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Short title: Multiple Roles of Brassinosteroids 

One-sentence summary: Brassinosteroids are a class of plant steroid hormones that are versatile 
regulators of growth, development, and responses to stresses such as extreme temperatures and 
drought. 

ABSTRACT 
Brassinosteroids (BRs) are a group of polyhydroxylated plant steroid hormones that are crucial 
for many aspects of a plant’s life. BRs were originally characterized for their function in cell 
elongation, but it is becoming clear that they play major roles in plant growth, development and 
responses to several stresses such as extreme temperatures and drought. A BR signaling pathway 
from cell surface receptors to central transcription factors has been well characterized. Here, we 
summarize recent progress towards understanding the BR pathway, including BR perception and 
the molecular mechanisms of BR signaling. Next, we discuss the roles of BRs in development 
and stress responses. Finally, we show how knowledge of the BR pathway is being applied to 
manipulate the growth and stress responses of crops. These studies highlight the complex 
regulation of BR signaling, multiple points of crosstalk between BRs and other hormones or 
stress responses, and the finely tuned spatiotemporal regulation of BR signaling. 

INTRODUCTION 1 

The plant steroid hormone brassinosteroids (BRs) play important roles in plant growth and 2 

development, regulating diverse processes such as cell elongation, cell division, 3 

photomorphogenesis, xylem differentiation, and reproduction as well as both abiotic and biotic 4 

stress responses.  The most active BR, brassinolide (BL), was purified from more than 200 kg of 5 

rapeseed (Brassica napus) pollen and its structure determined by X-ray analysis (Grove et al., 6 
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1979). The growth-promoting effect of crude lipid extract from rapeseed pollen was observed 7 

nine years earlier in a classic bean second-internode bioassay (Mitchell et al., 1970). In 1996, 8 

several independent studies involving the isolation of BR-insensitive and -deficient mutants of 9 

the model plant Arabidopsis (Arabidopsis thaliana) clearly established BRs as important 10 

endogenous growth regulators (Clouse et al., 1996; Li et al., 1996; Szekeres et al., 1996). Loss-11 

of-function BR mutants displayed similar pleiotropic phenotypes including severe dwarfism, a 12 

dark-green color, and a de-etiolation phenotype when grown in darkness. In the case of BR-13 

deficient mutants, these phenotypes could be rescued to that of the wild type by the external 14 

application of BRs. Molecular studies of BR mutants in Arabidopsis have led to the 15 

identification of BR receptors (Clouse et al., 1996; Li and Chory, 1997). Unlike animal steroid 16 

hormones, which bind nuclear receptors to directly modulate gene expression, BR receptors are 17 

plasma membrane (PM)-localized receptor kinases (Li and Chory, 1997; Cano-Delgado et al., 18 

2004). In the past two decades, tremendous progress has been made in understanding the signal 19 

transduction pathways from cell surface receptors to the nucleus where thousands of genes are 20 

modulated in response to BRs to confer various biological responses (Figure 1 and Table 1) 21 

(Kim and Wang, 2010; Clouse, 2011; Guo et al., 2013; Dejonghe et al., 2014; Nolan et al., 22 

2017a). In this review, we intend to capture the latest developments in the field by highlighting 23 

recent publications in the context of BR research over the past 25 years. We discuss the latest 24 

studies in BR perception, signaling, development, and stress responses. Finally, we provide an 25 

overview of BR functions and potential applications in crops. 26 

 27 

BR PERCEPTION 28 

BRs are perceived at the cell surface. The site of their biosynthesis is probably restricted to the 29 

endoplasmic reticulum (ER), as BR biosynthesis enzymes in Arabidopsis have been localized to 30 

the ER (Kim et al., 2006; Northey et al., 2016). From the ER, BRs are further transported into the 31 

apoplast, where they directly bind to the PM-localized receptors, BR INSENSITIVE1 (BRI1) 32 

(Friedrichsen et al., 2000; He et al., 2000) and its homologs, BRI1-LIKE1 (BRL1) and BRL3 33 

(Cano-Delgado et al., 2004; Kinoshita et al., 2005).  34 

 35 

The BRI1 ectodomain confers BR binding 36 
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BRI1, BRL1, and BRL3 belong to the leucine-rich repeat (LRR) receptor kinase (RK) family of 37 

proteins (Li and Chory, 1997; Cano-Delgado et al., 2004). BRI1 consists of an ectodomain that 38 

includes an N-terminal signal peptide, 25 LRRs, and a 70-amino acid island domain inserted 39 

between LRR21 and LRR22, followed by a single transmembrane domain and a cytoplasmic part 40 

including the juxtamembrane, kinase, and C-terminal domains (Vert et al., 2005). Despite 41 

sequence similarity to animal Toll-like receptors (TLRs) (Choe et al., 2005), structural studies 42 

demonstrated that the BRI1 ectodomain does not adopt the anticipated TLR-like horseshoe 43 

structure but forms a right-handed superhelix composed of 25 LRRs (Hothorn et al., 2011; She et 44 

al., 2011). The island domain then folds back into the interior of the superhelix to create a 45 

surface pocket for binding of the BR hormone (Hothorn et al., 2011; She et al., 2011). 46 

Historically, it was first concluded that the ectodomain of BRI1 perceives BRs based on a study 47 

involving a chimeric receptor consisting of a fusion of the ectodomain of BRI1 to the kinase 48 

domain of Xa21, a rice (Oryza sativa) disease resistance receptor. Exogenous application of BL 49 

to rice cells expressing the BRI1-Xa21 chimeric receptor triggered defense responses (He et al., 50 

2000). Furthermore, it was shown that immunoprecipitated BRI1 conferred BR-binding and that 51 

a fully functional ectodomain was required for this binding (Wang et al., 2001). To identify the 52 

BR binding region, a series of truncated versions of the BRI1 ectodomain were generated and 53 

tested for binding to biotin-tagged photoaffinity castasterone, a synthetic precursor of BL. This 54 

analysis revealed that the minimal BR-binding domain of BRI1 consists of 94 amino acids 55 

comprising the island domain and the carboxy-terminal flanking LRR22 (Kinoshita et al., 2005). 56 

Residues that are important for BR-binding have been revealed by solving the crystal 57 

structures of BRI1 ectodomain in complex with BL (Hothorn et al., 2011; She et al., 2011). 58 

LRRs 23-25 provide the hydrophobic surface for the binding of A-D rings of BL, while LRR21, 59 

LRR22, and the island domain form a pocket for the binding of the alkyl chain of BL (Hothorn et 60 

al., 2011; She et al., 2011). These findings were corroborated by homology modeling with 61 

BRL2, a homolog of BRI1 that does not bind BRs (Cano-Delgado et al., 2004; Kinoshita et al., 62 

2005), and by solving the crystal structure of BRL1 in complex with BL (She et al., 2013). Thus, 63 

it was proposed that the substitution of Ile642 (in BRL1) or Met657 (in BRI1) to Glu614 (in 64 

BRL2) might interfere with the BL-binding by changing the hydrophobicity of this region (She 65 

et al., 2013). Several bri1 mutants with point mutations in the island domain-LRR interface have 66 

been identified (Li and Chory, 1997; Noguchi et al., 1999; Sun et al., 2017). It remains to be 67 
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demonstrated if BRI1 mutants carrying these molecular lesions are deficient in BR binding, 68 

which would further confirm the importance of this region. The BL binding pocket in BRI1 is 69 

highly hydrophobic and relatively small. Accordingly, the introduction of polar or bulky groups 70 

into the BL molecule attenuates its bioactivity (Wang et al., 2001; Back and Pharis, 2003). This 71 

further emphasizes the significance of hydrophobic interactions between BL and the BRI1 island 72 

domain. Although most of the residues contributing to the formation of the BL binding pocket 73 

are conserved, BRL2 does not bind to BL, and BRL3 showed decreased BL binding compared to 74 

BRI1 (Cano-Delgado et al., 2004; Kinoshita et al., 2005). Further studies are needed to identify 75 

the detailed molecular basis for the differences in BL binding among BRI1, BRL2, and BRL3. 76 

 77 

BRs function as a molecular glue to bring BRI1 and its co-receptors together 78 

Upon BL binding, the island domain in the BRI1 ectodomain becomes ordered and its position 79 

with respect to the LRR core becomes fixed (Hothorn et al., 2011; She et al., 2011), which 80 

creates a docking platform for the binding of a co-receptor protein required for BRI1 activation. 81 

One such co-receptor is SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 82 

(SERK3)/BRI1-ASSOCIATED KINASE1 (BAK1). This protein was previously characterized as 83 

a BRI1-interacting protein (Li and Nam, 2002; Nam and Li, 2002; Russinova et al., 2004; Wang 84 

et al., 2005a; Wang et al., 2008), a genetic component of BR signaling (Li et al., 2002; Nam and 85 

Li, 2002), and a BRI1 phosphorylation target (Li et al., 2002; Nam and Li, 2002). SERK3/BAK1 86 

belongs to a subfamily of five smaller LRR RKs (SERK1-5) that regulate plant growth, 87 

development, and immunity and play a critical, redundant role in BR signaling (Chinchilla et al., 88 

2007; Heese et al., 2007; Gou et al., 2012; Meng et al., 2015; Hohmann et al., 2018b). The 89 

interaction between BRI1 and SERK3/BAK1 is ligand-dependent (Wang et al., 2005b; Wang et 90 

al., 2008; Hothorn et al., 2011; Jaillais et al., 2011a; She et al., 2011; Santiago et al., 2013), 91 

although a portion of BRI1 and BAK1 heterodimers may exist in the absence of BRs (Bucherl et 92 

al., 2013). The crystal structures of the BRI1-BL-SERK1 and BRI1-BL-SERK3/BAK1 93 

ectodomain complexes suggest that BL acts as a molecular glue, promoting the association 94 

between BRI1 and BAK1 (Santiago et al., 2013; Sun et al., 2013). These two structures are 95 

comparable because BL- and BRI1-interacting amino acids are highly conserved among the 96 

SERK proteins (Santiago et al., 2013; Sun et al., 2013). Structural data reveal that the 97 

ectodomain of SERK1 makes contacts with the BRI1-bound BL, the island domain, and LRR25 98 
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of BRI1 (Santiago et al., 2013). Consistent with this finding, a substitution of Thr750 with a 99 

bulkier Ile in BRI1 may perturb the direct BRI1-SERK3/BAK1 interactions, causing the 100 

compromised BR signaling observed in bri1-102 (Friedrichsen et al., 2000). In addition, a 101 

substitution of Asp122 with a less hydrophilic Asn in SERK3/BAK1 may cause additional 102 

interactions between SERK3/BAK1 and BRI1, causing a BR-hypersensitive phenotype (Jaillais 103 

et al., 2011a). The hydrogen bonds established between SERK1 and the 2a, 3a-diol moiety of BL 104 

are important for BR signaling activation, as BR derivatives in which the two hydroxyls in BL 105 

were replaced by methyl ethers (Back et al., 2002) or acetonide (Muto and Todoroki, 2013) 106 

exhibited weakened activity. 107 

 108 

Negative regulators of the BRI1-SERK3/BAK1 association 109 

In the absence of BRs, BRI1 is kept in an inactive state by auto-inhibition through its C-terminal 110 

domain (Wang et al., 2005a), auto-phosphorylation in the kinase domain (Wang et al., 2005b; Oh 111 

et al., 2009; Oh et al., 2012b; Bojar et al., 2014), and interaction with the inhibitory protein BRI1 112 

KINASE INHIBITOR1 (BKI1) (Wang and Chory, 2006; Jaillais et al., 2011b; Jiang et al., 113 

2015b). BKI1 associates with the PM (Jaillais et al., 2011b) and interacts with BRI1 by binding 114 

to the C-lobe of its kinase domain (Wang et al., 2014a). As this part of BRI1 is required for the 115 

binding of the SERK3/BAK1 kinase domain, BKI1 interferes with BRI1-SERK3/BAK1 116 

interactions (Jaillais et al., 2011b; Bojar et al., 2014). BR-induced heterodimerization of BRI1 117 

and the SERK3/BAK1 ectodomains brings their cytoplasmic kinase domains to the correct 118 

orientation to remove BKI1-induced inhibition and to trigger trans-phosphorylation of these two 119 

kinase domains. Activated BRI1 rapidly phosphorylates BKI1 (Wang et al., 2014a), thereby 120 

affecting the positive charge of the BKI1 membrane association domain (Simon et al., 2016), 121 

leading to its release from the PM and the full activation of the BRI1-SERK3/BAK1 complex. 122 

Negative regulators of the co-receptor SERK3/BAK1 have also been reported. For example, 123 

BAK1-INTERACTING RECEPTOR-LIKE KINASES3 (BIR3), which was identified as an in 124 

vivo SERK3/BAK1 complex partner (Halter et al., 2014), inhibits the formation of BRI1-SERK 125 

heterodimers by interacting with the ectodomains of SERKs (Hohmann et al., 2018a), thus 126 

negatively regulating BR signaling. After BR exposure, BIR3 is released from SERK3/BAK1 127 

and BRI1 (Imkampe et al., 2017). Along with the removal of negative regulators, reciprocal 128 

phosphorylation between the BAK1 and BRI1 kinase domains occurs. This process begins with 129 
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BRI1 phosphorylating SERK3/BAK1 (Wang et al., 2008). The phosphorylated SERK3/BAK1 130 

locks itself into the active conformation (Yan et al., 2012) and further phosphorylates BRI1 131 

(Wang et al., 2008) to fully activate the receptor complex.  132 

 133 

BR SIGNALING 134 

Following BR perception at the PM by BRI1 and SERK3/BAK1, a well-established cascade 135 

relays BR signals to BRI1-EMS-SUPPRESSOR1 (BES1) and BRASSINAZOLE-RESISTANT1 136 

(BZR1) family TFs, which control BR-regulated gene expression (He et al., 2002; Wang et al., 137 

2002; Yin et al., 2002; Zhao et al., 2002; Yin et al., 2005; Yu et al., 2011). In this section, we 138 

provide an update on core BR signaling mechanisms and focus on emerging research that is 139 

revealing how BR signaling is modulated and connected with other signaling pathways.  140 

 141 

Inhibition of BR signaling 142 

When BR levels are low, BR signaling is attenuated through multiple mechanisms. The glycogen 143 

synthase kinase3 (GSK3)-like kinase BRASSINOSTEORID INSENSITIVE2 (BIN2) functions 144 

as a negative regulator of BR signaling. BIN2 phosphorylates numerous substrates including 145 

BES1 and BZR1 (Li et al., 2001; He et al., 2002; Li and Nam, 2002; Youn and Kim, 2015). 146 

BIN2-induced phosphorylation inactivates BES1 and BZR1 by promoting their cytoplasmic 147 

retention via 14-3-3 proteins (Gampala et al., 2007; Ryu et al., 2007), inhibiting their DNA-148 

binding activity (Vert and Chory, 2006), and stimulating their degradation (He et al., 2002; Yin 149 

et al., 2002; Nolan et al., 2017b; Kim et al., 2019). Moreover, BES1 and BZR1 are kept in an 150 

inactivate state through interactions with the BROAD COMPLEX/TRAMTRACK/BRIC-A-151 

BRAC (BTB) family protein BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) under BR-152 

deficient conditions (Shimada et al., 2015).  153 

 154 

Activation of BR signaling 155 

When BRs are present, the BRI1 and BAK1 receptor complex activates downstream cytoplasmic 156 

kinases BR SIGNALING KINASES (BSKs) and CONSTITUTIVE DIFFERENTIAL 157 

GROWTH1 (CDG1) (Tang et al., 2008; Kim et al., 2011; Sreeramulu et al., 2013), which in turn 158 

activate the phosphatase BRI1-SUPPRESSOR1 (BSU1) (Kim et al., 2009; Kim et al., 2011). A 159 

recent genetic screen identified several semi-dominant mutants of bsk3. Analysis of these 160 
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mutants revealed that anchoring of BSK3 to the PM via N-myristoylation is essential for BR 161 

signaling. BSK3 interacts with BRI1 and additional BSK family proteins BSU1 and BIN2, 162 

suggesting that BSK3 functions as a BR signaling scaffold (Ren et al., 2019). Moreover, BIN2 163 

phosphorylates BSK3, promoting BSK-BSK, BSK-BRI1, and BSK-BSU1 interactions. In turn, 164 

BSK3 upregulates BSU1 transcript and protein levels to enhance BR signaling (Ren et al., 2019). 165 

Thus, although BIN2 functions primarily as a negative regulator of BR signaling, it also engages 166 

in a feedback loop that promotes BR signaling through phosphorylation of the positive regulator 167 

BSK3.  168 

In line with the notion that scaffolding plays an important role in BR signaling, 169 

TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins TTL1, TTL3, and TTL4 have 170 

recently been implicated in bringing BR signaling components together at the PM (Amorim-171 

Silva et al., 2019). TTL3 forms a complex with several players in BR signaling, including BRI1, 172 

BSU1, and BZR1. TTL3 is localized to the cytoplasm, but BR treatment leads to its association 173 

with the PM where it serves to bring BR signaling components together. This allows BSU1 to 174 

dephosphorylate Tyr200 in BIN2, thereby inactivating this protein (Kim et al., 2009). Several 175 

other mechanisms that control the activity of BIN2 have been described (Figure 2). For example, 176 

BIN2 is degraded by the proteasome in the presence of BRs (Peng et al., 2008). The F-box E3 177 

ubiquitin ligase KINK SUPPRESSED IN BZR1-1D (KIB1) mediates the ubiquitination and 178 

subsequent degradation of BIN2 in the presence of BRs while also blocking BIN2-substrate 179 

interactions (Zhu et al., 2017). BIN2 is also regulated in a cell type-specific manner through 180 

scaffolding. For example, OCTOPUS sequesters BIN2 to the PM in the phloem (Truernit et al., 181 

2012; Anne et al., 2015), and POLAR sequesters this protein to the PM in the stomatal cell 182 

lineage (Houbaert et al., 2018). The BIN2-OCTOPUS interaction inhibits BIN2-induced 183 

phosphorylation of BES1 and BZR1 by confining BIN2 to the PM, thereby promoting phloem 184 

differentiation (Truernit et al., 2012; Anne et al., 2015). Similarly, POLAR regulates the activity 185 

of BIN2 and several related GSK3-like kinases by controlling their localization, thus allowing 186 

different BIN2/GSK3-like kinase substrates to be phosphorylated (Houbaert et al., 2018). Several 187 

post-translational modifications also affect the activity of BIN2. HDA6 deacetylates BIN2, 188 

thereby repressing its kinase activity (Hao et al., 2016), whereas BIN2 is activated via oxidation 189 

at specific cysteine residues (Song et al., 2018b). Dephosphorylation by ABI1 and ABI2 (which 190 

negatively regulate abscisic acid [ABA] signaling) activates BIN2 in the presence of ABA 191 
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(Wang et al., 2018a; Jiang et al., 2019). These diverse regulatory mechanisms highlight the 192 

multifaceted control of BIN2 kinase activity under different conditions and in different tissues. 193 

The complex regulatory mechanisms of BIN2, coupled with the multitude of substrates that are 194 

phosphorylated by this protein (Youn and Kim, 2015), underline the importance of this versatile 195 

kinase.  196 

 197 

BES1 and BZR1 control BR-regulated gene expression  198 

The inactivation of BIN2 by BRs along with the dephosphorylation of BES1 and BZR1 by 199 

PROTEIN PHOSPHATASE2A (PP2A) (Tang et al., 2011) allow BES1 and BZR1 to become 200 

active in the nucleus to control BR-responsive gene expression (He et al., 2002; Wang et al., 201 

2002; Yin et al., 2002; Zhao et al., 2002; Yin et al., 2005; Yu et al., 2011). BES1, BZR1, and the 202 

homologs BEH1-BEH4 are atypical basic helix-loop-helix (bHLH) TFs that function 203 

redundantly as master regulators of BR-responsive gene expression (Wang et al., 2002; Yin et 204 

al., 2002; Yin et al., 2005; Chen et al., 2019a). BRs modulate the expression levels of ~5,000-205 

8,000 genes, approximately half of which are induced and the other half repressed by BRs (Guo 206 

et al., 2013; Wang et al., 2014b; Nolan et al., 2017b). The identification of BES1 and BZR1 207 

target genes genome-wide played a central role in characterizing the BR-regulated gene network 208 

(Sun et al., 2010; Yu et al., 2011; Oh et al., 2012a). These studies revealed hundreds of 209 

BES1/BZR1-targeted TFs (BTFs) that are regulated by BRs (Sun et al., 2010; Yu et al., 2011; 210 

Guo et al., 2013). Signal amplification through these TFs may at least partially explain how BRs 211 

are able to regulate a large number of genes. A theme that has emerged is that BTFs often 212 

physically interact with BES1 and/or BZR1 to cooperatively or antagonistically regulate gene 213 

expression. Thus, these BTFs interface with the BR signaling pathway at multiple levels: they 214 

are both targets of BR regulation, as BES1 or BZR1 binds to their promoters, and mediators of 215 

BR responses through interacting with BES1 or BZR1 to regulate the expression of other BR-216 

responsive genes.  217 

 The observation that BES1 and BZR1 can either induce or repress gene expression leads 218 

to the question of what dictates their activation versus repressive activity. Comparisons of BES1 219 

and BZR1 targets using BR-responsive transcriptome data showed that BR-induced genes are 220 

enriched in E-Box (CANNTG) binding sites, whereas BES1 and BZR1 repress gene expression 221 

by binding to BRRE elements (CGTG(T/C)G) in the promoters of their target genes (Sun et al., 222 
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2010; Yu et al., 2011). BES1 and BZR1 cooperate with other TFs, histone-modifying enzymes, 223 

and transcriptional regulators to activate BR-induced gene expression. For example, BES1-224 

INTERACTING MYC-LIKE PROTEIN1 (BIM1) interacts with BES1; these proteins 225 

synergistically bind to E-Box elements in their BR-induced target genes to activate their 226 

expression (Yin et al., 2005). Similarly, BES1 cooperates with MYB30 to promote BR-induced 227 

gene expression (Li et al., 2009). Further insight into how BES1 and BZR1 repress gene 228 

expression comes from studies of MYBL2 and HAT1, which positively regulate the BR pathway 229 

by assisting BES1 in BR-repressed gene expression (Ye et al., 2012; Zhang et al., 2014b). BES1 230 

and BZR1 also contain an ETHYLENE RESPONSE FACTOR (ERF)-associated amphiphilic 231 

repression (EAR) domain, which mediates interactions with TOPLESS (TPL) proteins (Oh et al., 232 

2014a; Ryu et al., 2014; Espinosa-Ruiz et al., 2017), allowing the recruitment of HISTONE 233 

DEACETYLASE19 (HDA19) to mediate histone deacetylation and thus repress gene 234 

expression. BES1- and BZR1-repressed genes include genes encoding rate-limiting enzymes 235 

involved in BR biosynthesis, forming a negative feedback loop to inhibit the BR pathway (He et 236 

al., 2005). Analysis of BES1 binding sites by protein binding microarray analysis suggested that 237 

BES1 likely binds to the BRRE sites of BR-repressed genes as a homodimer. By contrast, the 238 

regulation of BR-induced gene expression involves the formation of heterodimers between BES1 239 

or BZR1 and other TFs such as PHYTOCHROME INTERACTING FACTOR4 (PIF4) 240 

(Martinez et al., 2018). 241 

Recent structural studies indicated that BZR1 family TFs contain a bHLH-like DNA 242 

binding domain that recognizes both CACGTG (G-box, a specific E-box) and CGTG (core of 243 

BRRE site) elements (Nosaki et al., 2018). Amino acid residues in this domain that determine 244 

binding specificities, binding affinities, and dimer formation were identified (Nosaki et al., 245 

2018). Further structural studies with full-length BES1 or BZR1 and possible heterodimers 246 

between BES1, BZR1, and other classical bHLH protein, such as BIM1 and PIF4, should help 247 

reveal how BES1 and BZR1 can either activate or repress a large number of genes to generate 248 

various biological responses.  249 

 250 

BR-induced gene expression involves cooperative TFs and interplay with light signaling, 251 

auxin, and gibberellins 252 
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 The first BR-related Arabidopsis mutants were isolated in a forward genetic screen for 253 

seedlings with de-etiolated morphology in the dark. These mutants were characterized by short, 254 

thick hypocotyls and open, expanded cotyledons (Chory et al., 1991). It was therefore clear from 255 

very early genetic studies that this group of hormones is involved in regulating light responses in 256 

plants.  257 

 Extensive research in recent years has led to the characterization of several points of 258 

interaction between BR and light signaling components. First, a direct link came from 259 

identifying protein-protein interactions between BZR1 and PIF4, explaining the binding of these 260 

proteins to numerous overlapping genomic targets (Oh et al., 2012a). BES1, PIF4, and the BES1-261 

PIF4 complex recognize different DNA elements. Interaction with PIF4 alters the binding site of 262 

BES1, switching specificity from a BRRE site associated with BR-repressed genes to a 263 

CATGTG element that is enriched in BR- and PIF-upregulated genes (Martinez et al., 2018). 264 

Consequently, the formation of BES1-PIF4 dimers leads to de-repression of BR biosynthetic 265 

genes at dawn and an increase in BR levels (Martinez et al., 2018). Crosstalk between these two 266 

signaling pathways also occurs at the level of BIN2 kinase, which phosphorylates PIF4 and PIF5 267 

and targets them for proteasomal degradation. In this way, BR signaling, which leads to the 268 

inactivation of BIN2, promotes the stabilization of PIF4 and contributes to the timing of 269 

hypocotyl elongation to late at night, before the activation of light signaling (Bernardo-Garcia et 270 

al., 2014). Moreover, the active form of BZR1 interacts with LONG HYPOCOTYL5 (HY5), 271 

another major TF involved in light signaling. BZR1-HY5 interactions regulate cotyledon 272 

development and opening during photomorphogenesis (Li and He, 2016). Finally, several 273 

photoreceptors impinge on BES1 to inhibit the BR pathway. UV light receptor UVR8 inhibits 274 

the DNA binding activity of BES1 and BIM1, providing a molecular mechanism by which UV 275 

light inhibits plant growth (Liang et al., 2018). Similarly, cryptochromes CRY1 and CRY2 276 

interact with BIM1 and dephosphorylate BES1 in response to blue light to inhibit BES1-DNA 277 

binding (Wang et al., 2018b). CRY1 interacts with BZR1 to inhibit DNA binding, and BZR1 278 

phosphorylation is also promoted by the CRY1-BIN2-BZR1 regulatory module, providing 279 

another mechanism by which BR signaling is inhibited in blue light (He et al., 2019). In response 280 

to red light, photoactivated phyB interacts with dephosphorylated BES1 to inhibit its 281 

transcriptional activity (Wu et al., 2018). Taken together, these observations implicate BES1 and 282 

BZR1 as major targets for light-mediated inhibition of hypocotyl elongation by BRs and suggest 283 
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that BR-activated gene expression is attenuated by light signals. In addition to the regulation of 284 

plant development in darkness, BRs play a role in blue-light-mediated shade avoidance. Under 285 

reduced blue light conditions, BRs modify the expression levels of genes encoding 286 

XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASES (XTHs; enzymes that 287 

regulate cell wall extensibility), thereby governing hypocotyl elongation synergistically with 288 

auxin (Keuskamp et al., 2011). 289 

BES1 and BZR1 interact with other growth-promoting TFs such as the auxin-regulated 290 

ARFs. ARF6 interacts with both PIFs and BZR1 to cooperatively regulate gene expression (Oh 291 

et al., 2014b). ARF6 co-occupies nearly half of the target genes of BZR1 and PIF4, and the 292 

BZR1-PIF4-ARF6 trio controls cell elongation through downstream targets such as 293 

PACLOBUTRAZOL-RESISTANT (PRE), ILI1 BINDING bHLH PROTEIN1 (IBH1), and 294 

HOMOLOG OF BEE2 INTERACTING WITH IBH1 (HBI1), which form a tri-antagonistic loop 295 

(Wang et al., 2009; Zhang et al., 2009a; Bai et al., 2012b; Ikeda et al., 2012). BRs also undergo 296 

crosstalk with the GA pathway. Under low GA conditions, BES1, BZR1, PIF4, and ARF6 are 297 

inhibited by DELLAs (Bai et al., 2012a; Gallego-Bartolome et al., 2012; Li et al., 2012). Hence, 298 

when GA is present, the degradation of DELLAs allows for the activation of the BZR1-PIF4-299 

ARF6 module to promote growth responses. BRs also regulate GA levels (Tong et al., 2014; 300 

Unterholzner et al., 2015), suggesting that BR-GA crosstalk is manifested through both GA 301 

biosynthesis and signaling. Taken together, BRs integrate multiple hormonal and environmental 302 

inputs, which eventually leads to the activation or repression of BR-regulated genes, but some 303 

components of the signaling cascade, such as BZR1/BES1 family members, are shared with 304 

other, BR-independent pathways.  305 

A recently isolated hextuple BZR1/BES1 family mutant (bzr-h) exhibited defects in 306 

anther development, which are not present in the triple BR signaling mutant bri1 brl1 brl3 (Chen 307 

et al., 2019a). Follow-up studies clearly demonstrated that besides their role in BR signaling, 308 

members of the BZR1/BES1 TF family function in tapetum development, which is mediated by 309 

another LRR RK, EXCESS MICROSPOROCYTES1 (EMS1), via a BR-independent signaling 310 

cascade (Chen et al., 2019b; Zheng et al., 2019). The extracellular domain of EMS1 perceives 311 

the signaling peptide TAPETUM DETERMINANT1 (TPD1) to regulate tapetum development, 312 

but EMS1 shares an interchangeable intracellular kinase domain with BRI1, suggesting that 313 
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these two receptors have a common ancestor (Zheng et al., 2019). It would be interesting to 314 

determine the mechanisms by which TPD1-EMS1 signaling modulates BES1 activity.  315 

 316 

BR-regulated gene expression involves histone modifications and chromatin remodeling 317 

DNA within the nucleus is packaged in chromatin, which involves interactions between DNA 318 

and histone proteins. Histone tails can be modified (e.g. by methylation, ubiquitination, or 319 

acetylation) to affect chromatin compaction and activate or repress gene expression. BR-320 

regulated gene expression involves epigenetic mechanisms including histone modifications. One 321 

such mark associated with the repression of gene expression is histone 3 lysine 27 di- and tri-322 

methylation (H3K27me2/H3K27me3). BES1 interacts with EARLY FLOWER6 (ELF6) and 323 

RELATIVE OF EARLY FLOWER6 (REF6), which function as positive regulators in the BR 324 

pathway by removing repressive H3K27me2/H3K27me3 marks (Yu et al., 2008; Lu et al., 2011), 325 

thus allowing BES1 to activate gene expression. BR-induced gene expression at these loci likely 326 

involves chromatin remodeling, since REF6 interacts with the SWI/SNF-type chromatin 327 

remodeler BRAHMA (Li et al., 2016). Likewise, BZR1 and PIF3 interact with the chromatin 328 

remodeler PICKLE to repress H3K27me3 on target gene promoters and allow for BR-induced 329 

gene expression (Zhang et al., 2014a). These observations underscore the importance of histone-330 

modifying enzymes and chromatin-remodeling factors in the de-repression of BR-regulated 331 

genes.  332 

Other histone modifications promote gene activation. This is the case for histone 3 lysine 333 

36 di- and tri-methylation (H3K36me2/3), which positively regulates BR responses and is 334 

required for the activation of a large portion of BR-induced genes (Sui et al., 2012; Wang et al., 335 

2014b). BES1 interacts with the transcription elongation factor INTERACTING-WITH-SPT6-1 336 

(IWS1) to promote BR-regulated gene expression (Li et al., 2010). In turn, BES1 and IWS1 337 

recruit the H3K36 methyltransferase SDG8 to the promoters of BR-regulated genes to increase 338 

H3K36me2/3 levels and allow for the activation of BR-induced gene expression (Wang et al., 339 

2014b). Together, the removal of repressive H3K27me2/3 and the addition of H3K36me2/3 340 

marks allow for the activation of BR-regulated genes. Further studies should explore the 341 

relationship between BR signaling and other histone modifications such as H3K9 or H3K4 342 

methylation, which generally repress or activate transcription, respectively. Given the connection 343 

of BRs with chromatin remodeling factors, it would also be interesting to study how BRs 344 
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influence chromatin accessibility, as such studies have yielded important insights into how other 345 

hormones regulate gene expression (Potter et al., 2018). 346 

 347 

BES1 and BZR1 regulation: more than just phosphorylation 348 

Non-phosphorylated forms of BES1 and BZR1 can be observed within minutes of BR treatment 349 

(Yin et al., 2002; Yin et al., 2005). Given the availability of high-quality BES1 (Yu et al., 2011) 350 

and BZR1 antibodies (Jeong et al., 2015; Zhang et al., 2016), the phosphorylation status of BES1 351 

and BZR1 has been one of the most reliable, widely used markers of BR pathway activity. While 352 

BIN2-mediated phosphorylation inhibits the activity of BES1 and BZR1, MITOGEN-353 

ACTIVATED PROTEIN KINASE6 (MPK6) can phosphorylate BES1 to promote its activity 354 

(Kang et al., 2015). Hence, the perception of pathogen-associated molecular patterns (PAMPs) 355 

leads to the MPK6-mediated phosphorylation of BES1 (Kang et al., 2015). The residues of BES1 356 

phosphorylated by MPK6 affect its role in immunity but not BR-regulated growth, indicating 357 

that site-specific phosphorylation differentially modulates BES1 activity. Phosphorylation is not 358 

the only way to regulate BES1 and BZR1 activity. Recent work is revealing that BES1 and 359 

BZR1 are controlled through numerous additional mechanisms including oxidation, alternative 360 

splicing, ubiquitination, and degradation (Figure 3). 361 

 One such modification involves the oxidation of BES1 and BZR1 by reactive oxygen 362 

species (ROS). Although they were once thought to merely be toxic reaction byproducts, there is 363 

a growing appreciation for the role of ROS (including H2O2) as important signaling molecules 364 

(Mittler et al., 2011). BRs induce H2O2 production to modulate several processes including 365 

stomatal movement and stress responses (Xia et al., 2014; Shi et al., 2015; Tian et al., 2018). 366 

H2O2 is required for BR-regulated growth and BR-responsive gene expression (Tian et al., 2018). 367 

BRs trigger an NADPH oxidase-dependent burst of H2O2 through an unknown mechanism, 368 

which leads to the oxidation of BZR1 and BES1 on residues Cys63 and Cys84, respectively. 369 

Oxidation of BZR1 promotes BZR1-ARF6 and BZR1-PIF4 interactions (Tian et al., 2018). Thus, 370 

in addition to inhibiting BIN2-induced phosphorylation of BES1/BZR1, BRs activate BES1 and 371 

BZR1 through H2O2-mediated oxidation. Furthermore, the thioredoxin TRXh5 interacts with 372 

BZR1 to promote its reduction, leading to its inactivation. BRs inhibit the expression of TRXh5, 373 

thus ensuring the redox-mediated activation of BZR1 and BES1 (Tian et al., 2018).  374 
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 Another layer of BES1 regulation comes from alternative splicing of the BES1 transcript. 375 

BES1 exists in two forms: the canonical and widely studied transcript encoding a 335 amino acid 376 

protein (BES1-S) and an alternative splicing variant that adds an additional 22 amino acids to the 377 

N-terminus of BES1 (BES1-L). The additional sequence in BES1-L adds another nuclear 378 

localization signal (NLS), rendering BES1-L constitutively nuclear localized. Overexpression of 379 

BES1-L results in stronger BR-gain-of-function phenotypes compared to BES1-S, suggesting that 380 

BES1-L is more active in planta. These phenotypes may be explained by the nuclear 381 

accumulation of BES1-L along with its ability to interact with BES1-S and BZR1 to promote 382 

their nuclear localization. Despite the strong activity of BES1-L, it appears that BES1-S is more 383 

highly expressed. BES1-S is induced by BR treatment or in bes1-D mutants, whereas BES1-L is 384 

repressed (Jiang et al., 2015a). These findings point towards complex regulation of BES1 and 385 

illustrate that different splice variants can result in altered biological activities.  386 

 Lastly, BES1 and BZR1 are regulated by multiple E3 ubiquitin ligases that control their 387 

degradation through the 26S proteasome or selective autophagy. bes1-D and bzr1-D mutants 388 

were originally identified as harboring gain-of-function mutations leading to a Pro to Leu 389 

substitution in the PEST domain of BES1 or BZR1 (Wang et al., 2002; Yin et al., 2002). This 390 

mutation is associated with dramatic accumulation of BES1 protein, as monitored by 391 

immunoblotting, suggesting that BES1 is subject to post-translational control (Yin et al., 2002). 392 

Indeed, BES1 and BZR1 interact with E3 ubiquitin ligases such as the F-Box protein MORE 393 

AXILLARY GROWTH LOCUS2 (MAX2). BES1 is ubiquitinated by MAX2 in response to 394 

strigolactone (SL) to suppress shoot branching (Wang et al., 2013). Interestingly, the mutation 395 

found in bes1-D impairs the interaction between BES1 and MAX2, indicating that the 396 

stabilization of BES1 in bes1-D mutants may be at least partially explained by the disruption of 397 

BES1-E3 ubiquitin ligase interactions. Similarly, BZR1 interacts with PLANT U-BOX40 398 

(PUB40), which specifically degrades BZR1 in roots but not in shoots. PUB40 is phosphorylated 399 

and stabilized by BIN2 kinase, leading to the degradation of BZR1 under low BR concentrations 400 

(Kim et al., 2019). Like the BES1-MAX2 interaction, the gain-of-function bzr1-D mutation 401 

diminishes the interaction between PUB40 and BZR1. These studies point toward the regulation 402 

of BES1 and BZR1 in specific tissue/organ, developmental, or environmental contexts. In line 403 

with this idea, several E3 ubiquitin ligases degrade BES1 or BZR1 under changing light 404 

conditions. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) targets the inactive, 405 
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phosphorylated form of BZR1 in the dark, whereas SINAT (SINA of Arabidopsis thaliana) E3 406 

ubiquitin ligases mediate the degradation of the active dephosphorylated form of BES1/BZR1 in 407 

the light (Kim et al., 2014; Yang et al., 2017; Yang and Wang, 2017). SINAT levels decrease in 408 

the dark but increase in the light, explaining why these regulators target BES1 in the light (Yang 409 

et al., 2017).  410 

Diurnal rhythms add to the complexity of BES1/BZR1 protein regulation. Under short-411 

day conditions, BES1 protein levels fluctuate dramatically, peaking ~2 hours after dawn. BES1-412 

GFP is stabilized by light under these conditions, but BZR1 and BES1-L do not display light-413 

induced stabilization (Martinez et al., 2018). Additional studies are needed to separate the effects 414 

of light, the circadian clock, and BR levels on BES1 and BZR1 protein regulation, which could 415 

further define the roles of the different E3 ubiquitin ligases involved in BES1 and BZR1 416 

degradation. One important observation is that no E3 ubiquitin ligase mutant has been identified 417 

with phenotypes or BES1/BZR1 protein accumulation comparable to bes1-D or bzr1-D. 418 

Therefore, the construction of higher-order mutants for different E3 ubiquitin ligases involved in 419 

BES1 and BZR1 degradation and/or the identification of additional players in this process will be 420 

an important direction for future research. BSS1, also known as BLADE ON PETIOLE1 421 

(BOP1), acts as part of a CUL3BOP1/BOP2 E3 ubiquitin ligase complex that facilitates PIF4 422 

degradation during photomorphogenesis (Zhang et al., 2017). Thus, given that BSS1/BOP1 also 423 

interacts with BES1 and BZR1 and affects their protein levels (Shimada et al., 2015), it would be 424 

interesting to determine if BSS1 plays a role in BES1 and BZR1 ubiquitination.  425 

 Upon ubiquitination, protein degradation typically occurs through the 26S proteasome or 426 

the autophagy pathway (Floyd et al., 2012). Specific cargos can be recruited for autophagy-427 

mediated degradation with the help of autophagy receptor proteins that bind to the autophagy 428 

protein ATG8, which decorates autophagic membranes (Marshall and Vierstra, 2018). 429 

DOMINANT SUPPRESSOR OF KAR2 (DSK2) is an autophagy receptor for BES1 degradation 430 

(Nolan et al., 2017b). DSK2 contains a ubiquitin-associated domain that recognizes poly-431 

ubiquitin chains (Farmer et al., 2010; Lin et al., 2011), along with an ATG8-interacting motif 432 

(Nolan et al., 2017b) that binds to ATG8. DSK2 interacts with ubiquitinated BES1, and BES1-433 

DSK2-ATG8 interactions mediate BES1 degradation through the autophagy pathway during 434 

drought or fixed-carbon starvation stress. Furthermore, BIN2 phosphorylates DSK2 proximal to 435 

its ATG8-interacting motif, thereby promoting DSK2-ATG8 interactions and BES1 degradation 436 
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through autophagy. SINAT2, an E3 ubiquitin ligase for BES1, also interacts with DSK2, 437 

suggesting that the ubiquitination and subsequent degradation of BES1 may be coordinated 438 

(Nolan et al., 2017b). Although a link between DSK2 and BZR1 remains to be explored, BZR1 439 

was shown to be stabilized by TOR kinase, a negative regulator of autophagy. Decreased TOR 440 

levels in tor RNAi plants led to reduced BZR1 levels, which were restored by treatment with the 441 

autophagy inhibitor 3-methyladenine (Zhang et al., 2016). Therefore, both BES1 and BZR1 442 

appear to be degraded by the autophagy pathway, although much remains to be learned about 443 

this process, including what controls whether these proteins are degraded through the proteasome 444 

versus the autophagy pathway. 445 

 446 

THE ROLE OF BRs IN DEVELOPMENT 447 

 448 

Characterization of BR biosynthetic and signaling mutants, together with studies of the effects of 449 

exogenous BR application, have unambiguously shown that BRs are important for plant 450 

development. Numerous developmental processes are affected when BR signaling is perturbed 451 

(Figure 4), such as seed development (Jiang et al., 2013a), flowering time (Domagalska et al., 452 

2010), and pollen development (Ye et al., 2010). BRs coordinate the tropic responses of plant 453 

organs by regulating polar auxin transport (Li et al., 2005). The modulation of auxin transport by 454 

BRs is also reflected by the promotion of lateral root primordial initiation during lateral root 455 

development  (Bao et al., 2004), while root hair cell development is an example of BR signaling 456 

taking part in cell fate determination through the regulation of the WEREWOLF-457 

GLABRA3/ENHANCER OF GLABRA3-TRANSPARENT TESTA GLABRA1 transcriptional 458 

complex (Cheng et al., 2014). Differentiation of cambial cells into xylem vessels is dependent on 459 

GSK3-like kinases; these master regulators of the BR signaling pathway act as downstream 460 

components of the TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR 461 

(TDIF) signaling pathway (Kondo et al., 2014).  462 

 463 

BR signaling is tissue specific  464 

Most phenotypic defects of BR biosynthetic mutants can be rescued by exogenous BR treatment. 465 

As with other hormones, plant responses to exogenous BR application are dose-dependent, with 466 

growth-promoting effects observed for lower concentrations and growth retardation when higher 467 
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doses are used (Chaiwanon and Wang, 2015; Belda-Palazon et al., 2018). Initial dissection of BR 468 

signaling at the tissue level has provided clues that the epidermal layer is the site of the most 469 

intensive BR signaling events, as the dwarf phenotypes of BR receptor or BR biosynthetic 470 

enzyme mutants could be rescued by epidermis-specific expression of the mutated genes 471 

(Savaldi-Goldstein et al., 2007). These findings led to more detailed studies of the Arabidopsis 472 

root meristem, which is a favorite model organ for developmental biologists due to its simplicity 473 

(Jaillais and Vert, 2016). However, these studies have led to some conflicting conclusions. 474 

Several papers emphasize the importance of BR signaling in the root tip epidermis. Two studies 475 

(Hacham et al., 2011; Vragovic et al., 2015a) demonstrated that BR signaling in the root 476 

epidermis and not in the inner tissues is sufficient to restore meristem size in the bri1 mutant, just 477 

as others demonstrated that BZR1 mainly acts in the root epidermis to promote meristem growth 478 

(Chaiwanon and Wang, 2015). This view was recently challenged by a study showing that 479 

expressing fluorescently tagged BRI1-CITRINE specifically in the phloem complemented the 480 

meristem size and architecture of BR receptor triple mutants (bri1 brl1 brl3) (Kang et al., 2017). 481 

These opposing observations are quite puzzling, since it was previously shown that BRI1 activity 482 

in inner root meristem cell files primarily plays a role in differentiation, while its activity in the 483 

epidermis leads to cell proliferation (Vragovic et al., 2015b). However, the promoter used in this 484 

study to express BRI1 in the stele is not active in phloem poles (Kang et al., 2017), which could 485 

explain the lack of phenotype recovery. It remains to be seen what makes BR signaling in 486 

phloem poles so important that it can lead to the full recovery of mutant root meristem 487 

phenotypes. 488 

 489 

What is the mode of action of BRs and how do they orchestrate plant growth? 490 

Cell divisions (production) and cell expansion (elongation) are the main factors controlling plant 491 

organ growth. Cell expansion determines how much a certain organ will grow, but the number of 492 

cells that elongate in a tissue is determined by cell division rates. These two processes are tightly 493 

connected, because cell expansion can also regulate cell division rates and cells must reach the 494 

proper size before they divide (Beemster and Baskin, 1998; Jones et al., 2017). Whether the 495 

growth defects observed in BR mutants are caused by aberrant cell elongation and differentiation 496 

or perturbations in cell cycle progression remains an open question. Roots treated with BRs 497 

initially show increased growth, which later ceases and leads to reduced meristem size due to the 498 
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promotion of cell elongation and exit from the meristem (Chaiwanon and Wang, 2015). The 499 

current consensus is that BR signaling orchestrates both cell division and elongation. Balanced 500 

BR signaling is required to maintain normal meristem size in roots (Gonzalez-Garcia et al., 501 

2011), possibly through the control of cell cycle components. Recent findings challenge this 502 

view, suggesting that BRs play a dominant role in regulating cell elongation, as the small root 503 

meristem size of bri1 brl1 brl3 mutants can be entirely explained by reduced cell elongation 504 

based on the correlation of plots of cumulative cell length along the cortex files of mutant and 505 

wild-type plants (Kang et al., 2017). Several lines of evidence support this explanation and 506 

suggest that BRs only control cell expansion and that the cell cycle perturbations in these 507 

mutants are an indirect consequence of their primary role. First, pollen grains are one of the 508 

richest sources of BRs (Fujioka and Sakurai, 1997), and BRs promote the in vitro germination of 509 

pollen and pollen tube growth rates (Vogler et al., 2014). Pollen tubes are single cells that do not 510 

divide but undergo extreme elongation, which means that at least in some developmental 511 

contexts, BRs promote only cell elongation. A second example is embryo development, which is 512 

tightly coupled with cell cycle progression (Jenik et al., 2005), but the phenotypic defects of BR 513 

mutants start to be visible only during later stages of embryo development after the onset of cell 514 

elongation (Jiang et al., 2013a). This lack of phenotypic deviation during early embryo 515 

development in BR mutants suggests that BRs primarily control cell elongation. Finally, the 516 

elongation of light-grown Arabidopsis hypocotyls in response to BR application occurs only via 517 

cell elongation and not cell division (Tanaka et al., 2003).  518 

Based on the early studies, which showed that BRs positively regulate the expression of 519 

CYCD3 (Hu et al., 2000), it was obvious that this group of hormones exerts profound effects on 520 

cell division and cycle progression in plant cells. Subsequently, it was demonstrated that BRs 521 

control root meristem size by promoting cell cycle progression (Gonzalez-Garcia et al., 2011), 522 

and several molecular players have since been identified. Maintenance of the root stem cell niche 523 

is achieved through the repression of cell divisions in the quiescent center via the TF BRAVO, 524 

which is under direct negative regulation by BES1 (Vilarrasa-Blasi et al., 2015). In addition, BRs 525 

positively regulate the expression of ERF115, encoding a TF triggering cell divisions and stem 526 

cell niche replenishment when surrounding cells are damaged (Heyman et al., 2013).  527 

Another example of BRs regulating cell division is the involvement of BR signaling 528 

components in stomatal development via the regulation of asymmetric cell divisions. During this 529 
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process, a protodermal cell commits to the stomatal lineage and becomes a meristemoid mother 530 

cell, which undergoes asymmetric cell division to produce meristemoid and stomatal lineage 531 

ground cells. Meristemoid cells can then undergo additional amplifying divisions or differentiate 532 

into a guard mother cell, which gives rise to a pair of guard cells (Lau and Bergmann, 2012). 533 

This process is regulated by signals perceived by several LRR RKs (Shpak et al., 2005) at the 534 

cell surface and downstream signaling events coordinated by a mitogen-activated protein kinase 535 

(MAPK) pathway (Lampard et al., 2008). MAPK module activity leads to the phosphorylation 536 

and downregulation of SPEECHLESS (SPCH), which drives asymmetric cell divisions of 537 

meristemoid mother cells. BIN2 regulates the stomatal development signaling cascade in 538 

seemingly two opposite ways: by phosphorylating and inhibiting YDA (a MAPKKK) and 539 

possibly MKK4 and MKK5 (Khan et al., 2013), leading to an increase in stomata number; and 540 

by phosphorylating and degrading SPCH, thereby decreasing the stomata number (Gudesblat et 541 

al., 2012; Kim et al., 2012). The dual role of BIN2 has been explained recently: BIN2 associates 542 

and forms complexes with BASL and POLAR proteins, which can relocate BIN2 from the 543 

nucleus, where it acts on SPCH, to the cortical BASL polarity site in the PM, where it can 544 

attenuate the MAPK signaling module (Houbaert et al., 2018). 545 

Clearly, BRs have effects on both cell elongation and cell division. However, even after 546 

decades of research, it is difficult to determine whether the role of BRs in cell cycle modulation 547 

is just a consequence of perturbed cell elongation. It is highly likely that BRs can affect both 548 

processes and that the cellular and tissue context is crucial for determining which effect will be 549 

the prevailing one. In the future, it will be crucial to uncouple these two processes to determine 550 

the direct mode of action of BRs. 551 

 552 

THE ROLES OF BRs IN PLANT RESPONSES TO TEMPERATURE AND DROUGHT 553 

STRESS 554 

 555 

The structure and composition of vegetation throughout the Earth has changed dramatically since 556 

the last ice age, and a similar magnitude of change is expected in the coming century if emissions 557 

continue at a high rate (Nolan et al., 2018). Therefore, understanding how plants can better 558 

withstand changing environments represents an important challenge. Beyond their roles in 559 

growth and development, BRs also control responses to stresses such as heat, cold, and drought 560 
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stress (Nolan et al., 2017a). The relationship between BRs and stress responses is complex. 561 

Although the application of BRs promotes tolerance to several stresses (Kagale et al., 2007; 562 

Bajguz and Hayat, 2009; Yuan et al., 2010; Anjum et al., 2011; Divi et al., 2016), analysis of BR 563 

deficient and insensitive mutants revealed that impairment of the BR pathway is often associated 564 

with increased survival in the face of stresses such as drought stress (Feng et al., 2015; Northey 565 

et al., 2016; Nolan et al., 2017b). In this section, we focus on responses to drought and 566 

temperature stress, which has been the topic of a number of recent studies related to the BR 567 

signaling pathway. This research affirms that multiple aspects of the BR signaling pathway 568 

interface with stress responses but suggests that the outcome depends on the particular 569 

components and tissues that are affected. 570 

571 

BR and ABA pathways antagonize one another 572 

Early studies showed that BR-deficient mutants are hypersensitive to ABA (Clouse et al., 1996; 573 

Li et al., 2001). Since ABA production is induced during drought stress to promote stress 574 

tolerance (Cutler et al., 2010), these observations point towards a close relationship between BR 575 

and ABA pathways (Zhang et al., 2009b). Indeed, the molecular basis for BR-ABA antagonism 576 

has been extensively defined, ranging from interactions between downstream TFs such as BES1 577 

and ABI3 or ABI5 (Ryu et al., 2014; Yang et al., 2016) to BIN2 kinase, a negative regulator of 578 

the BR signaling pathway that becomes activated in the presence of ABA (Wang et al., 2018a). 579 

BIN2 phosphorylates and promotes the activity of positive regulators in the ABA pathway 580 

including SnRK2 kinases (Cai et al., 2014) and TFs such as ABI5 (Hu and Yu, 2014). Given the 581 

antagonism between BR and ABA pathways and the role of ABA in promoting drought stress 582 

responses, it might be expected that BRs inhibit drought stress responses. This appears to be the 583 

case for the BR signaling pathway operating through BRI1 to downstream BES1 and BZR1 TFs 584 

(Chen et al., 2017; Nolan et al., 2017b; Ye et al., 2017). However, overexpression of the vascular 585 

BR receptor BRL3 promotes drought responses without penalizing growth (Fabregas et al., 586 

2018). 587 

588 

Several mechanisms converge on BES1 to balance BR-regulated growth and stress 589 

responses 590 
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Depending on the duration and severity of drought stress, plants must carefully coordinate 591 

growth and stress responses. When water limitation is mild, inhibited growth would cause a yield 592 

and fitness penalty. On the other hand, when drought is severe, plants cease growth to ensure 593 

survival (Claeys and Inze, 2013), although it is not clear if growth limitation represents an 594 

energy trade-off or is simply co-regulated with stress responses. Hence, understanding the 595 

molecular mechanisms that coordinate growth and stress responses is crucial for engineering 596 

crops with optimized stress responses. BES1 is emerging at the nexus coordinating BR-mediated 597 

growth and stress responses. Several mechanisms that inhibit BES1 activity during stress have 598 

been described. First, as discussed above, BES1 is degraded through DSK2-mediated selective 599 

autophagy during drought stress to inhibit BR-regulated growth. Mutants with impaired BES1 600 

degradation such as dsk2 loss-of-function mutants have decreased survival during drought, which 601 

can be restored by inhibiting BES1 expression using BES1 RNAi (Nolan et al., 2017b). These 602 

findings indicate that BES1 degradation is an important mechanism to limit BR-regulated growth 603 

during drought stress to promote plant survival.  604 

In addition to modulating the protein abundance of BES1, drought also affects its activity 605 

through interactions with RESPONSIVE TO DESICCATION26 (RD26), a drought-inducible 606 

TF. BES1 is activated by BRs to promote growth and inhibit the expression of RD26. By 607 

contrast, RD26 is both transcriptionally induced during drought and activated by an ABA-ABI1-608 

BIN2 signaling module, in which BIN2 activity is promoted by ABA during stress to 609 

phosphorylate and stabilize RD26 protein (Jiang et al., 2019). Subsequently, RD26 inhibits BES1 610 

and promotes drought responses. At a mechanistic level, this occurs through protein-protein 611 

interactions between BES1 and RD26. These two TFs interact, likely forming heterodimers that 612 

synergistically bind to G-Box (CACGTG) promoter elements, but BES1 and RD26 have 613 

opposite activities. For example, BES1 inhibits many drought-induced genes whereas RD26 614 

activates these genes (Ye et al., 2017). Therefore, the inhibition of BES1 activity through 615 

interaction with RD26 on a common promoter element is another means by which BES1 is 616 

inhibited when stress is encountered. 617 

TINY, an APETALA2/ETHYLENE RESPONSIVE FACTOR TF, has also been 618 

implicated in inhibiting growth and promoting drought responses. TINY is induced during 619 

drought stress and antagonizes BES1 to inhibit BR-regulated growth and promote drought-620 

responsive gene expression; however, TINY does so by binding to a different promoter element, 621 
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the Drought responsive element (DRE) (Xie et al., 2019). TINY is also a substrate of BIN2 622 

kinase; the phosphorylation of TINY by BIN2 promotes its stability. Since BRs inhibit BIN2 623 

activity under optimal growth conditions, this provides a mechanism to restrain stress responses 624 

mediated by TFs such as TINY and RD26 while still allowing them to become rapidly activated 625 

by stress via BIN2-mediated phosphorylation and stabilization.  626 

 Finally, the degradation of BES1-interacting TFs such as WRKY46, WRKY54, and 627 

WRKY70 (WRKY46/54/70) during drought represents another mechanism that inhibits BR-628 

regulated growth. WRKY46/54/70 are direct targets of BES1 and function as positive regulators 629 

of BR biosynthesis and signaling (Chen et al., 2017). The wrky54 wrky46 wrky70 triple mutant 630 

(wrky54t) exhibits dwarf phenotypes, which is consistent with the notion that these factors are 631 

required for BR-regulated growth. wrky54t plants are more tolerant to drought stress than wild-632 

type plants, as they exhibit the constitutive activation of thousands of drought-regulated genes. 633 

Therefore, WRKY46/54/70 cooperate with BES1 to inhibit drought-responsive gene expression. 634 

Similar to BES1, WRKY46/54/70 are phosphorylated and destabilized by BIN2 kinase, and 635 

WRKY54 protein levels decrease during drought stress (Chen et al., 2017). These findings 636 

indicate that the degradation of growth-promoting TFs during drought stress extends beyond 637 

BES1. However, the role of BIN2 in WRKY54 degradation and the E3 ubiquitin ligase(s) and 638 

downstream pathways involved in this process remain to be further characterized.  639 

 In summary, the modulation of BES1 represents an important point of crosstalk between 640 

BR and drought-stress responses. BES1 is inhibited through targeted protein degradation and 641 

transcriptional inactivation during drought stress, whereas BES1 inhibits drought-stress 642 

responses under growth-promoting conditions. Although these studies provide mechanistic 643 

insight into the coordination of plant growth and stress responses, they did not examine specific 644 

tissues or developmental contexts, which present potential opportunities for designing ways to 645 

overcome growth-stress tradeoffs.  646 

 647 

Tissue-specific modulation of the BR pathway allows for increased growth and drought 648 

tolerance 649 

Many efforts to increase plant drought survival also negatively affect growth. A number of 650 

approaches have been taken to attempt to circumvent this phenomenon. For example, stress-651 

inducible expression of factors that promote drought tolerance has been explored (Reguera et al., 652 
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2013), but this method requires extensive knowledge of stress-inducible promoters, which can be 653 

challenging for generalization to other species. Alternatively, gene-stacking approaches have 654 

proven fruitful in overcoming growth inhibition using positive regulators of drought responses 655 

such as DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN1A (DREB1A). 656 

Overexpression of DREB1A led to increased drought tolerance and growth inhibition, but the 657 

growth limitation could be overcome by simultaneous overexpression of DREB1A together with 658 

the rice homolog of PIF4 (OsPIL1) in Arabidopsis (Kudo et al., 2016). Along these lines, an 659 

elegant study demonstrated that overexpressing the BR receptor gene BRL3 increased plant 660 

survival during drought without the growth penalty observed in BR mutants such as the loss-of-661 

function mutant bri1 (Fabregas et al., 2018). In this case, BRL3 expression was driven by a 662 

constitutive promoter, but BRL3 protein primarily accumulates in the vascular tissue of roots, 663 

where it promotes the accumulation of osmoprotective metabolites and stress-responsive gene 664 

expression (Fabregas et al., 2018). These findings demonstrate that understanding the 665 

spatiotemporal complexity of BR signaling holds great promise for engineering stress-resistant 666 

crops. Although BES1 appears to inhibit drought responses in Arabidopsis, BES1 and BRs 667 

promote the expression of a subset of drought-responsive genes (Ye et al., 2017). Therefore, 668 

further dissection of factors involved in the BR transcriptional network might also allow TFs that 669 

positively influence both growth and stress responses to be identified.  670 

TaBZR2, a BES1 and BZR1 homolog in wheat (Triticum aestivum), promotes drought 671 

responses by inducing the expression of wheat glutathione S-transferase 1 (TaGST1), which is 672 

involved in superoxide scavenging (Cui et al., 2019). Likewise, studies in tomato (Solanum 673 

lycopersicum) revealed that BRs promote drought tolerance, whereas overexpression of the BR 674 

receptor gene SlBRI1 had an opposite effect (Nie et al., 2019). Therefore, the regulation of 675 

drought stress by BRs operates at different levels, including stress-responsive gene expression, 676 

modulation of ABA levels, H2O2 production, and the production of antioxidants and 677 

osmoprotectant compounds (Planas-Riverola et al., 2019). The cumulative effects of these 678 

changes on plant survival and growth appear to depend on the species, method of manipulation, 679 

and spatiotemporal context.  680 

681 

BRs regulate heat and cold stress responses 682 
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BRs regulate growth and stress responses under both increased and decreased temperatures. 683 

Under increased temperatures, BES1 and BZR1 accumulate and function along with PIF4 to 684 

promote thermogenic growth (Ibañez et al., 2018; Martinez et al., 2018). Increased BES1 and 685 

BZR1 levels promote the expression of PIF4, and increased PIF4 levels allow for the 686 

derepression of BR biosynthesis by switching BES1 from a repressive homodimer to a PIF4-687 

BES1 heterodimer that activates transcription (Martinez et al., 2018). In a seemingly opposite 688 

manner, increased temperatures decrease BRI1 levels, which tempers BR signaling and increases 689 

root growth (Martins et al., 2017). BRI1 undergoes ubiquitination, endocytosis, and degradation 690 

(Martins et al., 2015; Zhou et al., 2018), which are required for the heat-induced decrease in 691 

BRI1 accumulation (Martins et al., 2017). While PUB12 and PUB13 ubiquitinate BRI1 692 

following BR perception (Zhou et al., 2018), the E3 ubiquitin ligase responsible for this 693 

ubiquitination during heat stress remains to be identified.  694 

BR signaling also regulates plant tolerance to cold stress. One aspect of this regulation 695 

involves the BR-mediated promotion of cold tolerance through the accumulation of the active 696 

unphosphorylated forms of BZR1 and BES1, promoting the expression of C-697 

REPEAT/DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR1 (CBF1) and CBF2, 698 

which positively regulate cold-stress responses (Li et al., 2017). CESTA, a positive regulator of 699 

BR signaling (Poppenberger et al., 2011), also promotes cold-stress responses. CESTA is 700 

dephosphorylated and SUMOylated in response to BRs, which leads to the CESTA-mediated 701 

activation of COLD-RESPONSIVE (COR) genes through both CBF-dependent and independent 702 

pathways. This in turn promotes basal and acquired freezing tolerance (Eremina et al., 2016). 703 

BIN2 also plays a role in BR-mediated regulation of cold-stress responses by phosphorylating 704 

INDUCER OF CBF EXPRESSION1 (ICE1) during prolonged exposure to cold, promoting its 705 

degradation to attenuate CBF induction (Ye et al., 2019). In summary, BRs can either promote or 706 

inhibit several stress responses. Future efforts should focus on untangling the roles of the specific 707 

BR signaling components in stress responses and understanding their spatiotemporal regulation.  708 

709 

ROLES OF BR HORMONES IN CROPS 710 

711 

BRs play pivotal roles in plant growth, development, and responses to adverse conditions, 712 

making them major targets for manipulation to improve agronomic traits. In this section, we 713 
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provide an update on unique aspects of BR signaling outside the model plant Arabidopsis and 714 

report on promising aspects and challenges when manipulating BRs to improve crops.  715 

 716 

Unique factors for BR signaling in crops 717 

It is apparent that BR biosynthetic and signaling pathways are conserved among species. For 718 

example, DWARF4 (DWF4), which encodes the rate-limiting 22α hydroxylase in the BR 719 

biosynthetic pathway in Arabidopsis, has homologs with similar functions in rice (Sakamoto et 720 

al., 2006) and maize (Zea mays) (Liu et al., 2007; Makarevitch et al., 2012). Likewise, BRI1 721 

homologs have been identified in rice (Yamamuro et al., 2000), maize (Kir et al., 2015), and 722 

tomato (Holton et al., 2007) that likely serve as BR receptors based on mutant phenotypes and 723 

BL binding activity (Holton et al., 2007).  724 

At the same time, unique factors that contribute to BR signaling have been described in 725 

cereals. Among these are factors regulating GSK protein levels, such as qGL3, encoding a 726 

putative protein phosphatase with a Kelch-like repeat domain in rice (OsPPKL1) that is an 727 

ortholog of Arabidopsis BSU1 (Zhang et al., 2012). Unlike the dephosphorylation activity of 728 

BSU1 on BIN2, which leads to BIN2 degradation, OsPPKL1 dephosphorylates OsGSK3 and 729 

stabilizes it (Gao et al., 2019). Other factors include QTL for GRAIN WIDTH AND WEIGHT ON 730 

CHROMOSOME5 (GW5), encoding a calmodulin binding protein that inhibits auto-731 

phosphorylation of GSK2 and trans-phosphorylation of OsBZR1 and DWARF AND LOW-732 

TILLERING (DLT) by GSK2 to enhance BR signaling in rice (Liu et al., 2017). In addition to 733 

BZR1 homologs in rice, other TFs involved in BR signaling in rice are directly regulated by 734 

GSK2, such as GROWTH-REGULATING FACTOR4 (OsGRF4) (Che et al., 2015) and DLT 735 

(Tong et al., 2012). Another example is rice KNOTTED1-LIKE HOMEOBOX (KNOX) 736 

TRANSCRIPTION FACTOR HOMEOBOX1 (OSH1), which represses BR biosynthesis by 737 

activating BR catabolism genes (Tsuda et al., 2014). DLT, OSH1, and OVATE family protein 19 738 

(OsOFP19) interact with each other, and OsOFP19 promotes the activity of OSH1 while 739 

suppressing the function of DLT, indicating that OsOFP19 is a negative regulator of BR 740 

signaling (Yang et al., 2018a).   741 

Epigenetic modifications are also implicated in the regulation of BR signaling in crops. 742 

Epi-d1, an epigenetic allele of DWARF1 (encoding G protein alpha subunit in rice RGA1) 743 

contains DNA methylation in the promoter of this gene, causing a dwarf phenotype (Ashikari et 744 



 

 26 

al., 1999) (Miura et al., 2009). SDG725-mediated H3K36 methylation is a positive regulator of 745 

BR signaling, as it is required for the expression of BR-related genes in rice (Sui et al., 2012). In 746 

addition, the loss of DNA methylation in the promoter of RELATED TO ABSCISIC ACID 747 

INSENSITIVE3 (ABI3)/VIVIPAROUS1 (VP1)6 (RAV6) in the Epi-rav6 rice mutant leads to the 748 

ectopic expression of OsBRI1 and the BR biosynthetic genes DWARF2 (D2) (Hong et al., 2003), 749 

DWARF11, and BR-DEFICIENT DWARF1 (Zhang et al., 2015).  750 

 751 

Manipulation of BRs in crops 752 

Leaf angle, plant height, and inflorescence architecture are three key determinants of yield that 753 

are potentially regulated by BRs (Yamamuro et al., 2000; Hong et al., 2003; Sakamoto et al., 754 

2006; Yang et al., 2018b). BRs play a unique role in controlling leaf erectness by inhibiting the 755 

division of abaxial sclerenchyma cells; these cells provide mechanical support for the lamina 756 

joints in Oryza sativa when clustered (Sun et al., 2015). Leaf angle could be adjusted by altering 757 

the expression of BR biosynthesis genes, but in most cases, this is accompanied by a severe 758 

dwarf phenotype, as observed for rice plants harboring a deletion of the D2 gene (Li et al., 2013). 759 

The osdwaf4 knockout mutant (Sakamoto et al., 2006) and OsBU1 RNAi transgenic plants 760 

(Tanaka et al., 2009) showed a more erect leaf angle phenotype without affecting plant height or 761 

fertility and produced higher grain yields under dense planting compared to the wild type 762 

(Sakamoto et al., 2006; Tanaka et al., 2009), suggesting that it is possible to manipulate the BR 763 

pathway in an agriculturally relevant manner. BRs also regulate inflorescence architecture. In 764 

green foxtail (Setaria viridis), a mutation in CYP724B1, encoding an inflorescence-expressed 765 

CYP enzyme involved in BR biosynthesis, resulted in homeotic conversion of bristles to 766 

spikelets and the emergence of two florets per spikelet (Yang et al., 2018b).  767 

Secondary cell walls in the form of wood and fibers are the most abundant, renewable 768 

plant products, and there is a high demand for improving wood and fiber production. 769 

Overexpression of Populus trichocarpa CYP85A3 (PtCYP85A3), encoding a P450 770 

monooxygenase that catalyzes the conversion of castasterone to BL, enhanced xylem formation 771 

and wood production in poplar while the composition of cellulose and lignin and cell wall 772 

thickness were not affected, making PtCYP85A3 a good target for engineering fast-growing 773 

woods (Jin et al., 2017). BR signaling also regulates cotton (Gossypium hirsutum) fiber 774 

development by modifying the expression of DET2 and PAGPDA1 (PAG1). PAG1 encodes a 775 



27 

homolog of the Arabidopsis PHYB ACTIVATION-TAGGED SUPPRESSOR1 (BAS1), which 776 

inactivates BRs via C-26 hydroxylation (Luo et al., 2007; Yang et al., 2014). 777 

BRs are involved in sex determination in maize, as nana plant1 (na1), which carries a 778 

loss-of-function mutation in a DET2 homolog, contains feminized male flowers with a tassel-779 

seed phenotype (Hartwig et al., 2011). However, RNAi knockdown of maize BRI1 and its 780 

homologs led to plants with a strong dwarf phenotype but lacking a sex-determination phenotype 781 

(Kir et al., 2015). As such, it remains to be determined if this function of BRs is conferred by 782 

tissue- or developmental stage-specific signaling components. BR-promoted pollen and seed 783 

development in rice is achieved by stimulating the expression of CARBON STARVED ANTHER 784 

(CSA), encoding a R2R3-type MYB TF, which further triggers the expression of sugar 785 

partitioning and metabolic genes through OsBZR1 (Zhu et al., 2015).  786 

BRs are also important for nutrient accumulation. In grapevine (Vitis vinifera), sugar 787 

allocation is regulated by BRs to increase soluble sugar contents in berries, which is achieved by 788 

promoting the activities of both invertases and sucrose synthase and by up-regulating the 789 

expression of genes encoding invertase and mono- and di-saccharide transporters (Xu et al., 790 

2015).  791 

Crops are grown under ever-changing environmental conditions in the field, and 792 

inevitably, they face adverse conditions. At least in some cases, BR application helps alleviate 793 

stress in plants. For example, BR treatment increases tolerance to rice blast and bacterial blight 794 

diseases in rice (Nakashita et al., 2003), to cadmium in tomato (Hayat et al., 2010; Hasan et al., 795 

2011), and to cold-induced damage in cucumber (Cucumis sativus) (Jiang et al., 2013b). 796 

Therefore, understanding the mechanisms by which BRs regulate these stress responses in crops 797 

represents an important direction for the future.  798 

799 

Tissue-specific modification of gene expression, a way to overcome undesirable effects of 800 

BRs 801 

Manipulating the expression of BR-regulated genes by mutation or overexpression often causes 802 

pleiotropic phenotypes, some of which might be undesirable for crop breeding and planting, such 803 

as changes of leaf erectness (Sakamoto et al., 2006; Tanaka et al., 2009; Makarevitch et al., 804 

2012; Li et al., 2013; Mantilla Perez et al., 2014), plant height (Yamamuro et al., 2000; Li et al., 805 

2013; Hirano et al., 2017), inflorescence architecture (Liu et al., 2007; Makarevitch et al., 2012; 806 
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Li et al., 2013; Yang et al., 2018b), or biomass (Morinaka et al., 2006; Sakamoto et al., 2006; 807 

Tanaka et al., 2009). Tissue-specific promoters, such as vascular tissue-specific S-808 

ADENOSYLMETHIONINE SYNTHASE (Wu et al., 2008) and seed-specific glutelin Gt1 809 

promoters (Li et al., 2018), have been employed to drive the overexpression of BR biosynthetic 810 

genes, such as genes encoding sterol C-22 hydroxylases (which control the conversion of 811 

campestanol to 6-deoxocathasterone) (Wu et al., 2008) and OsDWF4 in rice to increase seed 812 

yield without impairing other traits. A CRISPR-based tissue-specific knockout system can be 813 

designed and used to generate mutations in particular cell types and tissues (Decaestecker et al., 814 

2019). Applying both of these tissue-specific gene manipulation systems to fine-tune BR 815 

signaling as needed would facilitate the generation of improved crops.  816 

Due to the importance of BRs for plant development, nutrient accumulation, and 817 

resistance to stress conditions, BR-related genes may be identified whose expression could be 818 

manipulated to simultaneously increase plant productivity and performance under adverse 819 

conditions. These genes might be manipulated by overexpression or knock-down in crops of 820 

interest. Alternatively, exogenous application of BRs holds promise for helping crops overcome 821 

certain stresses, although this approach is hindered by the high cost of BR synthesis. Systems 822 

and synthetic biology approaches such as introducing the BR biosynthetic pathway into microbes 823 

might help address this issue and allow for more economical production of BRs. Altogether, 824 

manipulation of the BR pathway for crop improvement holds great promise but requires further 825 

knowledge of how BR signaling operates in different crops, environments, and developmental 826 

contexts.  827 

 828 

CONCLUSIONS AND PERSPECTIVES 829 

Research in the last several decades has made the BR pathway arguably one of the best-studied 830 

signaling pathways in plants. Genetic approaches such as mutant screens demonstrated the 831 

importance of BRs in plant growth and uncovered many major players in BR biosynthesis and 832 

signaling (Clouse, 2015). Subsequently, molecular, biochemical, structural, and genomic 833 

approaches have increased our understanding of the BR signaling cascade, from PM-localized 834 

receptor kinases to the transcriptional networks controlled by BES1 and BZR1 (Kim and Wang, 835 

2010; Clouse, 2011; Guo et al., 2013; Dejonghe et al., 2014; Nolan et al., 2017a). It is becoming 836 

increasingly evident that the BR pathway does not represent a linear signaling pathway that 837 
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operates in isolation, but rather that BRs undergo crosstalk with multiple other hormones and 838 

stress responses (Nolan et al., 2017a). Moreover, BR signaling varies among different cells and 839 

tissues, which can be manipulated to improve plant growth and stress responses (Fabregas et al., 840 

2018).  841 

Despite the progress, many questions in the BR field remain to be addressed. We still do 842 

not fully understand how BRs control a large number of genes, when this regulation occurs, and 843 

in which cells these genes are activated or repressed to control BR-regulated growth, 844 

development, and responses to environmental cues. Technological advances such as single cell 845 

genomics (Shahan, 2019) and improved proteomic technologies (Song et al., 2018a) coupled 846 

with computational modeling will be instrumental in addressing these questions.  847 

Furthermore, much remains to be learned about BR biosynthesis and potential modes of 848 

transport (Vukašinović and Russinova, 2018). Future studies should aim to obtain evidence that 849 

BRs are transported out of cells and to identify BR transporters. Finally, we need to better 850 

understand how BRs contribute mechanistically to the overall growth program of plants in 851 

particular environments such as shade, high temperature, and drought. As a long-term 852 

overarching objective, researchers should work to manipulate the BR pathway in crops and other 853 

plants so that plants can accommodate the stress created by greater fluctuations in these 854 

environmental parameters. 855 
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 1633 
 1634 

FIGURE LEGENDS 1635 

Figure 1: Overview of the BR signaling pathway.  1636 

When BRs are absent (left), plasma membrane-localized receptors BRI1 and BAK1 are inhibited 1637 

by several factors, including BKI1 and BIR3. Additionally, BIN2 kinase functions as a negative 1638 

regulator and phosphorylates BES1 and BZR1 TFs to inhibit their activity through multiple 1639 

mechanisms. BSS1 forms a complex with BES1 and BZR1 in the cytoplasm, and THXh5 1640 

reduces BZR1 in the nucleus, further inactivating these TFs. This leads to relatively low 1641 

expression of BR-induced genes and higher expression of BR-repressed genes. When BRs such 1642 

as brassinolide (BL) are present, they bind to the receptor BRI1 and co-receptor BAK1 to initiate 1643 

BR signaling (right). BKI1 and BIR3 dissociate from the receptor complex, allowing BRI1 and 1644 
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BAK1 to become phosphorylated and activated. BSKs/CDGs are phosphorylated and activate 1645 

BSU1 phosphatase to inhibit BIN2. Dephosphorylation by PP2A allows BES1 and BZR1 to 1646 

function with other TFs and co-factors to promote BR-induced gene expression and inhibit BR-1647 

repressed gene expression. Figure created with BioRender.com. BAK1, BRI1-ASSOCIATED 1648 

KINASE1; BES1, BRI1-EMS-SUPPRESSOR 1; BIN2, BRASSINOSTEROID-INSENSITIVE 1649 

2; BIR3, BAK1-INTERACTING RECEPTOR-LIKE KINASES3; BKI1, BRI1 KINASE 1650 

INHIBITOR1; BL, Brassinolide; BR, Brassinosteroid; BRI1, BRASSINOSTEROID 1651 

INSENSITIVE 1; BRRE, BR Response Element; BSK, BR SIGNALING KINASES; BSS1, 1652 

BRZ-SENSITIVE-SHORT HYPOCOTYL1; BSU, BRI1 SUPPRESSOR 1; BZR1, 1653 

BRASSINAZOLE-RESISTANT 1; CDG, CONSTITUTIVE DIFFERENTIAL GROWTH; 1654 

H2O2, Hydrogen Peroxide; HDA19, HISTONE DEACETYLASE19; IWS1,  INTERACTING-1655 

WITH-SPT6-1; KIB1, KINK SUPPRESSED IN BZR1-1D; P, indicates phosphorylation; PP2A, 1656 

PROTEIN PHOSPHATASE2A; PUB12/13, PLANT U-BOX12/13; REF6, RELATIVE OF 1657 

EARLY FLOWER6; SDG8, SET DOMAIN GROUP 8; SH, indicates reduced Cys residue; 1658 

SOH, indicates oxidized Cys residue; TF, transcription factor; TPL, TOPLESS; TRXh5, 1659 

THIOREDOXIN H-TYPE 5; Ub, indicates ubiquitination. 1660 

1661 

Figure 2: Mechanisms regulating BIN2 activity 1662 

In addition to canonical dephosphorylation and inactivation of BIN2 by BSU1 in the presence of 1663 

BRs, several other mechanisms also regulate BIN2 activity. BIN2 is ubiquitinated by the E3 1664 

ubiquitin ligase KIB1 and degraded by the proteasome in the presence of BRs. Deacetylation by 1665 

HDA6 inhibits BIN2 activity, whereas oxidation by reactive oxygen species (ROS) promotes 1666 

BIN2 activity. ABA also activates BIN2 through the inhibition of ABI1/2 phosphatases that 1667 

dephosphorylate BIN2. Finally, BIN2 is sequestered in a cell-type specific manner by OPS in the 1668 

phloem or POLAR and BASL in the stomatal cell lineage. Figure created with BioRender.com. 1669 

ABA, Abscisic acid; ABI1/2, ABA INSENSITIVE1/2; Ac, indicates acetylation; BASL, 1670 

BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE; BIN2, 1671 

BRASSINOSTEROID-INSENSITIVE2; BR, Brassinosteroid; BSU, BRI1 SUPPRESSOR1; 1672 

HDA6, HISTONE DEACETYLASE6; KIB1, KINK SUPPRESSED IN BZR1-1D; OPS, 1673 

OCTOPUS; P, indicates phosphorylation; PM, Plasma membrane; POLAR, POLAR 1674 
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LOCALIZATION DURING ASYMMETRIC DIVISION AND REDISTRIBUTION; ROS, 1675 

Reactive oxygen species; SOH, indicates oxidized Cys residue; Ub, indicates ubiquitination.  1676 

1677 

Figure 3: Diverse regulatory mechanisms controlling BES1 and BZR1 activity 1678 

BES1 and BZR1 activity is modulated by multiple modes of regulation. BES1 transcripts are 1679 

subject to alternative splicing, with a longer BES1-L isoform displaying increased nuclear 1680 

localization. Phosphorylation by BIN2 inactivates BES1 and BZR1, whereas MPK6 1681 

phosphorylation of BES1 in response to bacterial pathogens or Pathogen-associated molecular 1682 

pattern (PAMPs) leads to its activation. PP2A dephosphorylates and activates BES1 and BZR1 1683 

in the presence of BRs. The production of hydrogen peroxide (H2O2) is promoted by BRs and 1684 

activates BES1 and BZR1 via oxidation, whereas TRXh5 reduces BZR1. BES1 and BZR1 can 1685 

be inactivated by cytoplasmic sequestration, photoreceptors that respond to UV, red and blue 1686 

light, or ubiquitination. Several families of E3 ubiquitin ligases target BZR1 or BES1 in different 1687 

tissues or in response to environmental cues, leading to their degradation by the proteasome or 1688 

autophagy. DSK2 mediates selective autophagy for BES1 degradation during stress. Figure 1689 

created with BioRender. ATG8, AUTOPHAGY-RELATED PROTEIN8; BES1, BRI1-EMS-1690 

SUPPRESSOR1; BIN2, BRASSINOSTEROID-INSENSITIVE 2; BR, Brassinosteroid; BSS1,  1691 

BRZ-SENSITIVE-SHORT HYPOCOTYL1; BZR1, BRASSINAZOLE-RESISTANT1; COP1, 1692 

CONSTITUTIVE PHOTOMORPHOGENIC1; CRY1,  CRYPTOCHROME1; DSK2, 1693 

DOMINANT SUPPRESSOR OF KAR2; H2O2, Hydrogen Peroxide; MAX2,  MORE 1694 

AXILLARY GROWTH LOCUS2; MPK6, MITOGEN-ACTIVATED PROTEIN KINASE6; P, 1695 

indicates phosphorylation; PHYB, PHYB, PHYTOCHROME B; PP2A, PROTEIN 1696 

PHOSPHATASE2A; PUB40, PLANT U-BOX40;  SH, indicates reduced Cys residue; SINATs, 1697 

SINA of Arabidopsis thaliana; SOH, indicates oxidized Cys residue; TRXh5, THIOREDOXIN 1698 

H-TYPE 5; Ub, indicates ubiquitination; UVR8, UVB-RESISTANCE8.1699 

1700 

Figure 4: Summary of BR regulated developmental processes in Arabidopsis.  1701 

Temperature and light modulate PHYB activity, regulate the concentration of PIF4, and 1702 

indirectly determine the levels of PIF4-BES1 heterodimerization. The interaction of these TFs 1703 

determines their gene targets and leads to different cellular responses. Xylem differentiation is 1704 

governed by the TDIF signaling pathway. GSK3s are crucial components in this pathway, which 1705 
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act as negative regulators of xylem differentiation and enable cross-talk with the BR signaling 1706 

pathway. Stomatal development is fine-tuned by the dual role of BIN2 and is dependent on its 1707 

subcellular localization. When located in the nucleus, BIN2 mainly acts as a negative regulator 1708 

of SPCH activity, whereas in complex with BASL and POLAR, it re-localizes to the PM 1709 

polarized region of MMC and acts as a negative regulator of YDA and MKKs, leading to SPCH 1710 

activation. BRs inhibit flowering by promoting the expression of flowering inhibitor FLC. 1711 

Additionally, the expression BR biosynthetic genes exhibits diurnal changes. During the root 1712 

epidermal cell fate determination process, BIN2 phosphorylates EGL3, leading to its trafficking 1713 

from the nucleus to cytosol in trichoblast cells, which facilitates its movement from trichoblast to 1714 

atrichoblast cells. BIN2 can also phosphorylate TTG1 to inhibit the activity of the WER-1715 

GL3/EGL3-TTG1 transcriptional complex. In the root apical meristem, BRs control the size of 1716 

the stem cell niche by balancing the expression of BRAVO, which negatively regulates cell 1717 

divisions in the quiescent center. BR signaling levels increase along the longitudinal axis, with 1718 

higher levels present in cells closer to the differentiation/elongation zone. Arrows indicate 1719 

activation and blunt-ended lines indicate inhibition. BES1, BRI1-EMS-SUPPRESSOR 1; BIN2, 1720 

BRASSINOSTEROID-INSENSITIVE2; BR, Brassinosteroid; BRAVO, BRASSINOSTEROIDS 1721 

AT VASCULAR AND ORGANIZING CENTER; BRI1, BRASSINOSTEROID 1722 

INSENSITIVE1; BSU, BRI1 SUPPRESSOR1; BZR1, BRASSINAZOLE-RESISTANT1; 1723 

EGL3, ENHANCER OF GLABRA3; EPF1/2, EPIDERMAL PATTERNING FACTOR 1/2; 1724 

ERF115, ETHYLENE RESPONSE FACTOR 115; FLC, FLOWERING LOCUS C; GL2, 1725 

GLABRA2; GSK3, GLYCOGEN SYNTHASE KINASE3; MKK4/5/7/9, MITOGEN-1726 

ACTIVATED PROTEIN KINASE KINASE 4/5/7/9; MMC, Meristemoid mother cell; MPK3/6, 1727 

MITOGEN-ACTIVATED PROTEIN KINASE3; PHYB, PHYTOCHROME B; PIF4, 1728 

PHYTOCHROME INTERACTING FACTOR4; QC, Quiescent center; SPCH, SPEECHLESS; 1729 

TDIF, TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR; TDR, TDIF 1730 

RECEPTOR; TTG1, TRANSPARENT TESTA GLABRA1; WER, WEREWOLF; WOX4, 1731 

WUSCHEL RELATED HOMEOBOX 4; YDA, YODA. 1732 

1733 

1734 

1735 
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Table 1: Important genes in BR signaling 1736 

 1737 
Functional 

classification 

Gene name AGI Function References 

BR perception BRI1 

BRL1 

BRL3 

At4g39400 

At1g55610 

At3g13380 

BR receptors He et al., 2000; Cano-Delgado et 

al., 2004 

SERK3/BAK1 At4g33430 Serves as a co-receptor of BRI1 along with homologs 

SERK1, SERK2, and SERK4 

Nam and Li, 2002; Gou et al., 

2012 

BKI1 At5g42750 BRI1 kinase inhibitor, inhibits BRI1/BAK1 interaction Wang and Chory, 2006 

BIR3 At1g27190 Inhibits BRI1/BAK1 interaction Hohmann et al., 2018a 

PUB12 

PUB13 

At2g28830 

At3g46510 

Ubiquitinates BRI1 following BR perception Zhou et al., 2018 

Phosphorylation 

and 

dephosphorylation 

cascade  

BSK1 

BSK3 

CDG1 

At4g35230 

At4g00710 

At3g26940 

Together with their homologous proteins, phosphorylate 

and activate BSU1; 

BSK3 acts as a scaffolding protein to regulate BR 

signaling 

Tang et al., 2008; Kim et al., 2011; 

Ren et al., 2019 

BSU1 At1g03445 Dephosphorylates and inactivates BIN2 Kim et al., 2009 

BIN2 At4g18710 Together with other GSK family members, 

phosphorylates and inactivates BES1 and BZR1  

Li and Nam, 2002; Kim et al., 

2009 

PP2A At1g69960 Dephosphorylates and activates BES1 and BZR1 Tang et al., 2011 

BES1 

BZR1 

At1g19350 

At1g75080 

Control BR-regulated gene expression along with 

homologs BEH1-4 

Wang et al., 2002; Yin et al., 2002; 

Yin et al., 2005; He et al., 2005 

BIN2 interactors 

that modulate 

BIN2 activity 

KIB1 At4g12810 Mediates BIN2 ubiquitination and subsequent 

degradation 

Zhu et al., 2017 

OCTOPUS At3g09070 Confines BIN2 to the PM, blocking its interaction with 

BES1/BZR1 

Anne et al., 2015 

POLAR 

BASL 

At4g31805 

At5g60880 

Regulate the nuclear versus cytosolic and PM 

localization of BIN2  

Houbaert et al., 2018 

HDA6 At5g63110 Deacetylates BIN2 and represses BIN2 kinase activity Hao et al., 2016 

TTL1 At1g53300 Together with its homologs TTL3/4, act to scaffold BR 

signaling components at the PM 

Amorim-Silva et al., 2019 

Modulators of 

BES1/BZR1 

degradation and 

activation 

MAX2 

PUB40 

COP1 

SINAT2 

At2g42620 

At5g40140 

At2g32950 

At3g58040 

Mediate BES1/BZR1 ubiquitination and degradation Wang et al., 2013; Kim et al., 

2014; Yang et al., 2017; Kim et al., 

2019 

DSK2 At2g17200 Autophagy receptor for BES1 degradation Nolan et al., 2017b 

14-3-3λ At5g10450 Together with other 14-3-3 proteins, retains 

phosphorylated BES1 and BZR1 in the cytoplasm 

Gampala et al., 2007; Ryu et al., 

2007 

TRXh5 At1g45145 Interacts with BZR1 to promote its reduction and 

inactivation 

Tian et al., 2018 

RGA1 At2g01570 Together with other DELLA proteins, inhibits BES1, 

BZR1, PIF4, and ARF6 under low GA conditions 

Bai et al., 2012a; Gallego-

Bartolome et al., 2012 

BSS1/BOP1 

BOP2 

At3g57130 

At2g41370 

Sequesters BES1 and BZR1 in the cytoplasm in the 

absence of BRs 

Shimada et al., 2015 

UVR8 At5g63860 UV light receptor, inhibits DNA binding activity of 

BES1 

Liang et al., 2018 

CRY1 

CRY2 

At4g08920 

At1g04400 

Interact with BES1, BZR1, and BIM1 in response to 

blue light to inhibit their activity 

Wang et al., 2018b; He et al., 2019 

PHYB At2g18790 Inhibits the transcriptional activity of BES1 in response 

to red light  

Wu et al., 2018 

Transcriptional 

regulators involved 

in BR-mediated 

gene expression 

IWS1 At1g32130 Interacts with BES1 to promote BR-regulated gene 

expression 

Li et al., 2010 

BIM1 At5g08130 Together with its homologs BIM2 and BIM3, interacts 

with BES1 to activate the expression of BR-induced 

genes 

Yin et al., 2005 

MYB30 At3g28910 Cooperates with BES1 to promote BR-induced gene 

expression 

Li et al., 2009 
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PIF4 At2g43010 Interacts with BES1 and BZR1 to regulates BR-induced 

gene expression 

Oh et al 2012a; Martinez et al., 

2018 

ARF6 

ARF8 

At1g30330 

At5g37020 

Interacts with both PIFs and BZR1 to regulate gene 

expression 

Oh et al., 2014b 

MYBL2 

HAT1 

At1g71030    

At3g54610 

BES1/BZR1 target transcription factors, assist BES1 in 

BR-repressed gene expression 

Ye et al., 2012; Zhang et al., 

2014b 

HDA19 At4g38130 Mediates histone deacetylation for BES1 and BZR1-

repressed genes  

Oh et al., 2014a; Ryu et al., 2014 

TPL At1g15750 Interacts with BES1/BZR1 and recruits HDA19 Oh et al., 2014a; Ryu et al., 2014 

ELF6 

REF6 

At5g04240 

At3g48430 

Remove repressive H3K27me2/H3K27me3 marks, 

allowing BES1 to activate gene expression 

Yu et al., 2008; Lu et al., 2011 

PICKLE At2g25170 Represses H3K27me3 marks for BR-induced genes Zhang et al., 2014a 

SDG8 At1g77300 Increases H3K36me2/3 levels for BR-induced gene 

expression 

Wang et al., 2014b 

WRKY46 

WRKY54 

WRKY70 

At2g46400 

At2g40750 

At3g56400 

Cooperate with BES1 to inhibit drought-responsive gene 

expression 

Chen et al., 2017 

RD26 At4g27410 Inhibits BES1 and promotes drought responses Jiang et al., 2019 

TINY At5g25810 Together with TINY2/3, regulates drought responses 

through an antagonistic interaction with BES1  

Xie et al., 2019 
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Figure 1: Overview of the BR signaling pathway. 
When BRs are absent (left), plasma membrane-localized receptors BRI1 and BAK1 are inhibited by several factors, including BKI1 and When BRs are absent (left), plasma membrane-localized receptors BRI1 and BAK1 are inhibited by several factors, including BKI1 and 
BIR3. Additionally, BIN2 kinase functions as a negative regulator and phosphorylates BES1 and BZR1 TFs to inhibit their activity through 
multiple mechanisms. BSS1 forms a complex with BES1 and BZR1 in the cytoplasm, and THXh5 reduces BZR1 in the nucleus, further 
inactivating these TFs. This leads to relatively low expression of BR-induced genes and higher expression of BR-repressed genes. 
When BRs such as brassinolide (BL) are present, they bind to the receptor BRI1 and co-receptor BAK1 to initiate BR signaling (right). 
BKI1 and BIR3 dissociate from the receptor complex, allowing BRI1 and BAK1 to become phosphorylated and activated. BSKs/CDGs BKI1 and BIR3 dissociate from the receptor complex, allowing BRI1 and BAK1 to become phosphorylated and activated. BSKs/CDGs 
are phosphorylated and activate BSU1 phosphatase to inhibit BIN2. Dephosphorylation by PP2A allows BES1 and BZR1 to function with 
other TFs and co-factors to promote BR-induced gene expression and inhibit BR-repressed gene expression. Figure created with 
BioRender.com. BAK1, BRI1-ASSOCIATED KINASE1; BES1, BRI1-EMS-SUPPRESSOR 1; BIN2, BRASSINOSTEROID-INSENSITIVE 
2; BIR3, BAK1-INTERACTING RECEPTOR-LIKE KINASES3; BKI1, BRI1 KINASE INHIBITOR1; BL, Brassinolide; BR, Brassinosteroid; 
BRI1, BRASSINOSTEROID INSENSITIVE 1; BRRE, BR Response Element; BSK, BR SIGNALING KINASES; BSS1, BRI1, BRASSINOSTEROID INSENSITIVE 1; BRRE, BR Response Element; BSK, BR SIGNALING KINASES; BSS1, 
BRZ-SENSITIVE-SHORT HYPOCOTYL1; BSU, BRI1 SUPPRESSOR 1; BZR1, BRASSINAZOLE-RESISTANT 1; CDG, 
CONSTITUTIVE DIFFERENTIAL GROWTH; H2O2, Hydrogen Peroxide; HDA19, HISTONE DEACETYLASE19; IWS1,  
INTERACTING-WITH-SPT6-1; KIB1, KINK SUPPRESSED IN BZR1-1D; P, indicates phosphorylation; PP2A, PROTEIN 
PHOSPHATASE2A; PUB12/13, PLANT U-BOX12/13; REF6, RELATIVE OF EARLY FLOWER6; SDG8, SET DOMAIN GROUP 8; SH, 
indicates reduced Cys residue; SOH, indicates oxidized Cys residue; TF, transcription factor; TPL, TOPLESS; TRXh5, THIOREDOXIN 
H-TYPE 5; Ub, indicates ubiquitination.



Figure 2: Mechanisms regulating BIN2 activity 
In addition to canonical dephosphorylation and inactivation of BIN2 by BSU1 in the presence of BRs, several other mechanisms In addition to canonical dephosphorylation and inactivation of BIN2 by BSU1 in the presence of BRs, several other mechanisms 
also regulate BIN2 activity. BIN2 is ubiquitinated by the E3 ubiquitin ligase KIB1 and degraded by the proteasome in the presence 
of BRs. Deacetylation by HDA6 inhibits BIN2 activity, whereas oxidation by reactive oxygen species (ROS) promotes BIN2 activity. 
ABA also activates BIN2 through the inhibition of ABI1/2 phosphatases that dephosphorylate BIN2. Finally, BIN2 is sequestered in a 
cell-type specific manner by OPS in the phloem or POLAR and BASL in the stomatal cell lineage. Figure created with 
BioRendeBioRender.com. ABA, Abscisic acid; ABI1/2, ABA INSENSITIVE1/2; Ac, indicates acetylation; BASL, BREAKING OF ASYMMETRY 
IN THE STOMATAL LINEAGE; BIN2, BRASSINOSTEROID-INSENSITIVE2; BR, Brassinosteroid; BSU, BRI1 SUPPRESSOR1; 
HDA6, HISTONE DEACETYLASE6; KIB1, KINK SUPPRESSED IN BZR1-1D; OPS, OCTOPUS; P, indicates phosphorylation; PM, 
Plasma membrane; POLAR, POLAR LOCALIZATION DURING ASYMMETRIC DIVISION AND REDISTRIBUTION; ROS, Reactive 
oxygen species; SOH, indicates oxidized Cys residue; Ub, indicates ubiquitination. 



Figure 3: Diverse regulatory mechanisms controlling BES1 and BZR1 activity
BES1 and BZR1 activity is modulated by multiple modes of regulation. BES1 transcripts are subject to alternative splicing, with a BES1 and BZR1 activity is modulated by multiple modes of regulation. BES1 transcripts are subject to alternative splicing, with a 
longer BES1-L isoform displaying increased nuclear localization. Phosphorylation by BIN2 inactivates BES1 and BZR1, whereas 
MPK6 phosphorylation of BES1 in response to bacterial pathogens or Pathogen-associated molecular pattern (PAMPs) leads to its 
activation. PP2A dephosphorylates and activates BES1 and BZR1 in the presence of BRs. The production of hydrogen peroxide 
(H2O2) is promoted by BRs and activates BES1 and BZR1 via oxidation, whereas TRXh5 reduces BZR1. BES1 and BZR1 can be 
inactivated by cytoplasmic sequestration, photoreceptors that respond to Uinactivated by cytoplasmic sequestration, photoreceptors that respond to UV, red and blue light, or ubiquitination. Several families of 
E3 ubiquitin ligases target BZR1 or BES1 in different tissues or in response to environmental cues, leading to their degradation by the 
proteasome or autophagy. DSK2 mediates selective autophagy for BES1 degradation during stress. Figure created with BioRender. 
ATG8, AUTOPHAGY-RELATED PROTEIN8; BES1, BRI1-EMS-SUPPRESSOR1; BIN2, BRASSINOSTEROID-INSENSITIVE 2; BR, 
Brassinosteroid; BSS1,  BRZ-SENSITIVE-SHORT HYPOCOTYL1; BZR1, BRASSINAZOLE-RESISTANT1; COP1, CONSTITUTIVE 
PHOPHOTOMORPHOGENIC1; CRY1,  CRYPTOCHROME1; DSK2, DOMINANT SUPPRESSOR OF KAR2; H2O2, Hydrogen Peroxide; 
MAX2,  MORE AXILLARY GROWTH LOCUS2; MPK6, MITOGEN-ACTIVATED PROTEIN KINASE6; P, indicates phosphorylation; 
PHYB, PHYB, PHYTOCHROME B; PP2A, PROTEIN PHOSPHATASE2A; PUB40, PLANT U-BOX40;  SH, indicates reduced Cys 
residue; SINATs, SINA of Arabidopsis thaliana; SOH, indicates oxidized Cys residue; TRXh5, THIOREDOXIN H-TYPE 5; Ub, 
indicates ubiquitination; UVR8, UVB-RESISTANCE8.



Figure 4: Summary of BR regulated developmental processes in Arabidopsis. 
TTemperature and light modulate PHYB activity, regulate the concentration of PIF4, and indirectly determine the levels of PIF4-BES1 
heterodimerization. The interaction of these TFs determines their gene targets and leads to different cellular responses. Xylem 
differentiation is governed by the TDIF signaling pathway. GSK3s are crucial components in this pathway, which act as negative 
regulators of xylem differentiation and enable cross-talk with the BR signaling pathway. Stomatal development is fine-tuned by the 
dual role of BIN2 and is dependent on its subcellular localization. When located in the nucleus, BIN2 mainly acts as a negative 
regulator of SPCH activitregulator of SPCH activity, whereas in complex with BASL and POLAR, it re-localizes to the PM polarized region of MMC and acts as 
a negative regulator of YDA and MKKs, leading to SPCH activation. BRs inhibit flowering by promoting the expression of flowering 
inhibitor FLC. Additionally, the expression BR biosynthetic genes exhibits diurnal changes. During the root epidermal cell fate 
determination process, BIN2 phosphorylates EGL3, leading to its trafficking from the nucleus to cytosol in trichoblast cells, which 
facilitates its movement from trichoblast to atrichoblast cells. BIN2 can also phosphorylate TTG1 to inhibit the activity of the 
WER-GL3/EGL3-TTG1 transcriptional complex. In the root apical meristem, BRs control the size of the stem cell niche by balancing WER-GL3/EGL3-TTG1 transcriptional complex. In the root apical meristem, BRs control the size of the stem cell niche by balancing 
the expression of BRAVO, which negatively regulates cell divisions in the quiescent center. BR signaling levels increase along the 
longitudinal axis, with higher levels present in cells closer to the differentiation/elongation zone. Arrows indicate activation and 
blunt-ended lines indicate inhibition. BES1, BRI1-EMS-SUPPRESSOR 1; BIN2, BRASSINOSTEROID-INSENSITIVE2; BR, 
Brassinosteroid; BRAVO, BRASSINOSTEROIDS AT VASCULAR AND ORGANIZING CENTER; BRI1, BRASSINOSTEROID 
INSENSITIVE1; BSU, BRI1 SUPPRESSOR1; BZR1, BRASSINAZOLE-RESISINSENSITIVE1; BSU, BRI1 SUPPRESSOR1; BZR1, BRASSINAZOLE-RESISTANT1; EGL3, ENHANCER OF GLABRA3; EPF1/2, 
EPIDERMAL PATTERNING FACTOR 1/2; ERF115, ETHYLENE RESPONSE FACTOR 115; FLC, FLOWERING LOCUS C; GL2, 
GLABRA2; GSK3, GLYCOGEN SYNTHASE KINASE3; MKK4/5/7/9, MITOGEN-ACTIVATED PROTEIN KINASE KINASE 4/5/7/9; 
MMC, Meristemoid mother cell; MPK3/6, MITOGEN-ACTIVATED PROTEIN KINASE3; PHYB, PHYTOCHROME B; PIF4, 
PHYTOCHROME INTERACTING FACTOR4; QC, Quiescent center; SPCH, SPEECHLESS; TDIF, TRACHEARY ELEMENT 
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