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Abstract—Question Answering (QA) requires understanding
queries expressed in natural languages and relevant informa-
tion content to provide an answer. For closed-world QAs,
information access is by means of either context texts, or a
Knowledge Base (KB), or both. KBs are human-generated
schematic representations of world knowledge. The repre-
sentational ability of neural networks to generalize world
information makes it an important component of current QA
research. In this paper, we study the neural networks and
QA systems in the context of KBs. Specifically, we focus on
surveying methods for KB embedding, how such embeddings
are integrated into the neural networks, and the role such
embeddings play in improving performance across different
question-answering problems.
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[. INTRODUCTION

Neural Question Answering (NQA) has lead to signifi-
cant interest in question answering, especially due to the
ability of modeling to incorporate multimodal information
sources. To serve as a question-answering system, a typical
neural network is capable of: leveraging text information
via word or character embeddings [1]; image representation
[2] via pretrained representations; textual information using
unsupervised large-scale language models [3-5]; and/or KBs
using embedding methods similar to word embeddings [6].
NQAs systems largely follow a three-stage process, com-
prised of (a) information retrieval based on the question
understanding; (b) answer extraction to generate an answer;
and, optionally, (c) a ranking module, to rank the answers
[7].

Knowledge Graphs (KGs) are the simpler representational
form of Knowledge Bases (KBs), expressed in the form
of triples of - entity, relation, entity -. Unlike KBs which
represent a richer hierarchy and structure symbolic to the
real-world model, KGs are much less structured. The simpler
representations of KGs have given rise to methods for the
representation learning of entities and relations present in a
KG. This is in line with advances in embedding methods
for multimodal data representation. Most KBs are written
in formats (e.g., OWL [8]), which makes them accessible
via query languages such as SPARQL [9]. This itself is a
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significant research area and contributes to reasoner systems
such as HermiT [10], which can be used to generate an
answer from large knowledge graphs based on SPARQL
query formulation. While KBs, which are often represented
in structured format, are challenging to integrate into the
neural network paradigms, KG embeddings are significantly
easier to integrate into the existing systems. This leads to
a multitude of applications including factoid question an-
swering, visual question answering, reading comprehension,
and open-world question answering, all using KGs as an
auxiliary data source for improved performance.

Several KBs (and their triple-based variant KGs) are
readily available, with huge amount of information and facts
structured within. Some widely used KBs include Freebase
[11], DBPedia [12], YAGO [13], Gene Ontology [14], Word-
net [15], ConceptNet [16], and Google Knowledge Graph
[17]. Semantic parsing [18] approach to the factoid question
answering parse a natural language question into a structured
query, which is executed into KBs. A major limitation of a
KG is its completeness - no KB exists with all the world’s
information content incorporated into it. NELL [19, 20]
is an example system incorporating semi-automatic KBs,
which are reliable in effective context understanding and
information-extracting frameworks.

In this survey, we study neural question-answering meth-
ods applied to a wide range of question-answering prob-
lems including factoid question-answering, visual question-
answering, and reading comprehension. We primarily ex-
plore the usability and contribution of KGs to neural
question-answering. While several methods have been pro-
posed to embed KBs, their usage is rather limited. We
hypothesize that proper usage of KGs within a neural QA
system should empower neural networks further.

II. KNOWLEDGE BASE

A Knowledge Base (KB) is structured database with a
schema, such as an ontology, describing entities, relations,
and attributes, which form the foundation of structural infor-
mation. Facts are then added to the KB in accordance with
the structure, forming the entirety of a KB. A KB can also be
represented as a graph of facts, with entities representing the



nodes of the graph, and with the relationships among entities
being described by edges. For the rest of the survey, we treat
Knowledge Base and Knowledge Graph as the same entity.
The reason for such treatment is potential transformation of
KB into graphs. Also, the existing neural network literature
does not draw any distinction between the two terms and
uses them interchangeably.

An ontology is a collection of definitions which model
a domain using classes, attributes, and relationships [21].
The collection of facts, their attributes, and the relationships
containing the discourse of a particular domain, together
with its ontology, constitutes a KB. A KB is also a type of
Knowledge Graph (KG); and thus, a KB is richly structured,
based on its ontology. A KB can be simplistically interpreted
as a database system with the schema analogous to ontology,
and its fuples can be considered facts. A KB, though, is
capable of incorporating a much richer set of information,
such as logical relationships among facts, and can also be
inferred using a formal logic reasoner. KBs are specifically
useful for representing a domain that involves a rich set
of relationships among different classes [22], e.g., WordNet

[15].
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Figure 1. An example of an ontology embedding model.

Knowledge Graphs are typically stored as directed graphs
of multi-relational data, whose nodes correspond to entities,
and whose edges correspond to relations among them. KBs
are represented as a triplet of form (h,l,t) or (head, label,
tail), which indicates that there exists a relationship of name
label between the entities head and tail. The most widely
used Knowledge Base is Freebase [11]. It is a structured
KB in which entities are connected by predefined predicates
or relations. All predicates are directional, connecting from
subject to object. A triple (subject, predicate, object) denoted
by (h,p,t) describes a fact; e.g, (US Route2, major cities,
Kalispell) refers to the fact that US Route 2 runs through the
city of Kalispell. The usage of knowledge graphs is limited
by two issues - completeness [23, 24] and compatibility.
The issue of completeness arises from the fact that no KBs
can ever be exhaustively completed. This inadequacy can
lead to error in a query-based system, which completely
relies on KBs. Another challenge in usage of KBs lies in
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its compatibility. Each KB has their own design decisions,
and thus, even for the same concepts and relations, dif-
ferent naming conventions are preferred, which presents a
challenge in applying more than one KB to a problem.
Application of more than one KB could potentially decrease
the incompleteness of KBs [6]. A common solution is
preferred to both problems: embedding of knowledge bases.

A. Knowledge Base Embedding

The general intuition of KB embedding methods is to
learn connections and existing patterns from the KB, which
can then either be used to extract further patterns using link
predictions [6] or used in downstream tasks as an extremely
compact representation of the global knowledge of KB. In
general, the relations in KB are of the form - symmetric,
antisymmetric, inversion and composition. KB embedding
methods aim to infer the relations using either implicit or
explicit modeling of one or many forms of KB relations
[25]. Symmetric relations are valid even with the replacement
of head with tail entity, while antisymmetric relations are
not. Inverse relations are conjugate of one another, while
composition refers to a relation defined as a path walk over
multiple relations. We summarize some of the more popular
approaches and their objectives and relation factorization in
Table I.

1) General Embedding Framework: For E entities and R
relations where G denotes the knowledge graph consisting
of a set of triples (h,r,t) such that h,t € E and r € R.
The embedding model defines a score function f(h,r,t) for
each triple, which is the score of its implausibility. The
objective of embedding models is to choose f such that
score of a plausible triple (h,r,t) is smaller than score of
an implausible one (h',7’,t'). The model parameters are
learned by minimizing a margin-based objective function:

c= Y [y=flhrt)+ f(W ),
(h,r,t)€G
(hlv"’vt/)egzh.r,t)
where [z]+ = maxz(0,z), and v is the margin hyper-

parameter. G’ is the set of incorrect triples generated by
corrupting the correct triple (h,r,t) € G.

2) Embedding paradigms: Let us consider a Knowl-
edge Graph (KG) consisting of components (subject,
predicate, object).

RESCAL [31] represents a KG as using a three-way
tensor X with a tensor entry AXj;; = 1 when there exists
arelation (i-th entity, k-th predicate, j-th
relation). For non-existing and unknown relations, the
entry is set to zero. This method factorizes each relation
slice of the tensor as

X, ~ AR AT fork=1,..,m 6

where A is m X r matrix containing latent component
representation of entities, and Ry, is an asymmetric r X 7



Embedding Distance Function Properties

Methods

SE [26] [W,..h — Wt h,t € RF, W, . € RF¥F Not Applicable

TransE [6] lh+r—t h,r,t € R¥ Antisymmetry, Inversion, Composition
DistMult [27] —(r,h,t) h,r,t € RF Symmetry

ComplEx [28] —R({r,h,t)) h,r,t € C* Symmetry, Antisymmetry, Inversion

HolE [29] —(r,h®t) h,r,t € R* Symmetry, Antisymmetry, Inversion
ConvE [30] —(o(vec(a([r,h] x Q))W), t) h,r,t € R* Not Applicable

RotatE [25] [hor —t] h,r,t € CF |r| =1 Symmetry, Antisymmetry, Inversion, Composition

Table 1
DISTANCE FUNCTIONS f,-(h7 t) OF KNOWLEDGE GRAPH EMBEDDING MODELS, WHERE <> IS THE GENERALIZED DOT PRODUCT, o IS
THE HADAMARD PRODUCT, ® IS CIRCULAR CORRELATION, ¢ IS ACTIVATION FUNCTION AND * IS 2D CONVOLUTION. ~ IS
CONJUGACY RELATION OF COMPLEX VECTORS, AND VECTOR RESHAPING FOR THE CONVE MODEL. COMPLEX AND HOLE METHODS
ARE EQUIVALENT. DISTANCE-BASED METHODS ARE A COMPLEMENTARY-BUT-SIMILAR VIEW OF SIMILARITY-BASED METHODS. C
REPRESENTS COMPLEX SPACE AND R REPRESENTS EUCLIDEAN SPACE.

matrix that models the interactions of the latent components
in the k-th predicate. The factor matrices A and Ry, can be
computed by solving the regularized minimization formula-
tion. The asymmetry of I?;, takes into account whether the
latent component occurs as a subject or an object. Nickel et
al. [31] further explore how RESCAL related to other tensor
factorization methods of rank-r DEDICOM and Tucker3.
STransE [32] is comprised of a triples scoring function as

f'r‘(h’ t) = ||W7',1h +r— Wr,2tHll/2 (2)

where W is the embedding matrix and r is the relation
vector. TransR [33] is comprised of a triples scoring function
of the form

fr(h,t) = [|hM, +r — tM,.|3 3)

Furthermore, Cluster-based TransR (CTransR) is proposed
as well, where for each relation, the entity pairs (h,t) are
clustered based on their distance (h —t) where h and t are
obtained through TransE.

HOLE [29] is a compositional embedding method based
on composition operation o.

P(¢,(h,t) =110) = a(nure) = oy (enoer)) (4

where ¢, (h,t) is the probability of relation between h
and h, with 7., the full tensor product, represented as
composition of head and tail entities (e, o e;) vector and
transformed by the relation matrix 7.

The composition operation o between two entities can be
either a full tensor product, concatenations, or even a circular
correlation.

ComplEx [28] is very closely related to HOLE mathe-
matically, where complex embedding is used to solve the
problem through latent factorization. The dot product in
complex space involves the conjugate transpose of one of the
vectors, thus making it non-symmetric and anti-symmetric.
Relations can receive different scores, depending on the
ordering of the entities involved. The tensor of KG can be
learned
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X =Re(EWET) ®)

The above factorization shows that the head entity is the
complex conjugate of its tail entity in vector space.

ROTATE [25] maps the entities and relations to the com-
plex vector space and defines each relation as a rotation from
the source entity to the target entity. Given a triplet (h, r,t),
we expect t = h or where o is element-wise product and
|ri| =1,and h,r,t € CF. The distance function is ROTATE,
which can be defined as

dr(hvt) = ||hOI‘*tH (6)

The objective for optimization is based on negative sampling
loss

L=- IOgU(’Y - dr(h>t))

=3 oga(d, (W, ) ) )
i=1

where v is the fixed margin, and (hf,rt;) are negative

samples.

The pioneer work in translation-based embedding models
is TransE [6]. It assumes all relations and entities can be
represented by vectors of uniform size. One issue with the
TransE model lies in its inability to differentiate among
different relation mappings, such as one-to-one, many-to-
one, and one-to-many, which makes the model unsuitable
for representing such relations. TransH [34] treats each
relation to be on a different plane. Figure 2 shows the
geometrical contrast between TransH and TransE. Other
translation methods, TransD [35] and TransX [33], consider
diversity of both entity and relation.

In addition, there are several tensor factorization methods
for relational learning that generate embeddings for KBs
[23, 31, 36-38]. Bayesian Clustering methods have also
been successfully applied to embed a KB [39]. Distance-
based embedding methods [6, 32, 34, 40, 41] have simpler



frameworks, making them preferable for usage in underlying
applications.

Additionally, relation paths between entities in Knowledge
Graphs provide richer context information, which enables
learning more structured embeddings [40—46]. Path queries,
to obtain a relational transformation, which is then integrated
into a translation model, such as TransE, are used by [40].
The approach in [45] extends the TransE method by the
additional objective of learning scoring from a different
relation path representation, which is a summation over
all relation paths that are termed reliable. The study [46]
proposed a dynamic algorithm to enable efficient incorpo-
ration of relation paths of bounded length in compositional
path models. The authors of [47] propose a KB completion
method using RNNs, which are able to infer multi-hop
relationships. An external text corpus for correlating KBs
with text is used by [48].
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Figure 2.  Geometrical modeling of TransE [6] and TransH
[34]. TransE translated head entity to tail entity using relation
as a vector, while TransH projects the entity embeddings into
a relation plane where the actual translation is performed. Such
geometric innovations are often the defining factors in improving
KB embedding benchmarks.

The more recent embedding methods focus on variable
geometry of embedding space, such as hyperbolic geometry
[49], leading to learning multiple models of embedding
in hyperbolic space [50-53], which shows much promise
for both learning compact representation and using smaller
dimensions for learning embeddings. Another research di-
rection is along learning ordered embeddings [54], which
are capable of representing hierarchy and order within the
geometrical structures [55].

III. QUESTION-ANSWERING ARCHITECTURES

We briefly review some of the neural networks widely
used for question answering. Neural networks [56] enable
learning of representation of data with multiple levels of
abstraction. These levels of abstractions enable deep learning
methods to generalize information, while also being able to
narrow down to a specific aspect of information. Different ar-
chitectures of neural networks, including Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs),
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and more recently, transformer networks [57], are widely
used for challenging learning tasks [3], including question
answering [58, 59]. Additionally, smaller models are widely
used for unsupervised pretraining [1, 60]. Attention mech-
anisms [61] have proven useful for filtering useful content
for retrieval tasks in NQAs.

Memory Networks [62] and related architectures includ-
ing Neural Turning Machines [63, 64] are neural networks
with external memory. They represent an extremely useful
paradigm for solving factoid question answering [65] and
question answering involving reasoning [62]. Their novelty
lies in their ability to manipulate external memory locations,
such as a Knowledge Base (KB) or a Universal Schema [66].
Another advantage lies in their different level of guidance
applied (i.e, additional information incorporation is easier
than in standard neural architectures [62]). We show a simple
architecture used for general question-answering systems in
Figure 3.

Question

[ Neural Question Answering System
2

Answer
Ranking

Machine
Comprehension

Information
Retrieval

Knowledge

Graph

| Answer |

Figure 3. A general architecture for neural question answering,
comprised of three components: Information Retrieval, which often
interacts with Knowledge Graph in embedded form, for generating
answer candidates; Machine Comprehension and Answer Ranking,
which are mostly model-dependent. The Machine Comprehension
component is comprised of attending over multiple layers of
information to generate answer candidates. The Answer Ranking
is based on relevance to the question, while the machine compre-
hension is focused on validating the answer by attending over infor-
mation sources. Memory networks enable Machine Comprehension
to interact directly with KB by performing multi-stage retrieval in
an iterative manner.

IV. FACTOID QUESTION ANSWERING

Factoid Question Answering (FQA) refers to questions
which can be answered effectively by a phrase or an entity of
a KG. There are mainly two approaches to FQAs - answering
questions over a KG or obtaining answer from natural
text using open information extraction mechanisms. Few
approaches exist which attempt to combine both resources
or use multiple KBs.

A Knowledge Graph-based factoid question answering in-
volves mapping the question in natural language into triples
of Knowledge Graphs. The distinction is made between
FQA systems mapping to just one triples and mapping to
multiple triples. The system which maps to a single triple is



called Simple Question Answering (SimpleQA). Simple QA
is a relatively easy problem compared to other factoid and
non-factoid QAs. They are also the most frequent type of
questions asked [67]. A SimpleQA task involves answering
a question such as “What is the hometown of Obama?”
which asks for a direct topic of an entity “Obama” which
is “hometown”. The challenges to SimpleQA systems lie
in possibility to formulate a question in multiple ways,
making the mapping process hard to generalize. Another
highly successful paradigm to factoid question is semantic
parsing [18, 68, 69]. The semantic parser transforms natural
language into logical form. It is capable of solving tricky
questions involving multiple relations and questions involv-
ing ordering.

A. Simple Question Answering (SimpleQA)

A common approach to solving a SimpleQA problem is
to extract a set of candidate answers from Knowledge Base
using relation extraction [68—71] or distributed representa-
tion [72-74]. WikiAnswers [67] is introduced as a para-
phrasing dataset which helps generalize for unseen words
and question patterns. Another dataset, SimpleQuestions,
is introduced by [65]. SimpleQA involves embedding of a
knowledge base to find the entity of the knowledge base
which is closest to the question’s representation as the an-
swer. The general framework for factoid question answering
is: Given an input question sentence S = {w1,wo, ..,wq}
and a sentence representation s € R, we find the entity e
in KB F such that f(s,e) > f(s,€'),e’ Ue = E.

A CNN-based approach can be applied to factoid QAs
[75] with a two-step pipeline: entity linking, and fact selec-
tion. Memory networks are applied in [65] to simple ques-
tion answering. The memory network consists of a memory,
and of a neural network which is trained to query that mem-
ory, given some inputs. It consists of four components: Input
map (I); Output map (O); Generalization (G); and Response
(R). The workflow is to store Freebase into memory and
then train the model to answer questions. A KB triplet is
represented by a bag-of-words model, with subject and rela-
tionship having value 1 and object entries set to 1/k, where
k is the number of objects. The answer ranking is based on
cosine similarity. Lukovnikov et al. [76] encode questions
using GRUs, and a word is represented as a concatenation
of Glove vectors [60] with character level encoding. Golub
and He [77] propose a character-level approach based on
the attention-enhanced encoder-decoder architecture [61].
The model of [77] consists of a character-level RNN-based
question encoder and an attention-enhanced RNN decoder,
coupled with two separate character-level CNN-based entity
label and predicate URI encoders.

A word-level RNN-based approach with emphasis on
possible paraphrases of questions is proposed by [78]. The
task of predicting subject and relation is factorized into
two sub-tasks: prediction of relation first, followed by entity
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given the relation and question. Both [78] and [75] improve
the performance of their approaches using a BILSTM-CRF
tagging model which is separately trained to label parts of
the question as entity mention or context (relation pattern).

B. Multi-Relation Question Answering

The formulation of multi-relation question answering is
driven by the necessity to map questions in natural text to
more than one triple in a knowledge base. For challenging
questions, such as “What mountain is the highest in North
America?]” which requires learning a representation for
mathematical function “highest”, Xu et al. [74] use textual
data to filter out wrong answers. A dependency parser-based
query node expansion is devised in [69] where ClueWeb text
is used to learn correlation between KB relations and words
using co-occurrence statistics with the alignment model.
Dong et al. [73] uses multi-column CNNs to understand
questions from three different aspects: answer path, answer
context, and answer type. Then it learns their distributed
representations. Yang et al. [79] maps natural language to
knowledge base by semi-automatically generating mappings
between knowledge base triples and natural text, using
information extraction methods.

[80] propose an encoder-decoder framework model for
factoid question answering, with ability to query a KB. Yin
et al.[81] pre-process Freebase to remove dummy entities
and to obtain more direct triples. An L-hop factual memory
network is constructed for computational layers, where each
layer accesses candidate facts and question embedding.

A major constraint on factoid question answering models
is the data limitation. While there are multiple ways to
phrase a single question, the dataset size suffers from sparse-
ness and is unable to work with methods that require a larger
training datasize. SimpleQA have made substantial progress
recently, due to the introduction of the SimpleQuestions
[65] dataset, making larger neural network models trainable
until convergence without overfitting. While the focus on
the SimpleQA task is to generalize mapping of questions to
facts, non-simple QA tasks and multi-resource open domain
QA tasks require learning the mathematical and functional
dependencies required to answer the question. This makes
the problem considerably more complex, while at the same
time, limited training data constrains the model to use lesser
parameters. There are also very few methods which attempt
to leverage multiple knowledge sources.

V. ATTENTION-BASED QUESTION ANSWERING

Attention-based QA are extremely popular approaches
for multi-modal data problems such as Visual Question
Answering (VQA) and problems requiring deeper under-
standing of input data, such as Reading Comprehension
(RC) (also called Machine Comprehension). A common
approach to VQA concatenates visual and textual repre-
sentations obtained from CNN and RNN respectively, to



perform joint inference. This approach can be improved
upon by introduction of attention maps for input image, each
with embedding for a certain section of image, which are
then attended over using attention mechanism for learning a
joint embedding which then performs the final classification
or sequence generation task. Multimodal bilinear compact
pooling [82] proposes an efficient but highly optimized
bilinear pooling over two data sources, enabling a robust
embedding for visual question answering.

R-Net [83] obtain significant performance gains on RC
dataset, SQuAD [84]. The difference between VQA and RC
lies in decoding stage of inference, where VQA decoding is
done based upon preset vocabulary. RC datasets require sam-
pling of input text to generate answer phrases or sequences.
This requires probabilistic decoding, using a combination
of language decoding and pointer networks [85] to obtain
answer effectively. R-Net uses GRUs to learn embeddings
for the input question and sentence, which are then passed
to gated attention-based recurrent networks to determine
importance of information in the passage regarding a ques-
tion. Each passage representation incorporates aggregating
matching information from the whole question. Another
gate is added to determine the importance of passage parts
relevant to the question. Another attention to match over
itself is used to incorporate context into question-aware
embeddings. A Pointer Network is used to predict the start
and end position of the answer. The success of R-Net has
given rise to Reasonet [86], Fusionnet [87], Qanet [88],
Macnet [89], and S2-Net [90].

While there are many different variants of visual question
answering and reading comprehension methods in literature
(see [59] for more details), the underlying mechanism entails
learning the fixed vector representation for both question and
input data (either image or text), then using the attention
or bilinear pooling to learn joint embeddings. The learned
vectors are used for making predictions. We do not attempt
to cover the entire attention-based question-answering meth-
ods, due to space and time constraints. Recently, it was found
that using transfer-learning approaches [3] often significantly
improves the performance of the model. This was utilized
in multiple novel works [91-94].

VI. CONCLUSION

In this paper, we surveyed multiple areas of neural
question answering, including Knowledge Base embeddings,
neural networks architecture, and various advances in factoid
and attention-based question answering. While Knowledge
Base (KB) embeddings methods are advanced enough to
be relied upon as information resources, we observe that
multitudes of works on question answering still rely on
older approaches. This leads to suboptimal performance
from KBs, making a proper evaluation difficult. We believe
this paper serves as an important milestone in syncing up
the progress across different fields, in order to leverage
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strong, connected components for building richer sets of
question answering models. The advancements in research
in KB embeddings toward different geometrical spaces,
including hyperbolic spaces, suggests that neural networks
with representational capacity in such spaces with curvature
may be the next application for building question-answering
models.
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