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ABSTRACT

Many modern schedulers can dynamically adjust their service ca-
pacity to match the incoming workload. At the same time, however,
variability in service capacity often incurs operational and infras-
tructure costs. In this paper, we propose distributed algorithms that
minimize service capacity variability when scheduling jobs with
deadlines. Specifically, we show that Exact Scheduling minimizes
service capacity variance subject to strict demand and deadline
requirements under stationary Poisson arrivals. We also charac-
terize the optimal distributed policies for more general settings
with soft demand requirements, soft deadline requirements, or both.
Additionally, we show how close the performance of the optimal
distributed policy is to that of the optimal centralized policy by
deriving a competitive-ratio-like bound.
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1 INTRODUCTION

Traditionally, the scheduling literature has assumed a static or fixed
service capacity. However, it is increasingly common for modern
applications to have the ability to dynamically adjust their service
capacity in order to match the current demand. For example, when
using cloud computing services, one can modify the total computing
capacity by changing the number of computing instances and their
speeds. Power distribution networks can also adapt the energy
supply to match the energy demand as it changes over time.

The ability to adapt service capacity dynamically gives rise to
challenging new design questions. In particular, how to reduce
the variability of service capacity is of great importance in such
applications since peaks and fluctuations often come with signifi-
cant costs [8, 23, 30]. This trend is especially true for the examples
of cloud computing and power distribution networks mentioned
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above. Cloud content providers prefer stable and predictable service
capacity because on-demand contracts for compute instances (e.g.,
Amazon EC2 and Microsoft Azure) are typically more expensive
than long-term contracts. Additionally, significant fluctuations in
service capacity induce unnecessary power consumption and infras-
tructure strain for computing equipment. The emerging load from
electric vehicle charging stations also leads to similar challenges
in power distribution networks. Charging stations require stabil-
ity in power consumption because fluctuations and large peaks in
power use may strain the grid infrastructure and result in a high
peak charge for the station operators. The stations also prefer pre-
dictable power consumption because purchasing power in real time
is typically more expensive than purchasing in advance.

Thus, in situations where service capacity can be dynamically
adjusted, an important design goal is to reduce the costs associated
with variability in the service capacity while maintaining a high
quality of service. In this work, we study this problem by minimizing
the variance of the service capacity in systems where jobs arrive
with demand and deadline requests. Our focus on service capacity
variance is motivated by applications such as cloud computing
and power distribution networks, where contracts often explicitly
depend on service capacity variability, e.g., if a charging station
participates in the regulation market, then costs/payments depend
explicitly on the variance of the total capacity [3, 29].

The goal of this work is to design distributed scheduling algo-
rithms that minimize the variance of service capacity subject to
service quality constraints, e.g., meeting job deadlines and satisfy-
ing job demands. Our focus is on distributed scheduling algorithms
since implementing centralized algorithms is likely to be prohibi-
tively slow and costly in large-scale service systems today. From
cloud computing to power distribution networks, such systems
are unlikely to be able to access global information about every
job and server in the system when deciding the service rate of
each job/server. Therefore, distributed algorithms are a necessity
to enable large-scale implementation.

Related work. Although the literature on deadline scheduling
is large and varied, optimal algorithms are only known for cer-
tain niche cases. Examples of classic scheduling algorithms in-
clude Earliest Deadline First [16, 24] and Least Laxity First [16],
among others. Beyond these classic algorithms, more modern al-
gorithms simultaneously perform admission control and service
rate control in order to exploit the flexibility arising from soft de-
mand or deadline requirements, e.g., [9, 22, 28]. The trade-offs
between service quality and costs associated with variability have
become a focus only recently, but already many interesting results
have appeared, contrasting the performance of classical algorithms,
e.g., [7, 12, 13]. These issues have also been studied extensively
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in the areas of cloud computing, where algorithms have been pro-
posed to control the variability of power usage in data centers using
deferrable jobs (see [11, 15, 21, 32] and the references therein), and
power distribution systems, where algorithms have been designed
to control the variability of energy supply using deferrable loads
(see [6, 10, 14, 25, 31] and the references therein).

However, the problem of designing optimal algorithms that min-
imize service capacity variability while achieving high service qual-
ity has remained open. Solving this problem is a challenging task
due to the heterogeneity of jobs (diversity in service requests) and
the size of the state and decision space (numbers of possible con-
figurations on existing job profiles and the set of feasible control
policies). In particular, the only optimality results that have been
obtained to this point are in niche settings such as a static single
server system [5, 26, 27] and deterministic worst-case settings [2].

Contributions of this paper. In this paper, we adapt tools from
optimization and control theory to characterize the optimal dis-
tributed policies in a broad range of settings. Further, we provide
a competitive-ratio-like bound that describes the gap between the
performance of an optimal distributed policy and the performance
of an optimal centralized policy.

Specifically, we identify the optimal distributed algorithms in
settings with stationary Poisson job arrivals under strict service
requirements (Theorem 3.1), soft demand requirements (Theorem
3.2), soft deadline requirements (Theorem 3.3), and soft demand and
deadline requirements (Theorems 3.4). In the most classical setting
of strict service requirements, we show that Exact Scheduling is
the optimal distributed algorithm that minimizes the stationary
variance of the service capacity. Exact Scheduling is a classical
algorithm that works by finishing job service exactly at their dead-
lines using a constant service rate [8, 13, 20]. In the settings of
soft service requirements, we derive the optimal algorithms that
minimize a weighted sum of the service capacity variance and the
expected penalties for unsatisfied demands and/or deadlines. These
algorithms all have closed-form expressions. Moreover, they all
use constant service rates and can be considered as generalizations
of Exact Scheduling which make use of varying forms of rate and
admission control.

Given that our results focus on distributed algorithms, an impor-
tant question is how these distributed algorithms perform compared
with the optimal centralized algorithm, which may provide better
performance in theory but requires prohibitively expensive com-
putation to find in practice. To answer this question, we derive a
closed-form bound on the performance degradation due to using
a distributed algorithm in the setting of strict service constraints
(Corollary 4.2). The bound suggests that, when sojourn times are
homogeneous (the sojourn time is a deterministic variable), Exact
Scheduling attains the optimal trade-off between service capac-
ity variance and total remaining demand variance achievable by
any centralized algorithms. Note that our proof technique (Lemma
4.1) is novel in its use of optimal control and has the potential
for providing competitive-ratio-like bounds for other scheduling
policies. We also contrast distributed algorithms with centralized
algorithms in the context of one of our motivating examples, elec-
tric vehicle charging. Using public data from an Electric Vehicle
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Charging Testbed [17], we show that the optimal distributed al-
gorithms we propose also achieve comparable performance with
existing centralized algorithms in practice.

2 SYSTEM MODEL

The goal of this paper is to characterize online scheduling policies
for systems with the ability to dynamically adjust their service
capacity which minimize the service capacity variability while
satisfying the service requirements (demands and deadlines) of in-
dividual jobs. Specifically, we consider a setting in which a service
system may scale its capacity in order to serve jobs that randomly
arrive with heterogeneous service requirements. We use a contin-
uous time model and use t € Ry to denote a point in time. Each
job, indexed by k € V = {1,2,...}, is characterized by a random
arrival time ay, a random service demand oy, and a random sojourn
time 7 > oy.! In order to formulate the scheduler design problem,
we introduce the arrival profiles, the service profiles, the system
dynamics, and the design objectives below.

Arrival profiles. We represent the set of arriving jobs as a marked
point process {(ay; o, 7k )}k ey in Ry X S, where the arrival times
ay € Ry are the set of points, and the service requirements (o, 73 ) €
S are the set of marks. We assume that the marked point process is
a stationary independently marked Poisson Point Process, which is
defined by an intensity function A on Ry and a mark density mea-
sure f(o,7) on S [1]. This also implies that {(ax; ok, 7x) ke is a
Poisson point process on R XS with an intensity function A f (o, 7).
Intuitively, A /A f(o,7)dodr is the rate at which jobs with service
requirement (o,7) € A C S arrive. We additionally assume that S
is bounded, and S C {(o,7): 7 > 0 > 0}.

Service profiles. The service system works on each job k € V
with a service rate ri(t) > 0. To meet the service demand of job k,
its service rate must satisfy

/m re(t)dt = oy, kewV. 1)

k
Moreover, the service rate can take non-zero values only when
the job sojourns in the system, i.e., ri(t) = 0 for any ¢ ¢ [ay, ar +
7% ). Without loss of generality, ri.(f) = 1 is assumed to be the
maximum rate: that is, r; () can take any values in [0, 1], and rp <
1 corresponds to throttling down service speed at the expense
of prolonging job completion times. The above sojourn time and
maximum rate constraints can be jointly written as

0 < r(t) < 1(sefap, ap+mp)}> @)

where 14 denotes the indicator function for an event A. The service
capacity is defined by

HORIEAON
keV
which is associated with the instantaneous resource consumption
of the service system.

System dynamics. At each time t € Ry, job k has a remaining
demand xi(t) = o} — fatk re(h)dh and a remaining time y(¢) =
ay + 1y —t. The set of remaining jobs in the system can be considered
as a point process {(x(t), yx (1))} in R?, where the first coordinate

The condition 75 > oy requires each job k € V' to have a service demand oy that
is no more than the maximum service that can be provided within its sojourn time 7.
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(x) represents the remaining demand and the second coordinate
(y) represents the remaining time. At time ¢, each point (job) has
velocity —ry(t) in the direction of x-coordinate and velocity —1 in
the direction of y-coordinate.

Scheduling algorithms. An online scheduling algorithm decides
the service rates in real-time without using the future job arrival
information. For scalability, we additionally restrict our attention
to the following form of distributed algorithms which decide the
service rate of a job only using its own information:

rie(t) = u(xe (1), yi (1) 2 0. ®)

Here, u : R4 XR — R is a deterministic function of the remaining
demand xi(t) and the remaining time y(¢) of each job k at time .
The policy u also uniquely determines the vector field in the space
of the point process {(xg (), y(¢))}, which in turn defines the
velocity (—u(x, y), —1) of points (jobs) at (x, y) (see Fig 1).

Under any policy of the form (3), the set of jobs remaining in
the system converges to a stationary distribution. This stationary
distribution is a spatial Poisson point process with an intensity
function A(x, y) satisfying

0= -yt ) + Ay FAT Y, @)
x Y

where x is the remaining demand and y is the remaining time.
Because the remaining job distribution converges to a stationary
distribution, P(t) also converges to a stationary distribution. 2

Design objectives. We consider minimizing service capacity vari-
ability for the settings with hard service constraints, soft demand
constraints, soft deadline constraints, and soft demand and deadline
constraints. In the case of strict demand constraints, we consider the
following optimization problem:

minimize

w(1)(2)(3)(4)
where Var(P) is a functional of u and A(c, 7) that satisfies (4). The
optimization problem (5) has demand constraints as in (1) and dead-
line constraints as in (2). The constraint (3) restricts the optimization
variable u to be distributed.

In the case of soft demand constraints, we relax the demand
requirements (1) and penalize the amount of unsatisfied demands
with a unit cost §. In this setting, we consider balancing the service
capacity variance and the expected cost for unsatisfied demands:

Var(P) + E[6U], 6)

Var(P), (5)

minimize
u:(2)(3)(4)
where U(t) = Y ke:ap+7,.=¢ Xk (t) is the total amount of remaining
demands for jobs departing at time t.
In the case of soft deadline constraints, we relax the deadline
requirements (2) and penalize deadline extensions with a unit cost
€. Let 7} be the actual sojourn time of job k € V, i.e.,

0< rk(t) < l{te[ak,ak+f’k)}' (7)

So 7} — 71 is the duration of deadline extension, and let

W(t) = Z

keV:ap+ip=t

T — Tk

2In this paper, we use the following notation: E[ P] and Var(P) represent the stationary
mean and variance of a stochastic process {P(t)}er,, , while E[P(¢)] and Var(P(t))
represent the instantaneous mean and variance of P(¢) at time ¢.
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be the total duration of deadline extensions for jobs departing at
time t. We consider balancing the service capacity variance and the
expected cost for deadline extensions:

minimize Var(P) + E[eW]. (8)
u:(1)(3)(4)(7)

In the case of soft demand and deadline constraints, we relax both
the demand requirements (1) and the deadline requirements (2).
The system needs to pay a cost of § for each unit of unsatisfied
demands and a cost of € for each unit of deadline extensions. In
this setting, we consider balancing the service capacity variance,
the expected cost for unsatisfied demands, and the expected cost

for deadline extensions:

minimize Var(P) + E[6U] + E[eW]. 9)
w:(3)(4)(7)

Generalizing above cases, we consider the case where the unit
costs for unsatisfied demands and deadline extensions are heteroge-
neous among jobs. Let §; be the unit cost for the unsatisfied demand
of job k € V, and €; be the unit cost for its deadline extension.
The set of jobs is assumed to be a independently marked Pois-
son point process {(ax; o, Tk, Ok €k )} key» Where the unit costs
(8k»€x) € R? are the additional marks of jobs. We assume that
(k. €) are identically distributed random variables with a joint
density measure f(3)f(e) (hence independent from each other as
well) and are also statistically independent from (ag; oy, 71 ). To ac-
count for the heterogeneous costs, we consider scheduling policies
of the form

ri(t) = a(xr(t), yr(t), O, €x) = 0 (10)

and the optimization problem

min Var(P(t))+E
a:(7)(10)

D @ +E| D el -]
keV: keV:
ap+ip=t ap+ip=t

(11)

Motivating examples. The general model we have defined is
meant to give insight into the design trade-offs that happen in
applications with dynamic capacity, e.g., electric vehicle charging,
cloud content providers, and resource allocations in the Internet of
Things. Note that we are not modeling a specific application, rather
we are exploring the trade-offs in a simple, general model.

However, to highlight the connection to our motivating exam-
ples, consider first the case of electric vehicle charging [17]. In this
case, each job k € V corresponds to an electric vehicle with an
arrival time ag, an energy demand oy, and a sojourn time 7. At
each time ¢, the charging station provides vehicle k with a charging
rate of ri(¢) by drawing P(t) = ) ey ri(t) amount of power from
the grid. When doing so, a stable resource usage is highly desirable
because fluctuations and large peaks in P(¢) can lead to a high peak
charge or strain the grid. Moreover, a predictable resource use is
also important when purchasing energy from the day-ahead mar-
ket, whose price is lower and less volatile than that of the real-time
market.

In the case of cloud content providers, each job k € V corre-
sponds to a task (requested to the cloud or data centers) with an
arrival time ag, a work requirement oy, and an allowable waiting
time 7. The service system works on job k with speed r(t) using
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P(t) = Y ey rr(t) number of computers (or amount of power).
Given a good estimate of the future resource use, a cloud content
provider can reserve resources through a long-term contract, whose
price is lower and less volatile than that of a short term contract.
This motivates its scheduling algorithm to achieve a predictable
resource use.

3 OPTIMAL DISTRIBUTED ALGORITHMS

In this section, we characterize optimal distributed scheduling poli-
cies in a wide range of settings, starting with the simplest and
moving toward the most complex. To begin, we focus on strict
service requirements and show that Exact Scheduling minimizes
the stationary variance of the service capacity (Section 3.1). Relax-
ing the demand requirements, we show that a variation of Exact
Scheduling minimizes the weighted sum of both the stationary vari-
ance of the service capacity and the penalty for unsatisfied demand
(Section 3.2). Relaxing the deadline requirements, we show that
a different variation of Exact Scheduling minimizes the weighted
sum of both the stationary variance of the service capacity and the
penalty for demand extension (Section 3.2). Finally, we consider
the case when both the demand and deadline requirements are
relaxed (Section 3.4) and show that the optimal policy becomes
significantly more complex in this case. However, note that all
the optimal algorithms we identify are in closed-form, and thus
provide clear interpretations and insights regarding the optimal
trade-offs between reducing service capacity variability, satisfying
the demands, and meeting deadlines. Moreover, it is interesting
that the minimum service capacity variance is achieved by these
simple algorithms, all of which are extremely scalable and easy to
implement.

3.1 Strict demand and deadline requirements

We first consider the case of strict service requirements and show a
closed-form formula of the algorithm that minimizes the stationary
variance Var(P). To do so, it is worth noting that peaks in service
rate amplifies the uncertainties in the future arrivals, which in turn
produces large variance in P(t) = Y ri(t) = X ulxr (1), yr(t)).
In order to minimize peaks subject to strict service requirements,
one can consider using a flat service rate, which is achieved by the
scheduling policy

X .
—, ify >0,

u(x,y)=1Y (12)
0, otherwise.

This policy is known as Exact Scheduling and works by finishing all
jobs exactly at their deadlines using constant service rates (Figure
1). It is also highly scalable because it is distributed and asynchro-
nous, and it does not require much computation or memory use.
Although existing literature has analyzed its performance in various
settings [8, 13, 19, 20], optimality guarantees have been difficult
to obtain. In this section, we show that Exact Scheduling mini-
mizes the variance of service capacity under time-homogeneous
job arrivals and strict demand constraints.
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Figure 1: Exact scheduling depicted in the space of remaining
demand x and remaining timey.

THEOREM 3.1. Exact Scheduling (12) is the optimal solution of (5)
and achieves the optimal value

Var(P) = AE [0—2] .
T

Theorem 3.1 shows the achievable performance improvement
by performing distributed service capacity control. If no control
is applied, then r(t) = 14, 4, +0,](t), and the stationary mean
and variance of P(t) is E(P) = Var(P) = AE|o]. By performing a
distributed service capacity control, the stationary variance can be
reduced by

AE

[Q e [0, AE[o]]

where 7 — o is the slack time (the amount of time left at job comple-
tion if a job is served at its maximum service rate since it arrives).

3.2 Soft demand requirements

In this section, we relax the strict service requirements and charac-
terize the optimal algorithm under soft demand constraints. Specif-
ically, we consider the setting when the system needs to pay a
cost ¢ for each unit of unsatisfied demands. When this unit cost
is sufficiently large, we recover the case of strict service require-
ments. The optimal algorithm we identify is a generalization of
Exact Scheduling:

1)
s ifESEandy>0,

<

u(x,y) = (13)

NS e R

x 6

if —> —andy >0,
y 2

0, otherwise.

We call (13) Rate-limited Exact Scheduling. This policy essentially
sets §/2 to be the upper bound on service rates. Under this policy,
job k receives its full service demand if o} < &7y /2 but otherwise
is provided with the partial service demand of §7y /2. To the best
of our knowledge, this algorithm has not been proposed in the
existing literature.

THEOREM 3.2. Rate-limited Exact Scheduling (13) is the optimal
solution of (6) and achieves the optimal value

0_2

28| T g w3 %)1{%%}]' o

Theorem 3.2 shows the performance improvement gained by
relaxing the demand requirements. If some demands do not have to
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be satisfied, the stationary variance can be reduced from Var(P) =
E [0'2 / r] to (14) when the service rate threshold is set to its optimal
value §/2. We prove Theorem 3.2 in the Appendix.

3.3 Soft deadline requirements

The previous section shows the optimal algorithm under soft de-
mand requirements. In this section, we characterize the optimal
distributed algorithm under soft deadline requirements. Specifically,
we consider the setting when the system needs to pay a cost € for
each unit of deadline extensions. When the unit cost is sufficiently
large, this setting recovers the case of strict deadline requirements.
The resulting optimal algorithm is again a generalization of Exact
Scheduling:

f, ifES\/Eandy>O,

Ve 1550}

(15)

otherwise.

We call (15) Deadline-extended Exact Scheduling. This policy essen-
tially sets an upper bound +/€ to service rates. Under this policy,
the deadline of job k is extended when o} > +ery.

THEOREM 3.3. Deadline-extended Exact Scheduling (15) is the op-
timal solution of (6) and achieves the optimal value

o2
AE[?I{%S\/E}+(2\/EO-_6T)1{%>\/Z}]' (16)

Theorem 3.3 shows the performance improvement by relaxing
the deadline requirements. If all deadline must be satisfied, then
Var(P) = AE [0'2/ T] is the minimum stationary variance achiev-
able. If some deadlines do not have to be satisfied, the stationary
variance can be further reduced at the expense of paying a penalty
for deadline extensions. The service rate threshold +/e strikes the
optimal balance between minimizing Var(P) and minimizing E[e W].
We proof Theorem 3.3 in the Appendix.

3.4 Soft demand and deadline requirements

In this section, we consider relaxing both demand and deadline re-
quirements simultaneously and characterize the optimal distributed
algorithm. Specifically, we consider the setting when the system
needs to pay a cost § for each unit of demand extensions and a
cost € for each unit of deadline extensions. This setting recovers all
previous settings as special cases.

Recall from previous sections that, under soft demand require-
ments, the optimal policy uses a constant service rate and reject
partial demand requests if 0/ > §/2. Meanwhile, under soft soft
deadline requirements, the optimal policy uses a constant service
rate and extends the deadline if o/7 > +/e. These two special cases
suggest that, under soft demand and deadline requirements, a con-
stant service rate combined with demand rejection and deadline
extension may work well. This is indeed the case, as formalized
below.
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Unit cost for deadline extensions (¢)
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Figure 2: The decision space of the optimal policy for (9). For
job profiles with a service demand o, a sojourn time 7, and
costs (4, €), the optimal policy performs either one of the fol-
lowing using constant service rates: satisfy both the job de-
mand and deadline (white region), meet deadlines with un-
satisfied demand (dark gray region), or satisfy the demand
by extending the deadline (light gray region).

THEOREM 3.4. The optimal solution of (9) is
)
R ify>0and§$min{§,\/g},

ux,y) =

[NCH NS PR

, ify>0and£>§and§£\/g, {7
y

Ve 1(x>0)s otherwise,

and it achieves the optimal value

2 St

g
S 71{%Smm{%,vz}}+5(f‘I)H%%zﬁ} (&)

+ (2\/20'—61’) 1{‘;>\/€>‘3}]'

We prove Theorem 3.4 in the Appendix. Theorem 3.4 shows
when one should extend the deadline to satisfy the demand or
let the job depart at its deadline with unsatisfied demands. The
resulting optimal design space is shown in Figure 2, yielding the
optimal policy (17). We summarize the strategy of (17) as follows:

e High penalty regime. For job profiles (o, 7) satisfying §/2 >
o/t or \Je > o/ (outside of the colored rectangle in Figure
2), both its deadline and demand should be satisfied.

e Low demand penalty regime. When the unit cost for unsatis-
fied demands are comparatively smaller than that of deadline
extension §/2 < +/e, for each job profile (o, 7) satisfying
§/2 < o/r,+Je < o/ (inside of the colored rectangle), its
deadline should be satisfied.

e Low deadline extensions penalty regime. When the unit cost
for deadline extension are comparatively smaller than that
of unsatisfied demands §/2 > +/e, for job profiles (o, 7) satis-
fying §/2 < o/7,/€ < o /7 (inside of the colored rectangle),
its demand should be satisfied.
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The above discussion highlights that (17) generalizes the optimal
algorithms in Section 3.1-3.3, and we call (17) Generalized Exact
Scheduling. Moreover, Generalized Exact Scheduling is also optimal
for a more general problem (11), when the unit costs for unsatisfied
demands and deadline extensions are allowed to be heterogeneous.

COROLLARY 3.5. The optimal solution of (11) is

x x 1)

-, ify>0and—£min{—,\/g},

Yy Yy 2

7 ={6 19 19

u(x,y,0,€) -, ify>0and}—c>—and—S\/g,
2 y 2 2

Ve 1(x>0), otherwise.

4 PERFORMANCE BOUNDS

The focus of this work is on distributed algorithms, due to the
importance of the algorithms being implementable in large-scale
service systems. Given this focus, it is important to understand how
much performance degradation is incurred due to restricting our-
selves to distributed algorithms. To characterize the performance
degradation, we compare the optimal distributed algorithm with
the optimal centralized algorithms in this section by using both
theoretical bounds and numerical comparisons. Specifically, we first
provide an upper bound on the performance degradation. Then, we
compare the optimal distributed online algorithms with existing
centralized or offline algorithms using real Electric Vehicle charging
instances [17].

Analytic bounds. To derive competitive-ratio-like bounds on the
performance of optimal distributed policies, we first define central-
ized (online) policies and then bound their achievable performance.
Then we compare this to performance bounds on the optimal dis-
tributed policies.

The class of centralized algorithms we consider is of the form

re(t) = wik, t, Ap), Vk eV, (19)

where A; = {(ag, og, xp(t), yr(t)) : ap < t} is the set that con-
tains the information of jobs arriving before ¢, and w(k, t.-) is a
deterministic mapping from A; to a service rate ri(t).

LEmMMA 4.1. Under any centralized policy of the form (19), the
stationary variance of P(t) is lower-bounded by

AE[c?]?

Var(P) > m,

where X(t) is the total amount of remaining service demand of jobs
arriving before t.

Lemma 4.1 characterizes the trade-off between achieving a small
variance of X(t) and achieving a small variance of P(t). An imme-
diate consequence of Lemma 4.1 is a competitive-ratio-like bound
that compares Exact Scheduling (12) and the best centralized algo-
rithm having the same Var(X) as Exact Scheduling. In particular,
plugging in the stationary variance of X under Exact Schedule,

1
Var(X) = AE [gazr] ,

we obtain the following corollary.
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Immediate scheduling

Expiring laxity scheduling

Exact scheduling

Average ratio

Figure 3: Comparison of algorithms under strict demand
constraints. The competitive ratio of each algorithm is com-
puted by the empirical Var(P) of the algorithm divided by the
empirical Var(P) of the optimal centralized offline algorithm
averaged over all instances.

COROLLARY 4.2. Let Var(P*) be the minimum stationary variance
attainable by any centralized algorithm (19) with the same level of
Var(X) as Exact Scheduling. Then, the stationary variance P(t) that
is attained by Exact Scheduling (12) satisfies

El[o?/7]E[o?7]

Var(P) < 07

Var(P"), (20)
where the expectations on the right hand side are taken over the arrival
distribution.

Corollary 4.2 bounds the ratio of Var(P), achievable by Exact
Scheduling (the optimal distributed algorithm), and Var(P*), achiev-
able by any centralized algorithms. When the sojourn time 7 is a
deterministic random variable, (20) reduces to Var(P) < Var(P*),
implying that distributed algorithms can perform equally well
compared to the centralized algorithms having the same Var(X).
One such case is when service demands and sojourn times are de-
terministic variables, and the service demand of each job equals
its sojourn time (arrival times a are random). In this case, due
to the demand constraints (1) and the deadline constraints (2),
(1) = 1{te[ay,ap+7y)} 18 trivially optimal both among central-
ized policies and among distributed policies.

Empirical performance. In order to further evaluate the perfor-
mance of Exact Scheduling, we test it using data from an Electric
Vehicle Charging Testbed [18] and compare the performance with
existing scheduling algorithms. We employ a trace-driven simula-
tion on a total of 92 charging instances from the testbed data in [17].
Each instance contains a set of jobs that are requested within a day.
We compute the ratios between the empirical variance achieved by
a few online algorithms and the empirical variance by the optimal
centralized offline algorithm for all instances. The algorithms tested
are Immediate scheduling (u(x, y) = 1{x5¢}), Delayed Scheduling
(ux,y) = 1(y<x}), Expiring Laxity (serving jobs with positive
remaining laxity equally and serving jobs with zero laxity at its
maximum rate [13]), and Exact Scheduling. For each algorithm
tested, we plot the mean ratio in Figure 3. The results highlight
significant performance gains compared to other distributed algo-
rithms and competitive performance with the optimal centralized
offline algorithm.
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Appendices

A PROOF OF THEOREM 3.1

To circumvent the complex constraints of (5), we first provide a
lower bound on its optimal solution by relaxing the class of control
policies into

re(t) = v(ok, Tk, Yk (1)) ke, (21)
and solve the optimization problem
minimize Var(P(t)). (22)

v:(1)(2)(21)

Because the constraint set of (5) is contained in the constraint set of
(22), the optimal value of (22) lower-bounds that of (5). Therefore,
to prove Theorem 3.1, it suffices to show that the optimal solution
of (22) (given in the next lemma) is also achievable by a control
policy of the form (12).

LEmMMA A.1. The optimal solution of (22) is
V(0. 7.Y) = Z1(y20). (23)
and it yields the optimal value Var(P) = E [0'2/1'].
To show Lemma A.1, we use the following Lemma.

LEMMA A.2. The mean and variance of P(t) are given by

E[P(t)]:'/< )es/o v(o, 7,y)Af(o, r)dydodr

Var(P(t)) = /

T
/ u(o, 1, y)?Af (o, T)dydodr.
(o,7)€S JO

Lemma A.2 is an immediate consequence of the fact that the
steady state distribution is an independently marked Poisson Point
Process, and thus its steady state characteristics can be recovered
by appropriately integrating its mean measure [1]. Now we are
ready to show Lemma A.1.

Proor. (Lemma A.1) The service demand constraints (1) are
equivalent to

T
/ v(o,y,7)dy = o,
0

Combining (24) and Proposition A.2 , the optimization problem (22)
can be rewritten into

T
minimize/ / v(a,r,y)zAf(O',r)dydcrdT (25)
v:(1)(21)(24) J(0,7)eS Jo

(o,7) €8S. (24)
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The objective function of (25) satisfies

T
/ / v(o, T, y)zAf(a, 7)dydodr
(o,7)€S JO
T
:/ {/ (o, T,y)zdy} Af(o,7)dodr
(o,7)eS \JO

2
y /(0’, T)€eS {G?} Af(o,7)dodr, (26)

where (26) is due to the Holder’s inequality, i.e., as v(o,7,y) > 0
for any (o,y, 7), we have

T 1/2 T 1/2 T
(/ u(o, T,y)zdy) (/ ldy) > / v(o,7,y)dy = 0.
0 0 0

for any fixed (o, 7). Alternatively, it can be verified that (26) can be
attained with equality when v is given by (23). Therefore, (23) is
the optimal solution of (22).

O

Theorem 3.1 is an immediate consequence of Lemma A.1. When
a job with an arrival time a, a service demand o, and a sojourn
time 7 is served according to (23), the optimal solution of (22), the
ratio between its remaining demand x(a + ¢) and remaining time
y(a + t) remains constant for any ¢ € [a, a + 7). Therefore, (23) can
be realized using (12). This implies that the optimal solution (23) of
(22) lies within the constraint set of (5). Because the optimal value
of (22) is a lower bound on that of (5), it is also optimal for (5).

B PROOF OF THEOREM 3.2

Since the constraints of (6) are hard to solve, we first provide a

lower bound on its optimal solution. Again, we consider the class of

control policies representable by (21) and the optimization problem
minimize Var(P(t))+ E[6U]. (27)
v:(2)(4)(21)

Because the constraint set of (27) contains that of (6), the optimal

value of (27) lower-bounds that of (6). Therefore, to prove Theorem

3.2, it suffices to solve (27) (in the next lemma) and observe its

optimal solution is representable by a control policy of the form
(12).

LemMA B.1. The optimal solution of (27) is

. 5 o
v(o,7,y) = mln{ 2 } 1iy>0) (28)

T
and it achieves the optimal value (14).

Proor. First, we derive an analytical formula for E[U] as a func-
tion of the scheduling policy v. Let

6(o,7) = [)T (o, 1,y)dy, (29)

be the amount of service a job with a service demand o and a
sojourn time 7 receives by its deadline. Then o — (0, 7) is the
amount of its unsatisfied demand. Additionally, 6(o, 7) satisfies

0<6(o,7) <o, Y(o,7) €S. (30)
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Consequently, the stationary mean of U satisfies

E[U] = lim E

t—o0

D (ok—6(op )

keV:dr=t

= / (0 —6(o,7))Af(0,7)dodr (31)
(o,7)€S

Then, we use (31) to rewrite (27) into

inf Var(P) + § E[U
v:(2)(4)(21) @ 10

= inf

= inf Var(P 32
&:(30)[0:(2)(4)(21)(29) ) (2

+0 / (0 —6(o,7))Af(0,7)dodr

(o,7)€S
= inf [ { inf Var(P)} (33)
5:30) | lo:@@)21)29)
+6 / (0 —6(0,1))Af(o,7)dodr|.
(o,7)€S

Equality (33) holds because, constrained on 6 (o, 7) = /OT v(o,y, 7)dy
for some fixed &, the second term of (32) is not a function of v. From
Lemma A.1, the first term of (33) admits the closed-form expression

A/ 2
inf  Var(P) = / SO )\ (e, t)dodr, (34)
:(2)($)(21)(29) (o5)es T

which is attained by

(35)

RNESE

u(o,1,y) =

Substitute (34) into (33) yields

6:(30) T

inf / {M +8(c - 6'(a, f))} Af(o,7)dodr (36)
(o,7)€S

where the optimization variable is now 6 instead of v. To derive
a closed-form solution of (27), we can minimize the integrand in
(36) point-wisely. By doing so, we observe that, for each (o, 7) € S,
a necessary and sufficient condition for optimality is

&(o,7)?

6(o,7) = arg inf
6:(30)

+d(oc —6(o,7)) = {%, a} . (37)

Combining (35) and (37), we obtain (28) as the optimal control
policy for (27). Substituting (28) into (36), we obtain its optimal
value (14). O

O

Given Lemma B.1, Theorem 3.2 can be derived as follows. It can
be verified that (28) can be attained using (13). This implies that the
optimal solution of (27) lies within the constraint set of (6). Because
the cost attained by (28) is a lower bound on the optimal value of
(6), (28) is also optimal for (6).
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C PROOF OF THEOREM 3.3

We first derive a lower bound on its optimal solution. Again, we
consider the class of control policies representable by (21) and the
optimization problem
minimize Var(P(t)) + E[eW]. (38)
v:(4)(7)(21)
Because the optimal value of (38) lower-bounds that of (6), to prove
Theorem 3.3, we can solve (38) (in the next lemma) and observe
that its optimal solution is representable by a control policy of the
form (3).

LemMA C.1. The optimal solution of (38) is

o N
7 Hy>ob i< Ve,
v(o,7,y) = N . (39)

. |» Otherwise
y=r- f}

and it achieves the optimal value (16).
Proor. With a slight abuse of notation, let 7(¢, 7) > 7 denote

the actual sojourn time for jobs having a service demand o and a
sojourn time 7. Then, the stationary mean of W satisfies

E[w] = '/( )Es(f(G, 7) —1)Af (o, 7)dodr.

The optimization problem (38) can then be written into

inf Var(P) + E[eW
v:(4)(7)(21) ® Lew]

= inf { inf Var(P)} +€ (t(o,7) —1)Af(0,7)dodr
27 | lo@@e
(o,7)€S
(40)
o?
= inf {T + e(t(o, 1) — T)} Af(o,7)dodr, (41)
727 J(o,7)eS | T
where inf;,,(5)4)(21) Var(P) in (40) is attained by
v(o,7,y) = < - (42)
(o, 1)

The choice of 7*(o, 7) that is optimal for (8) is the point-wise maxi-
mum of the integrand of (41). So, #*(o, 7) can be computed as

(o, 7)°
T

6(o,7) = arg inf +c(oc—06(o,1)) = {C—T, 0'} . (43)
6:(30) 2
Combining (42) and (43), we obtain (39) as the closed-form solution

of (38). O
Given Lemma C.1, we are now ready to prove Theorem 3.3.

Proor. (Theorem 3.3)

Recall that the optimal value of (38) lower-bounds that of (8).
Therefore, if there is a policy of the form (3) that produces iden-
tical service rates to (39), it is also optimal for (8). Next, we show
that Deadline-extended Exact Scheduling (15) satisfies the above
description.

Given any job k € V with ¢ < 7+/€, both (15) and (39) yield
the service rates ri(t) = o /7 if t € [ag,ap + 7] and ri.(t) = 0
otherwise. Given any job k € V with o < v/fer, (3) yields the service
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rates ri.(t) = Ve if t € [ag,ar + o/+e | and ri(t) = 0 otherwise.
Observe that under the policy (39), for any y(t) > 0, we have

x(t) o o-velt-a) o
yity 1 1-(t—a) T
_ (VE+ (- a)

T rt—(t-a)
(—o/t+1)(t—-a)

T—(t—a)

>0,

where the third inequality is due to —ye > /7. Thus, the policy
(39) also produce the service rates ri(t) = Ve if t € [ag, ap +0 /e ]
and ri(t) = 0 otherwise.

m}

D PROOF OF THEOREM 3.4

We first derive a lower bound of (9) by solving the optimization
problem
minimize Var(P(t)) + E[6U] + E[eW]. (44)
o:(4)(7)(21)
The solution of (44) is given in the next lemma, which is then shown
to be achievable under the constraints of (9) as well.

LeEmMA D.1. The optimal solution of (44) is

o L0 . |6
;1{y>0}, lf?Smm{E,\/g},

v(o,7,y) = (45)

19 ) 6
51{y>0}, lf? > Eand; S\/g,
\/El{x>0}, otherwise.

and it achieves the optimal value (18).

Proor. Let 6(o, 7) denote the service demand for jobs having
service demand o and sojourn time 7, and let 7(o, 7) denote the
actual sojourn time for those jobs. The optimization problem (44)
can be written into

inf Var(P(t)) + E[SU] + E[eW]
v:(4)(7)(21)
= inf [ inf Var(P) (46)
6(o,7)>0 | v:(4)(7)(21)(29)
(o, 7)1

+ / {6(c — 6(0,7)) + €(i(o,7) — 1)}Af (0, T)dodT
(0,7)€S

. 2
— nf / 5(0.7) (47)
6(o,0)20 J(a,r)es | T(0.7)

(o, 7)>1

+8(c —6(0,7)) + e(i(o,7) — 1) |Af (0, 7)dodr,

where inf,.(4)(7)(21)(20) Var(P) in (46) is attained by

6(o,1)

v(o,1,y) = H0.0)
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The choice of 6*(o, 1) and 7*(o, 7) for (44) is also the point-wise
maximum of the integrand in (47), i.e.,

(6*(o,1),t%(0, 7)) =
&(o,7)?

6(o,7)>0 f’(O', T)
t(o,7)27

arg +6(oc —6(o,7)) +€e(t(o,7)— 7). (48)

Next we derive the optimal solution (6*(o, 1), 7*(0, 7)) of (48). To
this end, we first show that in the case of §2 /4 < e, we have

t*(o,7) = 7. Suppose not and 7(o, 7) is optimal at some 7 > 7. The
minimum of (48) subject to (o, 7) = 7,7 > 7 can be computed as

2
6—, iffzfandgsé,
T T~ 2
5(0'—2), iff:rand£>§,
C(t) = * T2
- 2
O—T"'E(f'—l'), iff>randggé,
T T2
5(0'—ﬁ)+6(1'—1') iff’>randg>§.
4 T 2
When o < 67/2, we
2 2
cE) -Ccr)=Z vet-1-L
T T

2
Z(f—r){e—(%) T—lr} (49)

z(f—r){e——} (50)
>0, (51)

where (49) is due to o < §7/2; (50) is due to 7 > 7; and (51) is due
to 6%/4 < e. When o € (67/2, 5% /2], we have

o? )
C(#) - C(r) = —+e(f—r) S(G_TT)
S Ll L
Ze(f—r)+%52(r—f) (53)
=(f-f){e-%2}
20, (54)

where (52) is due to o < §7/2; (53) is due to 7 > 7; and (54) is due
to §2/4 < e. When ¢ > 8%/2, we have

C(f)—C(r)zS(o—¥)+e(f—f)—§(a—%)

:(f—r)(e—%z)

>0 (55)

where (55) is due to §%/4 < e. Since (51), (54), and (55) contradict
with the assumption that 7(o,7) = 7 > 7 is optimal, we have
t*(0,7) = 7. Then, given *(o, 7) = 7, the optimal 6*(o, 7) follows

Yorie Nakahira, Andres Ferragut, and Adam Wierman

from Lemma B.1. In a similar manner, we can show that, in the case
of 62/4 > €, the optimal service supply is 6*(c, 7) = 0. Then, given
6*(o, 1) = 0, the optimal 7*(c, 7) follows from Lemma C.1. Finally,
combining above, we obtain (45) as the closed-form solution of
(44). m]

Theorem 3.4 is an immediate consequence of Lemma D.1. Indeed,
recall that the optimal value of (44) lower-bounds that of (9). More-
over, a policy of the form (3) can produce identical service rates to
(45), so it is also optimal for (9).

E PROOF OF LEMMA 4.1

To solve inf,, L(w;y), we first observe that

inf L(w; )

o1 T
= inf lgnoo T /0 Var(P(t)) + y(Var(X(t)) — D)dt

w T

1 [T _ N
> inf lim inf = / E[(P(t) — P)? + y((X(t) — X)? - D)]dt
0

w T—oo W

T
= Tlg-noo inf — ! /0 E[(P(t) - P)? + y((X(t) — X)? = D)dt, (56)
where P and X are the stationary variance of P(t) and X(t) re-
spectively. Now we represent the integral in (56) as the sum of
E[(P(tn) — P)? + y(X(tn) — X)? at discrete points in time, where
{tn} have a fixed sampling interval h = t;41 — t,, Vn € Z,. Hence,
the dynamics of X(t,) satisfies

X(tn+1) = X(tn) + A(tn, h) — hP(ty),

where u is assumed to be constant during each sampling intervals.
Then, (56) satisfies

lim inf - TEP py? X(t) - X)? - D)|d
im in T./o [(P(t) = P)* + y((X(t) = X)* = D)]dt

T—oc0 W

= lim inf hm Lh rr/n1wsr)h—yD

T—o0o W h—

= lim lim inf = Lh rr/n)Wsr)h—yD, (57)

T—oo h—0 W

where Ly, n(u;y) is defined by

Ly N(usy) =
N-1

E [y(X(tn) = X)?] + > B [(P(t) - P +y(X(t) - X)?]
k=0

To solve (57), we first consider the cost-to-go J,(X(t,)) for some
h>0and N € Z,, i.e.,

Jn(X(tn)) = (58)
N-1

E [y(X(tn) = XP] + D E[(P(tx) = P)? + y(X () - X)°] .
k=n

Using mathematical induction, we show below that, at the optimal
solution w*, the cost-to-go takes the form
N-1
Jn(X(tn)) = Elpn(X(tn) = X)? + > Blpjes1(Altn, h) = A1, (59)
k=n
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where {p; } satisfies the Riccati difference equation
2,2
hp k+1
h?prsy +1

First, condition (59) holds for n = N. Second, if condition (59) holds
for n + 1, then

InX(tn) = étnfh) E[(P(tn) — P)* + y(X(tn) = X)* + Jns1(X(tn+1))]

Pk = Pk+1— +7, PN =Y. (60)

_ _ p\2 R aY
_P(ltr,lfh)E[(P(tn) P)" +y(X(tn) = X)

+ pr+1(X(tn) + (Atn, h) = A) = h(P(ta) = P)Y’],  (61)

where A}, are the stationary mean of A(ty, h), and Aj, = hP from
Brumelle’s formula. Expanding the last quadratic term in (61) and
applying E[(A(t, h) — A)X(t,)] = 0, (61) can be written as

N
TnX(tn)) =(pns1 +y)X(tn) - X)* + Z Pt B(A(t, h) — A)]
k=n

+ inf {(1+ thn+1)(P(tn7 h) - Ph)z
P(tn)

= 2hypp+1(X(tn) = X)(P(tn) = P)]. (62)

The minimum value of (62) is attained by
_ hpn _
P(tp, h) — Py = ———(X(tn) — X), 63
(tn, h) = Pp 1+thn((n) ) (63)

and the optimal cost-to-go becomes (59), where pj, is defined by
(60). As N — oo, p;. converges to a unique positive scalar

h2y + hyy\h?y + 4
2h? |

which is also a fixed point of (60) [4]. Taking the limit of N — oo

and h — 0 for (63) and (64), the infimum of (57) is attained by

P(t) - P =y (X(t) - X).
From (58), it also requires
Var(P(1)) + yVar(X(¢)) = pE[(A(tx, h) - A’
= phAE[o¢]
= VYAE[o].

p= lim p = (64)
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