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Abstract. Semantic oppositeness is the natural counterpart of the much
popular natural language processing concept, semantic similarity. Much
like how semantic similarity is a measure of the degree to which two
concepts are similar, semantic oppositeness yields the degree to which
two concepts would oppose each other. This complementary nature has
resulted in most applications and studies incorrectly assuming semantic
oppositeness to be the inverse of semantic similarity. In other trivializa-
tions, “semantic oppositeness” is used interchangeably with “antonymy”,
which is as inaccurate as replacing semantic similarity with simple syn-
onymy. These erroneous assumptions and over-simplifications exist due,
mainly, to either lack of information, or the computational complexity
of calculation of semantic oppositeness. The objective of this research
is to prove that it is possible to extend the idea of word vector embed-
ding to incorporate semantic oppositeness, so that an effective mapping
of semantic oppositeness can be obtained in a given vector space. In the
experiments we present in this paper, we show that our proposed method
achieves a training accuracy of 97.91% and a test accuracy of 97.82%,
proving the applicability of this method even in potentially highly sensi-
tive applications and dispelling doubts of over-fitting. Further, this work
also introduces a novel, unanchored vector embedding method and a
novel, inductive transfer learning process.

Keywords: Semantic oppositeness · Autoencoder · Transfer learning ·
Unanchored Learning

1 Introduction

Semantic similarity measures are widely used in Natural Language Processing
(NLP) applications [1–3]. The reason for this popularity is that NLP methods
built around the simple exact matching approach would yield results with a
weaker recall, in comparison with the gold standard. Free text has a tendency
to use synonyms and similar text in substitution, which may go unnoticed if
an exact match method is used in NLP. Semantic oppositeness is the natural
counterpart of the semantic similarity function [4]. While semantic similarity
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yields the degree to which two concepts are similar in a given domain, to be used
in the purpose of confidence calculation in applications, semantic oppositeness
yields the degree to which two concepts oppose each other in a given domain for
the same purpose.

The use of an oppositeness measure in NLP is relevant in the case of con-
tradiction finding, or in the case of extracting negative (negation) rules from
a corpus. This, in turn, helps in building reasoning chains and other utilities
for various front-end applications, such as question-answering systems and chat
bots. It can also be used in the NLP applications which concern fake news or
propaganda, given that the candidate text that is being analyzed would contain
concepts opposing the generally accepted corpus of knowledge. In fact, one previ-
ous work on this domain [4] was an implementation of an oppositeness measure
to discover contradictions from medical abstracts in the PubMed archive [5].
Some later considerations of this algorithm were in the legal domain [6] and in
text classification [7].

Despite being both innovative and useful, the oppositeness calculation algo-
rithm of the PubMed Study [4] is very computationally intensive. Therefore, in
large tasks it would significantly slow down the process. It is in an attempt to
avoid such computational complexity that most Natural Language Processing
(NLP) tasks involve the incorrect generalization of reducing semantic opposite-
ness to antonymy [8] or inverse of semantic similarity. In the case of semantic
similarity, this problem was overcome with the rise of the word embedding sys-
tems. Tasks which used to be a complex set of word similarity calculations [9,10]
were reduced to simple K-NN look-ups in vector spaces [11,12]. The objective
of this paper is to obtain such an embedding for semantic oppositeness, so that
NLP applications that involve semantic oppositeness can become more efficient
and cost effective. The proposed method first autoencodes word vectors, then
it transfer learns the decode half of the deep neural network by using values
obtained by the previous oppositeness algorithm [4] as the target.

In addition to the main research contribution of introducing an embedding for
the semantic oppositeness function, in this paper we also introduce a novel, unan-
chored vector embedding approach and a novel, inductive transfer learning [13]
process based on autoencoders [14], which utilizes both the learnt embeddings
and the learnt latent representation.

2 Related Work

Even though not as extensively as its counterpart, semantic similarity [9,10],
there have been a few studies on the derivation and uses of semantic opposite-
ness [4,8,15–17]. However, almost all of these studies reduce oppositeness from
a scale to bipolar scales [16] or anonymity [8]. The study by [4] proves that the
reduction of oppositeness to a binary function or defining it as the inverse of
semantic similarity function is incorrect. The oppositeness function that we use
in this study is heavily influenced by the alternative oppositeness function that
is proposed in their study. The said study is an NLP application of the PubMed
archive to find contradictions in medical research paper abstracts.
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Word embedding has recently risen as an emerging field in the domain of
NLP. The leading algorithms for this task are: Word2vec [11,18], GloVe [12],
and Latent Dirichlet Allocation (LDA) [19]. In considering the flexibility, ease
of customization, and wide usage, in this study we use word2vec as the starting
point for our embedding system. Even though this study is focused on embedding
oppositeness rather than embedding words, given that oppositeness is an emer-
gent property between pairs of words, the points of embedding, in this study,
remain as words. This is the reason it is possible to use word2vec as a reasonable
starting point.

Autoencoders are one of the simplest forms of the representation learning
algorithms. They consist of two components, an encoder and a decoder. While
autoencoders are trained to preserve as much information as possible, special
steps are taken to prevent them from learning the identity function [14]. Autoen-
coders are fairly common in contemporary research [20–22]. A study by [20]
proved that stacked autoencoders can out-perform older models.

The proposed unanchored approach to word vector embedding, while being
a novel idea introduced in this paper, has some similarity to studies by [23–25].
Transfer learning is a machine learning technique mainly employed when there
is a task in a domain of interest with a scarcity of data, while another related
domain exists with sufficient training data [13]. Given that the task employed in
this work uses transfer learning in such a way that source and target domains
are the same, while the source and target tasks are different but related, by the
definition given by [13] it is possible to declare that this methodology is based
on the principals of inductive transfer learning. In the NLP domain, transfer
learning is commonly used for the task of document classification [26–28] and
sentiment analysis [29]. The novelty in this paper pertaining to transfer learning
on autoencoders is how the system is first trained as an autoencoder, and then
how the transfer learning transforms it into a neural model, where the encoder
toward latent space is kept intact, while the decoder is retrained into a mapper
to a different vector space.

3 Methodology

The methodology of this work consists of two components. The first component
is calculating the oppositeness value from the algorithm adapted from the work
of [4]. For ease of reading, this method shall be referred to as the original oppo-
siteness measure (OOM) in the remainder of this paper. The second component
is embedding the oppositeness values obtained from the above step.

3.1 Linguistic Measures

The first component, which is needed to calculate the oppositeness between two
given words, w1 and w2, in the algorithm proposed by the OOM, is the weighted
semantic similarity. Among the various semantic similarity measures available
as the sim function, the OOM picks the method proposed by [10] which gives
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the similarity between two words in the 0 to 1 range. For their reasoning of
selecting of this method for semantic similarity over the other methods, they
refer to their earlier work [30] in which they comprehensively compared various
semantic similarity measures. We, in this paper, decided to follow the same pro-
gression and use the Wu and Palmer method as the semantic similarity measure
for this work. However, it should be noted here that the OOM was intended
for finding oppositeness between relationships in triples, whereas the work dis-
cussed in this paper is interested in embedding oppositeness between individual
words. Thus the length constant values in equation for similw1,w2 and all subse-
quent equations would be trivially collapsed to carry the value 1. Therefore, in
this study, similw1,w2 simplifies to [10]’s sim(w1, w2). However, we discuss the
possibility of extending this algorithm to incorporate embedding oppositeness
between phrases in Sect. 5 by reintegrating the above constants.

For the difference component of the oppositeness calculation, it is needed
to calculate the lemma of the given words and then obtain the antonym set of
all the possible senses of the given word. The OOM does not provide a formal
mathematical expression on this step; but we define Lw as lemma(w) and Aw as
antonyms(w). The final relative difference equation we use is almost identical
to the equation proposed by the OOM. However, a few alterations are made
to accommodate the cumulative changes we have performed above. The final
relative difference equation is shown in Eq. 1 where P = {(w1, w2), (w2, w1)}.

reldifw1,w2
= avg

(i,j)∈P

[
arg max
ak∈Ai

(
sim(Lj , ak)

)]
(1)

Original Oppositeness Model. The OOM is built on the principle that the
oppositeness value of two words that are highly similar should be more corre-
lated with their difference value than oppositeness value of two words that are
less similar. This property is obtained by the Eq. 2. To explain this property,
they use an example where they calculate the oppositeness values of expand,
decrease, change, and cat against the word increase. The expectation is that
the high difference values of the words change and cat would be augmented by
the similarity value in such a way that the relevant word change would be put
in the correct place on the oppositeness scale (between expand and decrease),
while the irrelevant word cat would be easily distinguishable for removal. We
continue to use this same example set of words (or extensions thereof) in our
subsequent comparisons, for ease of comparison and preservation of flow. The
calculated values for similarity, difference, and finally the oppositeness by Eq. 2
are shown in Table 1. The power scaling constant K is determined by the instruc-
tions from OOM. Further, we use the same visualization structure as used by
the OOM in Fig. 1(a). However, we add an overlay of the placement of the four
example words (expand, decrease, change, and cat) in relation to the word
increase, for the ease of explanation of the subsequent alterations and additions
we perform upon the basic algorithm.

oppo oriw1,w2
= reldif

(
K∗similw1,w2+1

)
w1,w2 (2)
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Table 1. Oppositness with w1 = increase

expand decrease change cat

similw1,w2 0.80 0.75 0.46 0.25

reldifw1,w2
0.63 1.00 0.72 0.25

oppo oriw1,w2
0.25 1.00 0.49 0.11

The main weakness of this original model is the heavy dependence on the
antonym property of the candidate words to calculate the difference. This weak-
ness did not affect the performance of the application discussed by the OOM,
because they were comparing the oppositeness between the relationship com-
ponent extracted from triples from medical abstracts. In that application, the
relationship component always returns one or more action verbs. Coupled with
the fact that they are comparing relationship strings which contain more than
one word, most of the instances translate to a high probability of encountering
words with antonyms. But in the application of this study, not only should the
algorithm handle single word instances, it also has to handle the possibility of
that word not having an antonym. In such cases where one or both considered
words do not have antonyms, the difference value calculated by Eq. 1 collapses
to zero. This in turn further collapses the final oppositeness value calculated by
Eq. 2 to zero; thus effectively rendering the particular data point obtained by
the word pair in question, unusable.

Proposed Balancing Model Derived from the Näıve Oppositeness
Measure. In the attempt to solve the problem of incalculable difference values,
we turn to the näıve oppositeness measure that was replaced by the oppositeness
measure proposed by the OOM. This näıve oppositeness measure is the simple
operation of declaring the complement of similarity as oppositeness. The Eq. 3
shows the definition of this measure. The Table 2 contains a comparative anal-
ysis of the above mentioned oppositeness measure and the näıve method. It is
obvious from this data that the näıve method on its own does not achieve the
desired properties of an oppositeness scale as stipulated in the OOM. While it
is obvious that the näıve oppositeness measure is independent of the difference
measure, we plot it on the same axis as the above oppositeness measure for the
sake of comparison in Fig. 1(b). However, at this point it should be noted that
this model does not suffer from the weakness to words without antonyms that
impacts the improved model proposed by the OOM.

oppo naiw1,w2
= (1 − similw1,w2) (3)

Combined Oppositeness Model. We have proposed that the solution to
the weakness of the OOM is to augment it with the näıve model discussed in
Sect. 3.1. However, given that the original oppositeness model is far superior to
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Table 2. Oppositness with w1 = increase

expand decrease change cat

oppo oriw1,w2
0.25 1.00 0.49 0.11

oppo naiw1,w2
0.20 0.25 0.54 0.75
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Fig. 1. Contour plots

the näıve model, and that the original model is weak only at the specific instance
where the difference measure is valued zero, it is vital that the two models are
combined in a way that the näıve model would only take over at points where
the original oppositeness model is weak. We achieved this by multiplying the
naive oppositeness function with the term (1 − reldif). Note here that there is
no need to further multiply OOM with reldif , given that it is already positively
correlated with reldif . To further fine tune the balance between the OOM and
the näıve oppositeness measure, we introduced a hyper parameter α. The final
combined oppositeness measure is shown in Eq. 4. Finally, we show the subtle
alteration brought about by this improvement in the familiar visualization in
Fig. 2. In the example visualization, we have set α to 0.9. While it was needed to
set α to this value for the purpose of showing a difference in the graphs discernible
to the human eye, in practice, it was observed that α value should be kept at 0.99
or higher, to prevent the näıve oppositeness measure from negatively affecting
the overall calculation at points where the difference value is greater than zero.
At this point it should be noted that the reason for employing this continuous
method to aggregate the two methods, rather than using a case-based approach,
where the näıve oppositeness measure is only used at points where the difference
measure is zero, is to make-sure that the active surface of the oppositeness curve
would be continuous and smooth at all points. Further, note the slight curvature
present in Fig. 2(b) in comparison with Fig. 1(a), due to this addition.

oppo
(
w1, w2

)
= α ∗ oppo ori + (1 − α)(1 − reldif) ∗ oppo nai (4)
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Fig. 2. Oppositeness function with α = 0.9

3.2 Embedding Semantic Oppositeness

Once the algorithm described in Sect. 3.1 is used to calculate the oppositeness
measures for word pairs, the next step of the process is to embed them in a vector
space. Embedding the oppositeness gives applications the ability to do simple
K-NN queries on the vector space, instead of running the costly algorithm OOM
each time. This section discusses the process of embedding the said oppositeness
values in a vector space.

Minimization Constraint. In an embedding process it is important to first
define what the minimization constraint is. In almost all cases it is defined as
a function to calculate the distance between the vector currently obtained by
the embedded object and the vector expected to be obtained by the embedded
object. However, in this study our objective is novel in the sense that for this
algorithm, it does not matter where the individual word vectors map to. All that
matters is the difference between given two embedded word vectors approach-
ing the oppositeness value calculated above. Therefore, in the learning process,
instead of anchoring a vector (or a context) and trying to move the target vector
close to it, we can employ an algorithm to push both vectors together with no
contextual attachments. Thus the minimization constraint becomes a matching
of two distance scalars, rather than minimizing the distance between two vectors.
The proposed minimization constraint is given in Eq. 5, where ||a − b|| denotes
the Euclidean distance between vectors a and b. Note that we need to preserve
the sign of the difference to use the unanchored training. Thus, the absolute
value function (abs) is deconstructed into three cases in later steps.

min
[
abs

(
oppo

(
wt, ws

) − ||yt − ys||
)]

(5)
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Expected Vector Calculation. The range of minimization constraint given
in Eq. 5 is unbound. Which means that it can arguably obtain values ranging
from −∞ to +∞. In practice, this is bounded by the upper and lower limits
of the values obtained by the embedded vectors. However, in either case, this
large range is undesirable for the embedding task. Therefore, we define f as
shown in Eq. 6 where f would be limited to a range of +1 and −1, depending on
the placement of the embedded vectors in relation to the expected value, and σ
indicates the standard Sigmoid function.

f = 2 ∗ σ
[
oppo

(
wt, ws

) − ||yt − ys||
] − 1 (6)

Target Update Rule. As mentioned in Sect. 3.2, the embedding in this study
does not confirm to the idea of anchoring one vector (or context) and pushing the
candidate to match the expected vector. Instead, both the vectors in question
are moved to make sure the oppositeness is defined by the distance between the
said vectors are embedded. It should be noted that to the best of our knowledge,
this study is the first to utilize such an unanchored approach to word vector
embedding. In this section we derive the update rule for each of the two vectors.
For the simplicity of subsequent calculations, we define ΔY as yt − ys, while the
expected shifts are yt′ − yt and ys′ − ys. There are three possible cases of vector
placement, as shown by Fig. 3. Each of these cases are uniquely identifiable by
the f value calculated by Eq. 6. The Table 3 summarizes all update cases.

yt

ys

yt′

ys′

(a) Case: f < 0

yt

ys

yt′

ys′

(b) Case: f > 0

yt

ys

yt′

ys′

(c) Case: f = 0

Fig. 3. Possible cases of vector placement

Table 3. Case-based update rules

f < 0 f > 0 f = 0

yt′ − yt −η1ΔY +η2ΔY 0

ys′ − ys +η1ΔY −η2ΔY 0

Finally, it is possible to combine all the above embedding target update rules
together, based on the fact that they are uniquely mapped to the value of f , as



Semantic Oppositeness Embedding 167

shown in Eqs. 7 and 8.
yt′ = yt + fηΔY (7)

ys′ = ys − fηΔY (8)

Autoencoder-Based Learning. While the above algorithm is sound as a solu-
tion to embed words in a vector space guided by the oppositeness values, starting
with fully empty or fully randomized word vectors would be counterproductive.
In such an approach, our system will implicitly have to learn the word embed-
dings that are achieved by word embedding systems such as word2vec [11] or
GloVe [12]. Further, there is the initial hurdle of declaring the input (xs, xt) in
an unambiguous manner. The solution to both of these problems is to involve
an already trained word embedding model as the starting point. In this study
we decided to use word2vec. This solves the second problem outright. The dec-
laration of input (xs, xt) in an unambiguous manner is now a simple matter of
querying the trained Word2vec model with the expectant word string.

The second step is not so straightforward. The objective of this step is to
utilize the already existing embedding of words in word2vec to make the oppo-
siteness embedding faster. The rationale here is the fact that word2vec already
clusters words by similarity and thus following the näıve method we discussed
in above sections, it is reasonable to predict that the oppositeness embedding
would be comparatively closer to achieve when starting from a similarity embed-
ding than by a random or a zero embedding. Here, note the fact that the näıve
assumption was to assume that the similarity embedding trivially translates
to the oppositeness embedding. We do not confirm to that näıve assumption.
We only claim that the similarity embedding would be reasonably closer to the
expected oppositeness embedding rather than a zero or random starting point.
Therefore we propose the novel idea of applying transfer learning [13] on the
decoder portion of the autoencoder. The learning model proposed here is shown
in Fig. 4.

First of all, to employ the proposed model, we should obtain a mapping
from words to vectors. Among the various algorithms and models available to
map words to vectors such as Word2Vec [11] and GloVe [12], we propose to use
Word2Vec based on the wider support (especially the availability of large Google-
trained data set1). This component of the ensemble would map a given word to
a vector. Incidentally, this would become the input of our neural network.

The proposed model has two learning phases. The first phase of the pro-
posed model is called the Autoencoding Phase. In this, we keep the word2vec
model locked and the weights of the encoder and the decoder unlocked. The
formal representation of an autoencoder is given in Eq. 9 where, the section
σ1(W1xi + b1) correlates to the encode(X) function where the W1 and b1 are
weights and biases of the encode function. The σ′

1(W
′
1l) + b′

1 portion, where l
represents σ1(W1xi + b1) discussed above, correlates to the decode(l) function
where the W ′

1 and b′
1 are weights and biases of the decode function and l is a

1 https://goo.gl/yV57W3.

https://goo.gl/yV57W3
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latent representation output by the encode(X) function. The learning objective
of the autoencoder is to minimize(||X −Y ||) where X is the input vector of the
encoder and Y is the output vector of the decoder. Note here that in literature,
Y is commonly refereed as X ′ to showcase the fact that it is supposed to be a
reconstruction of the original X. However, in this study we opted to use Y for
the sake of clarity of the subsequent steps where we use transfer learning instead
of reconstruction (autoencoding).

Yi = (σ′
1(W

′
1σ1(W1Xi + b1)) + b′

1) (9)

In summary, during the Autoencoding Phase of the proposed model, the
neural network learns to reconstruct a given word vector. As mentioned above,
this is an attempt to utilize the learnt artifacts of a word embedding system,
where related words are clustered together while unrelated words are embedded
far apart.

The second phase of the proposed model is the Transfer Learning Phase.
The transfer learning proposed in this work differs from prior work in litera-
ture for three facts. Firstly, the transfer process done on the autoencoder is not
done to train yet another model, but to map the same inputs to a different
vector space. Thereby, at the end of the training process, the trained neural net-
work is not an autoencoder. However, for the sake of readability of the paper,
we would continue to refer to the two components of the neural network as
encoder and decoder. It is imperative that after the training, the output of the
decoder no longer tries to reconstruct the input to the encoder. However, given
the linguistic properties, that vector will still be reasonably close to the input
vector. The second difference is the fact that we lock the weights of the encoder
along with the word2vec model in the training process of this phase. While it is a
given property of transfer learning applications to lock a certain number of initial
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layers and train only a certain number of layers close to the output layer, usually,
that choice is open-ended and unrestricted. In this study however, we specifically
lock all the layers that were previously in the encoder and keep the layers that
were previously in the decoder unlocked. The rationale for this decision is as
follows: the autoencoder has already learnt a latent representation of the word
vectors, by using the autoencoding process, where the output is the input itself.
Therefore, we can be sure of the accuracy of the learnt latent representation. The
latent representation of a given vector need not be altered when the application
is changed. For the best of our knowledge, this study is the first to propose this
autoencoder-based inductive transfer learning [13] process to utilize both learnt
embeddings and the learnt latent representation. The third aspect that distin-
guishes this model from the traditional learning processes is the fact that this
phase uses two forward passes to calculate the error for a single back-propagation
pass. This is due to the fact that, as discussed in Sect. 3.2, the learning objective
of the neural network is to achieve the minimization proposed in Eq. 5.

4 Experiments and Results

4.1 Calculating the Oppositeness Data

For the purpose of obtaining an adequate collection of words for experimentation,
we used the list available in the Linux dictionary2. The dictionary contained
72186 total strings. However, it was observed that a certain portion of the strings
were non-words. Further, for the sake of preserving the variety of the sample set,
it was decided to replace words by their lemmas in cases where there are multiple
morphological forms. This process was achieved by passing the potential word
strings through the WordNet [31] lemmatizer. This yielded a reduced word list
of 65167.

Next the methodology discussed in Sect. 3.1 was used on the 65167 words
taken as pairs. Given that each word was considered against all other words,
this resulted in 4246737889 pairs of words. For each pair of words, the similarity,
difference, and oppositeness were calculated. A few sample lines from the increase
file are shown in Example 1.1. Note the minimal value of the similarity slot for
advents. This implies that the similarity measure could not give a similarity
value to the pair (i.e., the pair is disjoint).

Example 1.1. Sample Oppositeness Lines

in c r ea s e , adr ian : 0 . 1 25 , 0 . 1 , 0 . 0 313516
inc r ea s e , a d r i a t i c : 0 . 1 2 5 , 0 . 1 , 0 . 0 313516
inc r ea s e , advent : 0 . 1875 ,0 . 2777778 ,0 . 088623986
inc r ea s e , advents : 1 . 4E−45 ,1.4E−45 ,0.01

The above files were then processed by applying the irrelevancy threshold
proposed by OOM. Thus, for each word, all pairs with oppositeness value less
than the oppositeness value of the most similar pair were eliminated. After this
2 /usr/share/dict/words.
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reduction step, only 76084553 pairs out of the original 4246737889 were left.
This means, on average, each word contained 1168 pairs after this step, show-
ing a reduction of 98.21%. As an example, the corresponding file to the word
increase has only 1107 lines. This is a significant reduction in the case of poten-
tial computational load. Given that the file format stays the same as shown in
Example 1.1, we do not provide a separate example here.

4.2 Autoencoding on Word2Vec Data

We used a TensorFlow [32,33] based implementation of the two-layer auto-
encoder proposed by [34] for the purpose of training on the MNIST data set [35].
The input layer was altered to have the size of 300 to match the trained model of
Google’s word2vec embedding. The middle layer was of size 256, and the latent
layer was of 128. By definition, the decoder layer had mirrored counts. Follow-
ing the precedence set by [34] for this particular configuration of auto-encoder,
we found 30000 epochs to balance accuracy against the threat of over-fitting.
By employing the multiple random restart method, we obtained a trained auto-
encoder with a validation accuracy of 94.83%. This is the model that we used
for the next step of transfer learning.

4.3 Learning of Oppositeness Data

Here it was decided to use a 3 : 2 split for the training-validation set vs. test set
for the transfer learning of oppositeness data. It is reasonable to assume that the
word2vec vector and the expected oppositeness vector will be close in the vector
space. Thus, transferring the decoder weights to the system gives a more efficient
starting point, compared to initiating with zero weights or random weights.

The training-validation set was divided to 30 equal parts, and each were used
to train a clone of the implementation. Here inverse-n-fold cross-validation was
used where for each clone, a single portion of data is used as the training data,
and then the remaining n−1 portions of data are used for validation. We report
in Fig. 5 the accuracies of the separate clones resulting from the cross-validation
process. The Y axis (rows) of the Matrix corresponds to each transfer learning
clone and the x axis (columns) corresponds to the portion of data set. Hence, the
30 entries on the diagonal of the matrix correspond to the training accuracies,
and the 870 entries on the remainder of the matrix correspond to the validation
accuracies. It is observable that while the diagonal is sightly distinguishable,
some clones seem to be performing better than the others across the board. We
claim that this is because of the linguistic property that some words are more
central in a lexicon than others. These words might distinguish themselves by
having more synonyms or by having polysemy. When the data set given to a
clone has a majority of such words, it is possible to claim that the trained model
would generalize better than in the case where the data set given to a clone has
a minority of such words.
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Fig. 5. Training/Validation Matrix of the Clones

Finally, the relevant vectors from the 30 separate embeddings were averaged
together to produce the final singular embedding. For that combined singu-
lar embedding, on the complete 14820 training-word set (i.e., all 30 portions
together), we obtained a mean training accuracy of 97.91% with a standard
deviation of 0.38. The reason for this re-calculation is the fact that we antici-
pated that since we merged the trained models, the performance of the merged
model would not be the average of the separate components. The observable
change in accuracy is proof that the said assumption is justified. Also, it is pos-
sible to note here that the above rigorous validation has cleared, in the case
of the merged model, any possibility of over-fitting which may have threatened
individual transfer learning clones. Following that, on the 9910 test words, we
obtained a mean test accuracy of 97.82% with a standard deviation of 0.43.
Yet again, we present the closeness of the training accuracy and test accuracy
as proof that the system has not over-fitted to the data despite obtaining very
good training accuracy which is higher than 97%. Note that all accuracy values
at this point are calculated by taking OOM output as the gold standard.

The embedding enables practical NLP applications to do a simple k-NN
look-up as opposed to the slow and costly oppositeness calculation from scratch.
Further, the algorithm by [4] completely fails if even one of the words does not
have antonyms. The embedding approach proposed in this study works for all
word pairs and gives the closest approximation. Therefore, we claim that this
approach provides a more constantly reliable source of oppositeness look-up for
practical NLP applications.

5 Conclusion

The main research contribution of this study was the introduction of semantic
oppositeness embedding. This study successfully proposed and demonstrated an
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embedding methodology on more than 49 million pairs of words, to obtain a
training accuracy of 97.91% and a testing accuracy of 97.82%.

In addition to this main research contribution, this study also introduced a
novel, unanchored vector-embedding approach and a novel, inductive transfer
learning process based on auto encoders which utilizes both learnt embeddings
and the learnt latent representation.

As for future work, we propose extending this algorithm to embed semantic
oppositeness of phrases, similar to the phrase embedding extensions done to the
implementations of other word embedding systems, such as Word2Vec.
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