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Abstract—The energy consumed by video streaming includes the energy consumed for data transmission and CPU processing, which
are both affected by the CPU frequency. High CPU frequency can reduce the data transmission time but it consumes more CPU energy.
Low CPU frequency reduces the CPU energy but increases the data transmission time and then increases the energy consumption. In
this paper, we aim to reduce the total energy of mobile video streaming by adaptively adjusting the CPU frequency. Based on real
measurement results, we model the effects of CPU frequency on TCP throughput and system power. Based on these models, we
propose an Energy-aware CPU Frequency Scaling (EFS) algorithm which selects the CPU frequency that can achieve a balance
between saving the data transmission energy and CPU energy. Since the downloading schedule of existing video streaming apps is not
optimized in terms of energy, we also propose a method to determine when and how much data to download. Through trace-driven
simulations and real measurement, we demonstrate that the EFS algorithm can reduce 30 percent of energy for the Youtube app, and the
combination of our download method and EFS algorithm can save 50 percent of energy than the default Youtube app.

Index Terms—Energy efficiency, video streaming, cellular networks, smartphone

1 INTRODUCTION

IDEO streaming has become extremely popular on

mobile devices over the last few years. Mobile video
streaming on Youtube, Netflix, has taken 55 percent of the
total mobile data traffic in 2015, and will take 75 percent by
2020 [1]. Since video has much larger data size, a large
amount of energy will be consumed to download video on
smartphones. Thus, it is critical to improve the energy effi-
ciency of video streaming on smartphones.

The energy consumption of video streaming includes the
energy consumed for data transmission and the energy con-
sumed for CPU processing such as decoding. The data trans-
mission energy itself includes the wireless interface energy
and the CPU energy consumed to process packets. To reduce
the data transmission energy, a widely used method is to
download some amount of video content as fast as possible
and then turn the wireless interface off [2], [3], [4]. Since the
CPU energy is related to its working frequency [5], [6], it is pos-
sible to reduce the CPU energy by decreasing its frequency.

A straightforward method to save the energy consump-
tion of video streaming during data transmission is to
reduce the wireless interface energy and the CPU energy
separately. However, these two goals are contradictory
because the TCP throughput is related to the CPU frequency
[7]. High CPU frequency can help increasing the TCP
throughput and thus saving the wireless interface energy
by reducing the data transmission time, but it costs much
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more CPU energy. On the other hand, low CPU frequency
reduces the CPU energy, but makes the CPU a bottleneck
and affects the TCP throughput. It increases the data trans-
mission time and thus increase the wireless interface
energy. To reduce the total energy of video streaming dur-
ing data transmission, the CPU frequency should be prop-
erly setup to achieve a balance between the wireless
interface energy and the CPU energy.

For modern smartphones, the CPU can work at a series of
frequencies. For example, Samsung Galaxy S4 with Cortex-
A15 can work at 10 different frequencies, and Samsung Gal-
axy S5 using Qualcomm Snapdragon 801 can work at 15 dif-
ferent frequencies. The CPU frequency and the voltage
provided to the CPU can be adjusted at run-time. This
feature is called Dynamic Voltage and Frequency Scaling
(DVES). The system driver uses different policies to adjust
the CPU frequency, which are called the CPU governors. For
instance, the default CPU governor used by most smart-
phones is the interactive governor, which adjusts the CPU fre-
quency according to the CPU usage. However, the default
CPU governor tends to set the CPU at high frequency to pro-
vide better performance, which consumes a large amount of
energy. Other CPU governors, such as the powersave gover-
nor, can restrict the CPU frequency to a low value, but they
may increase the data transmission time and energy.

In this paper, we aim to reduce the total energy of mobile
video streaming by properly adjusting the CPU frequency.
Based on real measurement results, we find that the
CPU may become a bottleneck and affect the TCP through-
put when its frequency is low, and then we model the
effects of CPU frequency on TCP throughput and power
consumption. Based on these models, we propose an
Energy-aware CPU Frequency Scaling (EFS) algorithm
which selects the CPU frequency that can achieve a balance
between data transmission energy and CPU energy. Since
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the downloading schedule of existing video streaming apps
is not optimized in terms of energy, we also propose a
method to determine when and how much data to down-
load. The efficiency of EFS algorithm and our downloading
method is verified by trace-driven simulations and real
measurement. Evaluation results show that the EFS algo-
rithm can reduce 30 percent of energy, and the combination
of our download method and EFS algorithm can save 50
percent of energy, when compared to the Youtube app.

The contribution of this paper can be summarized as
follows.

e We are the first to study the relationship between
TCP throughput, system power and CPU frequency
in video streaming. Based on measurement results,
we model the effects of CPU frequency on TCP
throughput and system power.

e We propose an Energy-aware CPU Frequency Scal-
ing algorithm to reduce the total energy for video
streaming. During data transmission, EFS selects the
most energy efficient CPU frequency considering
both CPU energy and data transmission energy.
When there is no data transmission, EFS selects a
low CPU frequency to reduce the energy consump-
tion without affecting the user experience. We fur-
ther propose to integrate our EFS algorithm with
DASH considering unstable network condition.

e We consider the impact of the downloading sched-
ule on energy and combine it with our EFS algorithm
to further improve the energy efficiency of video
streaming.

The rest of this paper is organized as follows. Section 2
introduces the background and our motivation to save
energy using CPU frequency scaling. Section 3 presents the
EFS algorithm and Section 4 presents our energy efficient
downloading schedule for video streaming. The evaluation
results are shown in Section 5. Section 6 introduces the
related work. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, based on real measurement results, we
model the effects of CPU frequency on TCP throughput and
system power. Then we introduce our motivation to save
energy by adjusting CPU frequency.

2.1 Measurement Setup

To model the impact of CPU frequency on TCP throughput
and system power, we collect real measurement data related
to TCP throughput and power consumption under different
CPU frequencies. Our testbed includes a rooted Samsung
Galaxy S5 and a rooted LG Nexus 5x. Samsung Galaxy S5 is
equipped with Qualcomm Snapdragon 801 CPU, which can
work at 15 different frequencies from 300 MHz to 2.45 GHz.
During the measurement, the CPU frequency was tuned on
CPU core 0. LG Nexus 5x is equipped with two types of CPU
cores, which are Cortex-A53 and Cortex-A57. Cortex-A53 is
designed for high energy efficiency, which is used for run-
ning normal tasks and can work on 9 different frequencies
from 384 MHz to 1.44 GHz. Cortex-A57 is designed for high
computation performance, which is usually turned off and
only being activated for computationally intensive tasks. We
tested the Youtube app to watch videos with various resolu-
tions and found that CPU core 0 (Cortex-A53) was running
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while Cortex-A57 was always kept off during video stream-
ing. Thus, CPU core 0 was considered in our testbed. We
used the 3C CPU Manager [8] to set the CPU working at a
specific frequency and used the OS monitor to record the
real time CPU usage.

The TCP throughput measurement was based on
AT&T’s LTE network. We used the Youtube app to watch a
video with constant bit rate (720p) for 1 minute at different
CPU frequencies. At each CPU frequency, we collected the
network trace using TCPDUMP, which recorded the time-
stamp and data size of each packet. All packets with an
interval less than 1 second were considered as one down-
loading period, and we computed the TCP throughput as
the average value among all the downloading periods. Since
the CPU can work at 15 frequencies, running a set of tests
took around 20 minutes. The network condition may vary
within this time period. To reduce the effects of network
fluctuation, our measurements were done at night when
there were fewer users in the LTE network. Also, we mea-
sured the TCP throughput at different frequencies alterna-
tively. For example, we changed the CPU frequency from
300 MHz to 2.45 GHz, and then from 2.45 GHz to 300 MHz
again on Samsung Galaxy S5. This process was repeated for
five times to form one group of tests and the tests were run
for 10 nights to obtain the average TCP throughput at differ-
ent CPU frequencies. To measure the power consumption,
we used the Monsoon power monitor to provide power
directly to the smartphones, which can record the power
value at a sample rate of 5,000 Hz.

2.2 Impact of CPU on TCP Throughput

CPU usage is the percentage of CPU time used to process
instructions, other than waiting. It is used to describe the
load of the CPU. When the CPU usage is above 70 percent, it
may become a bottleneck and affect the user experience. For
smartphones, the operating system itself consumes a large
amount of CPU. Fig. 1 shows the experimental results for
Samsung Galaxy S5. In Fig. 1a, we show the CPU usage of
idle system (all user applications are turned off). As can be
seen, when the CPU frequency decreases, the CPU usage
increases, which may affect the performance of user applica-
tions. Video streaming uses TCP as the transport layer proto-
col, and TCP uses lots of CPU capacity to handle congestion
avoidance issues, buffer and reorder received packets,
request the retransmission of missing packets, etc. On top of
TCP, video streaming has complex application layer opera-
tions, such as moving data from the TCP buffer to the appli-
cation buffer, decoding the received content and displaying
them on screen, and thus requires more CPU capacity.

When the CPU frequency is low, the remaining CPU
capacity may not be enough to process the TCP task and
video streaming, and thus affecting the TCP throughput. To
verify this, we measure the CPU usage and TCP throughput
of two apps: iPerf (without application layer operation) and
Youtube. As shown in Fig. 1, the CPU usage increases when
its frequency decreases, and the TCP throughput decreases
accordingly for both iPerf and Youtube. Also, the TCP
throughput of Youtube is lower than that of iPerf and is more
sensitive to the change of CPU frequency, as it has application
layer operations. We also notice that the TCP throughput of
iPerf increases quickly when the CPU frequency increases
from 0.3 to 1.19 GHz, but becomes almost flat after that,
where the CPU is not a bottleneck. However, video streaming
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Fig. 2. The TCP throughput and power model considering CPU frequency on CPU core 0 (Samsung Galaxy S5).

requires much more CPU capacity and hence the impact of
CPU frequency on throughput is much higher.

2.3 TCP Throughput and Power Model
Here we mainly consider the TCP throughput of video
streaming. The average value of TCP throughput at different
CPU frequency is drawn in Fig. 2a for Samsung Galaxy S5
and Fig. 3a for LG Nexus 5x, and the TCP throughput r(f)
can be described as 7(f) = a2 X 7°(f). The first part 7,4, is
the network throughput which is not related to the variation
of CPU frequency, and is only affected by the signal strength,
location, the number of users nearby, etc. 7,4, may vary from
time to time, however, during a short time period when
watching a video (within 10 minutes in most cases [9]), it is
relatively stable. In the experiment, we measure r,,,, under a
stable network environment and model it using the average
network throughput. More accurate measurement of net-
work throughput can be found in [10], [11], which is out of
the scope of this paper. The second part r*( f) describes the
impact of CPU frequency on TCP throughput, which may
vary with different phone models and the relationship can
be modeled and trained offline. Since it only needs to be
trained once, it does not introduce much overhead. To be
more accurate, the model may rely on other parameters such
as locations (i.e., home or office). For example, the TCP
throughput of our testbed at office is described as r(f) =
19.19 x (—0.12 x f>40.71 x f — 0.1) for Samsung Galaxy S5
and r(f) =18.56 x (—0.85 x f2+2.43 x f—0.73) for LG
Nexus 5x.

In LTE, the wireless interface can work in four states: idle,
promotion, data transmission and fail. Initially the LTE inter-
face is in the idle state when there is no data transmission.

When a data transmission request comes, it enters the pro-
motion state to negotiate with the base station to obtain the
data transmission channels. Then it transfers to the data
transmission state and begins to transmit data. After data
transmission, the LTE interface can not go back to idle
directly. It is forced to stay in the tail state and wait for about
10 seconds before going to the idle state. During the tail state,
the phone still holds the data transmission channel, and can
serve the next data transmission request immediately.

The power consumption of a smartphone is related to
both the cellular interface and the CPU frequency. Since
LTE has four states, we build four power models corre-
spondingly. Our models describe the whole phone’s power
and use CPU frequency as an important parameter. We first
model the idle power (P4 (f)) when there is no data trans-
mission. As the video is decoded and played, we measure
Pig.(f) when the phone plays a piece of locally cached
video, downloaded from Youtube. The power consumption
in idle state as a function of CPU frequency is drawn in
Fig. 2b for Samsung Galaxy S5 and Fig. 3b for LG Nexus 5x.
As can be seen, it generally increases linearly with the
CPU frequency. Note that in some previous work [6], the
CPU power consumption increases super linearly with the
frequency, since they only consider the power of CPU,
where the voltage also changes linearly with the CPU fre-
quency. Different from them, we consider the power con-
sumption of the whole smartphones, where the voltage
provided by the battery is a constant number. As a result,
the power consumption changes linearly with the CPU fre-
quency, similar to [5]. We also measure the power con-
sumption in other states by watching videos using the
Youtube app. Similar to the idle state, the power
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Fig. 3. The TCP throughput and power model considering CPU frequency on CPU core 0 (LG Nexus 5x).

consumption in these three states also has linear relation-
ship with the CPU frequency, but with different slops
(parameters). For example, the relationship between
Pyan(f) and the CPU frequency is shown in Fig. 2¢ for Sam-
sung Galaxy S5 and Fig. 3c for LG Nexus 5x. For our
testbed, the power models of different states are summa-
rized in Table 1, where f is in GHz and power is in mW.

2.4 Motivation

Video streaming apps need to download video content peri-
odically. Most existing mobile video streaming apps use
ON-OFF scheme to download video. Fig. 4a shows a down-
loading trace of Youtube. As can be seen, it downloads
some data and then turns the wireless interface off to save
energy. After a while, when the buffered content is almost
run out, it triggers another round of data downloading.
Thus video streaming can be seen as a set of data download-
ing tasks. In this paper, we aim to find the proper CPU fre-
quency for the data downloading tasks to minimize the
total energy. At first, we use an example of one task to illus-
trate the importance of selecting CPU frequency, as shown
in Fig. 4b. As the downloaded data can be played for a
period of time, we consider the total energy includes data
transmission, tail, and the idle part. Note that the idle part
may not exist if the playback time is shorter than the data
transmission time.

For the original system (Fig. 4b) which uses the default
interactive CPU governor, the CPU always works at very
high frequency during data transmission, and then slowly
degrades to a lower frequency, which is still much higher
than the requirement. Thus, it consumes a large amount of
energy. To save energy, a straightforward method is to use
the highest CPU frequency during data transmission and
then switch to a much lower CPU frequency that is enough
to play the video back after data transmission." This method
is referred to as the MaxMin method (Fig. 4b). Clearly it can
save lots of energy when compared to the original system.
However, using the highest CPU frequency during data
transmission does not always consume minimum energy.

To see the relationship between minimum energy con-
sumption and CPU frequency, we compute the total energy
when downloading different amount of data at a given
CPU frequency on Samsung Galaxy S5, and show the
results in Fig. 4c. The y-axis is the relative energy when com-
pared to the minimum energy consumed to transmit the

1. As the promotion state is short, we assume its CPU frequency
stays the same as the data transmission state, to reduce its frequent
changes.

same amount of data. As can be seen from the figure, setting
the CPU frequency to 2 GHz can minimize the energy when
50 MB is needed. However, setting the CPU frequency to
2 GHz will consume 22 percent more energy if only 1 MB is
needed, and it will consume 38 percent more energy if only
0.1 MB is needed. This is because the wireless interface
works in multiple states (e.g., promotion, data transmis-
sion), and adjusting the CPU frequency not only affects the
data transmission power but also affects the promotion
power. If the data size is very small (i.e., 0.1 MB), the data
transmission time is very short and the promotion energy
accounts for a larger proportion of the total energy com-
pared to the data transmission energy. Then although a
lower CPU frequency may increase the data transmission
energy, it can save more energy by reducing the promotion
energy. If the data size is large, the data transmission energy
dominates the total energy. Then although a higher CPU
frequency may increase the promotion energy, it can save
more energy by reducing the data transmission energy.
Thus, different CPU frequencies should be selected for dif-
ferent data sizes. Based on this finding, we introduce an
Energy-aware CPU Frequency Scaling algorithm to find the
optimal CPU frequency considering the task size and the
network conditions. During data transmission, we will
select the proper CPU frequency to reduce energy and guar-
antee that the data is downloaded in time. Since we use
lower CPU frequency, the downloading time is longer and
the idle time is shorter than the MaxMin method, and thus
more energy can be saved.

We notice that the downloading schedule of existing
video streaming apps (e.g., Youtube in Fig. 4a) is not opti-
mized for energy. Thus, we introduce a method to optimize
the downloading schedule, i.e., how much data to down-
load and when to download. By combining the download-
ing schedule and EFS algorithm, we can save much more
energy than the existing methods.

TABLE 1
Power Model Considering CPU Frequency

State Power (mW) Duration (s)

Idle Poae(f) = 315.7f + 854 -
Samsung Promotion P,o(f) =639.2f + 1206 tpro = 0.91
Galaxy S5 Data trans. Piran(f) = 799.1f + 1241 -

Tail Pi(f) =288.3f + 1119 tail = 10.35

Idle Pae(f) = 404.2f + 702 -
LG Nexus  Promotion Pyro(f) = 639.2f + 1206 toro = 0.91
5x Data trans. Py, (f) = 846.2f + 1471 -

Tail Prit(f) = 288.3f + 1119ty = 10.35
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3 ENERGY-AWARE CPU FREQUENCY SCALING
FOR EXISTING VIDEO STREAMING APPS

In this section, we introduce our Energy-aware CPU Fre-
quency (EFS) algorithm to select the most energy efficient
CPU frequency for existing video streaming apps.

3.1 Problem Statement

The video streaming process can be considered as a set of n
data transmission tasks. Task 7; needs to download d;
data from time ¢;. For an existing video streaming app,
the downloading schedule is determined by the applica-
tion, i.e., d; and ¢; can be considered as given value (see
Fig. 4a). Note that for each task (chunk), the video resolu-
tion can also be different and may be adaptively adjusted
based on the network throughput (., in our model).
Thus our solution can also be directly applied to adaptive
video streaming, such as MPEG-DASH and Adobe HTTP
Dynamic Streaming.

To guarantee that the video is played smoothly, T;
must be downloaded before the next downloading
period. In this paper we also call ¢;;; as the task end of
T;. For the last task T}, the task end is the time when the
whole video is played out. The duration from the start to
the end of a task is called the length of a task. The energy
consumption of task 7; is defined as the total energy con-
sumed from the start to the end, and our goal is to mini-
mize the total energy of all the tasks, which can be
described as minimize )", E(T;).

3.2 The Energy Consumption of One Task

The energy consumption of a task contains the data trans-
mission energy and the CPU energy. Based on the starting
and finishing states of a task, the energy consumption of T;
can be computed in four cases, as illustrated in Fig. 5. In
each case, we assume the CPU works at one frequency dur-
ing data transmission and a lower frequency when there is

no data transmission. During data transmission, we select a
frequency from the CPU frequency set F' to achieve a good
tradeoff between reducing the data transmission energy
and the CPU energy. When the data transmission is done,
the CPU works at a lower frequency f,,,;, which reduces the
CPU energy and also provides satisfactory performance.
We do not consider the case where the data transmission
can not be finished before the task end, since it violates the
downloading schedule and then affects user experience
[12].

Case (a). As shown in Fig. 5a, the LTE interface is in the
idle state at the beginning of 7;. Thus, it enters promotion
state first and pay extra promotion energy. In this case, the
CPU works at relative high frequency (fa) and the TCP
throughput is relative high (r(f,) -), so the phone

= li _tmzl ~tpr
demotes to idle state at the end of the task. The total energy
can be computed using

E(Tz)a - t[m) X P[)m(fu) (f ) X R‘r(m(fa)
+ ttail X Ptail(fmin)
d; (1)
+ (ll - tp'r'u - ttu’il - m) X ]Dz'dlc(fmin)7
d/.
if r(f, —
' r(f ) ~ lz — tiail — tp’r'u

Case (b). The energy consumption of Case (b) is shown in
Fig. 5b. Similar to Case (a), the wireless interface is in the
idle state at the beginning of 7;. However, the TCP through-
put in this case is low as low CPU frequency is selected. At
the end of task T}, the LTE interface is still in the tail state.
The total energy is computed as Eq. (2). In this case the next
task can skip the promotion state and start data transmis-
sion immediately
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BT) =ty X Byl ) + 205 % Pr(£)
d;
+ (lz - tpro - m) X Bail(fmin)a (2)

d;
< r(fe) < Tt — 1
ai pro

if

l i tp'ro

Case (c). As shown in Fig. 5¢, the wireless interface is in high
power state at the beginning, so data transfer starts immedi-
ately. Similar to Case (a), the TCP throughput is assumed to
be high in this case (r(f.) >
computed as

E(Tl)L X an(f(’) + tmzl X Ptrnl(fmzn)

(f()
+ (lz - ttail - %}()) X P)idle(fmin)v (3)

d,

itr(f) > .

Case (d). The energy consumption of Case (d) is shown in
Fig. 5d, where the data transmission starts immediately,
similar to Case (c). But the TCP throughput is assumed to
be low and the LTE interface is still in the tail state at the
task end. The total energy is computed as

d;
E(E)d = @ X Brun(fd)
di
+ (ll - W) X -Plail(fmm)7 (4)
d d;
l (fd) o Z - tfml

For task T;, we compute the energy in all of the four cases.
In each case we search for the CPU frequency that can mini-
mize the energy. Then we define the minimum energy in the
four cases as the min energy of task 7;, as shown

E(T;) € {min E(T;)", minE(T})", min E(T;)°, min E(T})"}
fa7fb7f(:7fd cr
)]

3.3 Energy-Aware CPU Frequency Scaling
Algorithm

For each task, it is easy to obtain the minimum energy as
there are only four cases. However, since the ending of pre-
vious tasks also affects the energy of later tasks, minimizing
the energy of every task individually may not minimize the
total energy of all tasks. To solve this problem, we propose
an energy-aware CPU frequency scaling algorithm which
aims to find the global optimal solution. Our key idea is to
map this problem to the shortest path problem.

We build a directed graph as shown in Fig. 6. For each
task, there are four cases to compute the energy, as illustrated
in Fig. 5, except the first one, which only has two cases since
the wireless interface is in the idle state at the beginning.
Each energy case of a task is mapped to one node in the
graph. For example, the two cases of task 1 map to nodes 1la
and 1b in Fig. 6. Besides these nodes, we add a virtual start
and virtual end node. Next we add links to the graph. The
links between two nodes indicate a possible schedule
between the two tasks. For example, if task 7; is downloaded
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Fig. 6. Mapping the minimum energy of video streaming to the shortest
path problem.

using Case (a), then the LTE interface enters idle state at the
end, so task 7j;; can only be scheduled by Case (a) or Case
(b). Thus, we add directed links from node ia to nodes
(i + 1)a and (i + 1)b. The other links between task nodes are
added similarly. For the two virtual nodes, we add links
from the virtual start node to the two cases of task 1, and add
links from the four cases of task n to the virtual end node.
The weight of a link is the energy consumption of the node at
the end of the link. For the four links from task n to the virtual
end node, their weight is defined as 0. In this graph, we take
into account all power cases of each task and all possible
schedule paths between tasks, so each path from the virtual
start node to the virtual end node will map to one schedule
of all tasks, and vice versa. As a result, the minimum energy
of all tasks corresponds to the shortest path from the virtual
start node to the virtual end node.

Based on the graph we can use the Dijkstra algorithm to
find out the shortest path. Given n tasks, the number of
nodes in the graph is O(4n), and the number of edges is
O(8n). As the time complexity of the shortest path algo-
rithm is O(V + E)logV, where V is the number of nodes and
E is the number of edges, then the time complexity is
O(n logn) in our case. Additionally, as the CPU can work at
|F| discrete frequencies, computing the weight of each link
need to consider all the |F| possibilities. Putting them
together, the time complexity of the EFS algorithm is
O(|F|n logn).

3.4 Minimum CPU Frequency Selection

In previous sections, we assume the minimum CPU fre-
quency without data transmission (f;,;) is a constant value.
In fact, this value is related to the video resolution. To obtain
this minimum CPU frequency under a specific video resolu-
tion, one simple solution is to play videos from the local
storage, and then measure the CPU frequency. However,
this minimum CPU frequency would be smaller than what
is needed. During video streaming, the system also needs to
maintain the buffer and TCP connection even when there is
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no data transmission. There may be some background apps
that will consume extra CPU capacity, so the system will
require a higher CPU frequency.

Algorithm 1. Adaptive Task Downloader

Input: a task 7; with video length L;, maximum network
throughput 7., estimated when downloading the
previous task T;_;

v; = selectBitrate(r,,,,)

Run EFS to determine the CPU frequency f; for T;

Set frequency f;

Lramain = Lz

Leyunk =1 // 1 second video chunk

while Lremuin >0 do

detunk = Vi X Lehunk
tehunk = downloadVideo(v;, Lyeimains Lehunk)
r= dchunk/tchunk
if r < v; then
Tmax = T/T* (fl)
fi = scaleUpFrequency(rq., vi)

Set frequency f;
end
Lremain— = Lehunk

end
function selectBitrate(r,..):
V = getAvailableBitrates()
sort(V) // sort in ascending order
m = size(V)
forj=mto1do
if e > vj then
return v;;
end
end
return vy;
end function
function scaleUpFrequency(Fmaz, v):
F = getAvailableFrequencies()
sort(F) // sort in ascending order
m = size(F)
forj = 1tomdo
7= Tiar X 7°(fj)
if r > vthen
return f;;
end
end
return f,,;
end function

To solve this problem, we use Youtube to stream a video
at the given resolution and pause it to buffer a long period
of video. Then, we tune the CPU frequency and search for
the minimum frequency that can still play the buffered con-
tent smoothly. The results for different video resolutions are
shown in Table 2. Note that during our measurement, the
background apps are still running as normal, and their CPU
capacity requirement has also been considered.

3.5 DASH-Aware EFS Algorithm

Dynamic Adaptive Streaming over HTTP (DASH), also
known as MPEG-DASH, is a widely adopted video stream-
ing protocol to improve user QoE under unstable network
condition [13]. A DASH client can switch between different
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TABLE 2
The Minimum CPU Frequency for Video
Streaming when the Wireless Interface is
Turned Off (Samsung Galaxy S5)

Video resolution Min CPU frequency
360p 422 MHz
480p 652 MHz
720p 652 MHz
1080p 883 MHz

bitrates adaptively based on the network condition, to
ensure that the best-quality video can be downloaded in
time for playback. Specifically, each task (video chunk) is
encoded into multiple copies with a variety of discrete
bitrates V, where a copy with higher bitrate indicates higher
resolution (video quality) but a larger file to download. Sup-
pose 7; is the network throughput measured when down-
loading 7;. The bitrate of 7}, is selected as the highest
bitrate less than r;

v =argmin |v; — ry|. (6)
v €V
;<
Since the highest CPU frequency is used for data transmis-
sion by a traditional DASH client, ; equals to the maximum
network throughput r,,,,. Then the selected bitrate v will be
the highest one allowed by the network condition.

To integrate our EFS algorithm with DASH, we need to
consider the following problems. First, to save energy for
task 7;, our EFS algorithm may reduce the CPU frequency
for data transmission and thus the network throughput is
also reduced. Then the measured network throughput r;
does not equal to the maximum network throughput 7,4,
so r; cannot be used to determine the bitrate of 7;.1. To
solve this problem, we use the TCP throughput model
established in Section 2.3 to reversely estimate 7,,, based
on r;, i.e., Tmaz = 7;/7°(f;), where f; is the CPU frequency
for data transmission of 7;. Then we can use 7,,,, to deter-
mine the bitrate of T} .

The second problem is to consider unstable network con-
dition when downloading a task. If a task is downloaded
using a CPU frequency pre-determined by prior network
measurements, the task may not be downloaded in time
when the network throughput drops, resulting in a rebuff-
ing event [14]. To solve this problem, we propose an adap-
tive task downloader, which keeps monitoring the network
throughput and adaptively adjusts the CPU frequency dur-
ing a download. The pseudocode of the downloader is
shown in Algorithm 1. For task T;, the downloader first
selects the bitrate v; as the largest one allowed by the maxi-
mum network throughput, and determines the download-
ing CPU frequency f; according to the EFS algorithm. It
then starts downloading the video and estimates the net-
work throughput every time a short video chunk (1 second)
is downloaded. If the estimated network throughput is
smaller than the bitrate v;, the video may not be down-
loaded before playback begins. Then the downloader scales
up the CPU frequency to increase the network throughput
to guarantee that the video can be downloaded in time. The
downloader also adaptively adjusts the bitrate if a signifi-
cant change of the network condition is observed (not
included in Algorithm 1 to simplify the presentation). To
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Fig. 7. Average power, execution time and total energy consumption of running the EFS algorithm at different frequencies on Samsung Galaxy S5

and Nexus 5X.

avoid short-term fluctuations, similar to [15], we use the
weighted average network throughput, ie., % () = (1—
8) x 1 (5 —1) 48 X Tpas (). where 7,0, (5) is the measured
throughput of interval j (i.e., downloading the jth video
chunk), r% (j) is the weighted throughput measure of
interval j, and § is a weighting value, which is adaptively
controlled based on the throughput deviation [16]. The
bitrate is selected as the highest one allowed by 7 . (j).
Other bitrate adaptation logics include buffer-based meth-
ods [4], [17], [18] and optimization-based approaches [19],
[20], which can be integrated into our downloader.

To adaptively adjust the video bitrate and the CPU fre-
quency according to the network quality, We run the algo-
rithms (i.e., EFS algorithm, bitrate adaptation algorithms)
every time a significant change of the network condition is
detected (i.e., the estimated max throughput r  (j) is 10
percent higher or lower than the prior one 7%  (j—1)).
Although running our algorithm once does not consume
much energy (e.g., it takes 0.1 seconds to run the algorithm
for a 30-minute video), when the network condition is
unstable, frequently running the algorithms may lead to
remarkable energy waste. Such energy waste is affected by
the CPU frequency, and using a lower CPU frequency to
run the algorithms does not always save energy. Fig. 7
shows the measured results of running our EFS algorithm at
different frequencies on Samsung Galaxy S5 and Nexus 5X.
As can be seen, using a lower CPU frequency consumes less
power, but it takes more time to run the algorithms and may
increase the energy consumption. The optimal CPU fre-
quency that minimizes the energy of running the algorithms
varies depending on devices, which is 1.19 GHz for Samsung
Galaxy S5 and 0.96 GHz for Nexus 5x. Compared to the mini-
mum frequency or the maximum frequency, using the opti-
mal frequency can save energy by 30 to 50 percent. For each
smartphone model, we need to find its optimal CPU
frequency based on offline measurements and tune the CPU
frequency when running the algorithms.

Rendering videos with different bitrates may lead to dif-
ferent GPU energy consumption. Fig. 8 compares the CPU
power and the GPU power when playing videos with dif-
ferent resolutions on LG Nexus 5x. We first measured the
whole phone power of playing videos with screen off. The
CPU power was calculated using a utilization based model
[21], in which the CPU power consumption is linear to the
CPU utilization for a given frequency. Then the remaining
power was the GPU power. As can be seem, the GPU power
is much less than the CPU power. In this paper, we do not
consider saving the GPU energy.

4 ENERGY-AWARE DOWNLOADING SCHEDULE FOR
VIDEO STREAMING

The downloading schedule of video streaming determines
when and how much data to download. However, the
downloading schedule of existing apps is not optimized to
reduce energy. For example, in Fig. 4a, the downloading
data size in most cases is small and therefore the wireless
interface is frequently turned on, which consumes lots of
energy. In this section, we design an energy efficient down-
loading schedule and combine it with our energy-aware
CPU frequency scaling algorithm.

4.1 How Much to Download
Given a video size D, we can estimate its playback time
based on the bitrate of the video. The bitrate v is related to
the video resolution. For example, the 480p video has a
bitrate of 1 Mbps and the 720p video has a bitrate of 2.5 Mbps
[22]. The playback time for the video content is around D/v.
The energy consumed by downloading D size of data may
have four cases, as shown in Fig. 5. The minimum energy of
using Case (a) and Case (b) to download different size of
data is shown in Fig. 9. For both cases, the energy consump-
tion is a straight line increasing with the data size. We call
the data size when E(T)" = E(T)" as g, and it is 1.5 MB in
our case. As the energy of Case (c) and Case (d) is smaller
than that of Case (a) and Case (b) by a constant value (the
promotion energy), they are not considered here.

From Fig. 9, we can see that when the downloading data
size is less than a threshold g, it should be downloaded by

500 T |
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[
< 300 r
£
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360p 480p 720p  1080p
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Fig. 8. The CPU power and the GPU power when playing videos with dif-
ferent resolutions on LG Nexus 5x.
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Fig. 9. The minimum energy to download video content with different
data size.

Case (b), i.e., it should be downloaded with a smaller
throughput for a longer time. When the data size is larger
than g, then it can be downloaded directly or divided into
multiple pieces with each piece smaller than 8. However,
the energy per byte in Case (a) (the slope of the line) is
much smaller than that of Case (b), and thus using Case (a)
to download the same size of data is more energy efficient.
Therefore, when the video content is larger than g, it should
be downloaded in one piece using Case (a). This conclusion
is also consistent with previous works [3], [4]. Considering
the buffer to hold the video content on smartphones is lim-
ited, we set the optimal downloading data size to the maxi-
mum buffer size.

4.2 When to Download

As described in previous section, when the downloading
data size D is larger than g, it is more energy efficient to
download using Case (a), and then the LTE interface enters
the idle state before the task end. To save energy, the LTE
interface should stay in the idle state as long as possible. On
the other hand, the video content should be downloaded
before being used to provide better quality of experience
(QoE). Thus, the next downloading should start a little ear-
lier. The smallest decoding unit in video is called Group of
Pictures (GoP), which has a fixed length according to the
video coding protocol and frame organization [4]. Suppose
this length is g, then the data size within the length of a GoP
is approximately v x g, where v is the bitrate of the video.
As the CPU frequency used in the next downloading period
is not known beforehand, we should consider the worst
case, where the CPU frequency is f,;, and the TCP through-
put is 7(fmin). To guarantee one GoP in the next task is
downloaded before the end of the current task, the interval
between tasks is computed as

vXg
—_—. 7

D
Interval = — — tp,, —
v

5 EVALUATIONS

In this section we use trace-driven simulations to demon-
strate that our energy-aware CPU frequency scaling algo-
rithm can help existing video streaming apps to save
energy, and more energy can be saved using the optimized
downloading schedule. Also, we use power traces mea-
sured on real devices to verify the accuracy of our models.

The trace used for simulation is collected from the Youtube
app running on Samsung Galaxy S5. We watch a group of vid-
eos with different length, data size and resolution, as listed in
Table 3. We mainly consider videos less than 10 minutes since
videos longer than 10 minutes are rare [9]. We collect two
kinds of traces: the network trace, which is used to extract
the downloading time and downloading data size, and the
real-time CPU frequency trace, which is read from the file
“scaling_cur_freq”’. Based on these traces, we mainly
compare the performance of the following methods.

e Youtube: This method is the original Youtube app
using the default interactive CPU governor to adjust
the CPU frequency.

e Youtube+MaxMin: In this method, the Youtube app
uses the highest CPU frequency during data transmis-
sion and the minimum CPU frequency as discussed in
Section 3.4 when there is no data transmission.

e Youtube+EFS: This is the Youtube app which uses
our Energy-aware Frequency Scaling algorithm (EFS) to
adjust the CPU frequency, but the downloading
schedule follows the default Youtube app.

e Ourstreaming+EFS: This method uses the opti-
mized downloading schedule as described in Section 4,
and also uses the EFS algorithm to adjust the CPU
frequency. The buffer size is set to 10 MB.

5.2 Energy Comparison

The energy consumption is calculated based on the energy
model established on Samsung Galaxy S5 and LG Nexus 5x
(see Section 2.3). We first compare the whole phone’s energy
consumption of different methods when watching videos in
Table 3, and show the results in Fig. 10. As can be seen, the
energy consumption generally increases when the video
length increases. This is because we consider the energy
consumption during the whole playback period of the
video. The MaxMin method saves a large amount of energy
and the EFS method saves more. The combination of our-
streaming and EFS can save much more energy than simply
using the EFS algorithm. When the video is longer and the
data size is larger, more energy can be saved, because there
are more downloading tasks and thus more opportunities
to adjust the CPU frequency. On average, the MaxMin
method and the EFS method can save 22.1 and 30.2 percent
more energy than the default Youtube method, respectively.
The combination of ourstreaming and EFS can save
50.6 percent of energy. On top of EFS, our optimized down-
loading schedule helps to save another 29.2 percent energy.
We also notice that the energy consumption of MaxMin and
EFS has similar trends as that of the default Youtube
method, since they use the same downloading schedule.
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Fig. 10. The total energy consumption of different methods (calculated
based on the energy model of Samsung Galaxy S5).

Ourstreaming adjusts the downloading schedule by trans-
mitting multiple tasks together and thus shows a different
trend. The energy of ourstreaming method is mainly related
to the data size and the length of a video.

5.2.1 Model Verification

To verify the power and TCP throughput model (Samsung
Galaxy S5 and LG Nexus 5x), we measure the energy con-
sumption using the Monsoon power monitor. We watch a
video at each CPU frequency and collect a set of measured
power traces. For the MaxMin and EFS methods using the
Youtube downloading schedule, we first compute the opti-
mal CPU frequency in each downloading period using our
method. Then for each downloading period from ¢; to t,
using CPU frequency f, we extract the energy during ¢; and
t, from the power trace when watching the video at CPU fre-
quency f. By combining the energy consumption from multi-
ple traces, we obtain the total energy. For ourstreaming+EFS,
we download the video to a local server, and divide it into
several parts with the data size specified by ourstreaming.
We collect the energy consumption with data transmission
by downloading each piece of the video at specified CPU fre-
quency, and we collect the energy consumption without
data transmission by watching the cached Youtube videos.
Here we show an example of video 2. The energy con-
sumption of different methods based on the real power trace
is shown in Table 4. Considering the default Youtube
method, the results here are close to the simulation results. It
indicates that our power model and TCP throughput model
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TABLE 4
The Energy Consumption of Different Methods
Based on Real Measurement
Method Energy (J) Energy Saving Ratio
Youtube 295.1 -
Galaxv S5 Youtube+MaxMin 230.3 21.9%
Y Youtube + EFS 202.2 31.5%
Ourstraming+EFS 146.2 50.5%
Youtube 278.4 -
Nexus 5x Youtube+MaxMin 209.4 24.8%
Youtube + EFS 190.2 31.9%
Ourstraming+EFS 152.2 45.3%

are pretty accurate, where the energy computed using our
models only has an error rate of less than 8 percent for both
Samsung Galaxy S5 and LG Nexus 5x. From the results based
on real measurement, we can see that compared to the default
Youtube method, MaxMin saves 21.9 percent of energy on
Samsung Galaxy S5 and 24.8 percent of energy on LG
Nexus 5x; EFS saves 31.5 percent of energy and 31.9 percent
of energy, respectively; Ourstreaming+EFS can save
50.5 percent of energy and 45.3 percent of energy. The results
are also consistent with the simulation.

5.3 Impact of CPU Frequency on Energy

To better understand the energy saved by selecting different
CPU frequency, we divide the total time into two time peri-
ods: the period with data transmission (promotion and data
transmission time) and the period without data transmission
(tail and idle time), and then analyze the CPU frequency dis-
tribution of each method in these two time periods. Take
video 3 as an example, the CPU frequency distribution
results are shown in Fig. 11. The length of a bar indicates the
total time that the corresponding method spends in this time
period. Each color inside the bar corresponds to one CPU fre-
quency and the length of this color box indicates the time
duration that the CPU works at the given frequency.

Fig. 11a shows the CPU frequency distribution in the
data transmission period. We can see the default CPU gov-
ernor tends to set the CPU at a relative high frequency to
get better performance, and the MaxMin method always
sets the CPU to the highest frequency. High CPU frequency
is helpful to reduce the data transmission time, but not the
energy. In comparison, EFS searches for the best CPU
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Fig. 11. The CPU frequency distribution using different methods with and w/o data transmission (Samsung Galaxy S5).
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Fig. 12. The energy consumption of different methods during video streaming (Samsung Galaxy S5).

frequency to minimize the data transmission energy and
CPU energy, which is always much lower than the highest
frequency. Though the data transmission time is longer, the
power consumption is significantly reduced and then the
total energy can be reduced.

As Youtube downloads different size of data and uses dif-
ferent downloading intervals, the optimal CPU frequency
used by EFS during data transmission has large variation.
For ourstreaming, it mainly downloads data to fill the whole
buffer and uses a relative stable downloading interval, and
thus the CPU frequency is similar. The last part of video con-
tent has a different size, so it uses a different CPU frequency.
The CPU frequency distribution without data transmission
is shown in Fig. 11b. Both MaxMin and EFS use low CPU fre-
quency. As a comparison, the default CPU governor adjusts
the CPU frequency according to the CPU usage, and thus the
CPU frequency has a large variation. Also, the default gover-
nor prefers to set the CPU frequency to relative high values.
Although the default Youtube method has longer time with-
out data transmission, its power during this period is too
high and thus consumes more energy than EFS. From
another point of view, when the CPU frequency is too high,
many of its processing power is wasted.

Similar to the CPU frequency analysis, we also divide the
total energy of each method into two parts: the energy with
data transmission (including the promotion energy) and the
energy without data transmission (tail energy and idle
energy). The comparison of these two parts of energy of
video 3 is shown in Fig. 12a. As can be seen, the EFS algo-
rithm can help save the data transmission energy, because it
selects a proper CPU frequency. Specifically, Youtube+EFS
saves 13.1 percent of energy and oustreaming+EFS saves
24.2 percent of energy during data transmission. However,
MaxMin consumes a little more energy than the Youtube
method since it always selects the highest (most power con-
suming) CPU frequency. When there is no data transmission,
both MaxMin and EFS can save energy when compared to
the Youtube method, because they all use lower CPU fre-
quency. The EFS method reduces more energy than MaxMin
when there is no data transmission because it reduces the
time to stay in this time period (Fig. 11b).

5.4 Impact of Video Resolution
Since mobile devices have different screen resolutions
and different network speed, video providers generally

provide multiple versions for the same video with differ-
ent resolutions to satisfy users’ requirements. The video
client can select a fixed resolution or use DASH technol-
ogy to dynamically adjust the video resolution. To test
the performance of different methods under different
video resolutions, we collect traces of video 2 with a reso-
lution of 360p, 480p, 720p and 1080p, respectively. The
energy consumption of different methods is shown in
Fig. 12b. Clearly, MaxMin and EFS can save energy under
all resolutions, and ourstreaming+EFS can save more.
Comparing the energy saving ratio of the same method
among different resolutions, we can see that this ratio
decreases when the video resolution increases. When
watching the 360p version of video, MaxMin, EFS and
ourstreaming+EFS can save 33, 36.8 and 52.9 percent of
energy when compared to the Youtube method, respec-
tively. However, these saving ratios drop to 9, 19.7 and
38.1 percent when watching the 1080p video. The reason
is that a video with higher resolution has larger data size
and more pixels, and thus all methods need to select a
higher CPU frequency to download the video on time,
decode and play smoothly. As a result, the difference
between their CPU frequencies and the default system is
smaller and less energy can be saved.

5.5 Evaluation of DASH-Aware EFS Algorithm

DASH technology is used to adaptively adjust the video res-
olution according to the network condition. It is extremely
useful to improve the video quality under an unstable
network environment (e.g., cellular network). The DASH-
aware EFS algorithm (discussed in Section 3.5) is designed
to integrate our EFS algorithm with DASH in order to save
energy while not sacrificing the video quality. We compare
our DASH-aware EFS algorithm with other algorithms
based on network traces collected under an unstable net-
work environment (by downloading files from a mock server
through LTE when walking around a building). Here we
show an example of video 2 which has four available resolu-
tions (bitrates): 360p (0.5 Mbps), 480p (1 Mbps), 720p (2.5
Mbps) and 1080p (5 Mbps). As shown in Fig. 13, Youtube dis-
plays 91 percent of the video at 720p resolution and 9 percent
at 480p with no rebuffering event (rebuffering happens
when the video content cannot be downloaded in time before
the buffer runs out). EFS has much lower resolution (37 per-
cent under 720p) than Youtube and it generates 8 rebuffering
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Fig. 13. Video resolution distribution, energy, and rebuffering during video streaming when DASH is enabled (Samsung Galaxy S5).

events, since EFS computes CPU frequency based on prior
network measurements and thus it cannot react to network
fluctuations timely. Ourstreaming+EFS tends to buffer low-
quality video, leading to 94 percent of the video at 480p
resolution. DASH-aware EFS displays the video at the same
quality as Youtube does in terms of the video resolution dis-
tribution, since DASH is seamlessly integrated in the algo-
rithm. By adjusting the CPU frequency, DASH-aware EFS
can save 19.8 percent energy compared to Youtube.

6 RELATED WORK

The wireless interface, especially the cellular interface con-
sumes a lot of power on smartphones [23]. In cellular net-
works, the wireless interface stays in a high power state
(tail state) after a data transmission, and the tail state wastes
a large amount of energy. To save energy, researchers pro-
pose to aggregate data tasks together to amortize the tail
energy [24]. Similar idea is also used by video streaming
which downloads a group of video content together and
then turn the wireless interface off [2]. However, video
streaming has strict delay constraint and the data should be
downloaded before being used [4], [25]. EVIS uses multiple
networks to provide energy-efficient and quality-guaranteed
video streaming [26], but it does not consider the impact of
CPU frequency to the network throughput.

Video streaming requires lots of CPU processing power
to provide good QoE. The CPU energy is related to its work-
ing frequency [5], [27]. High CPU frequency can provide
better performance but consumes more energy. Many solu-
tions have been proposed to adjust the CPU frequency to
achieve a balance between performance and energy [28],
[29], [30], [31]. They have some interesting results, such as
how to select the CPU frequency to finish the tasks before
their deadline and save energy [31], however, none of them
considers the impact of CPU frequency on TCP throughput.

The energy consumed by video streaming includes data
transmission energy and CPU energy. This makes the prob-
lem more complex, since the TCP throughput is closely
related to CPU frequency [7]. High CPU frequency increases
the CPU energy consumption, while low CPU frequency
increases the data transmission time and may increase the
data transmission energy. Kwak et al. consider the tradeoff
between saving CPU energy and data transmission energy
in [6], and suggest to reduce the CPU frequency when the
network becomes bottleneck. Their intuition is to save the
CPU energy when waiting for the network tasks. However,
they do not consider that the TCP throughput is also
reduced when reducing the CPU frequency. Thus, their

solution may introduce too much delay for video streaming
applications. In this paper, we consider the delay and set
the CPU to a proper frequency that can save energy and
ensure the video content is downloaded before being used.

7 CONCLUSION AND FUTURE WORK

In this paper, we modeled the effects of CPU frequency on
TCP throughput and system power, and studied how to save
energy for video streaming considering the CPU frequency.
During video streaming, high CPU frequency can reduce the
data transmission time but it consumes more CPU energy;
low CPU frequency reduces the CPU energy but increases
the data transmission time and then increase the energy con-
sumption. To address this problem, we proposed an energy-
aware CPU frequency scaling algorithm which can properly
adjust the CPU frequency to reduce the overall energy dur-
ing video streaming. This algorithm can be directly applied
to existing video streaming apps, like Youtube. Also, the
downloading schedule of existing apps is not optimized in
terms of energy. We address this problem by proposing an
energy efficient downloading schedule, which can save
more energy when combined with the EFS algorithm. Based
on trace-driven simulations and real measurement, we dem-
onstrate that EFS can save 30 percent of energy than the
default Youtube app. By using properly selected download-
ing data size and downloading interval in our EFS algorithm,
more than 50 percent of energy can be saved when compared
to the default Youtube app.
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