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Abstract

This study empirically examines the association between the extent of emerging technological ideas in a
scientific publication and its future scientific impact measured by number of citations. We analyze
metadata of scientific publications in three scientific domains: Nano-Enabled Drug Delivery, Synthetic
Biology, and Autonomous Vehicles. By employing a bibliometric indicator for identifying and quantifying
emerging technological ideas — as derived terms from the titles and abstracts — we measure the extent to
which the publication contains emerging technological ideas in each domain. Then, we statistically
estimate the size and statistical significance of the relationship between the publication-level
technological emergence score and the normalized number of citations accruing to the publication.

Our analysis shows that the degree to which a paper contains technologically emerging ideas is
positively and strongly associated with its future citation impact in each of the three domains. An
additional analysis demonstrates that this relationship holds for citations from other publications, both in
the same field as, and in different fields from, the scientific domain of the focal publication. A series of
tests for validation further support our argument that the greater the extent to which scientific knowledge
(a paper) contains emerging ideas, the bigger its scientific impact. Implications for academic researchers,

research policymakers, and firms are discussed.

Keywords: Emerging Technology, Citation Impact, Bibliometrics, Emergence Score

" Corresponding author


https://doi.org/10.1016/j.respol.2019.103834

1. Introduction

An emerging technology is considered as such by its scientific importance (Archibugi, 2017; Hung & Chu,
2006; Porter et al., 2002; Rotolo et al., 2015) and broad range of socio-economic impacts (Martin, 1995).
Technological novelty and fast growth are among its defining characteristics. Of special note for this paper,
emerging technologies can be taken as entire domains or as sub-topics within domain. Nanotechnology,
Graphene, Synthetic Biology, Gene-editing technology (e.g., CRISPR-CAS9), Big Data, and Autonomous
Vehicles are examples of emerging technology domains. A few illustrative emergent terms for Big Data,
for the years 2004-2013” are MapReduce, Hadoop, and scalable —i.e., much more specific.

For their potential of changing the “way of doing” (Day & Schoemaker, 2000; Li et al., 2018) through
competition with existing mature technologies (Pistorius & Utterback, 1997), emerging technological
ideas attract interest among a range of players in an innovation system (Breitzman & Thomas, 2015).
Identifying emerging science and technology is of interest to the government to maintain national-level
technological competitiveness (Cozzens et al., 2010; Porter et al., 2018b) and address social problems
(Woodson, 2016). Development of applications from emerging technology has been the subject of
regulatory authorities’ attention in the face of uncertainty of consequences in their applications (Roca et
al., 2017), which brings forth discussions of the necessity of new governance mechanisms for the emerging
technology and under the notion of “responsible innovation” (e.g., Karinen & Guston, 2009; Owen et al.,
2012; Stilgoe et al., 2013). Emerging technologies are also a particular interest of firms that seek future
business opportunity (Hamilton, 1986; Srinivasan, 2008). Firms make strategic investments in emerging
technological opportunities, while recognition of emerging technologies becomes a key element in their
competitive catch-up processes (Kim et al., 2017). Business strategies, such as offshoring manufacturing
functions may be associated with the degree to which emerging technologies are developed in the place
where the firm is located (Yang et al., 2016). This relevance of emerging technologies to a broad range of
stakeholders suggests that they may also have a shared interest in learning about those technologies and
their development (Roelofsen et al., 2011).

The extensive and broad-ranging stakes in identifying emerging technologies have drawn academic
communities’ interest in elucidating their attributes (e.g., Day & Schoemaker, 2000; Rotolo et al., 2015;
Srinivasan, 2008; Wang, 2018) and operationalizing emerging technologies to delineate the relevant
technological domains. For example, the studies of Mogoutov and Kahane (2007), Porter et al. (2008), and
Arora et al. (2013) have constructed and improved the bibliometric definition of nanotechnology. Oldham
et al. (2012) and Shapira et al. (2017) have put effort into delineating the synthetic biology domain by

using a set of keywords that represent the technological characteristics of synthetic biology. Huang et al.



(2015) suggested a systematic way of constructing the bibliometric definition of an emerging technology
using the Big-Data case as an example. Subsequent to these domain definitions, various methods use
metadata of the resulting scientific publications/patents (Avila-Robinson & Miyazaki, 2013; Chang et al.,
2009; Glanzel & Thijs, 2012; Lee et al., 2018; Porter & Detampel, 1995; Wang, 2018). Combinations of
empirical analyses with expert opinion (e.g., Daim et al., 2006; Robinson et al., 2013) and statistical
analyses (e.g., Avila-Robinson & Miyazaki, 2013) extend the stream of these scholarly efforts to ascertain
technological advance. Expert opinion on its own such as the Delphi (Linstone & Turoff, 1975) and TRIZ
frameworks (Al'tshuller, 1999) strives to understand future technological emergence by categorizing types
of invention gains from emerging technologies.

The perceived importance of emerging technologies and the scholarly endeavors toward
conceptualizing and measuring them, might lead one to raise the question of how, and to what extent,
emerging technologies are impactful in advancing science and benefitting society (Corrocher et al., 2003;
Hung & Chu, 2006). Focusing on the technology policy domain leads us to ask: to what extent do emerging
technological ideas contribute to scientific progress? If these ideas are particularly impactful for future
scientific works, can we specify what those emerging technology topics are before their citation impact
becomes visible?

From our perspective, many relevant studies focused on developing novel methods for detecting
“probable” emerging technology areas or topics as new data or resources become available. Other studies
have developed systematic ways of performing technology assessment — i.e., anticipating impacts of
emerging technologies in terms of various societal dimensions (Healy et al., 2008; Kwon et al., 2017;
Ostertag & Hising, 2008; Porter et al., 1980). These studies give surprisingly less attention to how
technological emergence relates to its future scientific/technological impacts.

Scientific progress and technological innovation are key drivers of economic growth (Romer, 1986,
1990; Schumpeter, 1934; Solow, 1956). Therefore, while the success of emerging technologies might be
dependent upon science (Martin, 1995) and one of the major sources of the technological emergence is
scientific discovery (Small et al., 2014), the gap in the literature as to whether and how emerging ideas
(methods, findings) contribute to scientific progress and technological innovation could be even more
acute to policymakers concerned with research-driven innovation (Porter et al., 2002).

There could be several reasons for the lack of such studies relating emergence to scientific impact.
First, the concept of emerging technology has been interpreted in different ways (Cozzens et al., 2010),
which results in the development of studies based on different definitions and operationalization of
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degree of technological emergence. Extensive scholarly attention to the article by Rotolo et al. (2015) that
reconciled conflicting various literatures and, paradoxically, showed the complexities in addressing the
topic.

Second, emerging technological elements are often identified at the macro level —i.e., as technology
domains (Breitzman & Thomas, 2015; Chang & Breitzman, 2009). One considers “all” (or major domains)
of science to distinguish which domains show pronounced recent growth. Such macro-level analyses can
inform research policy. Examining relationships between technological domain emergence and scientific
impact is limited, however, suffering from the “small-N problem.” For this reason, there have been no
studies, of which we are aware, examining the relationship between the degree to which research
addresses emerging technological ideas and its impact on subsequent research.

This study aspires to fill this literature gap by investigating whether papers with a greater extent of
emerging technological ideas also have a greater scientific impact, as measured by citation intensity. We
consider the scientific publication as the container of scientific knowledge that may or may not include
emerging technological ideas. We address the challenges described above by utilizing a refined version of
the “tech emergence” indicator (Carley et al., 2018; Porter et al., 2018b) developed to operationalize four
key attributes of emergence as presented by Rotolo et al. (2015). This method extracts a set of terms that
represent emerging technological ideas from a given corpus of scientific publications. We measure the
extent to which each term shows technological emergence by assigning an “emergence score.”

Using this tool, we analyze a set of scientific publications related to three science areas — Nano-
enabled Drug Delivery (NEDD), Synthetic Biology (SynBio), and Autonomous Vehicles (AutoV). From a
corpus of abstract records, we extract technical terms and calculate emergence scores for each term.
Then, we calculate the (technological) emergence score of each publication by aggregating the scores of
the emerging terms that appear in the publication of interest. We measure the future scientific impact of
the focal publication by its citation intensity. Our multivariate regression analysis reveals a surprisingly
consistent and robust positive relationship between the degree to which a scientific publication contains
emerging technological ideas and its future citation impact. More surprisingly, the presence of emerging
technological ideas in a publication has a greater impact on subsequent research outside the domain
where the paper belongs—i.e., research addressing emerging technological ideas has greater cross-
domain impacts. A series of robustness checks of several alternative explanations for this observed
association further confirms the conclusions.

The remainder of this paper is structured as follows. In section 2, we review two strains of relevant

literature: 1) the relationship between technological emergence and citation impact, 2) various methods



to identify technologically emerging ideas. Section 3 details the empirical setting and data, and we report

the analysis results in Section 4. We discuss the implication of the findings in Section 5. Section 6 concludes.

2. Literature Review

2.1. Technological Emergence and Citation Impact

The scientometrics community has investigated various factors that associate with scientific
publications’ citation impact. Because the scope of the present study is limited to the relationship
between technological emergence (or its characteristics) and citation impact, we limit our literature
review to the studies in this regard.

Small et al. (2014) built a novel method to identify promising emerging topics by using direct and co-
citation models with the corpus of scientific publications indexed in the Scopus database. According to
their analysis, most of the identified emerging topics from publications between 2007 and 2010 included
highly cited publications. However, only a small portion (10%) of highly influential scientific publications
contain emerging topics. This study implies that the body of scientific research that contains emerging
technological topics is not necessarily impactful on subsequent scientific works.

Breitzman and Thomas (2015) draw a somewhat opposing conclusion. They analyze a set of patents

I”

to identify emerging technological areas by using the “emerging cluster model.” This method utilizes
patent citation information. They start from the “hot patents,” defined as those with a large volume of
citations received. Then, they construct a “cluster” around the focal patent and trace the dynamic change
of the size of the cluster by tracking the number of patents that cite the hot patent over time. Using this
model, they find that those patents in the emerging technological domains impact subsequent
technological development more than patents in non-emerging technology areas. This finding indicates
that the patented inventions in the emerging technology fields might have a greater technological
influence on follow-on technology development.

Porter et al. (2018a) showed that the extent to which organizations’ scientific publications contain
emerging technological topics is positively associated with their overall R&D activities in the near future.
The authors extracted terms from a corpus of scientific publications using natural language processing
and measured the extent to which each term represents technological emergence by operationalizing the
attributes of the emerging technologies suggested by Rotolo et al. (2015) into a single metric called
emergence score. Their analysis revealed that the emergence score at an organization level predicts the

degree R&D activity level of the organization, measured by their publication counts in the three
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research related to the emerging technological topics contribute more to scientific knowledge creation in
the near future.

There are studies that provide clues about how attributes of emerging technologies may associate
with future scientific impact. Uzzi et al. (2013) examined whether scientific research that contains novel
ideas, which is one of the features of technological emergence as we measure it, highly influence
subsequent research. They operationalized the novelty of the research based on how atypical the
combinations of the fields of journals in the paper’s cited references are. The more atypical the
combination, the greater the novelty of the scientific paper in question. Using this operationalization, they
found that the relationship between novelty and citation impact is not monotonic. Instead, they found
that scientific articles that have balanced levels of novelty and conventionality in the cited journals are
likely to be scientifically influential papers. This study indicates that scientific research that addresses
novel ideas, but in combination with conventionally accepted knowledge bases, is likely to be more
influential on future scientific work. Considering that novelty and persisting coherence (i.e., existence of
a scientific community around the technology of interest) are important attributes of technological
emergence (Rotolo et al., 2015), this study implies that the degree to which scientific publication contains
emerging technological ideas likely will positively associate with its scientific impact.

A recent study by Antons et al. (2018) reached a similar conclusion. They analyzed the corpus of
journal articles published in the top journals in the strategic management field and extracted topics by
using a topic modeling technique. Their analysis showed that the first two articles (i.e., novelty) on a new
topic received a large volume of citations from the subsequent research.

These studies in sum show that the relationship between technological emergence (or its attributes)
and citation impact is not obvious. On the one hand, some studies suggest that papers investigating
emerging topics tend to be more influential. On the other hand, other works find that a balance between
novelty and conventionality is needed for strong scientific influence. One distinguishing feature, however,
is that these studies have used different operational definitions of technology emergence (or its
attributes).

Aside from the empirical inconclusiveness of the relationship, most of the prior studies on
technological emergence seem to presume that the emerging technological idea has a greater socio-
economic impact, while defining it broadly rather than elaborating on “how” and “to what extent” the
emerging technological idea brings the prominent impact, and in “which” dimension of socio-economic

the effect occurs. Our study contributes to filling this literature gap. We focus on scientific progress as the



dimension of the socio-economic system on which the technologically emergent research is most apt to

exert strong influence.

2.2. Bibliometric Methods to Identify Emerging Technological Topic

The previous section highlighted quantitative and qualitative methods to understand the emergence
of new technologies (Porter & Cunningham, 2004; e.g., Smalheiser, 2001). Although qualitative and
expert-opinion oriented methods are common in identifying emerging technologies
(TechnologyFuturesAnalysisMethodsWorkingGroup, 2004), data-oriented methods such as text mining
techniques, bibliometric methods, network analysis, and statistical analysis, have also been broadly used
(Cozzens et al., 2010). In this section, we briefly review the scholarly efforts toward building methods to
identify emerging technological topics. We limit the scope of our review to relatively recent studies that
have employed a bibliometric approach to provide background pertinent to the method we use in this
study.

The first group identifies field-level emergence (Breitzman & Thomas, 2015; Glanzel & Thijs, 2012;
Kajikawa et al., 2008; Small, 2006). These works have attempted to detect the research or technology
domains that show fast growth and gain a research community’s increasing attention over time. Some
studies in this group further attempt to identify and assign the proper topics to the identified clusters
(Wang, 2018), some through keyword analyses (Guo et al., 2011; Ohniwa et al., 2010; Schiebel et al., 2010).
This group of studies has analyzed bibliometric data in scientific publications or patents to identify
emergent topics.

Few of these studies have made an effort to fully operationalize Rotolo and colleagues’ definition of
technology emergence. One exception is Wang (2018). The author adjusted the attributes suggested by
Rotolo et al. (2015) to identify emerging research topics. Wang suggested four criteria: novelty, fast
growth, coherence, and scientific impact. By applying the four criteria to the corpus of graphene
publications, the author identified several emerging research topics in the field. Note that this study
considers the scientificimpact as an attribute of the emerging research topics, rather than a consequence
of the emergence. Hence, the suggested method allows one to “look-back” at the emerging topics that
were impactful for scientific progress. Wang’s approach stands in contrast to this paper’s focus on
whether the other attributes of emerging technological ideas systematically associate with its future
scientific impact.

In contrast to Wang, Porter and coauthors have developed an algorithm that operationalizes the

concepts of Rotolo and colleagues to find the terms that may be indicative of emerging technological



topics. Studies in this group extract the terms from the textual data in the corpus of the publication or
patent abstract compilations and identify the set of terms that fit the attributes of technological
emergence (see Carley et al. (2018)). The authors proposed a technology emergence indicator to identify
frontier R&D topics and players within a given technological domain under scrutiny. This method provides
emerging scores for particular emerging terms (topics), and players —that is, scores aggregated to author,
organization, or country levels Porter et al. (2018b).

That emergence score is the core method used in the present research. By aggregating the emergence
score from the term level to the publication, researcher, organization, and even country level, one cannot
only quantify the degree to which a body of research contains emerging technological ideas, at the
different levels of analysis, but also specify the identified emerging terms. In the next section, we provide

an overview of the steps for calculating emergence scores at the term level.

2.3. Emergence Score

In this section, we briefly describe the method of calculating emergence score. Readers may wish to
refer to the prior two research articles for greater technical details (Carley et al., 2018; Porter et al., 2018a).
These two articles explain how the authors operationalized four dimensions of technology emergence:
novelty, growth, persistence, and community.

The process starts by extracting the candidate terms from the abstract and title of a corpus of abstract
records in a technology domain of interest, usually over a 10-year period. A Natural Language Processing
(NLP) routine is applied to the candidate terms using VantagePoint software [www.thevantagePoint.com];
this NLP routine has been tuned to process Science, Technology & Innovation (ST&I) text resources (e.g.,
to retain chemical identities). Next, the terms are cleaned to exclude text not relevant to the technology
domain of interest (e.g., culling XML notation, punctuation, single letters or number usually, ST&I stop
words, etc.). Fuzzy matching routines in VantagePoint help consolidate term variants — most simply,
combining singular and plural variants.

The resulting text forms the basis for operationalizing the criteria originally suggested by Carley et al.
(2018). We have built on these authors’ approach by refining it to better capture the meaning of these
criteria.

We consider that a term meets the persistence criterion if: the term appears in at least three time
periods in the corpus (i.e., 3 years) and appeared in more than a threshold number of publications during

the recent periods (i.e., 4" through 10™ years in the corpus of publications being analyzed).



A term meets the novelty criterion if: it appeared in less than x% (benchmark=15%) of the publications
in the early period (i.e. 1st to 3rd year in the 10-year publication period). A term remains a candidate for
emergence if its growth in frequency (number of records containing the term at least once) over time is
at least 1.5 times the growth rate of the overall publication record set.

We consider a term to have met the community criterion when there are at least two organizations
that have publications containing the term in question in the corpus. This criterion is designed to serve as
evidence of the existence of an organizational community beyond one institution that uses the term in
the research abstract records.

We add a criterion— scope— to filter further terms that may be irrelevant to technological emergence.
We utilize the Inverse-Document Frequency (IDF) measure for this purpose. We calculated the IDF-value
of each term based on a corpus of randomly retrieved publication records from WoS. If the calculated IDF-
value of a term within the corpus of the technology domain of interest is greater than the IDF-value using
the random publications, we screen out this term because the term may not be specific enough to the
technology field of interest.

These criteria — persistence, novelty, growth, community, and scope — form filters for identifying
emerging terms. The next step is to assign an “emergence score” to the resulting emerging terms. The
term-level emergence score is calculated, following Carley et al. (2018), by aggregating the three variables
that capture the term’s emergence pattern over the 10 years: active trend, recent trend, and slope. The
active trend measures the change in the extent of publications containing the term of interest between
the period of 4"-6'" year and 8™-10™ publication years. The recent trend captures the same property but
for the change in a more recent period (9™"-10" year versus 7" and 8 year), and the slope takes the
average year-growth rate of the share of publications containing the term by calculating the difference in
the extent of publications containing the terms at the 7™ and 10" publication years.

An exclusion phase removes terms that have lower emergence score than a certain threshold value
(set, based on empirical testing, at the square root of i, 1.77) to remove the terms that may be too weak
to consider as a term representing an emerging technological idea. We used the recommended threshold
in the empirical test conducted in the two prior studies (Carley et al., 2018; Porter et al., 2018a).

Figure 1 details the steps for extracting emerging terms and calculating their emergence score
described above.

[Insert Figure 1.Emergence Score Calculation at Term-Level about here]



3. Empirical Setting

3.1. Overview of the Approach

In our research, we treat each of the scientific publications in the technology area of interest as a unit
of scientific knowledge which may or may not contain emerging ideas. The extent to which a publication
contains emerging technological ideas is measured by a publication-level emergence score. To this end,
we extract terms within the selected field, and calculate their emergence score from a corpus of scientific
publications published from 2003 to 2012 in the field of interest. The outcome of this stage is a list of
“emerging terms” with emergence scores for each term. Then, we calculate the total emergence score of
each publication that was published in the following three years (i.e., published in 2013, 2014, or 2015)
by tallying the emergence score of the terms that appeared in the publication’s abstract record. Figure 2
illustrates our empirical setting.

[Insert Figure 2. Publication-level Emergence Score Calculation about here]

In this setting, the unit of analysis is the publication abstract record, and the key variable of interest
is that publication-level emergence score. In the next section, we illustrate the details of the data and

empirical strategy for the analysis.

3.2. Data

For our data and empirical analyses, we selected three domains in widely varying fields and drew all
abstract records relevant to each of these fields. Our selection of technology domains for analysis was
designed to consider: (1) the availability of a multi-term Boolean bibliometric definition of the technology
domain under analysis, (2) probable heterogeneity in disciplines engaged, (3) salience of the technology
domains, and (4) diversity among the domains to bolster generalizability of findings.

For the first two criteria, we seek bibliometrically well defined technology domains within three broad
scientific disciplines—Materials Science, Biotechnology, and Information/Communication Technology
(ICT). These three domains provide established and mutually distinctive domains of study.

NEDD is one of the bibliometrically-well defined research domains in materials science. To obtain the
abstract records of the scientific publications related to NEDD, we use the search strategy formulated by
Zhou et al. (2014). Synthetic biology and autonomous vehicles are domains in biotechnology and ICT areas
that suit the first two criteria because the scientometrics community has developed operational
definitions of them and because two domains are comprised of different disciplinary fields. Analyses of

these domains has drawn the attention of a broad range of stakeholders (Shapira et al., 2017; Youtie et
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al., 2017). For synthetic biology, we employ a hybrid form of keywords and journal-based search strategy
devised by Shapira et al. (2017). We use the recently developed search strategy by Youtie et al. (2017) to
identify scientific publications on autonomous vehicle technology. The search strategy for each corpus of
publications appears in the Appendix.

We obtain the abstract records, with helpful metadata, of the publications from the Web of Science
(WoS). We prefer WoS as providing relatively well-formatted abstract records, rich metadata, and the
most consistent citation data.

We limit the sample to papers published from 2003 to 2015. The publications published from 2003 to
2012 are used to extract the emerging terms representing emerging technological ideas in the domain
under study. Then, we calculate the emergence score of each of the 2013-2015 publications. The results
are calculated for selected document types likely to have descriptive titles and abstracts —journal articles,
conference proceedings, and books and book chapters.

For NEDD, we obtain 53,957 WoS-indexed abstract records published from 2003 to 2012. From these
data, we extract terms with their emergence scores. Then, we calculate the publication level emergence
score for 38,557 publication records for 2013 to 2015.

For synthetic biology, we extract terms with their emergence scores from the 4,041 publications
published from 2003 to 2012. Then, we calculate the publication-level emergence score of 3,336 synthetic
biology publications in 2013-2015, using the extracted emerging terms from the corpus of the previous
10-year publications.

For autonomous vehicles, we identify 19,809-publications for 2003 to 2012. By applying the extracted
emerging terms and their scores obtained from this corpus, we calculate the emergence score of 11,442
AutoV scientific publications that were published from 2013 to 2015.

Note that, for our analyses, we exclude the publications that have incomplete information® from the

data. Hence, in the main analyses, some records are dropped.

3.3. Variables and Econometric Model Specification
3.3.1. Dependent Variable: Normalized Citation Count by publication age
The dependent variable is the measure of the scientific impact of the publication of interest. We
employ the number of citations accrued by the publication of interest as the measure of scientific impact

(as of July 2018). Because the citation index is dependent on the age of the publication (i.e., the older the

1 We dropped the records that have invalid information (i.e., missing values) of the variables that we used in the regression
analysis.
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publication, the greater the time in which to be cited), we normalize the citation counts by dividing by the
difference between 2018 less the publication year. Citations often have extremely right-skewed
distributions with 0 as the minimum value, so we take the natural log of the citation count, adding the
value of 1 (IFWD).

Note that use of the normalized citation count as the measure of scientificimpact has some drawbacks.
Citation counts do not necessarily indicate that the body of research of the citing publication has been
scientifically influenced by the cited publication, as there are many other reasons for citation (Bornmann
& Daniel, 2008). For example, one may cite an article to point out its limitations (negative citations) or
simply for self-promotion. Nevertheless, citation is one of the broadly employed measures that can
provide useful insight into how the body of knowledge in a scientific publication exerts an influence on

future scientific work (Antons et al., 2018).

3.3.2. Independent Variable: Publication-level Emergence Score
The key independent variable is the publication-level emergence score. Because the emergence score
has a right-skewed distribution with 0 as the minimum value, we take the natural log transformation of
the original emergence score and add the value of 1 (In(ES+1)). The resultant In(ES+1) takes continuous

non-negative values.

3.3.3. Control Variables

In the regression analysis, we control for several publication-level and source-level (i.e., where it has
been published) characteristics to parse out probable spurious correlations between the dependent and
independent variables. We select the control variables based on the study of Onodera and Yoshikane
(2015) that comprehensively reviews the various factors affecting a research article’s citation rate.

There are two groups of control variables. The first group is comprised of the variables that capture
the probable variations in the citation count by publication-level characteristics. Following are the
variables that prior studies repeatedly found systematically relate to citation count. These variables could
also associate with the degree to which the publication of interest contains emerging technological ideas.

e Number of cited references (In(nRef+1)): Previous studies have found the number of cited

references to be a predictor of future citations (Hu et al., 2011). In(nRef+1) takes the natural log

value of the total number of cited references by the publication of interest, plus the value of 1.
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The second group of control variables is for “source-leve

Length of the Content (Content Length): This variable measures the amount of information that
the publication contains, which is operationalized by taking the natural log of the total number of
pages of the publication of interest and subtracting the number of cited references.?

Number of authors, Number of authors’ countries, Number of authors’ affiliations: These three
variables capture whether the body of knowledge in the publication originates from collaborative
research at the individual level, institute-level, or country level in light of previous research into
the relationship between number of coauthors and forward citations (Persson et al., 2004).
Publication Type (PubType FE): To take into account the variations in the dependent variable by
type of publication (i.e., journal article, conference proceedings paper, book chapter), we
introduce two dummy variables that take the value of 1 for conference proceedings and book
chapters respectively, while the journal article becomes the reference group.

First author’s country (Country FE): To control for the variation generated by the lead author’s
country, we introduce the set of dummy variables for all the first authors’ countries appearing in
the sample.

Publication Year Fixed Effect (PubYr FE): We introduce a set of dummy variables for the
publication year (2013-2015) to capture the probable heterogeneity in the dependent variables
by time that may also relate to its degree of containing emerging terms. For example, some
domain (or the name of it) might have attracted researchers in certain time periods for peculiar
events, such as large-scale research funding for the technology domain of interest in certain
countries.

Research Funding (Funding): Finally, we control for whether the publication in question
acknowledges research funding, because funding can shape the scientific research outcome
(Huang et al., 2006; Payne & Siow, 2003) and is also associated with higher citations (King, 1987;
Shapira & Wang, 2010). Funding is a binary variable that takes the value of 1 if the publication has
acknowledged funding, and 0 otherwise.

III

characteristics. This group of variables is

introduced to take into account the probable variations in the dependent variable generated by the

characteristics of the place where the paper has been published.

2 Note that we use this variable as a proxy. The main purpose of using this operationalization is not to double count the number
of references in the analysis.
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e Number of Web of Science Subject Categories (Number of WSCs): Journals that have an
interdisciplinary scope may publish works that contain more emerging technological ideas,
although it is unclear whether interdisciplinarity leads to higher citation rates. To take into
account this potential confounding effect, we introduce the number of unique WoS SCs that were
assigned to the sources of the publication in question as a measure of interdisciplinarity.

e Journal Impact Factor (JIF): Because journal impact factors are based on citations, this measure
could generate a systematic difference in the citation counts of individual publications. We control
for this potential extraneous effect by introducing JIF as a control variable. The JIF information is
obtained from the Journal Citation Reports provided by Clarivate.> We use the JIF calculated in
2013, 2014, and 2015 for the publications in each corresponding publication year.

e The first-appearing WC of the source (Discipline FE): To control for variations across scientific
discipline within the technology domain, we introduce a set of dummy variables based on the first

assigned WoS SC to the source (e.g., journal) of the paper of interest.

In these analyses, we exclude publication records that have incomplete information for the variables
we consider. For example, we drop the publications that have invalid values in the source-level variables
or publication-level variables. As a result, 30711, 2234, 3307 records respectively become the subject of
the analysis for NEDD, SynBio, and AutoV in the main analyses.

Note that the substantial records of the AutoV publications drop from the data as a result of this
cleaning. This is mainly because the vast majority of the AutoV publications (about 70% in the data) are
conference proceedings papers that often have no JIFs.*

If the degree to which a body of research contains technologically emerging ideas positively associates
with its future citation impact, In(ES+1) is expected to statistically significantly and positively correlate

with IFWD.

4. Results

4.1. Descriptive Analysis

Table 1 presents summary statistics of, and pairwise correlations for, the key variables in the dataset
for the three technology domains. The correlations are below 0.4, which for the most part suggests no

serious multi-collinearity issues.

3 https://clarivate.com/products/journal-citation-reports/
4 We check robustness of our findings to the substantial sample drop by introduction of JIFs in section 4.3.4.
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[Insert Table 1. Correlation about here]

Figure 3 profiles the pairwise correlations between In(ES+1) and IFWD to explore the correlation
between these two variables. From 2013 to 2015, the two variables are positively correlated, and they
are so across all the three fields of technology.

[Insert Figure 3. Pairwise correlation between In(ES+1) and IFWD1 about here]

Figure 4 compares the distributions of IFWD of the publications that have IES less (blue) and
higher (red) than its median value, for each of the technology fields in our analysis. Across all three fields,
the publications that have higher IES than the median value have longer right tails than those that have
IES below the median value. The comparison of the mean values of the IFWD between these two groups
of publications (red and blue solid line respectively) indicates that, across the three technology domains,
the publications with IES higher than the median value received more citations than those with IES lower
than the median value, on average.

[Insert Figure 4. Distribution of IFWD about here]

4.2. Regression Analysis

Table 2 reports the main regression results. The first column presents the regression results with all
the publications across the three emerging technology areas, controlling for technology domain fixed
effects. The coefficient of In(ES+1) — 0.056 — is positive and statistically significant at the 0.01 significance
level. The estimation result indicates that, on average, 1% increases in publication-level emergence score
are associated with 5.6% increases in the normalized citation count. This result implies that the greater
the extent of emerging technological ideas, the greater the citation impact of a publication.

[Insert Table 2. Baseline Regression about here]

The second column reports the regression result for the NEDD publications only. The estimated
coefficient of the In(ES+1) is 0.056, statistically significant at the 0.01 significance level. On average, 1%
increases in the NEDD publication’s emergence score is associated with a 5.6% increase in the normalized
citation count.

The third column reports the regression result for synthetic biology publications. The estimated

coefficient of the In(ES+1) is 0.03, statistically significant at the 0.05 level. On average, a 1% increase in
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the synthetic biology publication’s emergence score results in a 3% increase in the normalized citation
count.

Finally, the fourth column reports the regression result obtained from analysis of the publications in
the Autonomous Vehicles domain. The estimated coefficient of In(ES+1) is 0.073, statistically significant
at the 0.01 level. This estimation result implies that a 1% increase in an AutoV’s publication emergence
score results in a 7.3% increase in the normalized citation count.

[Insert Figure 5. Estimated Regression Coefficient of about here]

Figure 5 visualizes the estimated coefficient of the In(ES+1) after running the regression for 2013,
2014, and 2015 publications separately for each of the technology domains. Although there is field level
heterogeneity to some extent, the positive relationship between In(ES+1) and IFWD remains over the
three years.

Allin all, our regression analysis consistently finds a positive relationship between the extent to which
a body of scientific knowledge (a paper, using its abstract record) contains technologically emerging ideas
and its future citation impact. This finding suggests that research that addresses more emerging

technological ideas may have a greater impact on future scientific work across the three research domains.

4.3. Robustness Check

4.3.1. Use of Cluster Standard Error

In the regression, the unit of analysis is an individual publication which has been published in a
source (i.e., journal, conference proceedings, book). Accordingly, there could be multiple publications that
were published in the same source in the same year —i.e., each data point is nested in the source. In this
data structure, a publication published in a source is likely to be systematically correlated to other
publications in the same source. This inter-group correlation could bring bias into the estimation in the
regression analysis. We run the regression using cluster-robust standard error to correct for the probable
bias of inter-source correlation. The regression result is reported in Table 3.

[Insert Table 3. Regression with cluster-robust standard error about here]

The signs of the coefficient of the In(ES+1) are all positive and statistically significant at the 0.1
significance level. Although the use of the cluster-standard error reduces the statistical significance of the
coefficient in the case of synthetic biology, the strong and positive relationship between the In(ES+1) and

normalized forward citation rate remains in overall.
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4.3.2. Excluding Publications of Zero citation

One of the common methodological issues when using a publication’s citation count as a measure
of scientific impact is that many (often the majority of) publications have a zero-citation count. If the
majority of the publications with zero-citation also have low emergence scores, not because of a genuine
relationship between the emergence score and citation impact, but because those publications simply did
not have sufficient time to receive a citation, our finding may not be indicative of the actual relationship
between citation impact and the extent to which a publication contains emerging technological ideas.

To address this concern, we exclude the publications with zero-citation counts and conduct the
same regression analyses with the remaining samples. The result is reported in Table 4. Overall, the sign
and statistical significance of In(ES+1) remain consistent with those of the main regression result.

[Insert Table 4. Regression excluding zero-citation publications about here]

4.3.3. Use of an Alternative Measure of Technological Emergence

The emergence score of the publication is calculated by totaling the emergence scores of
individual emergence terms that appear in the publication of interest. Another way of quantifying
technological emergence is to use a binary indicator where the value of 1 is assigned to the publication if
its abstract record contains at least one emerging term. Use of this indicator could be useful in interpreting
the results in a more straightforward manner by allowing for a comparison between unites of knowledge
with emerging technological ideas vs. those not including such content. To this end, we examine whether
a publication with at least one tech emergence term has a greater citation impact than one that has no
emergence terms. For this analysis, we create a binary variable ES+ which takes the value of 1 for
publications that contain at least one emergence term and use it as an alternative independent variable.
Table 5 presents the regression results.

[Insert Table 5. Regression with an Alternative indicator of Emergence Score about here]

The coefficient of ES+ is positive and statistically significant at the 0.01 significance level across all
the four regressions. This finding confirms the existence of a systematic positive relationship between

technological emergence and a paper’s future citation impact.

4.3.4. Selection Bias by Introduction of Journal Impact Factor
In the main regression, we introduced the journal impact factor (JIF) as a control variable.

Although controlling for the JIF is helpful to take into account the variation in the relationship between
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the two variables of interest generated by source-level characteristics, its utility comes with a cost—
dropping records that have no JIF information and consequential sample selection. This sample selection
from the missing data can bring bias in the estimation— the introduction of the JIF into the regression
analysis and subsequent drop of those publications that published in sources that have no JIF could
exaggerate the true relation between In(ES+1) and the IFWD.

We check whether this issue is critical in interpreting our finding from the baseline regression by
running the same regression while dropping the JIF from the regression model. As a result, the number of
NEDD, synbio, and AutoV publications increases to 33,204, 2,446, and 11,186 respectively. The number of
observations for Autonomous vehicles substantially increased. This is because many of the autonomous
vehicle publications were published as conference proceedings that often have no JIF information. The
analysis result is reported in Table 6.

[Insert Table 6. Regression without controlling for JIF about here]

The coefficients of the In(ES+1) across all four models are positive and statistically significant at the
0.01 significance level. This additional analysis demonstrates that sample selection bias by the

introduction of JIF is not a critical factor determining our finding.

4.3.5. Regression without control variables
One may argue that the set of control variables we have introduced in the regression analysis may
underestimate the true size of the correlation between In(ES+1) and IFWD. For example, controlling for
the factors that relate to the quality of the publication such as type of publications, JIF, content length,
and funding may not be necessary for eliminating confounding effects. To check the robustness of the
analyses, we run regression without control variables. The regression results are reported in Table 7.

[Insert Table 7. Regression without control variables about here]

The estimated size of the coefficients of In(ES+1) increases overall. The results remain statistically

significant and the signs of the coefficients do not change.

4.4. How widespread is the citation impact of papers that address emerging technologies?

The baseline regression result shows that the body of scientific research that contains a greater extent

of emerging technological ideas is associated with greater future citation impact. This finding raises an
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additional question regarding how this dynamic occurs. Does the impact primarily reflect scientific
research within the same field (internal impact) or from fields outside (external impact)?

To address this question, we divide the citations accrued by a publication into internal and external
citations. Internal citation refers to the number of citations that a publication received from other
publications in the same technological domain. For example, internal citation of a synthetic biology
publication refers to the number of citations that the publication received from future synthetic biology
publications. Internal citation is the citation impact of a body of research on the publication’s field.

External citation refers to the number of citations that a publication received from publications
outside of the focal publication’s field. For instance, an external citation of a NEDD publication refers to
the number of citations made by publications that are not in the NEDD publication corpus. External
citations are a measure of the extent to which a body of scientific research is cited by works outside of
the technological domain of the focal publication.

We create two dependent variables that operationalize internal and external citations for the analysis:
natural log-transformed normalized Internal citation counts (plus 1) (IFWDint) and its counterpart for
external citations (IFWDExt). We count internal citation and external citation by utilizing the Document
Object Identifier (DOI) information in the cited references. For a publication in a field, we search for other
publications that cite the focal publication using the “cited DOI” information provided by WoS. The
number of citations coming from the publications in the same technology domain as the focal publication
becomes the internal citation count. Subtracting internal citation from the total citation count yields the
external citation count. Note that the number of observations in the analysis decreases because the
publications that have no DOI information are dropped from the sample.

We run separate regressions for each of IFWDint and IFWDExt while using In(ES+1) as the
independent variable with the same set of control variables as used in the baseline regression. Table 8
reports the results.

[Insert Table 8. Regression with Internal and External Citation Count about here]

The first through fourth columns present the regression results using IFWDInt as the dependent
variable. Not surprisingly, the coefficients of In(ES+1) are positive and statistically significant at the 0.01
significance level across all the four regressions. This indicates that, on average, the greater the extent to
which a publication includes emerging technological ideas, the greater the within-domain citation impact.

The fifth through eighth columns report the regression results using IFWDExt as the dependent

variable. Except for regression with synthetic biology publications (column 7), the coefficients of In(ES+1)
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are positive and statistically significant at the 0.01 significance level. This indicates that for the NEDD and
autonomous vehicle cases, the greater the degree of emerging technological ideas that a publication
contains, the greater the impact from citations by papers in other technological domains.

The absence of evidence of positive association between IES and IFWDEXxt in the case of SynBio can
be explained by its technological characteristics. In contrast to the other two technology domains in these
analyses, SynBio is a biotechnology area characterized as “discipline oriented.” Although it can be
considered as a platform technology in that it enables creating new biological function through
combinations of artificially created biological parts (Shapira et al., 2017), those different biological parts
are essentially created by synthetic biology. Hence, the scientific impact of synthetic biology publications
is likely to have strong within-field inertia. This may help explain why there is no evidence showing that
the extent of emerging technological ideas contained in synthetic biology research impacts external
citation.

Our additional analysis concludes that the greater the extent to which a body of scientific knowledge
addresses emerging technological ideas, the greater the within-domain citation impact. When it comes to
external impact, the greater the extent to which a body of scientific knowledge contains emerging
technological ideas, the greater the external-domain citation impact for NEDD and Autonomous Vehicle

publications.

4.5. Does “tautology” matter?

One may argue that the positive relationship between IFWD and IES is primarily caused by the ways
that the (1) bibliometric definition of each of the technology domains is constructed, and (2) the
emergence score is calculated.

First, the corpus of the publications we used in the analysis was obtained by using a keyword-based
search strategy. NEDD publications were obtained from WoS by using a set of keywords, and combinations
thereof, designed to represent the developmental trajectory of NEDD over time (growth of the
publications) (see Appendix). Although the search query for synthetic biology publications also includes a
journal-based search strategy, its primary search strategy is based on a set of keywords that were selected
so that they reflect the development of the field. The search strategy for the autonomous-vehicles dataset
was designed similarly. Therefore, the publications resulting from the search strategy are highly likely to
contain the keywords that reflect the “growth” of the number of publications that identified publications

that are likely to have high rates of emerging terms from the start.
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However, this concern does not undermine our finding. We extracted the emerging terms from a
given corpus of publications that are related to a particular technology domain and examined the
relationship between the two variables. That is, the observed relationship holds within the technology
domain defined by the selected keywords. Thus, our finding is not subject to this endogeneity issue.

Second, to extract emerging technical terms, the emergence score algorithm mechanically chooses
the terms that increasingly appeared in publications in the technology domain of interest during a prior
10-year period (Growth criterion). Hence, a publication that includes these terms is likely to fall into a
growing community of studies and, thus, to have the greater citations eventually because there will be a
growing number of relevant studies within the field.

Yet, this concern is not critical, at least, under the research design of the present study. Examining the
relationship between the emergence score of a publication in a given 10-year period and its citation count
suffers from the tautology issue described above. However, because we calculated the emergence score
of the publications published in the three consecutive years following the prior 10-year periods, the result
of our analysis is not subject to the mechanical tautology issue. In addition, the significance of this
probable endogeneity issue seems not to be supported according to our analysis of the external citation
count (Table 8). If the suggested mechanical endogeneity was the critical driver of the positive relationship,
then the publication level emergence score and its external citation count are unlikely to be positively
correlated. However, the regression result reported in Table 8 indicates that the emergence score is
largely positively associated with the external citation count. Altogether, although the suggested
endogeneity issue generated by the way that the emergence score is calculated could drive the positive

relationship we observe, it does not fully explain our finding.

5. Discussion
In this study, we have examined whether the extent to which a body of scientific research contains
emerging technological ideas positively associates with its future scientific impact by examining the
association between the emergence score at publication level and its citation impact. We analyzed the
abstract records with metadata of scientific publications for three technologies — nano-enabled drug
delivery, synthetic biology, and autonomous vehicles.

Our analysis demonstrated that there is a robust relationship between a scientific publication’s
emergence score and its citation impact for all three fields. This suggests that the greater the extent to
which a body of scientific knowledge contains emerging technological ideas in the field, the greater the

influence it will have on subsequent scientific work, in at least the three technology domains analyzed.
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We checked the robustness of our finding by using cluster standard error in estimation, excluding
publications with zero citation count, using an alternative indicator for whether the publication of interest
contains emerging technological ideas or not, and dropping the journal impact factor from the control
variable list to check the potential endogeneity from sample selection bias. Our estimation results contend
that, on average, 1% increases in the publication level emergence score result in 5 to 6% increases in the
normalized citations count of the publication.

Additional analyses showed that this probable impact extends not only to future scientific work
in the same field but also reaches outside of the focal publication’s technology domain. Although there
was a difference in the size of the correlation and statistical significance, the publication level emergence
score was positively associated with both internal and external citation counts, by and large. This finding
suggests that scientific knowledge that includes emerging technological ideas may have greater within-
and between-field impacts on future scientific research.

Does our finding imply that adding more technological emerging terms into a publication will
increase its scientific impact? The present study does not provide an answer to this question nor should
results be interpreted in that way. Our research design does not allow one to make such a causal inference
because it does not provide information about the underlying mechanism of the relationship. Even if a
causal linkage is identified, such interpretation could lead to a false understanding of the true relationship,
if there is a reverse causal relationship between the two variables. Although we have made an effort to
isolate the direct relationship between a paper’s emergence score and citation to it by eliminating a range
of factors that could boost correlations between them, it does not guarantee that intentionally adding
more emerging technological terms into the publication brings greater citation impact. It is more proper
to interpret our finding as saying that a paper involved in the growing research community that engages
in emerging scientific knowledge will have a greater chance to be recognized and consumed by future
scientific work, both in the same technological area and in external areas.

The study by Rotolo et al. (2015) suggested five attributes of emerging technology: novelty, fast
growth, coherence, prominent impact, and uncertainty & ambiguity. Because the emergence score used
in this paper operationalizes novelty and persistence, fast growth, and coherence into a single metric, the
strong and positive correlation between the emergence score and the scientificimpact of publication may
indicate that the four attributes together can predict, at least to some extent, the citation impact that the
body of knowledge in the publication has. Although studies support this conclusion (Breitzman & Thomas,
2015) and our finding seems to support this inference, we would say that there should be more studies

to definitively draw this conclusion. This is because the emergence score was used in a way that quantifies
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the extent to which a body of research contains emerging technological ideas in a given domain. Thus, our
finding indicates that, in a given field, research that includes more emerging technological ideas has a
greater impact on subsequent scientific research— rather than the emerging technological area itself
having a greater impact on scientific research than other more mature technology areas.

One may raise an additional question regarding whether and how long the observed positive
relationship persists over time. As the scientific enterprise evolves by the creation of new knowledge
competing with existing knowledge (e.g., Kuhn, 1962; Popper, 1959), emerging technological ideas
identified likely will not be the emerging ideas of the future. Accordingly, our finding that papers
containing a greater degree of emerging technological ideas (estimated at present) has a greater impact
on future citations may not hold longer term. Although we could not systematically estimate the time
persistence of the relationship between the emergence score and scientific impact of a publication due
to data limitations, Figure 3 hints that, although there is a heterogeneity by technology domain, the
positive relationship seems to persist for at least three years. We hope future studies can explore how
long the relationship does persist.

It could be argued that our finding is a mere empirical confirmation of one of the attributes of
technological emergence — prominent socio-economic impact, and hence, neither surprising nor original.
Our study goes beyond this empirical confirmation with several original implications that extend prior
studies of technological emergence.

First, our analysis shows robust and consistent empirical evidence indicating that research
addressing emerging technological ideas (topics) within a technology domain have a greater impact on
further scientific research. This finding is distinctive from the prior studies that examined the economic
impact of the emergence of specific technology areas at a macro level (i.e., emerging technology). What
our study shows is that not only macro level technological emergence, but also the extent to which
individual research addresses emerging technological sub-topics within in a domain, is positively
associated with degree of contribution to subsequent scientific research.

Second, we found suggestive evidence that research on emerging technological ideas in one field
may have a greater impact on subsequent research in other domains. Although this pattern could be
heterogeneous across the technology domains, this finding suggests that research on emerging
technology has greater potential in cross-domain knowledge dissemination. To our best knowledge, this
cross-domain dissemination has not been explored by prior studies.

Third, our finding suggests that the attributes of technological emergence operationalized in our

study may be interrelated at least at the level of individual research publications. We used the emergence

23



score for our analysis, which operationalizes four of the attributes of emerging technology— novelty,
growth, persistence, and community—that have appeared in the literature. According to the seminal
paper by Rotolo et al. (2015), one of the key dimensions of an emerging technology is its prominent socio-
economic impact. Our study suggests that the attributes of technological emergence may be
systematically associated with one of the dimensions of “socio-economic impact”— scientific impact.

To what extent can we generalize our conclusions? Technically, our findings hold only for the three
selected technological domains in the analysis. However, our case analyses for three disparate
technological domains offers evidence for generalizability.

We selected the three domains in order to take into account the possible heterogeneity in the
pattern of interest by selecting technologies that involve different scientific disciplines with consideration
for the availability of the bibliometric definition and saliency. Hence, the solid and consistent positive
relationship between a paper’s emergence score and its citation impact using this empirical design
suggests that our findings may reflect a relatively global pattern across technology domains.

Our argument is supported by our regression analyses. We show that the size and sign of the
estimated correlations between the IES and IFWD across different technology domains are similar (NEDD:
0.056, Synbio: 0.030, AutoV: 0.073). This similarity suggests that the relationship between the two
variables may be robust to heterogeneity in technological nature and the existence of the common driver
of this pattern across the different technology domains.

Itis undeniable that our research design is subject to the generalizability issue because we did not
analyze all identifiable technology fields in a population of publication records. Yet, we believe that our
study could be a first step for subsequent studies in understanding how emerging technological ideas in
scientific research contributes to scientific progress and, more broadly, innovation. We hope that future
research can add more cases and knowledge about whether our finding is a relatively global pattern or

rather localized.

6. Implications and Conclusions

This study contributes to scholarly endeavors toward elucidating the determinants of the degree to which
scientific knowledge is consumed. In addition to many other factors that have been identified (e.g.,
Bornmann & Daniel, 2008; Onodera & Yoshikane, 2015; Yegros-Yegros et al., 2015), our findings suggest
that the extent to which a scientific publication addresses emerging technological ideas in the fields in
which it resides can be a predictive factor for estimating its future citation impact. As described previously

(Carley et al., 2018; Porter et al., 2018a), a procedure to calculate emergence scores for terms in a set of
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publication abstract records and text data has been laid out, with software support to facilitate its
execution.

Second, our study provides a practical guideline for individual researchers who seek future
promising research topics. Because scientific publications with greater emerging technological ideas tend
to have greater scientific impact and are recognized more by future research, researchers engaged in
profiling and navigating the emerging terms extracted from ten recent years of publications in a field of
interest can gain valuable insights into what research topics are worthy of pursuing during, at least, the
next three years. This exercise can be particularly useful for early-career researchers who are less
experienced in and often have limited resources for exploring which research topics to pursue.

Third, our study provides several implications for policymakers. Our finding contends that the
emergence score at publication level has predictive power of its future scientific impact. Governmental
authorities that seek to make effective research funding awards might adapt emergence scoring as a
component in evaluating research proposals. Practically, when making funding decisions concerning
which research projects within a domain to fund, authorities could conceivably calculate the emergence
score for each proposal, based on terms appearing in the corpus of relevant scientific publications.

Fourth, our analysis finds suggestive evidence that the research addressing emerging
technological ideas within a field could have a greater impact on subsequent scientific research in other
fields. We believe that this finding is of particular interest for research policymakers who seek to promote
cross-domain knowledge dissemination. For policymakers, this finding implies that institutional support
for research addressing emerging sub-topics in a given field may have a strong cross-domain knowledge
spillover effect on scientific research in other fields. Taking into account this positive externality can help
policymakers to build a more efficient science policy for supporting impactful research.

Finally, firms can take advantage of our findings for exploring new technological opportunities.
Firms in the sectors where scientific research outcome is the critical input for technological innovation,
such as biotechnology, can identify cutting edge scientific/technological ideas in the particular domain of
interest by referring to the publications with high emergence scores. For example, a firm in a
biotechnology area can explore specific sub-technologies with high prospects as potentially worthy of
their R&D investment.

The present study has several limitations that future research can address and capitalize upon. To
obtain data, we selected and analyzed publications in three science domains— NEDD, SynBio, AutoV’s-
chosen to represent diverse fields. Nonetheless, we recognize that the present results encounter external

validity issues. To gain greater generalizability, our analyses would be replicated on the full corpus of
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publications (i.e., in WoS or Scopus) or in domains that are more mature, as well as in other domains
outside of the three we observed.

Is our finding that papers whose abstract records are rich in cutting edge sub-topics — determined
from research publications in the preceding period — tend to accrue more citations trivial or profound?
On one hand, such accelerating research sub-topics could well fuel a positive feedback loop as other
papers gravitate to those sub-topics. So, high citation seems in order, but we were unaware of prior
research showing that. An alternative hypothesis might be that sub-topics churn, in constant flux, so that
focusing on hot topics has no real merit. We can say that the finding that emergent sub-topics predict
future papers’ citation intensity was a surprise to us.

Also, one could use patent data to analyze the relationship between technological emergence and
“technological impact,” which would complement our study. As studies revealed, the analysis of patent
data and scientific publication data together can be useful in discerning the innovation trajectory of
emerging technologies (Kwon et al., 2016; Qi et al., 2018). However, emergence formulations for patent
data warrant study to check if they behave similarly to publication data. We think that analyses using
patent data can offer insights into the relationship between technological emergence and future
technological impact. Patent citation impact would be a first tier of focus, but exploring further for

associations to innovation in technological application would be of great interest.
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FIGURES

Technology Emergence Indicator
Generation (Former Version)

Term Persistence

Novelty and Growth

Proposition for Each Criteria

A term must appear in at least 3 time periods (years).

A term must appear in at least 7 records in the active period.

The term cannot appear in as many
as 15% of the base period records.

The ratio of records containing the
term in the active period to those in

The term cannot appear in as many
as 15% of the base period records.

The growth of the term should be at
least 1.5 times the growth of the

Technology Emergence Indicator
Generation (New Version)

Term Persistence

Novelty and Growth

the base period must be at least 2:1. total records.

Terms are also required to have
more than one author that does not
share the same record set.

Terms should be used by more than
one organization.

Terms should have an IDF value greater than 1.

Terms should have a lower IDF value in an analysis dataset than in a
comparison (more general) dataset.

EScore for a term is calculated as the sum of (two times the active trend)+ the
recent trend+ the slope.

EScore Generation

EScore Generation

Technology Emergence
Indicator Generation

Technology emergence indicators for records, organizations, and countries
can be generated.

Technology Emergence
Indicator Generation
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Figure 2. Publication-level Emergence Score Calculation
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TABLES

Table 1. Correlation and Summary Statistics of Variables

NEDD In(ES+1) Funding JIF Content Len  In(nRef+1) N authors N country NWCs Pub Yr
In(ES+1) 1.00

Funding 0.00 1.00

JIF -0.06 0.18 1.00

Content Len 0.04 0.04 0.01 1.00

In(nRef+1) 0.05 0.08 0.17 0.31 1.00

N authors -0.09 0.13 0.24 0.08 -0.02 1.00

N country -0.06 0.04 0.12 0.05 0.06 0.28 1.00

NWCs 0.04 0.07 0.25 0.00 0.04 0.03 0.02 1.00

Pub Yr 0.04 0.01 0.00 0.05 0.04 0.03 0.03 -0.01 1.00
Obs. 30711 30711 30711 30711 30711 30711 30711 30711 30711
Mean 2.778 0.869 4.404  5.935049 3.746661 6.357624 1.276318 1.922731  2014.1
Std. Dev 1.50809 0.3374  3.266 4.13467 0.4285905  3.244509 0.5938238 1.122831  0.8109
Min 0 0 0.02 -2.025352 0 1 1 1 2013
Max 5.47581 1 55.87 408.4165 6.240276 80 13 6 2015
SynBio In(ES+1) Funding JIF Content Len  In(nRef+1) N authors N country NWCs Pub Yr
In(ES+1) 1.00

Funding 0.00 1.00

JIF -0.01 0.15 1.00

Content Len 0.07 -0.07 -0.15 1.00

In(nRef+1) 0.11 0.10 0.05 0.37 1.00

N authors -0.08 0.16 0.21 -0.02 -0.01 1.00

N country 0.03 0.05 0.05 0.07 0.04 0.34 1.00

NWCs -0.07 -0.06 -0.11  0.05 -0.02 -0.08 0.00 1.00

Pub Yr -0.03 0.07 0.02 0.01 0.03 0.04 0.04 0.02 1.00
Obs. 2234 2234 2234 2234 2234 2234 2234 2234 2234
Mean 1.07449 0.90466 5.465 6.290889 3.734178 5.323187 1.324978 1.54521 2014.1
Std. Dev 1.07999 0.29376 5.396 4.24071 0.5066499  3.591218 0.7257241  0.9330316 0.8111
Min 0 0 0.026  -0.9444389 0 1 1 1 2013
Max 3.74245 1 44 40.83521 5.583496 58 16 6 2015
Auto V In(ES+1) Funding JIF Content Len  In(nRef+1) N authors N country NWCs Pub Yr
In(ES+1) 1.00

Funding 0.03 1.00

JIF -0.01 0.15 1.00

Content Len 0.01 0.05 0.00 1.00

In(nRef+1) -0.02 0.11 0.25 0.39 1.00

N authors 0.01 0.15 0.08 0.08 0.08 1.00

N country 0.00 0.09 0.07 0.04 0.09 0.40 1.00

NWCs 0.05 0.02 0.19 -0.03 0.05 -0.01 0.01 1.00

Pub Yr 0.04 0.01 0.07 0.04 0.06 0.03 0.01 0.06 1.00
Obs. 3307 3307 3307 3307 3307 3307 3307 3307 3307
Mean 0.59868 0.67554 1.694  10.39185 3.410392 3.690354 1.290293 1.973995 2014.1
Std. Dev 0.82858 0.46824 1.459 5.75738 0.5153439  2.389286 0.6117716  0.9579425 0.8146
Min 0 0 0.045 -0.8903718 0 1 1 1 2013
Max 3.13768 1 41.46 53.34604 5.749393 74 13 6 2015
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Table 2. Baseline Regression

Tech Domain ALL NEDD SynBio AutoV
In(ES+1) 0.0562""" 0.0560™" 0.0304™ 0.0732™"
(0.00244) (0.00254) (0.0134) (0.0134)
Funding 0.0803™" 0.0731™" 0.159™" 0.0503"
(0.00975) (0.0108) (0.0485) (0.0277)
Content Length -0.000971 -0.000588 -0.00354 -0.00221
(0.000756) (0.000778) (0.00445) (0.00266)
In(nRef+1) 0.281"" 0.275™ 0.238™" 0.281™"
(0.00873) (0.00980) (0.0303) (0.0338)
Number of Authors 0.0196™" 0.0189™" 0.0251™" 0.0117
(0.00142) (0.00150) (0.00510) (0.00708)
Number of Affiliations -0.00503 -0.00507 0.00771 0.000813
(0.00333) (0.00349) (0.0172) (0.0141)
Number of Countries 0.0308"" 0.0277"" 0.0235 0.0609™
(0.00699) (0.00758) (0.0315) (0.0244)
JIF 0.105™" 0.113™ 0.0654™" 0.177"
(0.00241) (0.00284) (0.00434) (0.0322)
Number of WCs 0.0167"" 0.0113™" -0.0111 0.0469™"
(0.00385) (0.00428) (0.0177) (0.0178)
AutoV 0.164™"
(0.0287)
SynBio -0.101™"
(0.0168)
Constant -0.705™ -0.446 -1.728™" -0.678
(0.296) (0.295) (0.197) (0.428)
R? 0.382 0.380 0.422 0.351
Adjusted R? 0.377 0.375 0.376 0.310
PubYr FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Period (13-15) (13-15) (13-15) (13-15)
Observations 36252 30711 2234 3307
Robust standard errors in parentheses
"p<0.1," p<0.05 " p<0.01

Note. Country FE: fixed effect for the first author’s country, Dependent Variable: IFWD

36



Table 3. Regression with cluster-robust standard error

Tech Domain ALL NEDD SynBio AutoV
In(ES+1) 0.0562""" 0.0560™" 0.0304" 0.0732™"
(0.00441) (0.00456) (0.0160) (0.0146)
Funding 0.0803™" 0.0731™" 0.159™" 0.0503"
(0.0136) (0.0155) (0.0514) (0.0285)
Content Length -0.000971 -0.000588 -0.00354 -0.00221
(0.00157) (0.00159) (0.00808) (0.00302)
In(nRef+1) 0.281"" 0.275™" 0.238™" 0.281™"
(0.0171) (0.0197) (0.0317) (0.0347)
Number of Authors 0.0196™" 0.0189™" 0.0251™" 0.0117
(0.00169) (0.00179) (0.00484) (0.00825)
Number of Affiliations -0.00503 -0.00507 0.00771 0.000813
(0.00378) (0.00404) (0.0161) (0.0150)
Number of Countries 0.0308"*" 0.0277°" 0.0235 0.0609™
(0.00735) (0.00795) (0.0306) (0.0241)
JIF 0.105™" 0.113™ 0.0654™" 0.177""
(0.00832) (0.00861) (0.00701) (0.0329)
Number of WCs 0.0167 0.0113 -0.0111 0.0469"
(0.0139) (0.0156) (0.0212) (0.0219)
AutoV 0.164™"
(0.0357)
SynBio -0.101™*
(0.0289)
Constant -0.705™ -0.446 -1.728™" -0.678
(0.298) (0.298) (0.227) (0.430)
R? 0.382 0.380 0.422 0.351
Adjusted R? 0.377 0.375 0.376 0.310
PubYr FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Period (13-15) (13-15) (13-15) (13-15)
Observations 36252 30711 2234 3307

Cluster robust standard errors in parentheses

Hokok

*p<0.1," p<0.05,

Note. Country FE: fixed effect for the first author’s country, Dependent Variable: IFWD

p <0.01
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Table 4. Regression excluding zero-citation publications

Tech Domain ALL NEDD SynBio AutoV
In(ES+1) 0.0533"" 0.0533™" 0.0317" 0.0690™"
(0.00241) (0.00251) (0.0133) (0.0135)
Funding 0.0628""" 0.0567"" 0.131™ 0.0440
(0.00971) (0.0107) (0.0504) (0.0281)
Content Length -0.00129" -0.000889 -0.00410 -0.00308
(0.000759) (0.000769) (0.00447) (0.00264)
In(nRef+1) 0.260™" 0.256™" 0.224™" 0.246™"
(0.00881) (0.00973) (0.0332) (0.0336)
Number of Authors 0.0183™" 0.0177"" 0.0229™" 0.0100
(0.00139) (0.00147) (0.00491) (0.00698)
Number of Affiliations -0.00464 -0.00484 0.00389 0.00869
(0.00325) (0.00340) (0.0165) (0.0145)
Number of Countries 0.0286™"" 0.0262"" 0.0292 0.0423"
(0.00688) (0.00745) (0.0310) (0.0242)
JIF 0.101™ 0.108™ 0.0623™" 0.161"
(0.00231) (0.00271) (0.00425) (0.0284)
Number of WCs 0.0157"" 0.0119™" -0.0226 0.0303"
(0.00380) (0.00421) (0.0176) (0.0173)
AutoV 0.1617""
(0.0290)
SynBio -0.0799™"
(0.0167)
Constant -0.772" -0.383 0.556™"" -0.784
(0.302) (0.301) (0.210) (0.462)
R? 0.365 0.367 0.404 0.313
Adjusted R? 0.359 0.362 0.355 0.267
PubYr FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Period (13-15) (13-15) (13-15) (13-15)
Observations 35145 29986 2107 3052

Roust standard errors in parentheses

ok

*p<0.1," p<0.05,

Note. Country FE: fixed effect for the first author’s country, Dependent Variable: IFWD

p <0.01
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Table 5. Regression with an Alternative indicator of Emergence Score

Tech Domain ALL NEDD SynBio AutoV
ES+ 0.138"" 0.150™" 0.0769™" 0.108™"
(0.00878) (0.0101) (0.0294) (0.0229)
Funding 0.0802™"" 0.0735™" 0.157™" 0.0510"
(0.00978) (0.0108) (0.0485) (0.0278)
Content Length -0.000452 0.0000467 -0.00354 -0.00210
(0.000726) (0.000784) (0.00445) (0.00266)
In(nRef+1) 0.285™ 0.279™ 0.238™" 0.278™
(0.00874) (0.00985) (0.0302) (0.0338)
Number of Authors 0.0197"" 0.0191™" 0.0252™" 0.0114
(0.00142) (0.00150) (0.00508) (0.00712)
Number of Affiliations -0.00523 -0.00519 0.00788 0.000453
(0.00334) (0.00350) (0.0172) (0.0141)
Number of Countries 0.0307°*" 0.0275™ 0.0244 0.0623™
(0.00700) (0.00759) (0.0315) (0.0244)
JIF 0.105™" 0.112™ 0.0654™" 0.177""
(0.00240) (0.00282) (0.00435) (0.0322)
Number of WCs 0.0169™" 0.0116™" -0.0107 0.0475™"
(0.00385) (0.00428) (0.0177) (0.0178)
AutoV 0.123™
(0.0287)
SynBio -0.137""
(0.0167)
Constant -0.708"™ -0.451 -1.804™" -0.658
(0.282) (0.287) (0.199) (0.419)
R? 0.377 0.374 0.422 0.349
Adjusted R? 0.372 0.370 0.376 0.308
PubYr FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Period (13-15) (13-15) (13-15) (13-15)
Observations 36252 30711 2234 3307

Robust standard errors in parentheses

ok

*p<0.1," p<0.05,

p<0.01
Note. Country FE: fixed effect for the first author’s country, Dependent Variable: IFWD
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Table 6. Regression without controlling for JIF

Tech Domain ALL NEDD SynBio AutoV
In(ES+1) 0.0430"" 0.0421™" 0.0306" 0.0342™"
(0.00245) (0.00272) (0.0141) (0.00614)
Funding 0.155™" 0.180™" 0.194™" 0.0651"""
(0.00900) (0.0112) (0.0481) (0.0156)
Content Length -0.00465™"" -0.00476™" -0.00865" -0.00118
(0.00115) (0.00153) (0.00460) (0.00150)
In(nRef+1) 0.294™" 0.346™" 0.2777 0.200™"
(0.00739) (0.0108) (0.0297) (0.00896)
Number of Authors 0.0397"" 0.0412™" 0.0388™"" 0.0158™"
(0.00143) (0.00153) (0.00645) (0.00414)
Number of Affiliations -0.00531 -0.00556 0.0233 -0.00000523
(0.00345) (0.00387) (0.0171) (0.00797)
Number of Countries 0.0432™" 0.0473™" 0.0239 0.0519™"
(0.00705) (0.00818) (0.0317) (0.0145)
Number of WCs 0.0580™" 0.0718™" -0.0399" 0.0365™"
(0.00377) (0.00456) (0.0189) (0.00619)
AutoV 0.135™
(0.0201)
SynBio 0.0280
(0.0174)
Constant -1.330™ -1.625™ -2.325™ -0.760™
(0.323) (0.422) (0.177) (0.366)
R? 0.431 0.277 0.330 0.426
Adjusted R? 0.427 0.272 0.278 0.414
PubYr FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Period (13-15) (13-15) (13-15) (13-15)
Observations 46836 33204 2446 11186

Robust standard errors in parentheses
"p<0.1," p<0.05 " p<0.01
Note. Country FE: fixed effect for the first author’s country, Dependent Variable: IFWD

40



Table 7. Regression without control variables

Tech Domain ALL NEDD SynBio AutoV
In(ES+1) 0.0515™" 0.0512""" 0.0411"" 0.0743"""
(0.00272) (0.00280) (0.0156) (0.0154)
AutoV -0.292"
(0.0145)
SynBio -0.0752™
(0.0181)
Constant 1.306™ 1.307™ 1.242™ 1.000™"
(0.00869) (0.00891) (0.0233) (0.0153)
R? 0.035 0.011 0.003 0.007
Adjusted R? 0.035 0.011 0.003 0.007
PubYr FE No No No No
Country FE No No No No
Period (13-15) (13-15) (13-15) (13-15)
Observations 36697 31107 2253 3337

Robust standard errors in parentheses
"p<0.1," p<0.05 " p<0.01

Note. Country FE: fixed effect for the first author’s country, Dependent Variable: IFWD
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Table 8. Regression with Internal and External Citation Count

EScore-Internal Citation Count

EScore — External Citation

Dependent Variables IFWDInt IFWDInt IFWDInt IFWDInt IFWDExt IFWDExt IFWDExt IFWDExt
In(ES+1) 0.161"" 0.160"" 0.139™ 0.104™ 0.0182™" 0.0178™ -0.0107 0.0798™""
(0.00383) (0.00401) (0.0200) (0.0206) (0.00336) (0.00346) (0.0198) (0.0189)
Funding 0.0877""" 0.0988™"" 0.0957 0.0589 0.103™" 0.0794™" 0.253™" 0.0996™
(0.0148) (0.0163) (0.0758) (0.0405) (0.0143) (0.0157) (0.0772) (0.0414)
Content Length -0.000921 -0.00333™ -0.0196™" 0.0125™" -0.00329™ -0.00222 0.00177 -0.00694"
(0.00112) (0.00136) (0.00575) (0.00367) (0.00153) (0.00145) (0.00648) (0.00395)
In(nRef+1) 0.183™" 0.205™" 0.0843™ 0.129™" 0.402™" 0.383™" 0.368™" 0.437™"
(0.0127) (0.0144) (0.0426) (0.0396) (0.0125) (0.0135) (0.0459) (0.0527)
Number of Authors 0.0182"" 0.0181™"" 0.00302 0.0187™ 0.0223™" 0.0207™"" 0.0409™"" 0.0124
(0.00225) (0.00243) (0.00896) (0.00810) (0.00183) (0.00189) (0.00777) (0.0104)
Number of Affiliations -0.0106™ -0.00910" 0.0367 -0.0438™ -0.00444 -0.00433 -0.0145 0.0215
(0.00520) (0.00550) (0.0269) (0.0206) (0.00439) (0.00453) (0.0249) (0.0208)
Number of Countries 0.00779 0.0102 -0.0441 0.0473 0.0470™" 0.0391™" 0.0707 0.0812"
(0.0108) (0.0118) (0.0490) (0.0370) (0.00924) (0.00981) (0.0442) (0.0351)
JIF 0.0905"" 0.0968"" 0.0608™"" -0.0286"" 0.116™" 0.125™" 0.0681™" 0.264™"
(0.00378) (0.00456) (0.00705) (0.0111) (0.00276) (0.00311) (0.00581) (0.0545)
Number of WCs 0.0553""" 0.0737"" -0.193™" -0.00743 0.0126™ -0.00470 0.0916™" 0.0823™"
(0.00609) (0.00675) (0.0238) (0.0237) (0.00497) (0.00533) (0.0252) (0.0266)
AutoV 0.479™" 0.0585
(0.0428) (0.0436)
SynBio -0.0265 -0.193™"
(0.0257) (0.0235)
Constant -0.594™ -0.877"" 0.437 0.853™" -0.295 0.392 -2.614™" -1.809"""
(0.232) (0.184) (0.291) (0.309) (0.581) (0.439) (0.295) (0.323)
R? 0.352 0.374 0.324 0.189 0.322 0.317 0.387 0.366
Adjusted R? 0.347 0.369 0.270 0.137 0.317 0.312 0.338 0.326
TECH ALL NEDD SynBio AutoV ALL NEDD SynBio AutoV
PubYr FE Yes Yes Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Period (13-15) (13-15) (13-15) (13-15) (13-15) (13-15) (13-15) (13-15)
Observations 35360 29959 2204 3197 35360 29959 2204 3197
Robust standard errors in parentheses

ok

*p<0.1," p<0.05,

p <0.01

Note. Country FE: fixed effect for the first author’s country, Dependent Variable: IFWD
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APPENDIX
1. Search Strategy for Publication Records Collection

1.1.Nano-Enabled Drug Delivery (NEDD) (Zhou et al., 2014)

Search with .
Search terms related nano Search in full
a WO0S/Medline/DII®
modules
TS=((deliver* or vehicle* or carrier* or vector* or "control*
Yes No

releas*") Near/4 (Drug* or pharmac))

TS=((deliver* or vehicle* or carrier* or vector* or "control*
releas*" or transduct* or transfect* or transport® or translocat*) Yes No
Near/4 agent*)

TS=((deliver* or vehicle* or carrier* or vector* or "control*

. Yes No
releas*" or transfect*) Near/4 formulation*)

TS=((deliver* or vehicle* or carrier* or vector* or treat* or
therap* or "control* releas*" or transduct* or transfect* or
transport* or translocat*) Near/4 (siRNA or "short interfering
RNA"))

No Yes

TS = (deliver* or vehicle* or carrier* or vector* or treat* or
therap* or "control* releas*" or transduct* or transfect* or Yes No
transport* or translocat*) Near/4 (DNA or gene)

TS = (deliver* or vehicle* or carrier* or vector* or treat* or
therap* or "control* releas*" or transduct* or transfect* or No Yes
transport* or translocat*) Near/4 (Dox or Doxorubicin*)

TS=((deliver* or vehicle* or carrier* or vector* or treat* or
therap* or "control* releas*"or transfect*) Near/4 ("RNA No Yes
interference" or RNAI))

2: Georgia Tech constructed Nano publication (WoS), ®: DIl (Derwent Innovation Index)

1.2.Synthetic Biology (Shapira et al., 2017)

WoS Keyword-based Search Strategy

((TS = (“synthetic biolog*” OR “synthetic dna” OR “synthetic genom*” OR “synthetic *nucleotide” OR
“synthetic promoter” OR “synthetic gene* cluster”) NOT TS = (“photosynthe*”)) OR (TS = (“synthetic
mammalian gene*” AND “mammalian cell”) NOT TS = “photosynthe*”) OR (TS = “synthetic gene*” NOT TS =
(“synthetic gener*” OR “photosynthe*”)) OR (TS = (“artificial gene* network” OR (“artificial gene* circuit*”
AND “biological system”)) NOT TS = “gener*”) OR (TS = (“artificial cell”) NOT TS = (“cell* telephone” OR “cell*
phone” OR “cell* culture” OR “logic cell*” or “fuel cell*” or “battery cell*” or “load-cell*” or “geo-synthetic
cell*” or “memory cell*” or “cellular network” or “ram cell*” or “rom cell*” or “maximum cell*” OR
“electrochemical cell*” OR “solar cell*”)) OR (TS = (“synthetic cell”) NOT TS = (“cell* telephone” OR “cell*
phone” OR “cell* culture” OR “logic cell*” or “fuel cell*” or “battery cell*” or “load-cell*” or “geo-synthetic
cell*” or “memory cell*” or “cellular network” or “ram cell*” or “rom cell*” or “maximum cell*” OR
“electrochemical cell*” OR “solar cell*” OR “photosynthe*”)) OR (TS = (“artificial nucleic acid*” OR “artificial

*nucleotide”)) OR (TS = (“bio brick” or “biobrick” or “bio-brick”)))

43



Journal Based Search Strategy

PLOSONE curated synthetic biology articles from http://collections.plos.org/s/synbio
ACS Synthetic Biology

Trends in Biotechnology volume 33(2)

ACM Journal on Emerging Technologies in Computing Systems volume 11(3)
Biochimica et Biophysica Acta-Gene Regulatory Mechanisms volume 1839(10)
Biochimica et Biophysica Acta-Bioenergetics volume 1837(9)

Natural Computing volume 12(4)

Chemical Engineering Science volume 103

FEBS Letters volume 586(15)

Acta Biotheoretica volume 58(4)

Where applicable, journal issue number is in parenthesis

1.3. Autonomous Vehicles

Keywords Based Search Keywords

TS= (((Self-driving or autonomous or driverless) near/4 (transport* or car or motorcar or vehicle or
automobile or aircraft or airplane or aeroplane))) or TS = (((drone near/2 autonomous) or (uav near/4
autonomous))) or TS = ((robot* near/1 (transport* or mobile or car or motorcar or vehicle or automobile or
aircraft or airplane or aeroplane)) AND (autonomous or self-driving or driverless)) or TS = (“autonomous
driv*”) or TS = (((robot* near/1 (transport* or mobile or car or motorcar or vehicle or automobile or aircraft
or airplane or aeroplane)) OR (drone or uav)) AND (path or planning or planner or plan)) or TS = (((robot*
near/1 (transport* or mobile or car or motorcar or vehicle or automobile or aircraft or airplane or aeroplane))
OR (drone or uav)) AND (2D or 2-D or 3D or 3-D or map or localization or tracking or navigat* or obstacle or

avoid*))
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