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Abstract: Groundwater discharge though streambeds is often focused toward discrete zones,
indicating that preliminary reconnaissance may be useful for capturing the full spectrum
of groundwater discharge rates using point-scale quantitative methods. However, many direct-contact
reconnaissance techniques can be time-consuming, and remote sensing (e.g., thermal infrared)
typically does not penetrate the water column to locate submerged seepages. In this study, we tested
whether dozens of groundwater discharge measurements made at “uninformed” (ie., selected
without knowledge on high-resolution temperature variations at the streambed) point locations
along a reach would yield significantly different Darcy-based groundwater discharge rates when
compared with “informed” measurements, focused at streambed thermal anomalies that were
identified a priori using fiber-optic distributed temperature sensing (FO-DTS). A non-parametric
U-test showed a significant difference between median discharge rates for uninformed (0.05 m-day™!;
n = 30) and informed (0.17 m-day_l ; n = 20) measurement locations. Mean values followed a similar
pattern (0.12 versus 0.27 m-day™!), and frequency distributions for uninformed and informed
measurements were also significantly different based on a Kolmogorov-Smirnov test. Results suggest
that even using a quick “snapshot-in-time” field analysis of FO-DTS data can be useful in streambeds
with groundwater discharge rates <0.2 m-day~!, a lower threshold than proposed in a previous
study. Collectively, study results highlight that FO-DTS is a powerful technique for identifying
higher-discharge zones in streambeds, but the pros and cons of informed and uninformed sampling
depend in part on groundwater/surface water exchange study goals. For example, studies focused on
measuring representative groundwater and solute fluxes may be biased if high-discharge locations
are preferentially sampled. However, identification of high-discharge locations may complement
more randomized sampling plans and lead to improvements in interpolating streambed fluxes and
upscaling point measurements to the stream reach scale.
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1. Introduction

Groundwater—surface water exchange can be highly variable in rate and direction across streambeds
due to spatial heterogeneity in hydraulic gradient and sediment permeability [14]. As a result, a variety
of methods have been employed to measure groundwater discharge at different spatial scales [5].
Point-scale vertical groundwater flux estimates are often based on hydraulic conductivity estimates
from permeameter tests and vertical hydraulic gradient measured using piezomanometers or pressure
sensors [6-9]. Other studies used point-scale measurements of streambed temperature (i.e., vertical profiles
of streambed temperature) to estimate groundwater discharge [10-16]. Seepage meter footprints are
typically larger than point scale [4,5,17] but, in the context of larger reach-scale measurements, are similar
to point-scale measurements (a point-scale seepage device was recently developed [18]). Point-scale
and similarly scaled measurements led to a greater understanding of spatial variability in groundwater
discharge through streambeds [2,19,20], including stream reaches where reach mass balance and other
larger-scale measurements are not possible. However, the necessary flux measurement density required
for spatial interpolation and integration of results at the reach scale requires tradeoffs between feasible
stream or river reach size (due to the time and/or equipment costs) and certainty in reach-scale estimates
of groundwater discharge [19,21].

One reach-scale groundwater discharge “reconnaissance” method that is paired with point
measurements of groundwater discharge is distributed temperature sensing with fiber-optic cables
installed along the streambed (FO-DTS) [3,4,22,23]. In concept, fiber-optic cables (lengths on the order
of 10! to 10% m) are placed on the streambed, giving a longitudinal “linear sample” of streambed interface
temperature at typical resolution of 0.25 m to several meters. Streambed temperature anomalies, such as
cool water patches during the summer, are often associated with focused groundwater discharge
through the streambed [1,24,25]. Studies showed high rates of groundwater discharge associated with
discrete temperature anomalies identified by the FO-DTS technique [4,17,26].

In a previous study where locations of focused groundwater discharge were identified using
FO-DTS, temperature anomalies were described as “cool” zones (streambed temperature was
comparatively low under summer conditions in the Quashnet River), where groundwater discharge
was likely to be higher and more focused in space [4]. The term “ambient” was used to describe zones
where the streambed interface was at a general average background temperature, and groundwater
discharge in ambient zones was likely to be lower and more diffuse [4]. FO-DTS was used to select
measurement locations in each zone, and groundwater discharge measurements from seepage meters
at 29 locations (13 ambient, 16 cool) were reported. Median cool zone discharge (0.83 m'day_l) was
about five times the median discharge estimated from ambient temperature zone measurements
(0.17 m-day!) even though the streambed was predominantly sandy and connected to a relatively
homogeneous, permeable sand and gravel aquifer. Follow-up geophysical work found that the
streambed was underlain by discontinuous peat lenses [27], driving spatially preferential groundwater
discharge patterns, similar to that observed in other stream systems with low-permeability streambed
lenses [3,20]. A threshold for FO-DTS detection of focused groundwater discharge in their stream
system was hypothesized (0.4 m-day '), with the caveat that lower stream water velocity (compared to
0.5-1 m-s™! in their study) and other thermal factors (e.g., shading) could lead to lower thresholds
in other systems [4]. In a separate study, FO-DTS was used in a peat-dominated wetland stream
to make direct comparisons between a “background” seepage meter measurement site and two other
seepage meter sites located at thermal anomalies, referred to as “focused zones” [17] that showed
enhanced discharge rates.

The ability to identify focused groundwater discharge using FO-DTS raises new questions about
potential bias and uncertainty in point-scale sampling as a means to capture and integrate spatial
variability in groundwater discharge through streambeds. In the absence of flux-reconnaissance
temperature data, point measurements in streams were conducted at random or pre-determined
locations in streambeds or conducted along lateral streambed transects distributed at regular
along-profile intervals [28-34]. While at least some of these studies involved field reconnaissance of some
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kind (e.g., tests to ensure appropriate equipment for streambed conditions, and preliminary data on
groundwater discharge), we refer to this streambed sampling approach as “uninformed” measurement,
to reflect the lack of prior information on streambed temperature when measurement sites are selected.
In contrast, the technique of using FO-DTS to identify and measure discharge at likely areas of focused
discharge is referred to as “informed” measurement, to reflect that streambed interface temperature
data anomalies inform the selection of measurement sites. In the following, terms “informed” and
“uninformed” are applied to the different aspects of measurements (locations, data, etc.).

In our study, we established measurement locations along the length of a stream in the absence
of any streambed temperature data (uninformed) and compared groundwater discharge rates to the
rates measured at locations selected using FO-DTS temperature data (informed). Thus, this is the
first study to directly compare informed and uninformed measurement approaches. The primary
purpose of this study is (1) to determine whether informed measurements result in significantly higher
estimates of groundwater discharge compared to uninformed measurements, (2) to determine whether
informed measurements give a fundamentally different picture of variability in groundwater discharge
within a stream reach when compared to uninformed measurement, and (3) to test previous estimates
of the lower groundwater discharge threshold at which FO-DTS is still effective for distinguishing
between areas of diffuse and focused discharge in streambeds.

2. Materials and Methods

Groundwater discharge measurements were made at points in a sandy streambed in central
Nebraska using a Darcian flux approach. Point measurements were made at lateral three-point
transects (left, center, and right locations across the streambed), which were distributed at regular
intervals along the length of the study reach. A detailed arrangement of FO-DTS cable along the
left, center, and right sides of the meandering stream was also used to locate apparent temperature
anomalies on the streambed. Groundwater discharge measurements at the temperature anomaly
sites (informed sampling) were then compared to measurements made at three-point lateral transects
(uninformed sampling) to determine if and how the FO-DTS approach might influence the overall
characterization of groundwater discharge into the reach.

2.1. Site Description

The study was conducted on a 700-m reach on the South Branch of the Middle Loup River (SBMLR)
on the University of Nebraska Gudmundsen Sandhills Research Laboratory land located in the central
Sand Hills of Nebraska (Figure 1). The site is located in the northern region of the High Plains aquifer,
where saturated thickness is 300 m. The SBMLR, a tributary to the Middle Loup and Loup Rivers,
is a sinuous, second-order stream that drains approximately 925 km? of pasture. The groundwater-fed
stream has a stream width ranging from 2-5 m and water depth of 10-50 cm. Streamflow during the
study period was about 250 L-s~!.

The sand dunes that comprise the Sand Hills are vegetated and minimally grazed. The soils
and shallow subsurface aquifer near the study site are primarily eolian sand and loamy and sandy
alluvium. The streambed consists of sand with some organic matter. Data from a previous study
conducted upstream of our study site, where the organic matter content is much higher, suggested
mean groundwater discharge rates of 0.1 to 0.3 m-day~! through the streambed (based on estimated
2-m ditch width) [35,36]. These estimates are at the lower end of the range of other studies conducted
using FO-DTS [4,26,37] (flux ranged 0.05 to 7.2 m-day~!) and similar to previous stream studies using
physical measurement methods [2,18,21].
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2.4. Drone Imagery Acquisition

During the course of FO-DTS temperature data collection, a DJI Phantom 4© Quadcopter with
a 12-megapixel camera was used to collect aerial imagery of the study site. The resulting high-resolution
orthophoto aided in digitizing the fiber-optic cable on the streambed (Figure 1) where there was
uncertainty in GPS locations due to the remote study site location. The aircraft was pre-programmed
to run a gridded flight pattern with roughly 70% image overlap for photogrammetric processing.
Over 500 images were captured during the flight and then processed with the photogrammetric mapping
software Pix4D©. Ground control points (GCP) with known GPS coordinates were previously placed
in the streambed and at locations along the stream bank. These GCPs were imported into the mapping
software, tagged to targets in the imagery, and used to create a georeferenced, seamless orthophoto
of the site with ~1.4-cm spatial resolution.

3. Results and Discussion

FO-DTS and vertical flux measurement methods were combined in this study to address three
research questions, each of which is discussed in the sections below. The fourth and final section is
focused on the FO-DTS application and study limitations.

3.1. Are Discharge Estimates at Informed and Uninformed Locations Significantly Different?

All VHGs were positive, which indicated a consistent upward vertical groundwater flux during
the study period. Median groundwater discharge for informed measurements was 0.21 m-day~!,
which was significantly higher than the median of uninformed measurements (0.05 m-day~!) based
on the Wilcox rank sum non-parametric U-test that is most appropriate for non-normal distributions
(Table 1). Mean groundwater discharge for informed measurements (0.27 m-day~!) was substantially
higher than for uninformed measurements (0.12 m-day™1).

Table 1. Summary statistics for groundwater discharge (7) measurements in this study and in a previous

study [4].
This Study Quashnet River [4]
All Uninformed?  Informed ? All Ambient ? Cool ?

Median (m-day ™) 0.13 0.05° 0.21° 0.40 0.17 0.83
Mean (m-day~!) 0.18 0.12 0.27 0.58 0.19 1.07
Standard Deviation (m-day~!) 0.20 0.14 0.25 0.74 0.33 0.81
Coeffiecient of Variation (%) 110 113 91 126 174 76
Min (m-day 1) <0.01 <0.01 <0.01 -0.55 -0.55 0.20

Max (m-day~) 0.95 0.48 0.95 3.0 0.93 3.0
Measurements (-) 50 30 20 29 16 13

2 A subtle difference in nomenclature, as described in the introduction: in previous work [4], groundwater discharge
was measured at 29 locations, all selected based on fiber-optic distributed temperature sensing (FO-DTS) data,
and classified results as ambient or cool zone measurements. In this study, we pre-selected measurement locations
without any prior knowledge of streambed temperature (uninformed) and compare those discharge values with
those measured at cool zones (informed). P Statistically different values (e = 0.05, p = 0.027).

Both vertical hydraulic conductivity (K;) and head gradient (i) were on average lower for
uninformed measurement locations than for informed locations, but the greatest difference was in K,
(Table 2). Median K, for uninformed measurement locations was about 32% of K; from informed
locations and statistically different (U-test; o« = 0.05, p = 0.024). The differences in K, reflect how
groundwater was preferentially discharging in areas with higher permeability. Uninformed i was
about 82% of informed i. For informed measurement locations, variability (coefficient of variation)
was greater for i than for K, and vice versa for uninformed measurement locations.
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Table 2. Summary statistics for head gradient (i) and vertical hydraulic conductivity (Ky).

All Uninformed Informed

i(m-m-1) K, (m-day~1) i (m-m-1) K, (m-day™1) i (m-m-1) K, (m-day~1)

Median 0.018 6.8 0.017 352 0.023 11.12

Mean 0.023 8.6 0.020 6.0 0.028 12.4
Standard Deviation 0.023 8.5 0.013 6.3 0.032 10.0
Coefficient of Variation 99% 99% 65% 105% 115% 80%

2 Statistically different values (« = 0.05, p = 0.024).

3.2. A Fundamentally Different View of Groundwater Discharge?

Although informed measurement locations yielded the highest groundwater discharge estimate
(0.95 m-day_l), uninformed measurements had greater variability in discharge than informed
measurements (coefficient of variation of 113% versus 91%, Table 1). In both cases, variability in
groundwater discharge was in the range (on a percentage basis) of variability commonly observed
in other streams, although the differences between informed and uninformed measurements were less
pronounced in this study compared to differences in variability found previously [4] (174% versus 76%
for ambient versus cool zones, Table 1).

The relative frequency distribution of all groundwater discharge measurements in the SBMLR
(Figure 5C) is typical of other distributions observed in streams with sandy streambeds and relatively
homogeneous connected aquifers [2,21,28]. In general, these distributions indicate a high frequency
of measurements at low-discharge locations, with a long tail toward higher groundwater discharge
values. The frequency distribution for uninformed measurements in our study reach was also heavily
weighted toward low discharge values (Figure 5A). In comparison, the informed measurement locations
yielded a broader distribution, including higher discharge values, but with the bulk of discharge
in the moderate range (Figure 5B). Overall, the frequency distributions for informed and uninformed
measurements represent fundamentally different distributions, based on the Kolmogorov-Smirnov
test (D = 0.45, p = 0.012), as did the frequency distributions for ambient and cool zones measurements
in the Quashnet River [4] (p << 0.01, exact p-value could not be computed due to “ties” in the two
datasets). Thus, the use of FO-DTS in these systems led to substantially different views of groundwater
discharge, based on statistically significant differences in both the median discharge and the frequency
distributions for informed and uninformed measurements.

The shapes of the relative frequency for informed measurements in the SBMLR (Figure 5B) was
remarkably similar to that of the cool zone measurements in the Quashnet River (Figure 5E) [4],
albeit with almost a factor of five difference in magnitude of discharge. The frequency of low discharge
values is clearly lower compared to ambient or uninformed measurements in either the Quashnet River
or SBMLR. In contrast, the uninformed measurements had a broader distribution than the ambient
locations selected in the Quashnet River, likely because our uninformed measurements sampled
the streambed more broadly than the ambient location measurements purposely at relatively warm
streambed zones for that study. In other words, it was possible for our uninformed measurements
to occur at locations with high-, intermediate-, or low-temperature streambed zones, whereas ambient
sites in the Quashnet River [4] were purposefully located in warmer streambed zones for comparison
with measurements selectively located at cool zones.
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interpolation of streambed fluxes. On the other hand, a hybrid alternative is possible, where informed
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(Figure 6) suggests that the informed locations identified along the right bank in this study were
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consistent with post-processed and calibrated temperature data. Out of the seven measurement locations
in Figure 6, five were located at or very near relatively cool locations as indicated by post-processed
temperatures. The use of calibrated temperatures, mean streambed temperature, and temperature
variance over time may eliminate some artefacts in the raw temperature data, and highlight areas
that are consistently cooler, allowing for identification of subtle thermal anomalies corresponding
to moderate flux zones. For example, parts of the cable in the direct sun could be affected more by solar
radiation than parts of the cable that are in shaded areas. Integrating mean streambed temperature over
a period of time may smooth out these direct solar warming-based variances [1].

However, more advanced approaches of post-processing FO-DTS temperature data in the field
are time-consuming and could reduce the amount of physical measurements that can be made within
a given study period. Lengthening the deployment measurement period increases potential for other
artefacts as well. For instance, bedform migration in the stream channel can bury portions of the
cable in the streambed, which would lead to a bias toward cooler streambed temperature, or possible
misinterpretation of transience in groundwater discharge over time. Lengthened deployment and/or
measurement periods also increase the risk of encountering significant transience in the system,
including hydrological events that may create greater uncertainty in temperatures and even loss or
damage of equipment (e.g., through deep burial of the cable, as we experienced at a larger river site).
An approach that may help balance between lengthy post-processing and reserving sufficient time for
physical measurements in the future is the use of temperature thresholds from FO-DTS temperature
time series [4].

Due to topography, stream morphology, and the remote location of the research site, errors in GPS
coordinates for measurement points and cable lengths mostly varied by roughly 0.10-1.0 m. Drone imagery
was helpful for determining the cable location where GPS signal was poor. Other challenges included
finding the exact locations of cool zones along the FO-DTS cable, as described previously in Section 2,
and the time required to carefully deploy the cable along the right, left, and center of the meandering stream.

4. Conclusions

This field study quantitatively compared two different approaches for sampling streambed
fluxes in space. The first approach used FO-DTS in a reconnaissance mode to identify likely zones
of focused groundwater discharge in streambeds. We refer to this approach as informed measurement.
These informed measurements were then compared to results from the more traditional approach
of measuring streambed fluxes at evenly spaced transect locations selected without prior knowledge
of streambed temperatures (uninformed measurements).

Streamflow in the Nebraska Sand Hills is dominated by groundwater discharge, which made
our research site an ideal location for applying DTS methodology and for testing the hypothesis that
informed groundwater discharge measurements would yield a significantly different view of groundwater
discharge when compared with uninformed measurements. A non-parametric U-test showed a significant
difference between median values for informed discharge measurements (0.17 m-day~!) and uninformed
measurement locations (0.05 m-day~!). The frequency distributions for informed and uninformed
measurements were also significantly different, based on a Kolmogorov—Smirnov test.

Areas of focused groundwater discharge were successfully identified in this study using a simple
“snapshot-in-time” field analysis of FO-DTS data. Despite the less-precise raw data, results suggest
a much lower threshold for the magnitude of groundwater discharge at which FO-DTS is applicable
(approximately one-fifth of the value proposed previously [4]). Future studies that rely on more
advanced post-processing of temperature data (to calibrate FO-DTS temperatures and remove artefacts
in the data) may lead to even more precise identification of zones of focused groundwater discharge,
although post-processing techniques need to be efficient enough to be conducted quickly in the field
to guide sampling [43]. There has been a recent increase in the application of drone-based infrared thermal
imaging for quick reconnaissance of groundwater discharge zones along streams at large scales [44];
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however, infrared imaging does not penetrate the water column and low-to-moderate-discharge zones
are likely to be missed.

Regardless of the approach to field analysis for FO-DTS, it is clear that temperature-based
reconnaissance can lead to a substantially different view of groundwater discharge within a given
stream reach. However, questions remain as to how application of FO-DTS may bias perceptions
of overall average groundwater discharge into streams; it is important to carefully consider how
FO-DTS fits into project objectives.
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