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Abstract—Although streaming video at a higher bitrate (reso-
lution) can lead to better Quality of Experience (QoE), a larger
amount of data will have to be downloaded and processed on
smartphones and thus consuming more energy. On a moving bus
where the wireless signal is weak, more energy will have to be
spent on maintaining high bitrate video streaming than at a static
environment such as at home or a cafe where the wireless signal
is strong. On the other hand, the user perceived QoE does not
increase too much by watching high bitrate videos in a vibrating
environment (i.e., a moving vehicle), because the perception of
video quality is affected by the environment such as the vibration
or shaking on a moving bus. To address this problem, we
propose to save energy by considering the context (environment)
of video streaming. To model the impact of context, we exploit
the embedded sensors (e.g., accelerometer) in smartphones to
record the vibration level during video streaming. Based on
quality assessment experiments, we collect traces and model
the impacts of video bitrate and vibration level on QoE, and
model the impacts of video bitrate and signal strength on power
consumption. Based on the QoE model and the power model, we
formulate the energy-aware and context-aware video streaming
problem as an optimization problem. We present an optimal
algorithm which can maximize QoE and minimize energy. Since
the optimal algorithm requires perfect knowledge of future tasks,
we further propose an online bitrate selection algorithm. Through
real measurements and trace-driven simulations, we demonstrate
that the proposed algorithm can significantly outperform existing
approaches when considering both energy and QoE.

I. INTRODUCTION

Nowadays, video streaming has become the most popular

application on smartphones. It is expected that mobile video

traffic will account for over 78% of the mobile data traffic

by 2021 [1]. While mobile networks offer very high peak

bandwidth, video streaming over mobile networks still suffers

from rapid and significant network fluctuations. To adapt for

various network conditions, the Dynamic Adaptive Streaming

over HTTP (DASH) protocol has been widely adopted for

video streaming. With DASH, at the server side, the video

is cut into a sequence of video segments, each of which

is encoded with different bitrates, corresponding to different

resolutions. At the client side, based on the estimated network

bandwidth, the video player can dynamically determine the

right bitrate for each segment, such that the video segment

can be successfully downloaded before it is played to maintain

good Quality of Experience (QoE).

Based on DASH, many existing bitrate adaptation algo-

rithms [2, 3, 4, 5] focus on accurately predicting the network

bandwidth, and then use higher bitrates to maintain better QoE.

Although streaming video at a higher bitrate can lead to better

QoE, a larger amount of data will have to be downloaded and

processed on smartphones and hence consuming more energy.

Since smartphones are powered by battery, energy efficiency

is an important issue and energy-efficient video streaming has

received considerable attention. Researchers have proposed

various techniques [6, 7, 8] to reduce the power consumption

of the wireless interface during video streaming, and have

proposed techniques [9, 10, 11, 12] to reduce the energy

consumption of video processing on smartphones.

Different from these energy-saving techniques, we propose

to save energy by considering the context (environment) of

video streaming; i.e., watching video on a moving bus/train

or in a quiet room may have different QoE requirements.

On a moving vehicle where the wireless signal is weak,

it costs much more energy to maintain high bitrate video

streaming than at a static environment such as at home or a

cafe where the wireless signal is strong. On the other hand, the

user perceived QoE may not increase too much by watching

high bitrate videos in a vibrating environment such as on

a moving vehicle. This is because the perception of video

quality is affected by the environment such as the vibration or

shaking on a moving vehicle. The vibration of the smartphone

causes discomforts during video watching, which results in

QoE degradation even with a high resolution. As a result,

in such vibrating environments, reducing the bitrate of video

streaming may significantly reduce the energy consumption,

without degrading the QoE too much, and hence it is important

to find a better tradeoff between QoE and energy considering

the context of video streaming.

To support energy-aware and context-aware video streaming

on smartphones, we have the following challenges: (1) How

to model the impact of context on QoE? (2) How to select

the right bitrate to minimize energy and maximize QoE? To

answer the first question, we recruit twenty users to watch and

rate videos under two contexts; i.e., on a moving vehicle and in

a quiet room. To model the impact of context, we exploit the

embedded sensors (e.g., accelerometer) in smartphones [13]

to record the vibration level during video streaming. Based on

these quality assessment experiments, we collect traces and

model the impacts of video bitrate and vibration level on QoE,

and model the impacts of video bitrate and signal strength on

power consumption. Based on the QoE model and the power
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Fig. 1: (a): Total energy consumption to download 100MB data under various network conditions. (b): Perceived QoE and

energy consumption as functions of bitrate under different environments (a quiet room or a moving vehicle).

model, we formulate the energy-aware and context-aware

video streaming problem as an optimization problem. We first

present an optimal algorithm which can maximize QoE and

minimize energy. Since the optimal algorithm requires perfect

knowledge of future tasks (which will not be available in

practical scenarios), we further propose an online algorithm

for video streaming.

In summary, this paper has the following contributions.

• We are the first to study the impact of context on QoE and

energy consumption for video streaming on smartphones.

• We formulate the energy-aware and context-aware video

streaming problem as an optimization problem. We first

propose an optimal solution, which provides a perfor-

mance upper bound. We then propose an online bitrate

selection algorithm.

• We evaluate the proposed solutions with extensive trace-

driven simulations. The evaluation results show that our

online bitrate selection algorithm can significantly reduce

the energy consumption while maintaining good QoE.

The rest of the paper is structured as follows. We introduce

the background and motivation in Section II. We present the

system model and the problem formulation in Section III.

Section IV presents our energy-aware and context-aware video

streaming algorithm. In Section V, we present the evaluation

results. Section VI discusses related work and Section VII

concludes the paper.

II. BACKGROUND AND MOTIVATION

In DASH, the video is broken into a sequence of small

HTTP-based segments, where each segment is encoded into

multiple copies with various bitrates. Based on the network

quality, the segment with the right bitrate is used for streaming.

Streaming video at a higher bitrate leads to better quality,

but it requires to download and process more data, and thus

consuming more energy. When the network condition becomes

worse, much more energy will be consumed. Fig. 1(a) shows

the energy consumption of downloading 100MB data under

various network conditions. The measurement was done using

an LG Nexus 5X smartphone using T-Mobile LTE network. In

the measurement, we focus on the power consumption of the

wireless interface. As can be seen, when the signal strength

decreases, the energy consumption significantly increases. For

example, the energy consumption increases from 49J to 193J

as the signal strength changes from -90 dBm to -115 dBm.

One way to reduce the energy consumption is to use the

video segment with low bitrate. However, this may reduce

the video quality and affect the QoE under different contexts.

To understand the impact of context on QoE and energy

consumption for video streaming on smartphones, we con-

ducted some experiments. With approval by our Institutional

Review Board (IRB), twenty subjects were recruited to watch

Youtube videos of various bitrates (resolutions) under two

different contexts (environments): in a quiet room and on a

moving vehicle. After watching each video, the subjects rate

the perceived quality using the nine-grade numerical quality

scale (9 denotes “excellent” and 1 denotes “bad”) based on the

ITU-T Recommendation P.910 [14], which is then transformed

to the five-level rating scale, using = 1 + 4 · 9 .

The value is used to represent the QoE. The energy

consumption is calculated using the power models that will be

detailed in Section III-C.

As shown in Fig. 1(b), the QoE does not improve too much

when the resolution is very high (e.g., 720p) for smartphones.

We also see that the QoE varies with context. When the

resolution drops from 1080p to 480p, the QoE degrades much

slower on a moving vehicle (4%) than in a quiet room (12%).

On the other hand, the network condition on a moving vehicle

is worse than that in a quiet room. As a result, reducing the

resolution from 1080p to 480p can save 65% energy when
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Fig. 2: (a): Average spatial and temporal information of the test videos. (b): The “original” quality of a video as a function of

bitrate. (c): The QoE impairment due to vibration.

TABLE I: The test videos.

Genre Explanation Genre Explanation

Speech Speech on TV Matrix
A fight scene in

The Matrix (movie)

Show Allen show Battle
A battle scene in

The Hobbit (movie)
Doc Documentary Basketball Sport

BBB
Big Buck Bunny

(animation)
Yacht Moving yacht

Sintel Sintel (movie) Goodwood Horseracing

TABLE II: The resolution and bitrate for video dataset.

Resolution Bitrate (Mbps)

1080p 5.80
720p 3.00
480p 1.50
360p 0.75
240p 0.375
144p 0.10

P.910 [14], we calculate the temporal and spatial information

of the videos which are shown in Fig. 2(a), where a video

with higher temporal information has more changing scenes,

and a video with higher spatial information has more spatial

details in video frames. As can be seen, the chosen videos

cover a wide range of different types and genres. The videos

are encoded into different bitrate versions at 30 fps, and Table

II shows the bitrate for each resolution. After watching a video,

the subjects rate the perceived quality as discussed in Section

II. In this quality assessment experiment, the videos are locally

cached in the smartphone. Then, there will not be any data

transmission, and we can focus on quantifying the impact of

the vibration factor.

We first consider video watching in a quiet room. The

perceived quality of watching video in a quiet room is used as

the “original” quality (i.e., ), and the results are shown in

Fig. 2(b). As can be seen from the figure, increases with the

increase of the video bitrate. When the bitrate becomes very

high, further increasing the bitrate will not lead to significant

increase in the QoE, which is consistent with the results

reported in [18, 19]. With the least squares regression method,

we can get the fitted curve, where the parameters and

are shown in Table III.

To see the impact of vibration on video quality, we measure

TABLE III: The parameters of QoE model.

Coefficient
Value 1.036 0.429 0.782 -0.782 0.0648

the quality impairment ( ) caused by vibration; i.e., the QoE

difference between watching the same video with the same

bitrate in a quiet room and on a moving vehicle. Based on the

accelerometer data collected by the smartphone during video

watching, and Equation 5, we can calculate the vibration level

( ). The relationship among QoE impairment ( ), vibration

level ( ), and video bitrate ( ) is shown in Fig. 2(c). As shown

in the figure, when the bitrate is very small (e.g., 0.1 Mbps),

the QoE is very poor regardless of the context and thus the

vibration impairment is almost zero. When the vibration level

is very low (i.e., in a quiet room), the quality impairment is

also very small. The quality impairment significantly increases

when the bitrate and the vibration level increase. For example,

when the vibration level increases from 2 to 6, the quality

impairment grows from 0.049 to 0.184 for 1.5 Mbps videos,

and the impairment grows from 0.174 to 0.549 for 5.8 Mbps

videos. With the least squares regression method, we can get

the fitted surface, where the parameters are shown in

Table III.

C. Power Model

To model the power consumption during video streaming,

we collect real measurement data by watching a short video

“Everything Wrong With Transformers” from Youtube with

different bitrates (i.e., 144p, 240p, 360p, 480p, 720p and

1080p) at different signal strengths. We use a rooted LG Nexus

5X smartphone running Android 7.0, which uses T-Mobile

LTE network. Tcpdump is used to collect the network trace,

and the Monsoon power monitor is used to measure the power

level during video streaming. We also collect the wireless

signal strength during video streaming by using an Android

ADB shell dumpsys telephony.registry at the background.

Using the collected data traces, we build two different power

models based on whether there is data transmission (video

downloading) or not.

When there is no data transmission, i.e., the smartphone

plays the buffered video segment, the power consumption





Since there is no video playback during the rebuffering, we

use (0 ) to calculate the energy consumed by downloading

video during the rebuffering. Thus, the energy consumption of

when there is rebuffering can be calculated with Equation

9.

( ) = ( − )( − ( − 1) )

+
−∑

( − )

+ (0 )( − ) (9)

In summary, the energy of task can be calculated with

Equation 10.

( ) =

{
( ) if i

i
≤

( ) otherwise
(10)

D. Problem Formulation

In this subsection, we formalize the energy-aware and

context-aware video streaming problem. To determine the right

bitrate for each video segment (task), we introduce a binary

variable for bitrate selection, where = 1 if the video

segment in task is encoded with bitrate index , i.e., ;

otherwise, = 0. Since only one bitrate is selected for each

task,
∑

= 1.

In our energy-aware and context-aware video streaming, the

goal is to minimize the energy consumption and maximize

the QoE, and this can be achieved by selecting the right

bitrate for each video segment downloaded in each task. This

is a multi-objective optimization problem, and we apply the

weighted sum method [21] to formalize it. For task , the

QoE ( ( )) can be calculated with Equation 1, and the

energy consumption ( ( )) can be calculated with Equation

10. Then, the optimization problem can be formulated as

follows.

minimize
∑∑

(
( )

( )
− (1− )

( )

( )
) (11)

subject to
∑

= 1 ∀

The objective of this optimization problem is to minimize

energy and maximize QoE under the constraint that only

one bitrate is selected for each task,
∑

= 1. Since

( ) and ( ) are measured using different units, they are

normalized with the highest bitrate (i.e., ( ) and ( )).
is a weighting factor. With a smaller , the optimization

problem puts more weight on maximizing QoE; with a larger

, minimizing energy is more important.

Fig. 4: Mapping the energy-aware and context-aware video

streaming problem to the shortest path problem.

IV. ENERGY-AWARE AND CONTEXT-AWARE VIDEO

STREAMING

In this section, we present our energy-aware and context-

aware video streaming algorithms. We first present an optimal

algorithm which requires knowledge of all future tasks. Since

it is impossible to have such knowledge in practice, we

present an online bitrate selection algorithm by removing such

assumption.

A. The Optimal Algorithm

For a video streaming consisting of tasks, our goal is to

find bitrate decisions to minimize the energy and maximize

the QoE. The process of determining the right bitrate for each

video segment (each task) can be mapped to the shortest path

problem as shown in Fig. 4.

Let node and denote the start and end of the video

streaming process, respectively. Since there are bitrates

available, we add nodes for each task ( ), where

corresponds to the video segment downloaded in and it is

encoded with bitrate index . As shown in Fig. 4, we add edges

from to each node of , and from each node of to .

We add an edge from each node of task to all nodes of the

next task. By considering both energy consumption and QoE,

the weight of an edge is defined as (
j
i
V
i

−(1− )
j
i
V
i

).

For edges from nodes of to , their weights are defined

as 0.

In this graph, we consider all bitrate cases of each task

and all possible schedule paths between tasks, so each path

from to maps to a bitrate selection sequence for the

video streaming, and vice versa. As a result, the shortest path

from to corresponds to the optimal bitrate selection of

all tasks in the video streaming process such that the QoE is

maximized and the energy is minimized.

Based on the graph, we can use the Dijkstra’s algorithm

to find the shortest path. Given a video streaming process

consisting of tasks, the graph has ( ) nodes and ( )
edges. As the time complexity of the Dijkstra’s algorithm is



(( + ) ), where is the number of nodes and

is the number of edges, the time complexity of the optimal

algorithm is ( ( )).

B. The Online Bitrate Selection Algorithm

Since the optimal algorithm requires the complete knowl-

edge of all future tasks, which is impossible in practice, it

can only be served as a performance upper bound. In this

subsection, we propose an online bitrate selection algorithm,

which first estimates the available bandwidth and the vibration

level, and then determines the right bitrate for each video

segment.

To estimate the network bandwidth, similar to [2], we use

the harmonic mean of the downloading throughputs of the past

several segments to estimate the network bandwidth. Since

the network condition varies widely during video streaming,

especially when the user is on a moving vehicle, some

downloading throughputs can be much higher or lower than

others among the past several segments. The harmonic mean

is used to eliminate the impacts of these fluctuations. More

bandwidth estimation methods can be found in [3, 22, 23],

which is out of the scope of this paper.

The vibration level is estimated based on the collected

accelerometer data in a time window from the current time

to the previous 0 2 ∗ , where is small, i.e., 30 seconds.

This vibration level is used to determine the right bitrate for

the video segment. Since the player buffer threshold ( ) is

very small, the downloaded video segment will be played

after very short time. Since the time interval between the

video downloading and the video playback is very small,

the vibration level when downloading video can be used to

estimate the vibration level when the downloaded video is

played.

Based on the estimated bandwidth and the vibration level,

the online bitrate selection algorithm can calculate the energy

consumption ( ( )) and the user perceived QoE ( ( ))
when downloading the video segment encoded with bitrate

. To minimize energy and maximize QoE, we apply the same

objective function of Equation 11, i.e.,
j
i
V
i

−(1− )
j
i
V
i

.

The online bitrate selection algorithm is described in Al-

gorithm 1. Due to network variations, a sudden large bitrate

increase may result in more rebuffering events and frequent

bitrate changes, and a sudden large bitrate drop may lead

to severe QoE impairment. To deal with these problems, the

online algorithm first computes a reference bitrate for the

video segment (line 4) based on Equation 11. Then, it

determines the final bitrate, based on the relationship between

the reference bitrate and the bitrate of the previous video

segment.

If the reference bitrate is higher than that of the previous

video segment, the algorithm selects the bitrate which is one

level higher than the bitrate of the previous video segment (line

5-6). This gradual bitrate change reduces the QoE impairment

caused by frequent bitrate changes due to network variations.

If the network bandwidth is consistently high, i.e., the ref-

erence bitrate is higher than the bitrate of the previous video

Algorithm 1: The Online Bitrate Selection Algorithm

Data: , , , the bitrate of previous segment −
Result: Bitrate level for the video segment

1 Procedure Bitrateselection( )
2 ← estimated bandwidth

3 ← vibration level calculated with Eq. (5)

4 ← argmin ∈{ }(
j
i
V
i

− (1− )
j
i
V
i

)

5 if − then
6 ← − + 1
7 else if − then
8 ← max { | ∈{ − }& (

j
i

i
≤ )}

9 // : data size if video is encoded with bitrate

10 end
11 ←

segment for consecutive video segments, the video bitrate will

gradually increase to the reference bitrate.

If the reference bitrate is lower than that of the previous

video segment, the algorithm does not immediately drop to

the reference bitrate to reduce the QoE impairment. Instead,

for each bitrate decrease, the online algorithm searches from

the bitrate of the previous video segment to the reference

bitrate, and finds the first bitrate which can be used to

successfully download the video segment before the buffered

data is drained out (line 7-9). If the network bandwidth is

consistently low, i.e., the reference bitrate is lower than the

bitrate of the previous video segment for consecutive video

segments, the video bitrate will eventually decrease to the

reference bitrate.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the pro-

posed algorithms through extensive trace-driven simulations

and compare it with other existing algorithms.

A. Simulation Setup

We collect traces by watching videos from Youtube us-

ing LG Nexus 5X smartphone. Subjects watch five videos

with various video length and data size, and under different

contexts, as shown in Table V. We collect three kinds of

traces: the network trace by using Tcpdump to extract the

downloading time and the downloading data size, the signal

strength trace by using a ADB shell, and the accelerometer

data in the smartphone. For simulations, each video is cut into

2 seconds segments and is encoded with fourteen bitrates, i.e.,

{0.1, 0.2, 0.24, 0.375, 0.55, 0.75, 1.0, 1.5, 2.3, 2.56, 3.0, 3.6,

4.3, 5.8} Mbps. We set the buffer threshold = 30 seconds.

We equally consider minimizing energy and maximizing QoE;

i.e., = 0 5.

Based on these traces, we compare the performance of the

following approaches.

• Youtube: Video streaming with the original Youtube

app at a bitrate of 5.8 Mbps (i.e., with resolution of

1080p).
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Fig. 5: (a): Comparison of different approaches on energy consumption. (b): Energy saving compared to Youtube. (c): The

base energy and the extra energy for trace 1.

TABLE V: Video traces.
Video ID Length (sec) Data size (MB) Avg. vibration

1 198 65.1 6.83
2 371 123.8 2.46
3 449 140.6 6.61
4 498 152.2 6.41
5 612 173.1 5.23

• FESTIVE [2]: A throughput-based bitrate adaptation

approach, which uses the harmonic mean of the last

20 throughput measurements to estimate the available

bandwidth, and then selects the highest available bitrate

that is just below the estimated bandwidth.

• BBA [24]: A buffer-based bitrate adaptation approach.

BBA uses throughput to control video bitrate at the

startup phase. After reaching the steady state, BBA maps

the current buffer level to bitrate selection using a linear

function.

• Ours: The online bitrate selection algorithm, which

selects the bitrate that minimizes energy and maximize

QoE.

• Optimal: The optimal algorithm, which is impossible in

practice, so it only provides a performance upper bound.

B. Energy Comparison

The energy consumption is calculated based on the power

models shown in Section III-C. As shown in Fig. 5(a), we

compare the energy consumption of different approaches based

on the measured traces. As can be seen in the figure, compared

to Youtube which downloads video segments at bitrate of 5.8

Mbps and consumes the most energy, other four approaches

can save energy due to the bitrate adaptations. FESTIVE

always downloads video segments encoded at the highest

available bitrate that is just below the estimated bandwidth, and

consumes much energy. BBA is more aggressive to download

higher bitrate segments after the buffer reaches the steady state,

i.e., BBA requests the highest bitrate after the buffered data

is larger than the pre-defined upper threshold, thus consumes

much more energy compared to FESTIVE. Compared to

FESTIVE and BBA, our approach can save more energy, since

our approach takes into account the context of video streaming

and download low bitrate videos when the vibration level is

high. As shown in Fig. 5(b), our approach can save 33% energy

on average, which is very close to Optimal (36%), and is much

higher than FESTIVE (7%) and BBA (4%)

TABLE VI: The power model validation.

Bitrate (Mbps)
Measured
energy (J)

Calculated
energy (J)

Error ratio

5.8 708.13 713.59 0.77%
3.0 648.69 658.62 1.53%
1.5 637.36 622.55 2.32%
0.75 615.69 609.79 0.96%

0.375 608.04 597.75 1.69%
0.1 597.02 589.38 1.28%

The energy saving will be more significant for smartphones

with smaller screen size. As shown in Fig. 5(c), we separate

the total energy consumption during video streaming into two

parts: base energy and extra energy consumption. The base

energy is the energy consumed when all video segments are

encoded with the lowest bitrate, which includes the energy

consumed by the screen and the energy consumed by data

transmission and video processing. Thus, the base energy is

the minimum energy consumption for video streaming. All

video streaming approaches will try to choose bitrates higher

than the lowest bitrate to improve QoE, at the cost of more

energy consumption. The extra energy is the energy difference

between the energy consumed by the selected video streaming

approach and the base energy. As shown in Fig. 5(b), when

only considering the extra energy, our approach can save 77%

energy which is very close to Optimal (80%), and it is much

higher than FESTIVE (15%) and BBA (8%).

Power model validation: To validate the power models, we

compare the energy consumption measured by the Monsoon

power monitor and the energy consumption calculated using

the power models. For each video, we first identify the

download periods from the packet trace obtained by Tcpdump,

and obtain the signal strength during each download period

from the signal strength trace. We then calculate the energy

consumption using the power models shown in Section III-C.

Here we show an example when the signal strength is -90

dBm. The energy consumption for different bitrate videos

based on the real power trace is shown in Table VI. The

calculated energy consumptions are very close to the real

measurements, which indicates that our power models are

pretty accurate. The error ratio is consistently less than 3%,

with an average of 1.43%.

C. QoE Comparison

Fig. 6(a) compares the QoE of all approaches. As can be

seen, Youtube outperforms other approaches for all traces
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Fig. 6: (a): Comparison of QoE for each trace. (b): The average QoE for each approach. (c): QoE degradation compared to

Youtube.
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Fig. 7: The ratio of energy saving over QoE degradation.

because Youtube requests all video segments at the highest

bitrate, and it suffers no quality impairment from bitrate

changes. However, the QoE gap between Youtube and others

is very small. This is because the QoE for video streaming

on smartphones does not improve too much when the video

bitrate is very high, and the perceived quality is highly affected

by the vibrating environment. Compared to other traces, the

QoE for trace 2 is much better for all approaches due to its

low vibration level.

The overall QoE for all approaches is shown in Fig. 6(b). It

can be seen that our approach can achieve very high QoE. This

is because our approach considers the network bandwidth and

the vibration level when selecting video bitrate for each video

segment. Our approach requests video segments encoded at

the most suitable bitrate under the vibrating environment, and

thus gains high QoE. After reaching the steady state, BBA

is aggressive to request higher bitrate videos, and thus gains

higher QoE at the cost of higher energy consumption. Fig. 6(c)

shows the QoE degradation compared to Youtube. Compared

to Youtube, the average QoE degradation of our approach is

3.5%, similar to FESTIVE (3.3%) and BBA (2.1%).

D. Considering both Energy and QoE

For energy-aware and context-aware video streaming, the

goal of our approach is to minimize energy and maximize

QoE. As shown in Fig. 5(a) and Fig. 6(a), for trace 3, our

approach save up to 32% energy at the cost of only 3%

QoE degradation. We use the ratio of energy saving over QoE

degradation to evaluate the overall performance, and the result

is shown in Fig. 7. Since the QoE does not improve too much

when the bitrate is very high for video streaming on smart-

phones and is highly affected by the vibrating environment,

FESTIVE and BBA waste too much energy on maintaining

high bitrate video streaming in the vibrating environment.

As can be seen, on average, our approach achieves better

performance compared to FESTIVE (4.8X) and BBA (5.1X).

VI. RELATED WORK

QoE. There has been considerable research on maximizing

QoE for DASH based video streaming [2, 5, 16, 17, 24, 25,

26, 27]. Researchers [16, 25] have proposed to model QoE for

DASH based video streaming with multiple metrics: average

video bitrate, bitrate changes between successive segments,

and rebuffering event. FESTIVE [2] balances stability and

efficiency, and provides fairness among video players. Rather

than estimating network bandwidth, researchers [5, 24] have

also proposed to use the current buffer level to determine

the video bitrate. Li et al. [26] propose a probe and adapt

bitrate adaptation scheme. Yin et al. [17] propose a control-

theoretic model, which optimizes the user perceived QoE by

considering throughput and buffer information. In Pensieve

[27], a neural network is trained to select the video bitrate

of future video segments. These methods try to maximize

the QoE by considering the quality impairment caused by

data transmission, and none of them considers the quality

impairment caused by vibrations.

Energy Consumption. Researchers have proposed various

techniques [6, 8, 28] to reduce the energy consumption of

the wireless interface during video streaming. Hu et al. [6]

proposed techniques to save energy based on whether the

user tends to watch video for a long time, skip, or early

quit. Hoque et al. [8] proposed a download scheduling al-

gorithm base on crowd-sourced viewing statistics. Wu et al.
[28] proposed an energy efficient video streaming scheme

over heterogeneous networks. There has been some research

[7, 29, 30] on reducing the tail energy in cellular networks

during data transmission. Researchers have also proposed tech-

niques [9, 10, 11, 12, 31, 32] to reduce the energy consumption

of video processing on smartphones. Yang et al. [9] proposed

to save energy for video streaming by adaptively adjusting

the CPU frequency. Geng et al. [10] proposed an energy-

efficient computational offloading scheme for energy-intensive

video processing on multicore-based mobile devices. He et
al. [31] proposed to save energy through dynamic resolution

scaling based on the user-screen distance. Other researchers

[11, 12, 32] focused on dynamically adapting the video bitrate

and the display brightness to save energy. Complementary to



these energy-saving techniques, we take a different approach

to save energy by considering the context of video streaming.

VII. CONCLUSIONS

In this paper, we proposed to save energy by considering

the context of video streaming; i.e., watching video on a

moving vehicle or in a quiet room may have different QoE

requirements. Based on quality assessment experiments, we

collected traces and modeled the impacts of video bitrate and

vibration level on QoE, and modeled the impacts of video

bitrate and signal strength on power consumption. Based on

the QoE model and the power model, we formulated the

energy-aware and context-aware video streaming problem as

an optimization problem. We presented an optimal algorithm

which can maximize QoE and minimize energy. Since the

optimal algorithm requires perfect knowledge of future tasks

which is not available in practice, we further propose an

online bitrate selection algorithm. Through real measurements

and trace-driven simulations, we demonstrate that our online

bitrate selection algorithm can significantly reduce the energy

consumption (33%) with only small QoE degradation (3.5%).

The results also show our algorithm can significantly outper-

form other existing approaches when considering both energy

and QoE.
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