspots of decreasing July daytime vd
(southern Amazonia, southern African savannah, Mongolia),
which we link mainly to increasing surface air temperature
and decreasing relative humidity. Meanwhile, extensive ar-
eas at high latitudes experience LAI-driven increasing July
daytime vd, consistent with the greening trend in the region
(Zhu et al., 2016). We do not find a strong influence of CO2-
induced stomatal closure in the trend over this time period.
Over the 30 years, we estimate the trend in July daytime
vd could translate approximately to 1 to 3 ppbv of ozone
changes in the areas of impact, indicating the potential effect
of long-term changes in vd on surface ozone. This estimate
should be considered conservative, since we are unable to re-
liably test the sensitivity of ozone to regions with low vd with
our approach.

While the approach we have presented here allows us to
explore the role of dry deposition parameterization choice on
simulations of long-term means, trends, and IAV in ozone
dry deposition velocity, there remain some limitations and
opportunities for development. First, we only used one LAI
and assimilated meteorological product. The geographic dis-
tribution of trend and IAV of vd may vary considerably as
the LAI and meteorological products used due to their in-
herent uncertainty (e.g. Jiang et al., 2017). While we expect
the qualitative conclusions about how LAI and climate con-
trols the modelled trend and IAV of vd to be robust to the
choice of dataset, the magnitude and spatial variability could
be affected. Second, the estimated effects on surface O3 are
a first-order inference based on a linear approximation of the
impact that vd has directly on O3. We have not applied our

analysis to regions with low GEOS-Chem vd, where other
components of parameterization (e.g. definition and treat-
ment of snow cover, difference in ground resistance) may
have major impact on vd prediction (Silva and Heald, 2018),
nor accounted for the role that vd variability can have on
other chemical species which would have feedbacks on O3.
Moreover, the sensitivity of surface ozone to vd may be de-
pendent on the choice of chemical transport model (here, the
GEOS-Chem model has been used) and possibly the choice
of simulation year for the sensitivity simulation. Finally, we
have neglected the effect of land use and land cover change
on global PFT composition at this stage, which can be an-
other source of variability for vd and even long-term LAI re-
trieval (Fang et al., 2013). Nevertheless, the relatively high
NMAEF of simulated vd and the inherent uncertainty in in-
put data (land cover, soil property, assimilated meteorology,
and LAI) are considered as the major sources of uncertainty
in our predictions of vd.

The impact of dry deposition parameterization choice may
also have impacts which we have not explored in this study
on other trace gases with deposition velocity controlled by
surface resistance, and for which stomatal resistance is an
important control of surface resistance (e.g. NO2). As vd has
already been recognized as a major source of uncertainty in
deriving global dry deposition flux of NO2 and SO2 (Nowlan
et al., 2014), systematic investigation on the variability and
uncertainty of vd for other relevant chemical species does not
only contribute to understanding the role of gaseous dry de-
position on air quality but also to biogeochemical cycling.
Particularly, gaseous dry deposition has been shown to be a
major component in nitrogen deposition (Geddes and Mar-
tin, 2017; Zhang et al., 2012), highlighting the potential im-
portance of understanding the role of vd parameterization in
modelling regional and global nitrogen cycles.

Here, we have built on the recent investigations of mod-
elled global mean (Hardacre et al., 2015; Silva and Heald,
2018) and observed long-term variability (Clifton et al.,
2017) of O3vd. We are able to demonstrate the substantial
impact of vd parameterization on modelling the global mean
and IAV of vd, and their non-trivial potential impact on sim-
ulated seasonal mean and IAV of surface ozone. We demon-
strate that the parameterizations with explicit dependence
on hydroclimatic variables have higher sensitivity to climate
variability than those without. Lin et al. (2019) likewise re-
cently demonstrated the importance of accounting for water
availability in O3 dry deposition modelling. Difficulties in
evaluating predictions of vd for many regions of the world
(e.g. most of Asia and Africa) persist due to the scarcity of
measurements. This makes a strong case for additional mea-
surement and model studies of ozone dry deposition across
different timescales, which would be greatly facilitated by an
open data-sharing infrastructure (e.g. Baldocchi et al., 2001;
Junninen et al., 2009).
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