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Abstract—Although streaming video at a higher bitrate (reso-
lution) can lead to better Quality of Experience (QoE), a larger
amount of data will have to be downloaded and processed on
smartphones and thus consuming more energy. On a moving bus
where the wireless signal is weak, more energy will have to be
spent on maintaining high bitrate video streaming than at a static
environment such as at home or a cafe where the wireless signal
is strong. On the other hand, the user perceived QoE does not
increase too much by watching high bitrate videos in a vibrating
environment (i.e., a moving vehicle), because the perception of
video quality is affected by the environment such as the vibration
or shaking on a moving bus. To address this problem, we
propose to save energy by considering the context (environment)
of video streaming. To model the impact of context, we exploit
the embedded sensors (e.g., accelerometer) in smartphones to
record the vibration level during video streaming. Based on
quality assessment experiments, we collect traces and model
the impacts of video bitrate and vibration level on QoE, and
model the impacts of video bitrate and signal strength on power
consumption. Based on the QoE model and the power model, we
formulate the energy-aware and context-aware video streaming
problem as an optimization problem. We present an optimal
algorithm which can maximize QoE and minimize energy. Since
the optimal algorithm requires perfect knowledge of future tasks,
we further propose an online bitrate selection algorithm. Through
real measurements and trace-driven simulations, we demonstrate
that the proposed algorithm can significantly outperform existing
approaches when considering both energy and QoE.

I. INTRODUCTION

Nowadays, video streaming has become the most popular
application on smartphones. It is expected that mobile video
traffic will account for over 78% of the mobile data traffic
by 2021 [1]. While mobile networks offer very high peak
bandwidth, video streaming over mobile networks still suffers
from rapid and significant network fluctuations. To adapt for
various network conditions, the Dynamic Adaptive Streaming
over HTTP (DASH) protocol has been widely adopted for
video streaming. With DASH, at the server side, the video
is cut into a sequence of video segments, each of which
is encoded with different bitrates, corresponding to different
resolutions. At the client side, based on the estimated network
bandwidth, the video player can dynamically determine the
right bitrate for each segment, such that the video segment
can be successfully downloaded before it is played to maintain
good Quality of Experience (QoE).

Based on DASH, many existing bitrate adaptation algo-
rithms [2, 3, 4, 5] focus on accurately predicting the network

bandwidth, and then use higher bitrates to maintain better QoE.
Although streaming video at a higher bitrate can lead to better
QoE, a larger amount of data will have to be downloaded and
processed on smartphones and hence consuming more energy.
Since smartphones are powered by battery, energy efficiency
is an important issue and energy-efficient video streaming has
received considerable attention. Researchers have proposed
various techniques [6, 7, 8] to reduce the power consumption
of the wireless interface during video streaming, and have
proposed techniques [9, 10, 11, 12] to reduce the energy
consumption of video processing on smartphones.

Different from these energy-saving techniques, we propose
to save energy by considering the context (environment) of
video streaming; i.e., watching video on a moving bus/train
or in a quiet room may have different QoE requirements.
On a moving vehicle where the wireless signal is weak,
it costs much more energy to maintain high bitrate video
streaming than at a static environment such as at home or a
cafe where the wireless signal is strong. On the other hand, the
user perceived QoE may not increase too much by watching
high bitrate videos in a vibrating environment such as on
a moving vehicle. This is because the perception of video
quality is affected by the environment such as the vibration or
shaking on a moving vehicle. The vibration of the smartphone
causes discomforts during video watching, which results in
QoE degradation even with a high resolution. As a result,
in such vibrating environments, reducing the bitrate of video
streaming may significantly reduce the energy consumption,
without degrading the QoE too much, and hence it is important
to find a better tradeoff between QoE and energy considering
the context of video streaming.

To support energy-aware and context-aware video streaming
on smartphones, we have the following challenges: (1) How
to model the impact of context on QoE? (2) How to select
the right bitrate to minimize energy and maximize QoE? To
answer the first question, we recruit twenty users to watch and
rate videos under two contexts; i.e., on a moving vehicle and in
a quiet room. To model the impact of context, we exploit the
embedded sensors (e.g., accelerometer) in smartphones [13]
to record the vibration level during video streaming. Based on
these quality assessment experiments, we collect traces and
model the impacts of video bitrate and vibration level on QoE,
and model the impacts of video bitrate and signal strength on
power consumption. Based on the QoE model and the power
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Fig. 1: (a): Total energy consumption to download 100MB data under various network conditions. (b): Perceived QoE and
energy consumption as functions of bitrate under different environments (a quiet room or a moving vehicle).

model, we formulate the energy-aware and context-aware
video streaming problem as an optimization problem. We first
present an optimal algorithm which can maximize QoE and
minimize energy. Since the optimal algorithm requires perfect
knowledge of future tasks (which will not be available in
practical scenarios), we further propose an online algorithm
for video streaming.

In summary, this paper has the following contributions.

o We are the first to study the impact of context on QoE and

energy consumption for video streaming on smartphones.
We formulate the energy-aware and context-aware video
streaming problem as an optimization problem. We first
propose an optimal solution, which provides a perfor-
mance upper bound. We then propose an online bitrate
selection algorithm.
We evaluate the proposed solutions with extensive trace-
driven simulations. The evaluation results show that our
online bitrate selection algorithm can significantly reduce
the energy consumption while maintaining good QoE.

The rest of the paper is structured as follows. We introduce
the background and motivation in Section II. We present the
system model and the problem formulation in Section III.
Section IV presents our energy-aware and context-aware video
streaming algorithm. In Section V, we present the evaluation
results. Section VI discusses related work and Section VII
concludes the paper.

II. BACKGROUND AND MOTIVATION

In DASH, the video is broken into a sequence of small
HTTP-based segments, where each segment is encoded into
multiple copies with various bitrates. Based on the network
quality, the segment with the right bitrate is used for streaming.

Streaming video at a higher bitrate leads to better quality,
but it requires to download and process more data, and thus
consuming more energy. When the network condition becomes

worse, much more energy will be consumed. Fig. 1(a) shows
the energy consumption of downloading 100MB data under
various network conditions. The measurement was done using
an LG Nexus 5X smartphone using T-Mobile LTE network. In
the measurement, we focus on the power consumption of the
wireless interface. As can be seen, when the signal strength
decreases, the energy consumption significantly increases. For
example, the energy consumption increases from 49J to 193]
as the signal strength changes from -90 dBm to -115 dBm.

One way to reduce the energy consumption is to use the
video segment with low bitrate. However, this may reduce
the video quality and affect the QoE under different contexts.
To understand the impact of context on QoE and energy
consumption for video streaming on smartphones, we con-
ducted some experiments. With approval by our Institutional
Review Board (IRB), twenty subjects were recruited to watch
Youtube videos of various bitrates (resolutions) under two
different contexts (environments): in a quiet room and on a
moving vehicle. After watching each video, the subjects rate
the perceived quality using the nine-grade numerical quality
scale (9 denotes “excellent” and 1 denotes “bad’’) based on the
ITU-T Recommendation P.910 [14], which is then transformed
to the five-level rating scale, using =14+4- 2,
The value is used to represent the QoE. The energy
consumption is calculated using the power models that will be
detailed in Section III-C.

As shown in Fig. 1(b), the QoE does not improve too much
when the resolution is very high (e.g., 720p) for smartphones.
We also see that the QoE varies with context. When the
resolution drops from 1080p to 480p, the QoE degrades much
slower on a moving vehicle (4%) than in a quiet room (12%).
On the other hand, the network condition on a moving vehicle
is worse than that in a quiet room. As a result, reducing the
resolution from 1080p to 480p can save 65% energy when



watching videos on a moving vehicle, while only degrading the
QoE by 4%. Thus, it is important to consider energy, context,
and QoE together for video streaming.

To model QoE considering the context of video streaming,
we can exploit the embedded sensors (e.g., accelerometer) in
smartphones [13]. Based on these sensors, we can differentiate
whether the user is in a quiet room or on a moving vehicle.
We will present the detail of the QoE model and formulate the
context-aware video streaming problem in the next section.

ITII. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the video streaming model, the
QoE model, the power model, and the problem formulation.

A. Video Model

We follow the DASH video streaming process. The video
is broken into a sequence of n HTTP-based segments, where
each segment contains L seconds of video. Each segment has
V versions of copies corresponding to V' different bitrates on
the server side. Based on the network quality, the client re-
quests the segment with the right bitrate level from the server.
More specifically, the video streaming process is modeled as n
data transmission tasks, corresponding to transmitting n video
segments. Let T} denote the ‘" task, and let T? denote the it
task where the video segment is encoded w1th bitrate index j
G e{1,2,...V).

Since many users may skip or early quit during video
streaming, to save bandwidth, similar to Youtube, we use a
buffer threshold (3) to limit the amount of the video data to
be downloaded. S is defined in terms of seconds. Before the
buffered data reaches S, i.e., the video length of downloaded
but not yet viewed video in the buffer is less than S, the video
player can download the next segment. When the buffered
data reaches 3, the player stops the downloading process. It
will wait until the video length of the buffered video is less
than 3 before downloading the next segment. Let B; € [0, 5]
denote the amount of video data in the buffer when the client
requests the i*" segment. To avoid stall events (or rebuffering),
the i*" segment should be completely downloaded before B;
is drained out by the video player at the client.

B. QoE Model

As explained in Section II, the QoE model should consider
the context of video steaming; i.e., watching video on a
moving vehicle or in a quiet room may have different QoE
requirements. The QoE can be modeled with Equation 1,
where @ is the user perceived QoE, @), is the “original”
quality without considering any quality loss, I; is the quality
impairment during data transmission, and I, is the quality
impairment resulting from vibration during video playback.
Similar to [15], @, is modeled with a Michaelis-Menten
function, as shown in Equation 2, where b is the bitrate, and
c1 and ¢z are the model parameters which are determined by
the subjective quality assessment experiments.

Q=Q,—I—1I, (1)

Qo = maxz(1, min(5, +bb)) (2)
It:fr'fr"i_fb'fb (3)
I, =c3+cy-exples-b-v) 4

Similar to [16, 17], the QoE impairment during data trans-
mission can be modeled by Equation 3, considering the impact
of rebuffering events and bitrate changes. Mok et. al [16] has
defined three levels (low, medium, and high) of rebuffering
impacts on QoE by choosing I, and we use their base level

(ie., I, = 0.742), where the rebuffering duration is less
than one second. The rebuffering frequency is defined as
fr = M, where S; is the segment data size, R;

is the downloading throughput, and (z); = maz{z,0}. For
the impact of bitrate change, we adopt the results from [17];
i.e., reducing the bitrate of a segment by 3 Mbps has the same
penalty as one second rebuffering. Thus, we have I, = 0.742
and fp = M where b; and b;_; are the bitrate of the
ith and (i — )31 video segment, respectively.

To model the impact of context, we exploit the embedded
sensors (e.g., accelerometer) in smartphones [13] to record
the vibration level during video streaming. Since we are only
interested in the acceleration associated with the vibration of
the smartphone, we subtract the force caused by gravity from
the raw accelerometer data. The vibration level is formulated
with Equation 5, where m, is the average value of M
acceleration samples in the sampling window and f, is the
average variation between consecutive acceleration samples.
Here we consider m, and f, equally; i.e., o = 0.5. With the
vibration level, we model the impact of vibration impairment
with Equation 4, where b is the bitrate, v is the vibration level,
and ¢z, ¢4 and ¢5 are the model parameters.

v=a-mat(1—0)- fa 5)
1 M
Mg = E mZ:1 \/a%’a,x s a’rzn,.'y i a’rznfz (6)
1 M
fa 5 m Z Z (am,! _‘lﬂm—lg)2 (7)

m=2 \| I={z,y,z}

To determine parameters ¢, ca, ¢3, €4, Cs5, in Equation 2 and
Equation 4, we performed subjective quality assessment ex-
periments with 20 users following ITU-T Recommendations.
The subjects are asked to watch 10 videos downloaded from
Youtube under two contexts: in a quiet room and on a moving
vehicle. Table I summaries the characteristics of the videos.
To demonstrate that the chosen videos cover a wide range
of different types and genres following the standard ITU-T
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Fig. 2: (a): Average spatial and temporal information of the test videos. (b): The “original” quality of a video as a function of

bitrate. (c): The QoE impairment due to vibration.

TABLE I: The test videos.

[ Genre [ Explanation [ Genre | Explanation |
e A fight scene in
Speech Speech on TV Matrix The Matrix (movie)
A battle scene in
Show Allen show Battle The Hobbit (movie)
Doc Documentary Basketball Sport
Big Buck Bunny .
BBB Lo Yacht Moving yacht
(animation)
Sintel Sintel (movie) Goodwood Horseracing

TABLE II: The resolution and bitrate for video dataset.
[ Resolution | Bitrate (Mbps) |

1030p 5.80
720p 3.00
430p 150
360p 0.75
240p 0375
T44p 0.10

P.910 [14], we calculate the temporal and spatial information
of the videos which are shown in Fig. 2(a), where a video
with higher temporal information has more changing scenes,
and a video with higher spatial information has more spatial
details in video frames. As can be seen, the chosen videos
cover a wide range of different types and genres. The videos
are encoded into different bitrate versions at 30 fps, and Table
II shows the bitrate for each resolution. After watching a video,
the subjects rate the perceived quality as discussed in Section
II. In this quality assessment experiment, the videos are locally
cached in the smartphone. Then, there will not be any data
transmission, and we can focus on quantifying the impact of
the vibration factor.

We first consider video watching in a quiet room. The
perceived quality of watching video in a quiet room is used as
the “original” quality (i.e., ), and the results are shown in
Fig. 2(b). As can be seen from the figure,  increases with the
increase of the video bitrate. When the bitrate becomes very
high, further increasing the bitrate will not lead to significant
increase in the QoE, which is consistent with the results
reported in [18, 19]. With the least squares regression method,
we can get the fitted curve, where the parameters  and
are shown in Table III.

To see the impact of vibration on video quality, we measure

TABLE III: The parameters of QoE model.

Coefficient
Value

1.036 | 0.429 | 0.782 | -0.782 | 0.0648

the quality impairment () caused by vibration; i.e., the QoE
difference between watching the same video with the same
bitrate in a quiet room and on a moving vehicle. Based on the
accelerometer data collected by the smartphone during video
watching, and Equation 5, we can calculate the vibration level
(). The relationship among QoE impairment ( ), vibration
level (), and video bitrate ( ) is shown in Fig. 2(c). As shown
in the figure, when the bitrate is very small (e.g., 0.1 Mbps),
the QoE is very poor regardless of the context and thus the
vibration impairment is almost zero. When the vibration level
is very low (i.e., in a quiet room), the quality impairment is
also very small. The quality impairment significantly increases
when the bitrate and the vibration level increase. For example,
when the vibration level increases from 2 to 6, the quality
impairment grows from 0.049 to 0.184 for 1.5 Mbps videos,
and the impairment grows from 0.174 to 0.549 for 5.8 Mbps
videos. With the least squares regression method, we can get
the fitted surface, where the parameters are shown in
Table III.

C. Power Model

To model the power consumption during video streaming,
we collect real measurement data by watching a short video
“Everything Wrong With Transformers” from Youtube with
different bitrates (i.e., 144p, 240p, 360p, 480p, 720p and
1080p) at different signal strengths. We use a rooted LG Nexus
5X smartphone running Android 7.0, which uses T-Mobile
LTE network. Tcpdump is used to collect the network trace,
and the Monsoon power monitor is used to measure the power
level during video streaming. We also collect the wireless
signal strength during video streaming by using an Android
ADB shell dumpsys telephony.registry at the background.
Using the collected data traces, we build two different power
models based on whether there is data transmission (video
downloading) or not.

When there is no data transmission, i.e., the smartphone
plays the buffered video segment, the power consumption
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TABLE IV: The power models.
| State | Power (mW) |

Without data trans. Py (b) = 1121.5 4 24.71b
P; (b, s) = 2301.2 + 439.6D
41.5762 2.96s 0.047s2

With data trans.

(denoted by P) is only affected by the video bitrate. For high
bitrate video, more data will be processed such as decoding
and rendering, and hence more power will be consumed. Since
P, increases with the video bitrate, P, is modeled as a linear
function of the video bitrate. With the least squares regression
method, we can get the fitted curve as shown in Fig. 3(a).

With data transmission, the power consumption (denoted
by P;) is affected by both video downloading and video
processing, and hence it is affected by the bitrate (b) and
the wireless signal strength (s). To model the relationship
between power consumption and these two factors, we use
the quadratic function [20] for curve fitting. Fig. 3(b) shows
the fitted surface, where the R-square value of the fitting is
0.9866, which means a very high accuracy. The results are
summarized in Table IV, where the video bitrate b is in terms
of Mbps, the signal strength s is in terms of dBm and the
power level is in mW.

Energy Consumption of A Task: Based on our power
models, we can calculate the energy consumption of video
streaming which consists of a set of tasks. We calculate the
energy of task T} based on if there is rebuffering.

Case (a) (No rebuffering): When there is no rebuffering,
the energy consumption of task 77 depends on the relationship
among L, 8, B;, and the downloading time g—:, where S; is
the segment data size and R; is the downloading throughput.

If the video length of the downloaded but not yet viewed
video after downloading the i*® segment is less than the buffer
threshold S, ie., (B; — g—: + L) < B3, the video player starts
to download the next segment when T/ is completed. In this
case, the energy of task T7 is the energy consumed during the
period of downloading the i*" segment.

If the buffered data after downloading the i’ segment

(b) P
Fig. 3: The power model considering signal strength and video bitrate.

reaches S, ie., (B; — - + L) > B, the player stops the
downloading process and waits until the buffered video is
less than 3 before downloading the next segment. In this
case, the energy of task 77 includes the energy consumed
during the period of downloading the i*" segment, and the
energy consumed during the waiting period before starting to
download the next segment.

Since the buffered data when the player downloads the i*"
segment is B;, there are k = [B;/L] video segments in the
buffer, where the (i — k)™ video segment is being played.
Thus, we use P;(b;_g,s) to calculate the energy consumed
during the period of downloading the i** segment. If more than
one video segments will be played during the downloading pe-
riod, since the power consumption P; varies with video bitrate,
we calculate the energy consumed during the downloading
period by summing up the energies consumed when different
bitrate videos being played during the downloading period.
Since the waiting time is less than L, i.e., the (i — k)®® video
segment is being played during the waiting period, we use
Py(b;_y) to calculate the energy consumed during the waiting
period. P; and P, can be calculated based on Table IV.

In summary, the energy of task 77 when there is no
rebuffering can be calculated with Equation 8, where (z), =
mazx{z,0}.

Eo(T?) = Py(b_s, s)(%: — ([S,/R./L] - 1)L)
[8:/R:/L]—1

2
g=1

Si

= Pb(bs—k)(Be R,;
Case (b) (Rebuffering): When there is rebuffering, i.e.,
B; < %, we can divide the video downloading into two parts:
B; and % — B;. During the first part, the buffered video data
is playediout; while there is no video playback during the
second part, i.e., rebuffering. We calculate the energy of T7
by summing up the energy consumptions of these two parts.

Pt(bw;—k-l—g: S)L

+dv— By )



Since there is no video playback during the rebuffering, we
use (0 ) to calculate the energy consumed by downloading
video during the rebuffering. Thus, the energy consumption of

when there is rebuffering can be calculated with Equation
9.

(—— ) ©)

In summary, the energy of task can be calculated with

Equation 10.

() i<
( )_{ ()  otherwise (10

D. Problem Formulation

In this subsection, we formalize the energy-aware and
context-aware video streaming problem. To determine the right
bitrate for each video segment (task), we introduce a binary

variable for bitrate selection, where = 1 if the video
segment in task is encoded with bitrate index , i.e., ;
otherwise, = 0. Since only one bitrate is selected for each

task, > =1.

In our energy-aware and context-aware video streaming, the
goal is to minimize the energy consumption and maximize
the QoE, and this can be achieved by selecting the right
bitrate for each video segment downloaded in each task. This
is a multi-objective optimization problem, and we apply the
weighted sum method [21] to formalize it. For task , the
QoE ( ( )) can be calculated with Equation 1, and the
energy consumption ( ()) can be calculated with Equation
10. Then, the optimization problem can be formulated as
follows.

(= -0- )=

minimize

2.2
subject to Z

(1)

=1 v

The objective of this optimization problem is to minimize
energy and maximize QoE under the constraint that only
one bitrate is selected for each task, > = 1. Since

( )and (

) are measured using different units, they are

normalized with the highest bitrate (i.e., ( )and ( )).

is a weighting factor. With a smaller , the optimization

problem puts more weight on maximizing QoE; with a larger
, minimizing energy is more important.
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Fig. 4: Mapping the energy-aware and context-aware video
streaming problem to the shortest path problem.

IV. ENERGY-AWARE AND CONTEXT-AWARE VIDEO
STREAMING

In this section, we present our energy-aware and context-
aware video streaming algorithms. We first present an optimal
algorithm which requires knowledge of all future tasks. Since
it is impossible to have such knowledge in practice, we
present an online bitrate selection algorithm by removing such
assumption.

A. The Optimal Algorithm

For a video streaming consisting of  tasks, our goal is to
find bitrate decisions to minimize the energy and maximize
the QoE. The process of determining the right bitrate for each
video segment (each task) can be mapped to the shortest path
problem as shown in Fig. 4.

Let node and  denote the start and end of the video
streaming process, respectively. Since there are bitrates
available, we add nodes for each task ( ), where
corresponds to the video segment downloaded in  and it is
encoded with bitrate index . As shown in Fig. 4, we add edges
from to each node of , and from each node of to
We add an edge from each node of task  to all  nodes of the
next task. By considering both energy consumption and QoE,
the weight of an edge is defined as ( %J, —(1-) QJ, ).
For edges from nodes of to theirlweights are defined
as 0.

In this graph, we consider all bitrate cases of each task
and all possible schedule paths between tasks, so each path
from to maps to a bitrate selection sequence for the
video streaming, and vice versa. As a result, the shortest path
from to  corresponds to the optimal bitrate selection of
all tasks in the video streaming process such that the QoE is
maximized and the energy is minimized.

Based on the graph, we can use the Dijkstra’s algorithm
to find the shortest path. Given a video streaming process
consisting of  tasks, the graph has (  )nodesand ( )
edges. As the time complexity of the Dijkstra’s algorithm is




« + ) ), where  is the number of nodes and
is the number of edges, the time complexity of the optimal
algorithm is  ( ().

B. The Online Bitrate Selection Algorithm

Since the optimal algorithm requires the complete knowl-
edge of all future tasks, which is impossible in practice, it
can only be served as a performance upper bound. In this
subsection, we propose an online bitrate selection algorithm,
which first estimates the available bandwidth and the vibration
level, and then determines the right bitrate for each video
segment.

To estimate the network bandwidth, similar to [2], we use
the harmonic mean of the downloading throughputs of the past
several segments to estimate the network bandwidth. Since
the network condition varies widely during video streaming,
especially when the user is on a moving vehicle, some
downloading throughputs can be much higher or lower than
others among the past several segments. The harmonic mean
is used to eliminate the impacts of these fluctuations. More
bandwidth estimation methods can be found in [3, 22, 23],
which is out of the scope of this paper.

The vibration level is estimated based on the collected
accelerometer data in a time window from the current time
to the previous 0 2 x , where is small, i.e., 30 seconds.
This vibration level is used to determine the right bitrate for
the video segment. Since the player buffer threshold ( ) is
very small, the downloaded video segment will be played
after very short time. Since the time interval between the
video downloading and the video playback is very small,
the vibration level when downloading video can be used to
estimate the vibration level when the downloaded video is
played.

Based on the estimated bandwidth and the vibration level,
the online bitrate selection algorithm can calculate the energy
consumption ( ()) and the user perceived QoE ( ( ))
when downloading the  video segment encoded with bitrate

. To minimize energy and maximize QoE, we apply the same
J J
objective function of Equation 11,i.e., —4—(1— ) i

The online bitrate selection algorithm is described in Al-
gorithm 1. Due to network variations, a sudden large bitrate
increase may result in more rebuffering events and frequent
bitrate changes, and a sudden large bitrate drop may lead
to severe QoE impairment. To deal with these problems, the
online algorithm first computes a reference bitrate for the

video segment (line 4) based on Equation 11. Then, it
determines the final bitrate, based on the relationship between
the reference bitrate and the bitrate of the previous video
segment.

If the reference bitrate is higher than that of the previous
video segment, the algorithm selects the bitrate which is one
level higher than the bitrate of the previous video segment (line
5-6). This gradual bitrate change reduces the QoE impairment
caused by frequent bitrate changes due to network variations.
If the network bandwidth is consistently high, i.e., the ref-
erence bitrate is higher than the bitrate of the previous video

Algorithm 1: The Online Bitrate Selection Algorithm
Data: , , , the bitrate of previous segment _
Result: Bitrate level  for the video segment

1 Procedure Bitrateselection( )

2 < estimated bandwidth

3 < vibration level calculated with Eq. (5)

4 < argmin g }( i/ -(1-) }', )
5 if _ then / 4

6 \ — _ +1

7 else if then

e max{ | € (£ <)}
/I : data size if video is encoded with bitrate
10 end
11 —

=)

segment for consecutive video segments, the video bitrate will
gradually increase to the reference bitrate.

If the reference bitrate is lower than that of the previous
video segment, the algorithm does not immediately drop to
the reference bitrate to reduce the QoE impairment. Instead,
for each bitrate decrease, the online algorithm searches from
the bitrate of the previous video segment to the reference
bitrate, and finds the first bitrate which can be used to
successfully download the video segment before the buffered
data is drained out (line 7-9). If the network bandwidth is
consistently low, i.e., the reference bitrate is lower than the
bitrate of the previous video segment for consecutive video
segments, the video bitrate will eventually decrease to the
reference bitrate.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the pro-
posed algorithms through extensive trace-driven simulations
and compare it with other existing algorithms.

A. Simulation Setup

We collect traces by watching videos from Youtube us-
ing LG Nexus 5X smartphone. Subjects watch five videos
with various video length and data size, and under different
contexts, as shown in Table V. We collect three kinds of
traces: the network trace by using Tcpdump to extract the
downloading time and the downloading data size, the signal
strength trace by using a ADB shell, and the accelerometer
data in the smartphone. For simulations, each video is cut into
2 seconds segments and is encoded with fourteen bitrates, i.e.,
{0.1, 0.2, 0.24, 0.375, 0.55, 0.75, 1.0, 1.5, 2.3, 2.56, 3.0, 3.6,
4.3, 5.8} Mbps. We set the buffer threshold = 30 seconds.
We equally consider minimizing energy and maximizing QoE;
ie., =005.

Based on these traces, we compare the performance of the
following approaches.

e Youtube: Video streaming with the original Youtube

app at a bitrate of 5.8 Mbps (i.e., with resolution of
1080p).
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TABLE V: Video traces.
[ Video ID | Length (sec) | Data size (MB) [ Avg. vibration |

1 198 65.1 6.83
2 371 123.8 2.46
3 449 140.6 6.61
4 498 152.2 6.41
5 612 173.1 5.23
e FESTIVE [2]: A throughput-based bitrate adaptation

approach, which uses the harmonic mean of the last
20 throughput measurements to estimate the available
bandwidth, and then selects the highest available bitrate
that is just below the estimated bandwidth.

e BBA [24]: A buffer-based bitrate adaptation approach.
BBA uses throughput to control video bitrate at the
startup phase. After reaching the steady state, BBA maps
the current buffer level to bitrate selection using a linear
function.

e Ours: The online bitrate selection algorithm, which
selects the bitrate that minimizes energy and maximize
QoE.

o Optimal: The optimal algorithm, which is impossible in
practice, so it only provides a performance upper bound.

B. Energy Comparison

The energy consumption is calculated based on the power
models shown in Section III-C. As shown in Fig. 5(a), we
compare the energy consumption of different approaches based
on the measured traces. As can be seen in the figure, compared
to Youtube which downloads video segments at bitrate of 5.8
Mbps and consumes the most energy, other four approaches
can save energy due to the bitrate adaptations. FESTIVE
always downloads video segments encoded at the highest
available bitrate that is just below the estimated bandwidth, and
consumes much energy. BBA is more aggressive to download
higher bitrate segments after the buffer reaches the steady state,
i.e., BBA requests the highest bitrate after the buffered data
is larger than the pre-defined upper threshold, thus consumes
much more energy compared to FESTIVE. Compared to
FESTIVE and BBA, our approach can save more energy, since
our approach takes into account the context of video streaming
and download low bitrate videos when the vibration level is
high. As shown in Fig. 5(b), our approach can save 33% energy
on average, which is very close to Optimal (36%), and is much
higher than FESTIVE (7%) and BBA (4%)

(b)
Fig. 5: (a): Comparison of different approaches on energy consumption. (b): Energy saving compared to Youtube. (c): The
base energy and the extra energy for trace 1.
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TABLE VI: The power model validation.

. Measured | Calculated .
Bitrate (Mbps) energy (J) energy (J) Error ratio

5.8 708.13 713.59 0.77%

3.0 648.69 658.62 1.53%

1.5 637.36 622.55 2.32%

0.75 615.69 609.79 0.96%
0.375 608.04 597.75 1.69%

0.1 597.02 589.38 1.28%

The energy saving will be more significant for smartphones
with smaller screen size. As shown in Fig. 5(c), we separate
the total energy consumption during video streaming into two
parts: base energy and extra energy consumption. The base
energy is the energy consumed when all video segments are
encoded with the lowest bitrate, which includes the energy
consumed by the screen and the energy consumed by data
transmission and video processing. Thus, the base energy is
the minimum energy consumption for video streaming. All
video streaming approaches will try to choose bitrates higher
than the lowest bitrate to improve QoE, at the cost of more
energy consumption. The extra energy is the energy difference
between the energy consumed by the selected video streaming
approach and the base energy. As shown in Fig. 5(b), when
only considering the extra energy, our approach can save 77%
energy which is very close to Optimal (80%), and it is much
higher than FESTIVE (15%) and BBA (8%).

Power model validation: To validate the power models, we
compare the energy consumption measured by the Monsoon
power monitor and the energy consumption calculated using
the power models. For each video, we first identify the
download periods from the packet trace obtained by Tcpdump,
and obtain the signal strength during each download period
from the signal strength trace. We then calculate the energy
consumption using the power models shown in Section III-C.
Here we show an example when the signal strength is -90
dBm. The energy consumption for different bitrate videos
based on the real power trace is shown in Table VI. The
calculated energy consumptions are very close to the real
measurements, which indicates that our power models are
pretty accurate. The error ratio is consistently less than 3%,
with an average of 1.43%.

C. QoE Comparison

Fig. 6(a) compares the QoE of all approaches. As can be
seen, Youtube outperforms other approaches for all traces
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Fig. 6: (a): Comparison of QoE for each trace. (b): The average QoE for each approach. (c): QoE degradation compared to

Youtube.
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Fig. 7: The ratio of energy saving over QoE degradation.

because Youtube requests all video segments at the highest
bitrate, and it suffers no quality impairment from bitrate
changes. However, the QoE gap between Youtube and others
is very small. This is because the QoE for video streaming
on smartphones does not improve too much when the video
bitrate is very high, and the perceived quality is highly affected
by the vibrating environment. Compared to other traces, the
QoE for trace 2 is much better for all approaches due to its
low vibration level.

The overall QoE for all approaches is shown in Fig. 6(b). It
can be seen that our approach can achieve very high QoE. This
is because our approach considers the network bandwidth and
the vibration level when selecting video bitrate for each video
segment. Our approach requests video segments encoded at
the most suitable bitrate under the vibrating environment, and
thus gains high QoE. After reaching the steady state, BBA
is aggressive to request higher bitrate videos, and thus gains
higher QoE at the cost of higher energy consumption. Fig. 6(c)
shows the QoE degradation compared to Youtube. Compared
to Youtube, the average QoE degradation of our approach is
3.5%, similar to FESTIVE (3.3%) and BBA (2.1%).

D. Considering both Energy and QoE

For energy-aware and context-aware video streaming, the
goal of our approach is to minimize energy and maximize
QoE. As shown in Fig. 5(a) and Fig. 6(a), for trace 3, our
approach save up to 32% energy at the cost of only 3%
QoE degradation. We use the ratio of energy saving over QoE
degradation to evaluate the overall performance, and the result
is shown in Fig. 7. Since the QoE does not improve too much
when the bitrate is very high for video streaming on smart-
phones and is highly affected by the vibrating environment,
FESTIVE and BBA waste too much energy on maintaining

high bitrate video streaming in the vibrating environment.
As can be seen, on average, our approach achieves better
performance compared to FESTIVE (4.8X) and BBA (5.1X).

VI. RELATED WORK

QoE. There has been considerable research on maximizing
QoE for DASH based video streaming [2, 5, 16, 17, 24, 25,
26, 27]. Researchers [16, 25] have proposed to model QoE for
DASH based video streaming with multiple metrics: average
video bitrate, bitrate changes between successive segments,
and rebuffering event. FESTIVE [2] balances stability and
efficiency, and provides fairness among video players. Rather
than estimating network bandwidth, researchers [5, 24] have
also proposed to use the current buffer level to determine
the video bitrate. Li et al. [26] propose a probe and adapt
bitrate adaptation scheme. Yin et al. [17] propose a control-
theoretic model, which optimizes the user perceived QoE by
considering throughput and buffer information. In Pensieve
[27], a neural network is trained to select the video bitrate
of future video segments. These methods try to maximize
the QoE by considering the quality impairment caused by
data transmission, and none of them considers the quality
impairment caused by vibrations.

Energy Consumption. Researchers have proposed various
techniques [6, 8, 28] to reduce the energy consumption of
the wireless interface during video streaming. Hu et al. [6]
proposed techniques to save energy based on whether the
user tends to watch video for a long time, skip, or early
quit. Hoque et al. [8] proposed a download scheduling al-
gorithm base on crowd-sourced viewing statistics. Wu et al.
[28] proposed an energy efficient video streaming scheme
over heterogeneous networks. There has been some research
[7, 29, 30] on reducing the tail energy in cellular networks
during data transmission. Researchers have also proposed tech-
niques [9, 10, 11, 12, 31, 32] to reduce the energy consumption
of video processing on smartphones. Yang et al. [9] proposed
to save energy for video streaming by adaptively adjusting
the CPU frequency. Geng et al. [10] proposed an energy-
efficient computational offloading scheme for energy-intensive
video processing on multicore-based mobile devices. He et
al. [31] proposed to save energy through dynamic resolution
scaling based on the user-screen distance. Other researchers
[11, 12, 32] focused on dynamically adapting the video bitrate
and the display brightness to save energy. Complementary to



these energy-saving techniques, we take a different approach
to save energy by considering the context of video streaming.

VII. CONCLUSIONS

In this paper, we proposed to save energy by considering
the context of video streaming; i.e., watching video on a
moving vehicle or in a quiet room may have different QoE
requirements. Based on quality assessment experiments, we
collected traces and modeled the impacts of video bitrate and
vibration level on QoE, and modeled the impacts of video
bitrate and signal strength on power consumption. Based on
the QoE model and the power model, we formulated the
energy-aware and context-aware video streaming problem as
an optimization problem. We presented an optimal algorithm
which can maximize QoE and minimize energy. Since the
optimal algorithm requires perfect knowledge of future tasks
which is not available in practice, we further propose an
online bitrate selection algorithm. Through real measurements
and trace-driven simulations, we demonstrate that our online
bitrate selection algorithm can significantly reduce the energy
consumption (33%) with only small QoE degradation (3.5%).
The results also show our algorithm can significantly outper-
form other existing approaches when considering both energy
and QoE.
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