Session: SDN/NFV Security Architecture

SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

SDNSOC: Object Oriented SDN Framework

Ankur Chowdhary, Dijiang Huang and

Gail-Joon Ahn
{achaud16,dijiang,gahn1}@asu.edu
Arizona State University

ABSTRACT

The cloud networks managed by SDN can have multi-tier pol-
icy and rule conflicts. The application plane can have conflicting
user-defined policies, and the infrastructure layer can have Open-
Flow rules conflicting with each other. There is no scalable, and,
automated programming framework to detect and resolve multi-
tier conflicts in SDN-based cloud networks. We present an object-
oriented programming framework - SDN Security Operation Center
(SDNSOC), which handles policy composition at application plane,
flow rule conflict detection and resolution at the control plane. We
follow the design principles of object-oriented paradigm such as
code-re-utilization, methods abstraction, aggregation for the imple-
mentation of SDNSOC on a multi-tenant cloud network. The key
benefits obtained using this approach are (i) The network adminis-
trator is abstracted from complex-implementation details of SFC.
The end-to-end policy composition of different network functions
is handled by an object-oriented framework in an automated fash-
ion. We achieve 37% lower latency in SFC composition compared
to nearest competitors - SICS and PGA. (ii) Policy conflict detection
between the existing traffic rules and incoming traffic is handled by
SDNSOC in a scalable manner. The solution scales well on a large
cloud network., and 18% faster security policy conflict detection
on a cloud network with 100k OpenFlow rules compared to similar
works - Brew, and Flowguard.

CCS CONCEPTS

« Security and privacy — Virtualization and security; « Net-
works — Security protocols; Network performance modeling;
Cloud computing; - Software and its engineering — Object ori-
ented architectures.

KEYWORDS

Software Defined Networking (SDN); Service Function Chaining
(SFC); Policy Conflict Detection

ACM Reference Format:

Ankur Chowdhary, Dijiang Huang and Gail-Joon Ahn, Myong Kang, Anya
Kim and, and Alexander Velazquez. 2019. SDNSOC: Object Oriented SDN
Framework. In ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization (SDN-NFVSec ’19), March 27,
2019, Richardson, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3309194.3309196

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6179-8/19/03...$15.00
https://doi.org/10.1145/3309194.3309196

Myong Kang, Anya Kim and
Alexander Velazquez

{myong kang,anya kim,alexander.velazquez}@nrl.navy.mil
U.S. Naval Research Lab

1 INTRODUCTION

The centralized command and control mechanism of SDN allows
separation of control and data-plane functionality in a cloud net-
work. The network traffic while servicing a request from a client
to server often passes through various virtual network function
(VNFs), such as Firewall, Intrusion Detection System (IDS), load
balancer. This end-to-end delivery of traffic between two hosts,
while passing through a set of ordered or partially ordered VNFs
and ordering constraints that must be applied to the packets, is also
referred to as service function chaining (SFC) [8].

Challenges in Policy Composition: There are several issues
that limit the deployment of SFC. The security policies of individual
VNFs are intertwined with the OpenFlow rules when the underlying
cloud network is managed by SDN. Moreover, the network admin-
istrator needs to take care of topological dependencies between
different VNFs, configuration complexities, consistent ordering of
VNFs in the SFC as highlighted by Quinn et al [16]. The results from
a survey of enterprise middlebox deployments in cloud indicate
that 60-70% of all failures in middleboxes are because of miscon-
figuration issues [17]. There is no production grade framework
currently, which presents the SFC composition as an abstracted
interface to the user/administrator so that he/she is shielded from
underlying details that limit the scalability and security in SFC. The
network-wide policy enforcement using policy graphs has been
considered by PGA [15], but there is a duplication of VNFs while
the SFC is deployed using PGA to achieve the desired packet pro-
cessing capability. We use efficient object-oriented data-structures
to prevent data and code-duplication.

OpenFlow Rule Conflict Issues: The application plane of the
SDN allows distributed authorship of a single policy domain. Ad-
ditionally, the header space of the packet entering the network
may match more than one flow rule in the OpenFlow table. A
new flow rule can enable (or disable) the network traffic that is
otherwise disabled (or enabled) by existing rules. FortNOX [14]
utilizes role-based authorization to enforce conflict detection and
mitigation. The framework, however, considers only pairwise rule
conflicts, without identifying rule dependencies across flow tables.
Veriflow [11], NetPlumber [9], Flowguard [7] use real-time network-
wide invariant checking, rule-dependency analysis for identifying
and resolving rule conflicts, but they lack a declarative and modu-
lar design which can interpret SFC requirements and implement
them agnostic of semantics in which they are used or underlying
hardware. Moreover, these works are limited to flow-rule conflicts
and do not consider the security policies at the application level,
generating the flow rules.

Need for a programmatic framework: Programming frame-
work based on object-oriented hierarchy for policy composition,

https://doi.org/10.1145/3309194.3309196
https://doi.org/10.1145/3309194.3309196
https://doi.org/10.1145/3309194.3309196

Session: SDN/NFV Security Architecture

rule detection and mitigation can facilitate code-re-utilization, de-
pendencies between security policies at different layers of the cloud
network while satisfying user requirements. Existing frameworks
such as FRESCO [18] and Frentic [5] consider only traffic monitor-
ing, security application deployment, and query optimization, and
lack a built-in mechanism to check flow rule conflicts.

The key contributions of this research work are as follows:

e SDNSOC checks dependencies between SFC requirements
and creates a policy graph based on object-oriented design
constructs. Policy graph is transformed into OpenFlow rules.

o Utilizes object-oriented design principles such as inheritance,
aggregation, composition in order to identify dependencies
between VNFs, security policies, and conflicts between the
security policies. The framework is able to identify depen-
dencies between security policies, and OpenFlow rules thus
handle policy conflict at multiple layers of the cloud network.

o Identifies the flow rule conflicts at the infrastructure layer
that may arise because of SFC deployment in order to elimi-
nate flow rule conflicts in SDN-based cloud network.

2 BACKGROUND AND MOTIVATION

Definition 2.1. OpenFlow Rule: A flow table F of an OpenFlow
switch, can have rules, {ry, ry, .., rn } Each rule consists of layer 2-4
packet header fields, protocol (TCP/UDP/FTP), action-set associated
with the rule, rule priority, and statistics. We define the flow rule
using tuple r; = (p;, pi, hi, ai, si), where a) p; denotes rule priority,
b) p;i denotes the protocol of the incoming traffic (TCP/UDP) c) h;
depicts the packet header, d) a; is the action associated with the
rule, e) s; represents the statistics associated with the rule.

The flow rule header space h;, consists of physical port of incom-
ing traffic §;, source and destination hardware address, i.e., as;, 24;,
source and destination IP address, fs;, f4;, source and destination
port address, ys;, yq4;- Packet header can be defined by the tuple
hi = (6i, asi, agq;» Bsi» Bai» Vsi» Yd,i)- Rule statistics s;, comprises of
both flow duration and number of packets/bytes for each flow rule

si = (di, by).

2.1 Motivating Scenario: Security Policy
Composition Issue

Definition 2.2. Security Policy: A security policy is a packet pro-
cessing requirement specified by the network administrator at the
application plane in form of service function chaining requirement,
which, is composed into a low-level flow or firewall rules on the
network switches.

service —chain —01 {
classifier{ group: employee
port:443,80, dst: server}
50 firewall
40 load-balancer
30 server}
service —chain —02 {
classifier { group: remote—user port:443,80
dst: web—server}
50 vpn
40 web—server}

SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

Consider the security policies above, there are two service func-
tion chains, i.e., service-chain-01 and service-chain-02. The first ser-
vice chain requirements want all users in the group employee to pass
through the firewall, load balancer while trying to access the server
VM on ports 80,443. On the other hand, the second service chain
allows employees who are in External-User group to access web-
server through port 80 using VPN. The numeric values [50.40,30]
in front of individual VNFs indicate their order of precedence in
the VNFs in the SFC.

Definition 2.3. Security Policy Composition: The end-to-end
service chain creation which satisfies, all the access requirements
for different security groups while maintaining the satisfaction of
security constraints. An example of a security constraint is that the
firewall always operates on the raw un-encrypted traffic.

The two policies have been composed by different security ad-
ministrators, and leads to security constraint violation, since the
External-User inherits Employees and Web-Server inherits Server,
and the traffic passing through the VPN box is tunneled directly to
the web-server without being inspected by the Firewall.

We can use the VNF object-oriented (OO) chain creation to com-
pose the security policies from individual SFC requirements. The al-
gorithm will identify the relationship between different SFC groups
and create an end-to-end chain satisfying security constraints.

2.2 Motivating Scenario: Flow Rule Conflict
Analysis
Definition 2.4. Packet Classification: The incoming traffic packet

for a network, IT;, can be classified into subset of rules R;;, from the
ruleset of the entire network R, i.e., R;, C R, where Ry, = {V;f;lri}.

Definition 2.5. Conflict Detection problem [3] seeks to find the
rules r;,7j € Ry, which have are conflicting with each other, i.e.,
(pi = pj) A(hiNhj £ 0) A(a; # aj) A (p; # pj). The variables used
here, have been defined in Definition 2.1 earlier.

Table 1: Motivating Scenario - Conflict Detection

Flow-ID | Src-IP | Dst-IP | Src-Port | Dst-Port | Action
1 1 [0-100] [0-100] | drop

2 1 [0-100] | [2,4] [0-100] srcip=5
3 2 [0-100] | [2,4] [0-100] | fwd

4 (58] | [0-100] | [0.8] [0-100] | srcip=2

Consider, Table 1, we use simple numeric values for source and
destination addresses for concise representation and consider other
OpenFlow fields, e.g., layer 2 source and destination addresses to
be wildcarded. There is two type of violations here.

Coverage Violation: The rules 1 and 2 have overlapping header
space, the Src-IP of the rules is same, the destination IP of rule 2 is
a superset of rule 1, whereas the actions for both rules are different.

Transitive Violations: The According to rule with Flow-ID "1’
present in the table, every packet from Src-IP 1 towards Dst-IP 2
must be dropped, however, rule 2 in the table allows modification
of source IP to value 5, and the rule 4 sets the source IP of any field
between [5-8] to the value 2. Thus, using rules 1,3, and 4 the traffic
between Src-IP 1 and Dst-IP 2 is allowed.

Session: SDN/NFV Security Architecture

Research works, Flowguard [7], and Brew [13], focus on only
on Firewall as a use-case for security policy conflict detection, and
fail to identify Transitive Violations. In this paper, we use object-
oriented fundamentals, and, classify the flow rule dependencies
into Inheritance, Polymorphism, Aggregation, and Composition to
identify both direct and indirect dependencies between OpenFlow
rules.

3 SDNSOC ARCHITECTURE

ET: /traffic-s ¢
GET: /network-topo

Network ?dh

POST: /sfc- lequ/remem‘s

Login

‘ Traffic ‘ ‘

Topology SFC
Statistics

Dlscovery Composer
_- -7 SDNSOC Applloa;(on Layer /7
7

Flow Rule
Visualizer

| TL

| v

POST: {[dpid, port_nol, ewitch,portstatus}}

TopoChange /” Operational UNE- Gmph\

Event Listengr DB =
i1 2 =
10 Flow Conflict
AQ _ Control PI:M\ Analyzer AAA

of ofo_flow_mod() ™~ A
GRE/VXLAI

of event. EventSwitchRequest”

OF-Switch

OF-Switch OF-Switch

WAN
Optimizer

Web

DPI
Eln

Firewall

Load DS
Balancer

Figure 1: SDNSOC Architecture

The SDNSOC, as shown in the Figure 1, is divided into three
layers, i.e., application plane layer - which consists of Ul where user
can login, and perform network analytics such as traffic statistic
detection, topology visualization, OpenFlow table rule visualization
and SFC requirement specification, control plane layer - we use
OpenDaylight (ODL) controller in the control plane. The UI has
been implemented in a PHP lavarel based framework.

Topology Discovery: The controller consists of topology change
event listener, which listens on the events such as port status (UP-
/DOWN), switch status, port information of hosts connected to
switches.

SFC Composition and VNF-Graph: The application plane
consists of SFC composition template, along with the order of prece-
dence for processing of different VNFs. Since multiple-users can
specify service chains at a given point-in-time. The VNF-Graph
creator module in the control plane compiles the requirements of
SFC specified by the user.

Conflict Analyzer: The conflict analysis module utilizes REST
APT to fetch the Flow rules from OpenFlow switches using REST
API. The rules are analyzed for potential overlap in the header
match and action fields, which can lead to the violation of end-to-
end security policies or service delivery. The conflicting flow rules
can be visualized at the dashboard UI for in-depth analysis by the
network administrator. The VNFs are connected to the OpenFlow
switches. The switches, which belong to different network segments
are connected using GRE/VXLAN.

\ GET:{flow_ cwvﬂrct graph} GET: {token session_id]

SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

4 OBJECT ORIENTED SFC FRAMEWORK

We design an object-oriented multi-tiered network security archi-
tecture to provision distributed security in a cloud data-center. A
VNF, or networking domain can be considered a class. A class
can be instantiated to create an object which represents a specific
implementation of the class.

Inheritance enables new classes to inherit the properties and
methods of the existing classes. A class which inherits from the
superclass is called a subclass or derived class. For instance, con-
sider a class Subnetwork which provides the basic layout of the
network bits and host bits, e.g., for a class B Subnet Prefix is 16 and
Host Prefix is 16, thus there can be 16 host bits or 216 hosts that
can be present in this subnetwork. The class Ethernet Address can
inherit the network mask functionality (Network and Host Prefix)
from the class Subnetwork. In addition, subclass also adds features
such as IPv4 address (e.g., 192.168.1.12), Gateway (e.g., 192.168.1.1),
Nameserver (e.g., 8.8.8.8) and broadcast address (e.g., 192.168.1.255).
An object for this class is ethernet address for a specific host.

Polymorphism is one of the features in OOP that allows a single
action to be performed in different ways. Using the polymorphism
in virtual network functions allows the creation of one interface for
instance Firewall , that can be realized in a different way depending
upon the application requirement. The smart firewall architecture
like Cisco-ASA [6] implements several security features such as
Intrusion Detection, Anti-malware capabilities and VPN service
in one single device. A polymorphic design of VNF can help in an
extension of current VNFs to new firewall architecture. A stateless
firewall, which provides basic functions of traffic filtering and NAT,
can be extended to a stateful firewall, providing connection tracking
for stateful applications, intrusion prevention system (IPS), etc.

Association

Aggregation

Composition (b) Composition

(2) Aggregation Class: NAT

~setNATIP()
-setNATPort()
-setNATRule()

/ part-Of

Class: IPS

Inherits Firewall
-private:
setAFPacketMode()
-private: setNFQMode()

Class: VPN

-private: setkeyPair()
-private: setCertAuth()

-private: setlPSRule() Class: Firewall
-protected: getlPSRules()
has-A
ok -src, dst, prot, src_port,
has-A dst_port
Class: NGFW T RGHEEE
getFirewallRules ()
has-a IPS -private: getNATRule()
has-a VPN -private:
-private: setTrustZone() setForwardRule()
-private: getKeyPair() -public:
-private: getIPSRules() checkFirewallState ()

Figure 2: Association in object-oriented architecture

Aggregation is a weak form of association that enables one
VNF to utilize another, without having to re-implement the func-
tional logic present in original VNF. For instance, Next Generation
Firewall (NGFW) as shown in the Figure 2(a), typically comes with
features such as VPN and DPI. The NGFW and VPN can, however,
function as a standalone VNFs even if either is missing in security

Session: SDN/NFV Security Architecture

architecture. These weak associations allow re-utilization of desired
features amongst VNFs using a has-A relationship.

Composition on the other hand, is a stronger form of associa-
tion, usually represented by part-Of relationship. The functionality
of Network Address Translation (NAT) cannot exist by itself, and it
requires the presence of Firewall VNF as shown in the Figure 2(b).
The firewall module can call setNATIP() and setNATPort() func-
tions in the class NAT in order to allow NAT feature mapping an
external IP address/port to an internal IP address/port in addition
to other features such as port forwarding and blocking a certain
type of network traffic.

5 SDNSOC SFC COMPOSITION, CONFLICT
DETECTION AND RESOLUTION

5.1 Flow Composition

Algorithm 1 SFC-Composition

1: procedure VNF-GRaPH(SFC, C)

2 SFC « List of Service Chains

3 C « List of classification constraints
4 G < 0 VNF Graph

5: forc; € Cdo
6

7

8

9

for sfcj € SFC do
if c¢jj.match N sfcj.range # 0 then
G.addnode(c;;.group)

end if
10: end for
11: end for
12: for i € G.nodes do
13: for j € G.nodes do
14: if i.range € j.rangel|j.range € i.range then
15: G.addedge(i,j,inheritance)
16: else if i.range N j.range # 0 then
17: G.addedge(i,j,aggregation)
18: end if
19: end for
20: end for
21: Return G

22: end procedure

The algorithm 1 finds the dependencies between various service
function chains and the classification criteria defined as the part of
classification constraints. For any incoming traffic, lines 5-7 checks
the classification constraints against each service function chain
(SFC). If there is a match on the incoming traffic header, a node is
added to the VNF-Graph, as shown in the line 8. In the second part
of the algorithm, lines 12-20, all the nodes of the graph are matched
against each other to check the range overlap, if one node’s IP-range
is a subset of other, we define inheritance relation between graph
nodes. On the other hand, if there is a partial overlap, we define an
aggregation relationship. Thus, the edges between the graph nodes
are added in this part. The VNF-Graph is converted parsed and
converted to flow-rules corresponding to each node of the graph.
The flow rules are checked for conflicts based on header space and
actions overlap, which we discuss in the next subsection.

10

SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

5.2 Flow Rule Conflict Detection

6 sl a=a) Inheritance

rule j: table=0, in_port=2, dl_dst=*
actions=output:DROP

rule i; table=0, in_port=2,
dl_dst=00:00:00:00:00:01 actions=DROP

rule j: table=0, in_port=2, dl_dst=00:00:00:00:00:01
actions=output:1

rule i; table=0, in_port=2,
dl_dst=00:00:00:00:00:01,ip_src=192.16.1.1

h € hy,a; # g
(‘ Py 0) Polymorphism

actions=DROP

rule j: table=0, in_port=2, ip_src=192.168.1.0/24

actions=output:1

rule i; table=0, in_port=2,
dI_dst=00:00:00:00:00:01,ip_src=192.16.1.10

(N #0,0,=g)
. Aggregation
actions=output:1

(hnh #0,0,%q rule j: table=0, in_port=2, ip_src=192.168.1.0/24

dl_dst=00:00:00:00:00:01,ip_src=192.16.1.10
actions=output:ALL

rule j: table=0, in_port=2, ip_src=192.168.1.0/24
actions=output:1

rule i; table=0, in_port=4, ,ip_src=192.16.4.10
actions=output:1

(henly =0)

No Conflict

rule i; table=0, in_port=2,

Figure 3: OpenFlow Rule Conflict Analysis

We utilize the class hierarchy that we described for different
VNFs in the previous section to illustrate the process of flow rule
conflict identification. We consider the overlap in the action fields.
As shown in the Figure 3, we can have four different cases of an
object-oriented framework, which can cover different scenarios of
flow rule conflicts.

e Inheritance: As shown in the example above, the header
fields h; C hj, and actions of both rules are same, thus rule i
is a specialization of rule j.

¢ Polymorphism: The example showcases two rules, where
rule i inherits the header values of rule j, however, the action
fields are different. This is similar to polymorphism property
in the object-oriented design, thus we classify such cases of
rules are polymorphic conflicts.

e Aggregation: Rules (i, j) in the example of aggregation have
overlapping header fields, i.e., h; N hj # 0, however, both
rules, have same action, thus a third rule, k can replace both
rules, but this doesn’t happen automatically in flow tables.
We classify such conflict scenarios as aggregation.

e Composition: Rules (i, j) in this conflict scenario have over-
lapping header fields, and conflicting actions, thus the inter-
secting part of both rules, h; N A}, is composed of aggregated
actions from both rules. This type of rule conflicts can be
classified into composition category.

The cases where there is no overlap in the header fields, there is
no case of rule conflict, irrespective of the actions, as shown in the
Figure 3.

6 IMPLEMENTATION AND EVALUATION
6.1 System Setup

We utilized an OpenStack based cloud network comprising of two
Dell R620 servers and two Dell R710 servers all hosted in the data
center - Science DMZ [1]. Each Dell server has about 128 GB of
RAM and 16 core CPU. The SDN controller Opendaylight-Carbon

Session: SDN/NFV Security Architecture

was provided network management and orchestration in our frame-
work. The VNFs Web Server, OpenVPN, Firewall (netfilter), and
load balancer (nginx) were used for evaluation of SFC composition
and conflict analysis. The flow rules were installed on OpenFlow
switches managed by SDN controller.

6.2 SFC Flow Composition Analysis

6.3 Composition Time Comparative Analysis
I I I I I I

500 |- -

Z 400 .
%
E
[

o 300[.
£

gl- 200 B
£
o
&)

100 |- B

50 - b

20 I | [

0.2 0.4 0.6 0.8 1 1.2 13
Number of Rules 10*

‘ —5— SDNSOC —— PGA —— SICS ‘

Figure 4: Number of Rules vs Composition Time - SDNSOC,
PGA [15], SICS [19]

We performed a comparative analysis of composition time for
SDNSOC against policy composition time of PGA [15] and SICS
framework [19]. We use rules as a generic term to define PGA nodes,
SICS rules, and OpenFlow rules, and to have a common comparison
format. We observed that SDNSOC achieves faster composition time
- 20s for 10k rules, and 25s for about 12k rules. The composition
time for SICS was slightly higher than our framework, i.e., 31.5s
for 10k rules and 37.5s for 12k rules. The composition time for
PGA scales poorly with the number of rules as can be seen in the
Figure 4. PGA takes about 400s for the composition of 10k rules
and 500s for 12k rules. The performance degradation in SICS can
be attributed to encryption overhead, whereas in the case of PGA,
the poor scaling is because of duplication of SFs across the network.
The comparison of SDNSOC with these frameworks shows that
SDNSOC will scale well with the number of policy rules.

6.4 Flow Rule Conflict Analysis

We performed experiment to analyze the number of conflicts - In-
heritance (IN), Polymorphism (P), Aggregation (A) and Composition
(C) in the translated OpenFlow rules. The x-axis in the Figure 5
denotes the number of OpenFlow rules - 5k, 16k, and 25k. As the
number of OpenFlow rules increased, we observed an increase in
the number of conflicts. For the dataset with 5k OpenFlow rules,
we identified 484 conflicts because of inheritance dependency, 936
polymorphism related conflicts, 9 aggregation conflicts, and 24 com-
position conflicts. Our conflict checking algorithm identified 1041
inheritance conflicts, 1989 polymorphism, conflicts, 49 aggrega-
tion conflicts and 336 composition conflicts in 25k OpenFlow rules.

1

SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

2,500

2,200 -

1,989

1,643

1,800
1,500 |-

1,200

936
843

900 |~

Number of Conflicts

0.5 1.6
Number of Flows

Ianlsplnalnc

Figure 5: Number of Conflicts in OpenFlow Rules

The experiment demonstrates that managing conflicts for even few
thousand rules manually can be quite challenging. Hence we use
an automated detection and resolution framework for flow rule
conflicts.

We performed a comparison of the flow rule conflict detection al-
gorithm with OpenFlow conflict checking research works Brew [13]
and Flowguard [7]. Object-oriented conflict detection is able to de-
tect transitive conflicts using multi-level inheritance, which have
not been considered by both works. Additionally, our framework is
generalizable to many different VNFs, whereas Brew and Flowguard
only considered policy conflict issues in a firewall. Our experimen-
tal results show that there can be large a number of conflicts in
flow rules that can be identified only by automated composition
and conflict analysis using an object-oriented framework.

6.5 Flow Rule Conflict Analysis Scalability

In this experiment, we utilized the Stanford University backbone
network topology [9] for analyzing the scalability of conflict detec-
tion algorithm. The network consists of multiple layers of switches
and routers, about 13k routes and 757k forwarding rules, 100 VLANS,
and 900 ACL rules. The network was simulated using mininet,
routers and switches were replaced with OVS, and the flow rules
from the actual network were inserted using a python script.

We compared the running time for detecting conflicts of the
object-oriented policy conflict detection method, with existing pol-
icy conflict detection works, Brew and Flowguard, which utilize
Stanford topology for experimental analysis. The performance of
SDNSOC is slightly slower than Brew for 10k rules ~9ms, but as
the size of the flow rules increases, the SDNSOC performs better
than both Brew and Flowguard. Flowguard only considered con-
flict detection for about 40k rules, the performance of our conflict
checking procedure (19ms) is significantly better than Brew (22ms)
and Flowguard (39ms) for 40k rules. The results from the Figure 6,
shows that the running time for 50k flow rules is 25ms, and about
45ms for 100k flow rules, which is clearly 18% performance gain
over Brew (55ms). Hence the flow rule conflict detection algorithm
based on object-oriented principles scales well on the large network.
The performance gain of SDNSOC can be attributed to the fact that

Session: SDN/NFV Security Architecture

40 |- s
=
E 30 |- .
L
£
&=
2
£ 20 |- .
=]
=
~
10 .
| | |

—
N

-
w -

3

Number of Rules 10t

‘ —— SDNSOC —&— Brew —— Flowguard ‘

Figure 6: Number of Flow Rules vs Policy Conflict Detection
Time - SDNSOC, Brew [13], Flowguard [7]

once VNF-Graph is constructed, the search for conflicts in hierar-
chical structure when a new rule is added, is a trivial operation,
compared to the matching of new rule against every other rule in
case of Brew, and Flowguard.

7 RELATED WORK

Policy Aware automatic composition of multiple independent net-
work policies and Access Control Lists (ACLs) using graph-based
expression has been discussed by Prakash et al [15]. FlowTags [4]
extends SDN architecture for adding tags to outgoing packets. This
provides a necessary context for policy enforcement. These works
do not, however, consider possible overlaps between network poli-
cies based on packet header match. Works that focus on policy
safety and efficiency of SFC like SDN based virtual firewall dis-
cussed by Deng et al [2] consider issues like semantic consistency,
buffer overflow avoidance, and scalability but their application is
limited to the firewall VNF. In our work, we use an object-oriented
design that achieves optimal SFC composition and policy conflict
resolution to allow different VNFs to provide a seamless service
function chain (SFC).

Flow Rule Conflict analysis based on SDN flow rules has been
considered by Pisharody et al [12, 13]. The research work only
considers layer 2-4 flow rules and focus on traditional north-south
traffic in a data-center. Our work considers more detailed policy
conflicts at application as well as OpenFlow switch level. Veri-
flow [11] and NetPlumber [10] lack automatic real-time security
policy resolution mechanism. The research work, however, does
not consider indirect security policy violation detection. The object-
oriented framework proposed in our work identifies the indirect
violations by a notion of inheritance and generalizations between
the dependent VNFs.

8 CONCLUSION

We discuss the problems associated with policy composition and
flow rule conflict in this paper because of different administrative
domains, and multi-tenancy in the SDN-managed cloud network.

12

SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

We utilized object-oriented principles to identify the policy de-
pendencies at application tier and flow rule conflict issues at the
infrastructure layer. The SDNSOC’s architecture is able to provide
scalable and faster policy composition, flow-rule conflict detection
compared to existing works. As an extension of this research work,
we plan to check application and effectiveness of SDNSOC on other
platforms, which are not SDN-based such as Amazon cloud, and
Google cloud platform.

ACKNOWLEDGMENT

All authors are gratefully thankful for research grants from Naval
Research Lab N00173-15-G017 and National Science Foundation US
DGE-1723440, OAC-1642031, SaTC-1528099.

REFERENCES

[1] CrowbDHARY, A., Dix1T, V. H,, TiwARrl, N., KYung, S., HUANG, D., AND AHN, G.-J.
Science dmz: Sdn based secured cloud testbed. In Network Function Virtualization
and Software Defined Networks (NFV-SDN), 2017 IEEE Conference on (2017), IEEE,
pp- 1-2.

[2] Deng,]., L1, H.,, Hu, H., WaNG, K.-C., AnN, G.-]., ZHAO, Z., AND HAN, W. On the
safety and efficiency of virtual firewall elasticity control. In Proceedings of the
24th Network and Distributed System Security Symposium (NDSS 2017) (2017).

[3] EPPSTEIN, D., AND MUTHUKRISHNAN, S. Internet packet filter management and
rectangle geometry. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms (2001), Society for Industrial and Applied Mathematics,
pp. 827-835.

[4] FavazBakwsH, S. K., SEKAR, V., YU, M., AND Mogut, J. C. Flowtags: Enforcing
network-wide policies in the presence of dynamic middlebox actions. In Pro-
ceedings of the second ACM SIGCOMM workshop on Hot topics in software defined
networking (2013), ACM, pp. 19-24.

[5] FosTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO, C., REXFORD, J., STORY,
A., AND WALKER, D. Frenetic: A network programming language. ACM Sigplan
Notices 46,9 (2011), 279-291.

[6] FraHIMm, J., AND SANTOS, O. Cisco ASA: All-in-One Firewall, IPS, Anti-X, and VPN
Adaptive Security Appliance. Pearson Education, 2009.

[7] Hu, H., HaN, W., AHN, G.-]., AND ZHAO, Z. Flowguard: building robust firewalls
for software-defined networks. In Proceedings of the third workshop on Hot topics
in software defined networking (2014), ACM, pp. 97-102.

[8] Huang, D., CHOWDHARY, A., AND PISHARODY, S. Software-Defined Networking
and Security: From Theory to Practice. CRC Press, 2018.

[9] Kazemian, P. Header space analysis: Static checking for networks.

KAZEMIAN, P., ZENG, H., VARGHESE, G., MCKEOWN, N., AND WHYTE, S. Real time

network policy checking using header space analysis.

KHURSHID, A., ZHOU, W., CAESAR, M., AND GODFREY, P. Veriflow: Verifying

network-wide invariants in real time. In Proceedings of the first workshop on Hot

topics in software defined networks (2012), ACM, pp. 49-54.

PISHARODY, S., CHOWDHARY, A., AND HUANG, D. Security policy checking in

distributed sdn based clouds. In Communications and Network Security (CNS),

2016 IEEE Conference on (2016), IEEE, pp. 19-27.

PisHARODY, S., NATARAJAN, J.,, CHOWDHARY, A., ALSHALAN, A., AND HUANG,

D. Brew: A security policy analysis framework for distributed sdn-based cloud

environments. IEEE Transactions on Dependable and Secure Computing (2017).

PoRRaAS, P., YEGNESWARAN, V., SHIN, S., AND Gu, G. A security enforcement

kernel for openflow networks hotsdn 2012.

PrakasH, C., LEE, ., TURNER, Y., KANG, J.-M., AKELLA, A., BANERJEE, S., CLARK, C.,

Ma, Y., SHARMA, P., AND ZHANG, Y. Pga: Using graphs to express and automatically

reconcile network policies. In ACM SIGCOMM Computer Communication Review

(2015), vol. 45, ACM, pp. 29-42.

QUINN, P., AND NADEAU, T. Problem statement for service function chaining.

Tech. rep., 2015.

SHERRY, J., RATNASAMY, S., AND AT, J. S. A survey of enterprise middlebox

deployments.

SHIN, S. W., PORRAS, P., YEGNESWARA, V., FONG, M., Gu, G., AND TysoN, M. Fresco:

Modular composable security services for software-defined networks. In 20th

Annual Network & Distributed System Security Symposium (2013), NDSS.

WaNG, H., L1, X., ZHAO, Y., YU, Y., YANG, H., AND QIAN, C. Sics: Secure in-cloud

service function chaining. arXiv preprint arXiv:1606.07079 (2016).

[13

(14

[15

[17

(18]

[19]

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivating Scenario: Security Policy Composition Issue
	2.2 Motivating Scenario: Flow Rule Conflict Analysis

	3 SDNSOC Architecture
	4 Object Oriented SFC Framework
	5 SDNSOC SFC Composition, Conflict Detection and Resolution
	5.1 Flow Composition
	5.2 Flow Rule Conflict Detection

	6 Implementation and Evaluation
	6.1 System Setup
	6.2 SFC Flow Composition Analysis
	6.3 Composition Time Comparative Analysis
	6.4 Flow Rule Conflict Analysis
	6.5 Flow Rule Conflict Analysis Scalability

	7 Related Work
	8 Conclusion
	References

