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Moist Rayleigh—Bénard convection with water saturated boundaries is explored using
a One-Dimensional Turbulence model. The system involves both temperature T
and water vapour pressure e, as driving scalars. The emphasis of the work is on
a supersaturation s, a nonlinear combination of 7 and e, that is crucial to cloud
formation. Its mean as well as fluctuation statistics determine cloud droplet growth
and therefore precipitation formation and cloud optical properties. To explore the
role of relative scalar diffusivities for temperature (D,) and water vapour (D,), three
different regimes are considered: D, > D,, D, ~ D, and D, < D,. Scalar fluxes (Nusselt
number, Nu and Sherwood number, Sh) and their scalings with moist Rayleigh number
Ra,.is are consistent with previous studies of one-component convection. Moreover,
variances of the scalars in the bulk region increase with their diffusivities and
also reasonably follow derived scaling expressions. Eulerian properties plotted in
(T, e,) coordinates have a different slope compared to an idealized mixing process.
Additionally, the scalars are highly correlated, even in the cases of high relative
diffusivities (factor of four) D, and D,. Based on the above fact and the scaling
relation of the scalars, the supersaturation variance is found to vary approximately

as Rafn/jm in agreement with numerical results. Finally, the supersaturation profile in
the boundary layer is explored and compares well with scalar boundary layer models.
A sharp peak appears in the boundary-layer-supersaturation profile, not only in the

variance but also in the mean profile, due to relative diffusivities of the scalars.

Key words: Bénard convection, moist convection, turbulent mixing

1. Introduction

Buoyancy-driven atmospheric boundary layers capped by strong stable layers
can be understood as a large-scale manifestation of turbulent Rayleigh—-Bénard
(R-B) convection (Deardorff 1970; Brown 1980; Wyngaard 1992). The presence of
water vapour and its associated phase changes plays a central role in the nature
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of the convection (Bretherton 1987, 1988; Stevens 2005; Pauluis et al. 2010;
Pauluis & Schumacher 2011; Mellado, Puche & van Heerwaarden 2017). The
general problem of moist convection, fully coupled with surface fluxes, large-scale
dynamics, radiative transfer and cloud formation remains a grand challenge, with
relevance to weather forecasting and climate. In this work, we set as a more modest
goal the investigation of how water vapour supersaturation behaves in traditional
Rayleigh-Bénard convection.

1.1. Moist convection parameters

The cloud topped convective-boundary-layer is effectively a Rayleigh—Bénard system
driven by buoyancy forcing, e.g. radiative forcing from cloud top (Lilly 1968; Moeng
& Rotunno 1990; Stevens 2005; Mellado 2017). In this system, continuous plume
eruption from both boundaries transports heat and moisture and produces the mixed
layer (Emanuel 1994). The cloud aspect of the problem depends on the presence
of water vapour, making this a case of two-scalar Rayleigh-Bénard convection.
Similar to a single-component convection, the equivalent Rayleigh number (or the
moist Rayleigh number for moist convection) determines the marginal stability of
the convective system. For moist convection, it can be approximated as (Chilla &
Schumacher 2012; Niedermeier et al. 2018)

_gATH? N geAg, H?

R moist ™ 1.1
moist ™= " D, D, (D

Here, AT, Aq, and H are the applied temperature difference, the difference in the
water vapour mixing ratio and length scale of the system, respectively. Other constants
g, v and T, are the gravitational acceleration, the kinematic viscosity and the mean
temperature (reference temperature). The parameter € = M,/M,, — 1, where M, and
M,, are the molecular masses of dry air and water, respectively. The above relation
is obtained by taking a ratio of buoyancy (~pg(AT/T, + €Agq,)) and viscous force
(~vpw*/H?) scales and assuming that the destruction of density perturbation is larger
because of the thermal diffusion than the diffusion of the other scalar (i.e. using
w*~D,/H as a velocity scale in the viscous forcing). Additionally, the velocity scale
(w*) is obtained from the flux balance between advection (~w*$T/H) and diffusion
(~D,8T/H?) of scalar perturbation from the base state. The scaling is therefore only
valid when the thermal gradient is the largest contributor to buoyancy or when both
scalars have the same molecular diffusivities. In the contrasting case where the second
scalar contributes significantly, the diffusivity of the dominant scalar should be used.
In the moist convection case, the water vapour’s contribution to the buoyancy is
smaller than the thermal contribution (at least for the temperature range considered
here). In the subsequent definition of the Rayleigh number, the underlying assumption
is that the thermal gradient is a larger contributor to the buoyancy perturbation than
the gradient of the other scalar. However, the contribution of the other scalar to
buoyancy is not ignored. Other relevant non-dimensional variables associated with
the fluid properties are the relative diffusivities of water vapour and thermal field,
the Schmidt number (Sc¢ = v/D,) and Prandtl number (Pr = v/D,). These quantify
the rate at which the molecular diffusion of scalars destroys the buoyancy forcing.
A non-dimensional quantity related to the geometry of a system, the aspect ratio of
a convection cell, also influences the flow to some extent.

There is a similarity between double-diffusive convection (Schmitt 1994; Kelley
et al. 2003) and the current case of moist convection. In both cases, there are two
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FIGURE 1. A thermodynamic vapour-pressure—temperature diagram illustrating the
formation of supersaturation through isobaric mixing. An idealized mixing process of two
saturated air parcels at different temperatures, 7, and 7. (dashed line) and its comparison
with the saturation (equilibrium) vapour pressure curve (blue line).

scalars involved in the problem which are advecting and diffusing. However, in the
traditional double-diffusive convection, scalars usually have opposite contributions
to the buoyancy and/or have opposite diffusive fluxes. In the current case of moist
convection, both scalars contribute to positive buoyancy and diffusing in the same
direction; therefore, it is closer to traditional R—-B convection. Indeed, the current
case can be expressed as single component R—B convection driven by a difference
in virtual temperature. The novel aspect considered here is to explicitly consider the
diffusivity difference between the two scalars, as expressed through the Lewis number
Le = D,/D,. The relevance of Lewis number and differential diffusivity is motivated
by the water vapour supersaturation, described next.

1.2. Supersaturation from two scalar fields

Supersaturation is central to cloud formation, whether it be in the earth’s atmosphere
(Bohren & Albrecht 1998) or in the atmospheres of other planets and stars (Burrows
et al. 1997; Marley et al. 2013; Kreidberg et al. 2014). Taking water vapour as an
example, supersaturation depends upon the two scalar fields’ temperature and water
vapour mixing ratio through the water vapour pressure: s = (e,/e,(T)) — 1. Here, e,
and e, ; are the water vapour pressure and saturation (or equilibrium) vapour pressure,
respectively. The latter is expressed by the Clausius—Clapeyron equation, e, (T) o
exp(—L/R,T), where L is the latent heat of vaporization, R, is the mass-based gas
constant for water vapour and T is the temperature (Bohren & Albrecht 1998; Lamb
& Shaw 2016).

In turbulent R—-B convection, scalar fields are advected and diffused, resulting in
their mutual mixing. An idealized view of the mixing of two saturated air parcels is
shown in figure 1, which depicts a thermodynamic space consisting of temperature and
water vapour pressure. The equilibrium (Clausius—Clapeyron) curve is shown, and the
mixing is assumed to take place between two air parcels with temperatures 7), and T,
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with a constant heat capacity. For isobaric mixing, various mass ratios result in the
dashed line (Bohren & Albrecht 1998). The red dashed lines show a specific example
of a fully mixed parcel with temperature 7, and water vapour pressure e, . It can
be seen that e, ., > e, (T), resulting in a positive supersaturation in the mixture.

The idealization of figure 1 can be extended, taking into account the details of
how temperature and water vapour fields are mixed in a turbulent flow. The relative
humidity (RH = e¢,/e, (T)) problem has been the subject of considerable study in
the boundary layer meteorology community, mainly focused on correlations between
the two fields (e.g. Sorbjan 1989). The concept also underlies a common approach
to representation of subgrid-scale variability of cloudiness. For example, Sommeria &
Deardorff (1977) used the joint probability distribution function (p.d.f.) of two moist
adiabatically conserved scalars to diagnose subgrid-scale cloud fraction, liquid water
content and buoyancy flux in a large-eddy simulation of trade-wind cumulus clouds.
Relative humidity variability is due to joint variability in the two conserved scalars
and cloud is assumed to exist when relative humidity RH > 1. This approach has
been extended by several others since then (e.g. Golaz, Larson & Cotton (2002a);
Bogenschutz & Krueger (2013) and references therein), in what have come to be
known as p.d.f. methods. Further discussion of these approaches is in §4.

1.3. An approach for studying scalar fields in moist Rayleigh—Bénard convection

This work is motivated by the problem of supersaturation in turbulent Rayleigh—
Bénard convection within an idealized context, i.e. without the complications of
large-scale shear, radiative transfer and condensate formation that exist in the
atmosphere. The work’s origins are in questions that arose during the analysis
and interpretation of observations taken in the ‘Pi chamber’, a laboratory chamber
for studying cloud formation in turbulent R-B convection (Niedermeier et al. 2018).
In particular, the competing and complementary roles of diffusion versus advection
are of interest, as is the relevance of differences in diffusivities for heat and for
water vapour. For example, the seemingly negligible difference in diffusivities (Lewis
number Le=D,/D,=0.84 at 20°C) has been used in other laboratory contexts as the
underlying mechanism for precise control of supersaturation (Stratmann et al. 2004).

We approach the problem of supersaturation in R-B convection using an idealized,
one-dimensional model that faithfully represents the processes of advection and
diffusion in turbulent flow. Using this kind of model allows a wide range of parameter
space (e.g. Ra) to be explored with computational efficiency and it is well suited
to problems that are fundamentally dependent on advection and diffusion of scalars.
It represents all relevant scales, so it captures the diffusive boundary layer as well
as the larger-scale turbulent mixing in the bulk fluid. We consider this as a first
exploration of the phenomenon at work, and more detailed approaches, such as
using direct numerical simulation, will follow. Finally, the one-dimensional model
is highly scalable, so it can be run at scales comparable to laboratory experiments
with turbulent moist convection (Niedermeier et al. 2018) and then can be scaled
up for moist convection in the atmospheric boundary layer. The purpose here is
to investigate the mean and fluctuating properties of the supersaturation field in
turbulent moist Rayleigh-Bénard convection, in a general sense. Detailed comparison
to laboratory experiments and exploration of the atmospheric context are challenges
for future work.

The paper is organized as follows: in §2 the One-Dimensional Turbulence (ODT)
model is described and the parameters used in this study are defined. We then
proceed to use the model to explore the scaling of heat and water vapour fluxes
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with relevant dimensionless variables (§ 3.1), fluctuations of scalars in the bulk fluid
(§3.2), fluctuations of supersaturation in the bulk fluid (§3.4), vertical profiles of
supersaturation in the boundary layer and the bulk fluid (§3.5) and the sampling
within the thermodynamic space of water vapour pressure versus temperature (§3.3).
Finally, we conclude the paper by summarizing and discussing the results in § 4.

2. Model description and problem set-up

The One-Dimensional Turbulence model was developed to simulate turbulent flows
which are statistically homogeneous and isotropic in two dimensions but varying in
the third (Kerstein 1999). The ODT evolved from the linear eddy model (Kerstein
1999), which has been previously used to simulate cloud turbulence (Krueger 1993;
Krueger, Su & McMurtry 1997). The ODT has been widely used for turbulence
problems ranging from combustion (Echekki et al. 2001) to large-eddy simulation
(LES) subgrid-scale modelling (Stechmann 2014). Subsequent ODT development led
to a version of the model specifically designed for problems involving buoyancy,
either stably stratified (Wunsch & Kerstein 2001) or convective (Wunsch & Kerstein
2005; Gonzalez-Juez, Kerstein & Lignell 2011). All versions of the ODT rely on
the same basic construct. The flow is simulated on a line which is oriented along
the direction in which mean flow properties vary, so for buoyant convection ODT
represents the vertical coordinate. All fluid properties are functions of location along
the line. Turbulent advection occurs through a series of random mappings of the
ODT line onto itself. Mappings occur on all relevant length scales, and their statistics
reproduce standard scaling relations for turbulence. During the intervals between
mapping events, molecular diffusion is modelled using standard partial differential
equations. The ODT results are typically interpreted statistically, e.g. by computing
the mean and variance of each flow variable at each position along the line. Due to
the restriction to one spatial dimension, it is computationally feasible to fully resolve
the Kolmogorov scale. In the following paragraphs we provide an overview of the
ODT model and readers are referred to the ODT references for details (Kerstein
1999; Wunsch & Kerstein 2001, 2005).

To simulate moist convection using ODT, a variant of the version employed in
Wunsch & Kerstein (2001, 2005) is employed here. The ODT line is oriented along
the z (vertical) axis. The flow variables are the magnitude of the velocity vector
(w), temperature (7)) and water vapour mixing ratio ¢,. During the intervals between
mappings, each of these variables (X) obeys

(8, — Dxd2)X =0. 2.1)

The boundary condition for the current problem is no-slip for velocity and
water-vapour-saturated bottom and top boundaries at a fixed temperature (hot bottom
and colder top). Note that the advection terms are absent from (2.1), and that the
velocity variable (w) does not actually move the fluid elements; in ODT the random
mappings do that instead. Here Dy represents molecular diffusivity of variable X.
These equations are solved at full resolution (including all scales down to the viscous
and/or diffusive scales). Full resolution of all length and time scales in turbulent flow
is one of the key advantages of ODT simulations, and it is made computationally
affordable by the restriction to one dimension. The fluid density variations are related
to temperature and water vapour content by

T,(1+e€q,,)
"T(14+eq,)’

where p, and g,, are the reference density and water vapour mixing ratio.

p(qv, T) = p, (2.2)
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To simulate moist convection in the laboratory ‘Pi chamber’ with the ODT model,
the velocity boundary conditions replicate no-slip walls at z=0 and z=H and fixed
boundary condition for temperature and water vapour are applied. A temperature
difference, AT is imposed across the convective cell and boundaries are assumed to
be saturated with water at the temperature of each boundary. Therefore, there is also
an imposed difference for water vapour (Ag,) across the convective cell.

The physics of turbulent mixing is implemented in ODT through randomly selected
mappings (M(z)) of the line onto itself. The mapping is applied to all scalar fields
simultaneously. It mimics the motion of a ‘fluid element’ and preserves the properties
of each fluid element. The attributes of the mapping function have a strong impact on
the model dynamics, so selection of an appropriate function is essential to constructing
a realistic representation of turbulent advection within the one-dimensional framework.
The mapping used in ODT is measure preserving. This is the one-dimensional
equivalent of incompressibility, and implies that all statistical moments of scalar
fields are preserved by the mapping. The mapping is also a continuous function, to
avoid introducing discontinuities in mapped scalar fields. Finally, the function maps
a finite region, to mimic a turbulent ‘eddy’ of defined length. The specific function
M(z) used here was introduced by Kerstein (1999) and is common to all versions of
the ODT model (Wunsch & Kerstein 2001),

3(z—20)s if 70 <2<z +L/3,
2L—3(z—1z,), if z,+L/3<z<z,+2L/3,
3(z—2z,)—2L, ifz,+2L/3<z2<z,+L,
=2 else,

M@=z, + (2.3)

where z, is the location of the mapping event on a segment of length L. Essentially,
this function takes the portion of the original scalar profile 7 (z) between z, and z, + L,
compresses it to 1/3 of its original size, and places three copies of this compressed
profile within the original domain. The middle copy is reversed in order to maintain
continuity. This mapping function has two additional attributes which are valuable for
representing turbulent flows. The compression i.e. mixing of scalar profiles leads to
a cascade of turbulent kinetic energy or scalar variance from large to small scales,
as illustrated in Kerstein (1999) and Wunsch & Kerstein (2001). Also, the mapping
results in a net scalar transport along the line when applied to a scalar field with a
mean gradient. In the present context, this means that mappings will transport heat
and water vapour vertically through the laboratory convection cell.

Since mappings do not change any statistical moment of a scalar field, they
conserve kinetic energy. However, if vertical transport of scalars T or g, results in a
change in potential energy, then energy conservation requires potential energy changes
to be offset by corresponding changes in kinetic energy (conversion of potential to
kinetic energy). The change in kinetic energy requires an additional operation on the
velocity scalar, in addition to the applied mapping. The complete set of mapping and
energy conserving operations applied to each scalar during a mapping event are given
by

X(2) > X(M(z)), (2.4a)
w(z) = w(M(2)) + c(z — M(2)), (2.4D)

where (z — M(z)) is the function added to the velocity scalar as part of the mapping
process, X represents scalars 7 and ¢,, and c, is a amplitude selected to enforce
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energy conservation. Energy conservation determines the constant c,,

27 8gL
ch=— |—w £ wﬁ - , (2.5)
4L 270,
where w, and p; are defined as
4 Zo+L
T o2 w()(L —2(z — z,)) dz, (2.6a)
Zo
-1 Zo+L
p=g [ @) - ez (2.6b)
2o

The quantity wy is similar to a wavelet transformation, and w; can be interpreted
as a filtered kinetic energy within the mapped region. Similarly, p; (the mapped
density difference) is proportional to the potential energy change. If p, is positive
(the mapping increases the potential energy of the fluid), then there must be sufficient
filtered kinetic energy in the w? terms to compensate for this loss of energy; otherwise
the amplitudes will be imaginary and the corresponding mapping cannot occur.

The remaining aspect of the turbulence model is to determine the rate at which
mappings occur. Mappings are selected randomly, but the probability of each
one is based on standard turbulence scaling relations. The model is therefore not
deterministic, and calculations rely on a large ensemble of eddy mappings to produce
meaningful average results. Each eddy mapping, defined by its position z, and length
L, is assigned a rate A(z,, L). Similar to Wunsch & Kerstein (2005), the overall rate
expression for a mapping of size L at location z, is

Cv | (wiL\? 8gL3py
Az )= — ) — -Z, 2.7
@ L) L* ( v ) 27v2p, @7

where C and Z are dimensionless parameters of the turbulence model. Equation (2.7)
has been normalized so that filtered kinetic energy term is expressed as an ‘eddy
Reynolds number’ (w,L/v) and the potential energy term is essentially an ‘eddy
Rayleigh number’ (gL?p;/v?p,). The constant Z in (2.7) represents a small-scale
viscous cutoff, or a minimum eddy Reynolds number for a non-zero eddy rate. It
determines the smallest eddy mapping that can occur in the model. The constant C
sets an overall time scale for all eddy mappings (but has no impact on the relative
rates of different mappings). Note that the sign of the potential energy transferred by
each eddy can be either positive (convection) or negative (stable stratification).

The eddy rate coefficient (C?) and viscous cutoff (ZC?) are set to 1.5 x 10° and
10°, respectively, based on the previous study by Wunsch & Kerstein (2005). As in
that study, the effect of reasonable changes in the model parameters is tested and
results are found to be consistent. This study used Z =~ 67, which can be thought
of as a Reynolds number of approximately 8 for the smallest possible eddy, close
to the dissipative eddies. Moreover, the rate constant C ~ 39 produces an order-one
relation between the shear and the eddy rate with an additional constant (2/27) due
to mapping.

Equation (2.7) provides the rate for each eddy mapping (defined by its size L
and location z,), given profiles of the velocity components and density (determined
from the temperature and water vapour profiles according to the equation of state).
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Scaling law Experiment ODT

R-B convection: Niemela er al. (2000): Within 5% of experimental values
Nu(Ra) Nu = 0.124Ra"3® (Wunsch & Kerstein 2005)

R-B convection: Niemela et al. (2000): Within 10 % of experimental

or AT~ (Ra) orAT' =0.37Ra™0% values (Wunsch & Kerstein 2005)
R-B convection: Xia, Lam & Zhou (2002): RePr~ (Ra Pr (Nu— 1))/
Re(Ra) RePr=3.2Pr""® (Ra Pr Nu)'”®> (Wunsch & Kerstein 2005)
Double-diffusive Kelley et al. (2003): Nu~ (Ra/R,)"37003

convection: Nu(Ra)  Nu~ Ra®¥7*0! (Gonzalez-Juez et al. 2011)

TABLE 1. Comparison of scaling results from experimental studies and ODT simulations.
Results shown are for Nusselt number versus Ra, oy/AT versus Ra, and Reynolds
number versus Ra for single-component convection, and Nusselt number versus Ra for
double-diffusive convection. Here Re and R, are the Reynolds number based on velocity
fluctuations and buoyancy ratio of two scalar components, respectively.

Mappings are randomly selected for implementation, but the selection probabilities are
weighted according to the rate A. The algorithm for doing this in the ODT model is
described in detail by Kerstein (1999). Because the rate of mapping events is based
on standard physical scalings, the ODT model reproduces the Kolmogorov —5/3
power spectrum (Kerstein 1999; Wunsch & Kerstein 2001), the viscous ‘law of the
wall’ (Kerstein 1999), as well as many of the observed properties of Rayleigh-Bénard
convection (Wunsch & Kerstein 2005). It is well known that the Nusselt number for
a given Rayleigh number also depends to some extent on the aspect ratio of the
cell. This effect is neglected in a one-dimensional model. Hence, while the ODT
model can be used for parametric studies and scaling relations (as in past studies
as well as here), it cannot capture the dependence of Nusselt number on changing
geometry. Instead, the model parameters C and Z have been adjusted to produce
reasonable quantitative agreement for Nu(Ra) for cylindrical Rayleigh-Bénard cells
with aspect ratios of 0.5-1.0. Details of the numerical simulations used to determine
the model parameter values used here can be found in Wunsch & Kerstein (2005).
That work includes tests of the ODT model for Rayleigh-Bénard convection for
different parameter values and quantitative assessment of accuracy using comparisons
with experimental data. It has been also used and tested carefully for the problem of
double-diffusive convection where the two scalars involved were similar to the current
case (e.g. Gonzalez-Juez et al. 2011). Table 1 describes several examples of the
comparison between the scaling results from ODT studies and relevant experimental
measurements. More details about the statistical comparison between ODT results
and experimental observation for different cases can be explored in the references
cited above.

For this study, simulations with AT of 6, 8, 12, 14 and 20 K and a mean of 283 K
are run. All simulations have saturated bottom and top boundaries. The resulting range
of Rayleigh number is 2.05 x 10® < Ra < 2.75 x 10°. These values are similar to
values that have been explored in laboratory experiments (Chandrakar et al. 2016;
Niedermeier et al. 2018), and they correspond to Ra sufficiently large that the flows
are fully turbulent. Moreover, the Prandtl and Schmidt number ranges used in the
current simulations are 0.18 < Pr <0.72 and 0.15 <S¢ <0.72.


https://doi.org/10.1017/jfm.2019.895
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. J. Robert Van Pelt and Opie Library, on 19 Jan 2020 at 01:07:36, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2019.895

Supersaturation in Rayleigh-Bénard convection 884 A19-9

3. Results and discussion

Supersaturation depends on water vapour concentration and temperature fields, so
we anticipate that the magnitudes of the diffusivities for the two scalar fields will
be relevant to the problem of supersaturation advection and dissipation. In order to
understand the relative roles of the two diffusivities, we analyse the following four
combinations throughout the rest of the paper.

(i) Actual D, and D,: actual diffusivities for the water vapour and thermal fields, for
air at a temperature of 283 K (D,/D, =1.16).

(1) D, = D,: the water vapour diffusivity is same as the actual thermal diffusivity
(Dy/D,=1).

(iii) 4 x D,: the water vapour diffusivity is four times the actual value, and the thermal
diffusivity is same as the actual value (D,/D,=4.63).

(iv) 4 x D,: the water vapour diffusivity is same as the actual value, and the thermal
diffusivity is four times the actual value (D,/D,;=0.29).

Figure 2(a,b) illustrates the vertical profile for a single scalar field, as simulated by
ODT. Specifically, it displays the mean (a) and standard deviation (b) of water vapour
mixing ratio (g,) versus height. In the plots and rest of the text, the normalized water
vapour mixing ratio and temperature variables are defined as ¢} = (g, — q,,)/Aq,
and T* = (T — T,)/AT. The subscripts t and b represent properties at the top and
bottom boundaries of the domain. These profiles are consistent with results from
experimental and fully resolved computational studies of R-B convection (Belmonte,
Tilgner & Libchaber 1993; Tilgner, Belmonte & Libchaber 1993; Breuer et al. 2004;
Du Puits et al. 2007; Ahlers et al. 2012). Specifically, the mean scalar profile shows
strong vertical gradients within the boundary layers and a relatively flat bulk profile,
and the standard deviation profile shows peak variability in the boundary layers.
When water vapour diffusivity is increased (the 4 x D, case), the boundary layers are
observed to be thicker and the standard deviation for ¢, is increased. These results
are expected, and demonstrate the ability of ODT to capture the essential physics of
the problem, i.e. the competing roles of advection and diffusion in determining scalar
fluxes as a function of height. They are consistent with the findings of Wunsch &
Kerstein (2005), who first described the ability of ODT to quantitatively represent
turbulent R-B convection. Because it is a one-dimensional model, ODT does not
capture processes like the formation of a large-scale circulation. In the subsequent
sections we will further demonstrate the fidelity of ODT by showing comparison of
fluxes with a scaling based on physical arguments.

Additionally, we have analysed the profiles of scalar mean and standard deviation
outside the boundary layer, similar to Du Puits et al. (2007). From figure 2(c,d), it is
apparent that the mean and standard deviation profiles of water vapour mixing ratio
(or temperature, not shown here) are nearly logarithmic as observed in Tilgner et al
(1993) and Ahlers et al. (2012) and contrasting to the observation of power law in
Du Puits et al. (2007). Although, the overall exponent of the power law fitting for
the standard deviation profile (inset of figure 2d) is around y = —0.4, and it is very
close to the value reported by Du Puits et al. (2007) for the aspect ratio close to unity.
In the current case, this exponent varies from y = —0.3 just outside the boundary
layer to y = —0.62 near the centre of the domain. The aspect ratio close to unity is a
better case for comparison considering the formulation of the ODT model structure. In
ODT, the large-scale circulation is not explicitly resolved because of its dimensional
constraint, although, large mapping events might incorporate the statistical features of
it for the aspect ratio of unity (Wunsch & Kerstein 2005). It is intriguing that such a
simple model, ODT, can capture such details of the scalar profile in R-B convection.
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FIGURE 2. Water vapour mixing ratio mean and standard deviation profile: (a) vertical
profiles of mean water vapour mixing ratio, (b) profiles of mixing ratio standard deviation
for the different diffusivity cases, (c,d) semi-logarithmic plot of the scalar mean and
standard deviation profiles (for the actual diffusivity case) in the half of the domain
towards the cold boundary, and the inset figures are the same plots with logarithmic axis
and power law (o (1 —Z*)) fittings of standard deviation. Here, Z* =0 corresponds to the
hot boundary and 1 corresponds to the cold boundary. The dotted, dashed and dash-dot
curves represent power law expressions obtained from fitting the standard deviation profile
outside the boundary layer at different regions.

3.1. Flux scaling — Nu and Sh as functions of Ra,.ig, Pr and Sc

Can we get the scalar fluxes in moist convection by merely extending the relation of
dry convection with additional buoyancy perturbation from another scalar? Does ODT
capture the effect of additional buoyancy perturbation correctly? What is the role of
scalar diffusivities on the fluxes of both scalars in two-component R—B convection?
These questions, along with the appropriateness of the ODT simulation for this
case, are the primary motivation of this section. Dimensionless measures of heat and
water vapour transfer are given by the Nusselt (Nu) and Sherwood (Sh) numbers,
respectively, i.e. the heat and mass transfer for turbulent convection relative to the
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values calculated for molecular diffusion. Conceptually, heat transfer in turbulent R-B
convection is assumed to be limited by conductive heat transfer through the laminar
boundary layer (BL), which itself is at a critical thickness (Howard 1963, 1966).
This argument suggests that the Rayleigh number based on the average velocity BL
thickness (Ras,) is a constant parameter, such that Ras,/Ra = c¢/Ra = (8,/H)*. 1t is
also recognized that the relative thicknesses of the velocity and thermal boundary
layers, for Pr ~ 1, are 8,/8; =~/mvt* A\/nD,t* = Pr'/?. Here t* is a critical time
scale for boundary layer development before a thermal/plume detaches from a
boundary (Howard 1966). The same argument can be extended to two-component
R-B convection by replacing Ra with Ra,,, allowing the following scaling for
Nusselt number to be obtained:

H 1
_ _ 12p /3
=25 = 3017 Pr'*Ra' . (3.1)

Nu

Similarly, the Sherwood number (S4) scaling for water vapour can be expressed as

H 1

Sh= 25~ = WScl/zRa,ln/fis,, 3.2)
where §, is the BL thickness for water vapour. For the case where Pr < 1, the
kinematic BL is much thinner compared to the thermal BL. Therefore, the critical
Ras,, which is based on the stability of velocity BL, should contain the friction
velocity (w~v/§,) as a velocity scale. This is instead of the velocity scale determined
based on the advection—diffusion balance of density, since the density change due to
scalar diffusion is much smaller in the velocity BL as a result of the larger thermal
BL thickness. Use of the different velocity scale leads to the following relation:
Ras, | Ramoise = ¢/ Rapist =Pr~'(8,/H)>. Consequently, we obtain the following modified
scalings for Nu and Sh:

H HS$ 1
- = v pAlSRA\B ’ 23
! 28th 251) (Slh 2C1/3 r Ayoist ( )
H H §, 1
Sh = = Sc\2pr1Ra 3.4)

28, 28,8, 2¢/3

The above simplified scalings are based on the foundation of Howard (1963,
1966) and a linear BL approximation for the heat flux estimation. Moreover, any
effects of turbulent fluctuations (or eddies) at the edge of BL in the boundary layer
heat transport are ignored. A more detailed treatment of the scaling relations likely
can be obtained by extending the Grossmann & Lohse (2000, 2004) theory to the
two-component RB convection problem. For the current purposes, however, where the
goal is to understand the essential features of the supersaturation field within moist
convection, we stay with this simplified treatment of the scaling relations.

Figure 3 demonstrates the Nusselt (@) and Sherwood (b) number scaling with
Ra,.i; as produced by ODT, and serves as a check for the Nu and Sh scalings
described above. It is apparent from the collapse of the data points to a line that the
Nu scalings ((3.1) and (3.3)) and Sh scalings ((3.2) and (3.4)) reasonably describe
the heat and water vapour fluxes for the simulated ranges of Pr and Sc. Moreover,
fittings of the scaled Nu and Sh produce Ra, exponents of 0.316 £ 0.005 and
0.328 +0.006 for heat and water vapour scalars, respectively. The compensated plots,
as shown in inset figures, also display nearly a flat response with Ra,,. However,
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FIGURE 3. Variation of the scalar fluxes of heat (Nu) and water vapour (Sh) with moist
Rayleigh number (Ra,s): (a) Nu scaled with Pr according to the scaling relations (3.1)
and (3.3) and plotted against Ra,is,, (b) Sh scaled with Sc and Pr according to the scaling
relations (3.2) and (3.4) and plotted against Ra,,,;;. Inset figures are the compensated plots

where Nu and Sh are multiplied with Ra'® and plotted against Ra,,,;. Fittings of the

moist

scaled Nu and Sh data produce Ra,,;; exponents around 0.316 4 0.005 and 0.328 4 0.006.

there is a slight negative slope in the compensated Nu plot, which explains the
somewhat lower exponent than 1/3. These exponents are close to 1/3 and previous
experimental results (Niemela et al. 2000; Fleischer & Goldstein 2002; Niemela
& Sreenivasan 2006). Similarly, the Pr scaling presented in numerical studies by
Verzicco & Camussi (1999) and Breuer et al. (2004) for the low Pr case are also
roughly consistent with the scaling exponent presented here (1/6). These results build
confidence in the scaling, as well as in the ability of ODT to reproduce essential
statistics of R-B convection.

3.2. Scalar fluctuations in the bulk fluid

The central purpose of this section is first to confirm that the behaviour of
scalar statistics in the bulk region are in line with expected behaviour. Then we
extended the analysis to explore the role of differential diffusivity, and ultimately the
implications for temperature-water vapour covariance, which is crucial for determining
supersaturation statistics.

In the bulk fluid in turbulent R-B convection, scalar fluctuations are determined
by turbulent scalar advection from the BL and destruction of scalar gradients due to
the molecular diffusion. Therefore, the magnitude of scalar fluctuations in the bulk
fluid is not just a function of the applied buoyancy forcing through AT, but it also
depends on the diffusivity of the scalar. Figure 4 demonstrates this concept, that the
scalar diffusivity is important in determining the bulk fluctuations. It displays p.d.f.s of
water vapour and temperature fluctuations near the centre of the domain. Apparently,
the dispersion of the scalar p.d.f. is larger when its diffusivity is higher. The dot-
dashed lines in the plots show a Gaussian curve fit of the scalar p.d.f. for the actual
diffusivity case. From the comparison with the curve fit, it is clear that far tails of the
distributions have a slower decay than the Gaussian, in fact nearly exponential tails,
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FIGURE 4. The p.d.f.s of (a) temperature and (b) water vapour fluctuations near the
domain centre for the different diffusivity cases (8§ K applied temperature difference). The
dot-dashed line is a Gaussian curve fit to the scalar p.d.f. for the actual diffusivity case.

as expected at the centre of a turbulent R—B convection cell. Moreover, tails deviate
further from Gaussian with an increase in diffusivities of the scalar. Therefore, the
dispersion of the scalar p.d.f. increases with increase in respective scalar diffusivities.
Moreover, all scalar p.d.f.s from the centre of the domain are nearly symmetric as
expected and become more skewed closer to the boundaries (not shown here). Can we
extend a previously reported scaling approach for scalar variance in one component
convection (for example, Castaing er al. (1989)) to the moist (or two component)
convection case, including an explanation for why o7 and o, tend to change with
Raypisi, Pr, and Sc? Additionally, do ODT results support these scaling relations? We
consider these questions in the remainder of this section.

A simplified relation for the bulk fluctuation with moist-convection parameters
(Ra,upisr, Sc and Pr) can be derived based on scaling arguments similar to Castaing
et al. (1989). During steady moist-convection, the bulk convective acceleration
(wow/dz) is mainly supported by the buoyancy forcing in the bulk fluid (g88T, pur),
and the viscous force is negligible unless the length scale of interest is very small.
If the buoyancy contribution of water vapour is small, the bulk virtual temperature
difference (67, pux) can be approximated from the mean temperature profile. The mean
virtual temperature drop in the bulk flow can be approximated as x AT, based on the
assumption of Howard’s boundary layer profile (Howard 1966), where the constant
of proportionality « depends on Pr and Sc. Additionally, x < 1 since most of the
temperature drop occurs in the boundary layers. Consequently, we get the following
scaling relation for the normalized vertical-velocity fluctuation (o = o,,H/D,) in the
bulk:

1/2

o, ~ /2 Ra,ln/{,zl-S,Prl/2 <£> ! . (3.5
H

The heat and water vapour transport in the bulk are due to both the turbulent

convection and the diffusion as a result of the mean scalar gradient. In the limit of

low Pr or Sc, the diffusion term in the heat or water vapour flux can be neglected. As

a result, Nu and Sh can be approximated as w7’ and w/q/v*, and the order of these
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terms can be represented as o o7 and oo *Pr‘lSc respectively. Here, o = or AT

and o =0, Ag;'. By using the Nu and Sh scaling from equations (3.1) and (3.2),
the following scalings for the normalized scalar fluctuations can be derived:

e 2\ 2
o7~ Rale (£) 36)
and 172
o~k RapaeSc 2 Pr ‘/2( ) . 3.7)
H

If Pr <« 1, the above scalings for the temperature fluctuation will not be applicable
since there will be a significant contribution of the heat flux due to the temperature
gradient in the bulk, as well as the scaling for Nu being different. Moreover, the
correlation between temperature and vertical velocity will be reduced because of a
significantly larger diffusivity of the thermal field. Due to a similar reason as the
Pr « 1 case, for the Sc <« 1 case (3.7) will also not be applicable. Evidence for a
higher mean gradient in the bulk for the Sc <« 1 case is manifested in figure 2. For
the Pr <1 case, however, a new scaling of o, can be obtained, and it is slightly
different than (3.7) due to the different flux scaling in (3.4),

a ~K l/zRam,i,/f,)Sc_l/zPrl/6 <£>_]/2. (3.8)
H

Although, as explained above that the scaling for o7 (for Pr <1 ) and o, (for

Sc « 1) derived based on the Nu/Sh relation may not be completely applicable

due to a non-negligible mean scalar gradient in the bulk as well as a decrease in

correlation efficiency between vertical velocity and scalar fluctuations, we still present

these results below for the completeness of the discussion;

moist

—1/2
oF ~ k" V2Ra S pr1f? (%) (3.9)

and
—1/2 1/6a —1/2p..1/2 12
o ~ 1" 2Ra, o5 pyY (H) . (3.10)

For these cases, the actual Pr/Sc exponent might be slightly different from above
scaling relations for the actual Pr~1 and Sc ~ 1 ranges.

Figure 2 illustrates that the scaling presented above qualitatively represents
the shape of the scalar fluctuation profile outside the BL. The normalized g,
standard deviation decreases nearly in a parabolic profile outside the BL, consistent
with scaling. The derived power of Ra,,s; in the above scalings is close to the
experimentally observed o7 — Ra scaling for single-component R-B convection
(Niemela et al. 2000), as well as to predictions of Grossmann & Lohse (2000, 2004).

Similarly, as expected from the scaling relations, figure 5 displays a decreasing trend
of the normalized standard deviation of T and ¢, with Ra,,.;;. Furthermore, the Ra,,y;s
exponent obtained from a data fit is close to the prediction from the scaling law, as
can be seen from the dashed reference lines with (—1/6) slope. For the low-Pr case,
the o data points are slightly offset from the normal trend of the other data set;
this is due to the additional Pr dependency because of a higher thermal diffusivity
as explained in the earlier paragraphs (3.9). Likewise, for the same case, o, data

points are slightly lower, as expected from the scaling relation (3.8) due to the Pr'/®
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FIGURE 6. (a) Normalized covariance of temperature and water vapour pressure at
the domain centre versus Ra,,.. (b) An example of the vertical profile of normalized
covariance of temperature and water vapour mixing ratio across the domain for 20 K
applied temperature difference (and for the case where water vapour diffusivity is four

times the actual value).

dependence. Moreover, with a decrease of Sc, i.e. an increase of the water vapour
diffusivity, the normalized water vapour fluctuation increases as anticipated by the
scaling relation. Although, for the Sc <1 case, the Sc dependency in the relation (3.7)
will be slightly different due to a significant mean gradient in the bulk as explained

earlier.

The covariance of other scalars with the temperature field in convective flows is an
important quantity for atmospheric applications since it is related to the reaction rate
or rate of phase change through the supersaturation. Figure 6(a) shows the normalized
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FIGURE 7. (a) An example of the mixing diagram for the actual diffusivity case at 8§ K
applied temperature difference with error bars showing standard deviation. (b) Mixing
diagram for different diffusivity cases at a higher applied temperature difference (20 K).

covariance of water vapour pressure and temperature at the centre of the convection
cell, as a function of Ra,,. As anticipated, it is close to one for the cases with
small diffusivity difference. However, for higher diffusivity differences, it drops down
slightly. In these cases, the normalized covariance decreases with an increase in the
buoyancy forcing (Ra,.;s). As depicted in figure 6(b), the covariance magnitude also
varies along a vertical profile moving towards boundaries, due to the higher effect
of relative diffusion and lower turbulence level closer to the boundaries. In cumulus
clouds, the normalized covariance between temperature and water vapour field was
estimated between 0.24 and 0.34 using high-frequency measurements of temperature
and water vapour concentration (Siebert & Shaw 2017). These values are significantly
lower than the current simplistic case. It should be noted, however, that in cloudy
convection the presence of water vapour and heat fluxes resulting from entrainment
and condensation could decrease this covariance further from the idealized confined
convection case.

3.3. From two scalars to supersaturation: mixing diagrams and vertical profiles

In atmospheric R-B convection the relevant scalar for cloud formation is the
supersaturation, which as discussed already is a combination of the two scalars,
water vapour pressure and temperature: s = (e,/e, (7)) — 1. The saturation value
e,s(T) is related exponentially to the temperature through the Clausius—Clapeyron
equation. We note that water vapour pressure and water vapour mixing ratio can
be considered as interchangeable, via the ideal gas law. In figure 2 and §3.2 we
considered the vertical profiles and fluctuations of the two individual scalars, and in
this subsection we extend to supersaturation. In the following two subsections we
then investigate the bulk and boundary-layer properties of supersaturation in more
detail.

Figure 7 shows mixing diagrams obtained from ODT grid points near the centre
of the domain. As discussed in the introduction, in an idealized scenario one would
expect the sampled values of e, and T to lie along a linear mixing line (dashed
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FIGURE 8. Supersaturation mean and fluctuation profile: (a) vertical profiles of the
supersaturation mean, (b) Profiles of supersaturation fluctuations (standard deviations) for
the different diffusivity cases. (Here, Z* = 0 corresponds to the hot boundary and 1
corresponds to the cold boundary.)

curve). In figure 7(a), which corresponds to AT =8 K and for the actual diffusivities,
this can be seen to be approximately true. In figure 7(b), however, corresponding to
AT =20 K, it can be seen that for the two cases with different scalar diffusivities,
the points deviate from the idealized mixing line. When the thermal diffusivity is
higher than the water vapour, the cloud of points spreads more strongly along the
temperature axis and therefore has a shallower slope than the mixing line. This is due
to a higher relative transport for the temperature compared to the water vapour due
to its higher diffusivity. The exact opposite argument is also valid when considering
higher water vapour diffusivity. The spread of points is now greater along the vapour
pressure axis leading to a steeper inclination compared to the mixing line. We can
anticipate that this higher spread produces greater fluctuations in supersaturation
relative to the idealized mixing scenario with nearly equal diffusivities (cf. §3.4).
The relative supersaturation fluctuation can be visualized by comparing the spread of
data points above and below the saturation curve.

Supersaturation mean and fluctuation profiles in the atmospheric boundary-layer are
anticipated to be relevant for cloud microphysical processes and dynamics. Figure 8
illustrates the profile of supersaturation mean (a) and standard deviation (b) (oy)
across the domain. The mean supersaturation profile is nearly flat in the bulk fluid,
just for the individual scalars, when the diffusivity difference is small. For these cases,
it is also close to the mean value one calculates from the idealized mixing process.
Interestingly, the slope of the mean supersaturation profile flips sign in both halves of
the domain when one of the scalar diffusivities is significantly higher than the other.
Moreover, a difference in the scalar diffusivities causes a significant peak to appear in
the mean supersaturation profile, close to the boundaries. Which diffusivity is larger
also determines the sign of the supersaturation (or subsaturation) peak near the two
boundaries. If the thermal diffusivity is higher than the water vapour diffusivity, the
supersaturation peak is positive at the cold boundary and negative at the hot boundary
(and opposite otherwise). A higher diffusivity of a scalar leads to a smaller slope of
the mean scalar profile in the boundary layer. Therefore, if the thermal diffusivity is
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FIGURE 9. Sample p.d.f.s of supersaturation near the domain centre for the different
diffusivity cases (8 K applied temperature difference).

higher than the other scalar, the drop in average temperature from the hot boundary
is slower than the case when both are equal. As a result of the above effect as well
as the exponential relation of the saturation vapour pressure with temperature, the
supersaturation profile produces a negative peak close to the hot boundary and a
positive peak near the cold boundary for a higher thermal diffusivity and opposite
otherwise. Additionally, for the higher relative diffusivity cases, the mean profile does
not cross the mean value and each other precisely at Z* = 0.5, due to the nonlinear
relation of saturation vapour pressure with temperature (the Clausius—Clapeyron
equation). The saturation vapour pressure change is not symmetric at a temperature
lower or higher than the mean because of this nonlinearity. Similarly, the multiple
peaks in standard deviation profiles near the boundaries could also be a result of
this nonlinearity since it does not exist (only one peak) in the temperature or water
vapour mixing ratio profiles. The o, profile responds analogously to the individual
scalar profiles (cf. figure 2); i.e. it peaks near the boundaries and decreases while
approaching the centre. This decreasing response with Z* is qualitatively consistent
with the parabolic decrease found in § 3.4 for scaling of supersaturation in the bulk
fluid. Furthermore, in that subsection we also investigate the observation that o
increases significantly for the cases with different scalar diffusivities.

3.4. Supersaturation fluctuations in the bulk fluid: contributions from both scalars

In this subsection we consider the behaviour of supersaturation fluctuations in the bulk
fluid, away from the BL. Figure 9 shows several examples of supersaturation p.d.f.s
for different thermal and water vapour diffusivity combinations. Analogous to the
temperature and vapour mixing ratio p.d.f.s, it responds to a change in the diffusivity
of both scalars. However, it produces broader p.d.f.s with an increase in the difference
in diffusivity of water vapour and temperature (not the absolute diffusivities of both
scalars) due to the nonlinear coupling of both scalars in supersaturation. Moreover,
figure 9 shows that the p.d.f.s are negatively skewed for the lower relative diffusivity
cases (figure 9a). This negative skewness of the fluctuation distribution is due to
the increasing slope of the saturation curve with temperature (i.e. the exponential
temperature dependence).
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As described earlier, both scalar fluctuations (normalized by the applied scalar
gradients) can be scaled as a function of Ra,,, Pr and Sc. Therefore, we expect that
the supersaturation fluctuation can also be scaled as a function of these parameters.
A detailed exploration of the contributions from both scalars can be made by
expressing supersaturation variance as a function of temperature and water vapour
pressure variances (Kulmala et al. 1997; Siebert & Shaw 2017),

: N
2as? | (L 2 () _or ] 3.1
o, =)+ (F) x5 (3.11)

Here, S = e, /ev,s(T) is the mean saturation ratio, eU,S(T) is the saturation vapour
pressure at temperature the average temperature, and ¢ = L£/(R,T). Additionally,
primes and bars represent fluctuations and mean quantities, respectively.

With the use of the scaling expressions (3.6) and (3.7), a linearized form of the
Clausius—Clapeyron equation (Ae, , ~ ¢e, AT/T), and (3.11), the following scaling
relation for supersaturation fluctuations can be obtained:

($)2NK71€2 Pr o 2C,.r (Pr 12
S

S$2Sc S Sc
Here, C,, 7 is the correlation efficiency of water vapour mixing ratio and temperature
and &€ = ¢v?/gH?. As can be seen from figure 6, the correlation efficiency of water
vapour and temperature fluctuations reside mostly in the neighbourhood of 100 %, at
least for the current range of Ra,.. With this information, equation (3.12) can be
simplified to

_ z\!
PrRa, (ﬁ) . (3.12)

2
K 2 1 P 12 -1
(5) e o ey PrRd3, (5> : (3.13)
3 s \ Sc H

Figure 10(a) displays the variation of supersaturation fluctuations with Ra,,is
as a result of fluctuations in both scalars. There is an increasing trend of the
supersaturation fluctuations with Ra,,; as anticipated from the scaling relation (3.12),
and as indicated by the dashed line with the predicted scaling slope for Ra,. The
magnitude of o, is larger for a higher difference between the water vapour and
thermal diffusivity. This effect of diffusivity difference on oy is also predicted by the
scaling relation (3.13). Contributions of the different terms of (3.11) to the magnitude
of the supersaturation fluctuations are shown in figure 10(b). It can be seen that all
terms are equally important, although because of the strong covariance, (3.11) can be
further simplified by replacing the covariance term with the standard deviations of the
two scalars. Moreover, the scalar with a higher diffusivity dominates the contribution,
and the covariance term always has the largest magnitude.

3.5. Supersaturation profiles in the boundary layer

In this subsection we move from the bulk to the boundary layer. The mean and
instantaneous BL profiles in R—-B convection have been observed to be close to the
BL theory of Prandtl-Blasius—Pohlhausen (Zhou & Xia 2010; Zhou et al. 2010).
Therefore, to explore the supersaturation profile within the boundary layer, we have
used the Prandtl-Blasius—Pohlhausen profiles for the water vapour and temperature
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FIGURE 10. Supersaturation fluctuation statistics at the domain centre. (a) Supersaturation

standard deviation as a function of Ra,,; and its comparison between the different
diffusivity cases. The dashed line represents the Ra)® scaling from (3.13).

moist

(b) Contributions of different scalar statistics (as shown in (3.11)) to the supersaturation
variance versus Rd,is-

fields. As mentioned above, some studies claim the Prandtl-Blasius—Pohlhausen profile
reasonably represents the scalar profile in the boundary layer of single-component
Rayleigh—-Bénard convection. In the current case, even though we have two driving
scalars and the air is supersaturated with water vapour, both scalars contribute to
positive buoyancy, avoiding the complexities of double-diffusive convection. In fact,
the moist convection case can be expressed as single-component R—B convection with
the virtual temperature difference as the driving scalar. The only complication arises
due to the different diffusivities of both scalars, which changes the relative slopes
of the two profiles. However, the concept of the Prandtl-Blasius—Pohlhausen profile
due to the large-scale circulation can also be extended for this case since two scalars
do not have contrasting buoyancy contributions, unlike in double-diffusive convection.
Its applicability may be questioned even in the case of the single-component R—B
convection due to the presence of the plume structure near boundaries. Therefore, we
also have compared this profile with Howard’s model (Howard 1966) to explore the
supersaturation profile.

With the assumption of low Pr/Sc (i.e. the thermal and water vapour boundary
layer completely encapsulates the velocity boundary layer), we can obtain a simplified
solution of the water vapour and thermal boundary layer. This assumption (§, < d,
and §, < §,,) might be a reasonable approximation for the Pr/Sc range considered
in this study. It implies that the velocity variation in the thermal or water vapour
boundary layer is neglected. Since the Blasius boundary layer is expected to be self-
similar, using a similarity transform with similarity variables n =z/8(x), ® =2(T, —
T)/AT and ¥ = US(x)f(n) (or f'(n) =u(z)/U), a simplified solution can be obtained
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FIGURE 11. The BL mean supersaturation profile at the hot boundary: (a) an example of
the s profiles for the actual diffusivity case, (b) the s profile for the case where four times
higher (than actual) diffusivity of water vapour is used. Here, the black dashed curve is the
simulation output, the solid red curve shows an estimation using the simplified Blasius-BL
solution, and the solid cyan curve represent an estimation using Howard’s model (Howard
1966).

(Schlichting et al. 1955; Bejan 2013)

(3.14)

O(n) = erf (”f) .

Here v, 8, T, and U are the velocity stream-function, BL thickness, temperature
at the bottom boundary and free stream velocity, respectively. This solution is also
applicable for the water vapour field with corresponding changes in variables (e.g. Pr
replaced with Sc and §,, with the BL thickness for water vapour, §,,). The streamwise
velocity scale U determines the time scale for the boundary layer growth, i.e. the
kinematic boundary layer thickness at location x from the leading edge scales as /v,
where 7 =x/U. For Rayleigh-Bénard convection, the streamwise velocity is thought
to be a result of the large-scale circulation, which is still questionable due to the
presence of the intermittent plume structure near boundaries. The plume structure of
the boundary layer suggests that the intermittent boundary layer develops locally until
a plume detaches from the boundary. In ODT simulations the large-scale circulation
is not represented explicitly due to its one-dimensional structure; however, the effect
of a large-scale circulation is represented stochastically by the large-scale mappings
(Wunsch & Kerstein 2005). Therefore, for the completeness of the discussion, we have
included the Prandtl-Blasius—Pohlhausen solution of the thermal and water vapour
profiles. The thermal BL thickness can be estimated from 6, = H/(2 Nu) together
with the Nu—Ra relation. We use the above solution in conjunction with the empirical
relation of Nu and Sh from fitting (as explored in §3.1) and the Clausius—Clapeyron
equation to get the BL profile of supersaturation.

Figure 11 shows the mean supersaturation profile (near the hot boundary) obtained
from the ODT simulation and its comparison with the BL solution as discussed above.
Both the simulation and the estimate produce a peak of supersaturation in the BL,
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FIGURE 12. Supersaturation mean and peak standard deviation inside the BL.
(a) Variation of the mean supersaturation peak with AT and its comparison with
the Howard model. (b) Maximum supersaturation standard deviation inside the BL versus
applied temperature difference.

and the estimated magnitude of the peak is roughly consistent with the simulation.
Considering the approximations used in the BL solution, it has a reasonable predictive
ability. As an alternative, we also adapt the model proposed by Howard (1966) to
predict the BL profile of supersaturation profile. As seen in figure 11, it provides
a significantly improved match to the ODT. The Howard model is based on the
concept of continuous eruptions of ‘thermals’ (plume) from the BL: it assumes that
at some place on the hot boundary, a thermal develops during the conduction stage
and because of the convective instability, it becomes detached from the boundary
instantly once it reaches some critical size. A mean critical time to which a thermal
develops, until which the corresponding diffusion-equation solution can be applied
near the plate, is represented here as #*. In turbulent convection these thermals are
continuously developing and breaking off at different times and places. Therefore, the
time-dependent solution of the diffusion equation needs to be averaged from 0 to ¢*
and the resulted expression is (Howard 1966)

26et’
JT

Here, & = z/(2 /D,t*), t* = H*(Ras,/Ra)**/(nv), and Ras is the Rayleigh number
based on the critical boundary layer thickness (§ = +/mv#*). The expression for * is
obtained from the definition of Rayleigh number (Ra/Ras = (H/8)?) and the critical
boundary layer thickness (§ = +/mvt*). Howard (1966) reported Ras = 2800 obtained
from fitting measurements made in air by Townsend (1959). We use the above relation
(and a similar relation for water vapour), along with Ras = 2800 for obtaining the
supersaturation profile shown in figure 11. The Howard model better predicts the
magnitude and z-position of the peak in mean supersaturation and o;.

Figure 12 displays the supersaturation mean (a) and o; (b) peaks near the hot
boundary at different AT and for the different diffusivity cases. Both increase
monotonically with AT. The prediction of the peak mean-s from the Howard model

T=T,+ AT/2 |(1+2&%)erfc(¢) — (3.15)
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is also shown in figure 12(a), and it is able to capture the trend and the magnitude
remarkably well for all cases. The peak magnitude of the mean supersaturation is
positive and higher for the higher water vapour diffusivity case and negative for
the higher thermal diffusivity case. The fluctuations are influenced by the absolute
diffusivity difference between water vapour and temperature, and is greater if one of
the diffusivities is significantly larger than the other. Moreover, the peak position of
supersaturation is nearly insensitive to the temperature difference in the current range
of Ra,,;;; (not shown here).

4. Summary and discussion

The problem of moist Rayleigh-Bénard convection involves buoyancy components
from two driving scalars, temperature and water vapour, in a flow field, which
makes it more intriguing and complex compared to its dry (single-component)
convection counterpart. There is a rich variety of multi-component convection
problems, ranging from double-diffusive convection (Huppert & Turner 1981) to
particle-settling-driven convection (Burns & Meiburg 2012). In this work, we consider
the problem from the perspective of supersaturation, which is a nonlinear coupling
of water vapour concentration and temperature fields, and is the fundamental driver
of phase transformations in clouds. Cloud formation itself leads to profound changes
in flow structure through latent heating, radiative transfer and particle settling, but in
this work we focus solely on the supersaturation field. This view can be considered
complementary to the boundary layer perspective of humidity flux budgets (Wyngaard
et al. (1978) and Mellado er al. (2017) and references therein), where covariances
of temperature and absolute humidity are considered. One aspect of the problem we
explicitly account for here is the difference in diffusivities of both scalars; although
it is seemingly slight, we consider the extent to which it influences scalar statistics.
The intent in varying the two diffusivities has been primarily to elucidate and clarify
the role of differential diffusivity in determining supersaturation profiles and statistics.
Beyond its purpose in exploring the dependence on differential diffusivity, there may
be applications (e.g. semiconvection or cloud formation in exoplanet atmospheres) in
which varying Lewis numbers play a role (Marley et al. 2013; Zaussinger & Spruit
2013).

Supersaturation statistics, not simply mean quantities, but properties of the
fluctuations, are very important for cloud microphysical processes (Politovich &
Cooper 1988). The supersaturation statistics in the atmospheric boundary-layer may
be dependent on surface and radiative fluxes, and other complex dynamical features
of the atmospheric convection. In this article, we have investigated the supersaturation
statistics in an idealized scenario of the moist R-B convection in order to gain insight
into the fundamental roles of temperature and water vapour covariance, differential
scalar diffusivity, and diffusion versus advection. This R—B convection perspective is
also motivated by experiments performed in a turbulent moist-convection chamber,
in which supersaturation variability has been proposed as contributing to important
cloud properties (Chandrakar et al. 2016). Eventually, we aim to compare these
results to experimental observations, but this will require careful development of
methods capable of accurate measurement of temperature and water vapour, highly
resolved in both space and time.

Central results and findings from this study may be summarized as follows:

(i) We have investigated moist R—B convection using a stochastic model (ODT),
covering a range of Rayleigh number 2.05 x 108 < Ra < 2.75 x 10°. The ODT


https://doi.org/10.1017/jfm.2019.895
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. J. Robert Van Pelt and Opie Library, on 19 Jan 2020 at 01:07:36, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2019.895

884 A19-24 K. K. Chandrakar and others

(ii)

(iii)

(iv)

v)

(vi)

(vii)

(viii)

model is a numerically efficient method of exploring advection and diffusion
within turbulent convection (Wunsch & Kerstein 2005). To explore the role
of relative diffusivity, four different combinations of scalar diffusivities for
temperature and water vapour have been used. As a primary check, profiles of
mean and standard deviation of both scalars are consistent with profiles one
would expect in R—B convection.

A simplistic scaling for Nu and Sk is developed, based on the approaches of
Malkus (1954) and Howard (1963). The scalings and simulation results are
generally self-consistent, and are in line with previous findings.

In the bulk fluid, o7 and o, both follow a Ra,;jéf scaling relation. Moreover,
the magnitude of scalar fluctuations increases with an increase in the respective
scalar diffusivity, as predicted from the scaling relations. An increase in thermal
diffusivity decreases water vapour fluctuations, which is also consistent with
derived scaling. Derivation of the scaling relations are based on the argument
presented in Castaing et al. (1989) for the single-component convection case.
The correlation of both scalars is very close to 1 for a small difference in scalar
diffusivities, and it decreases slightly with an increase in relative diffusivity and
Raypi- It also decreases further towards boundaries.

In a mixing diagram (e, — T coordinate), data points obtained from the centre
of the domain shows deviations from the idealized mixing scenario for cases
with relatively different water vapour and thermal diffusivities. The scatter of data
points within the space (e, — T) is greater for the scalar with higher diffusivity.
This inclination of data points corresponding to the mixing line signifies higher
supersaturation fluctuations compared to the idealized mixing case.

Vertical profiles of supersaturation mean and standard deviation both are nearly
flat in the bulk fluid for cases with low diffusivity difference. Additionally, the
mean value is close to the prediction from the ideal mixing diagram. In contrast,
for cases with higher diffusivity difference, the mean profile develops a more
pronounced slope and its sign flips depending on D, > D, or D, < D,. The o;
profile resembles the shape of both scalars and its magnitude scales with relative
diffusivity difference.

The p.d.f. of supersaturation become broader with an increase in absolute value
of the diffusivity difference. Also, the p.d.f. is slightly negatively skewed for
cases with a low diffusivity difference, unlike the 7 and ¢, p.d.f.s. Moreover,
we have developed a scaling relation for supersaturation variance in the bulk
fluid. It suggests an increase in supersaturation variance as Rafnﬁs,, likewise, a
relationship with Pr and Sc. The supersaturation sampled from the centre of
the domain approximately agrees with the scaling. Furthermore, the analysis of
numerical output shows contributions to the supersaturation variance from both
scalar variance and covariance. It indicates that all terms are equally important,
although the covariance contribution can be simplified as a function of individual
scalar variances since the correlation efficiency is nearly 100 %. However, this
correlation efficiency might be significantly lower in atmospheric clouds (e.g.
0.24-0.34 in cumulus cloud (Siebert & Shaw 2017)) due to additional relative
fluxes of water vapour and heat as a result of entrainment and condensation. This
certainly is a topic for further investigation.

Finally, the supersaturation profile within the boundary layer has been
investigated. It develops opposite-sign peaks near the two boundaries for a
non-zero diffusivity difference. These peaks flip sign depending on the condition
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D, > D, or D, < D,. Additionally, supersaturation profiles in the BL obtained
using scalar profiles from Prandtl-Blasius—Pohlhausen solution (for a low Pr/Sc
case) and from Howard’s model, both resemble the shape reasonably well.
Howard’s model predicts the shape, as well as the peak magnitude and location
extremely well.

The first four numbered points of this section describe the relatively modest
departures of Rayeigh-Bénard convection when water vapour is included as an
additional scalar. The main contribution of the current work has been to explore the
supersaturation mean and fluctuation characteristics in turbulent convection, with the
most significant results summarized in the last four numbered points above. These
results indicate that the nonlinear coupling between both species through saturation
equation and relative diffusivities of scalars influences the supersaturation statistics
in an interesting way. One could extend this study further to include the effects
of phase changes and accompanying latent heat release, and momentum coupling
between the fluid and the condensed water, which will depend on the particle size
distribution. It is also of interest to consider implications for scaling the model up
to the properties that would exist for a full convective layer in the atmosphere (e.g.
atmospheric boundary layer). The variance of supersaturation fluctuations in the bulk
follows a Ra*® H=® oc AT5® H™! relation (cf. equations (3.12) and (3.13)). Thus,
supersaturation variance would be expected to decrease with layer depth for a constant
imposed temperature difference. Other factors such as entrainment and phase-changes
would enhance the supersaturation fluctuations relative to this idealized condition,
however, and this is of interest for further exploration.

The insight into the behaviour of supersaturation fluctuations in the idealized
scenario considered in this study could have implications for subgrid-scale representa-
tion of fluctuations relevant to cloud droplet growth (e.g. Chandrakar er al. 2016).
Already, the two-scalar concept has been used in representation of cloudiness in
computational models of the atmosphere by combining assumed probability density
functions with higher-order turbulence closure (HOC). Higher-order turbulence closure
uses the equations that govern selected moments of the subgrid scale variables. For
example, Sommeria & Deardorff (1977) and Mellor (1977) independently connected
the concept of assumed probability density functions with HOC. They proposed that
within the grid cells of a LES, the liquid water potential temperature 6, and total
water mixing ratio (vapour plus cloud droplets) ¢,, could be assumed to have a
joint Gaussian distribution. They further showed how this assumption can be used
to diagnose the fractional cloudiness from the means, variances and covariance of 6,
and g,. Their idea was that these moments could be determined by HOC, then used
to determine the parameters of the assumed joint Gaussian for each grid cell of a
model. The joint distribution could then be used to diagnose the fractional cloudiness,
which in turn affects the buoyancy flux, microphysical process rates, and radiative
fluxes. Cloud is assumed to exist when g, exceeds the saturation mixing ratio of
water vapour, ¢; and the cloud water mixing ratio is found as g, — ¢ integrated
over the joint probability density function. The approach has been further generalized
(Randall 1987; Golaz et al. 2002a; Golaz, Larson & Cotton 2002b) and has been
widely adopted. The work presented here provides additional insight, by illustrating
the role of scalar diffusivity, and by providing scaling relations for boundary layer
and bulk supersaturation profiles and fluctuations. A next step is to make direct
comparison with laboratory measurements, as well as extending to atmospherically
relevant scales.
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