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Abstract—Natural gas network is important for residential
heating, industrial manufacturing, and electricity generation.
Although it is reliable and resilient to local disruptions, extreme
situations such as natural disasters and political conflicts can
degenerate its capability of gas transportation and delivery,
influencing other social activities. Evaluating loadability regions
of natural gas networks is hard due to nonlinear constraints.
This paper proposes a fast computational tool for feasibility
screening of natural gas load profiles. It first establishes the
theoretical results on the convexity of loadability regions with
sufficient conditions. Then, an asymptotic algorithm is applied
to compute a sequence of inner polytopes that converges to the
convex loadability region. Each polytope in the sequence can
serve as a certificate for feasibility. The conservativeness of this
inner estimation will decline along the monotone sequence. The
algorithm is testified on a modified realistic Belgian natural gas
system with multi-dimensional load profiles.

Index Terms—Natural gas system, loadability region, convexity,
inner polytope sequence

I. INTRODUCTION

Natural gas is one of the primary energy sources for the
modern society in residential heating, industrial manufactur-
ing, and electricity generation. The abundance, availability,
affordability, and low-carbon emission make it competitive to
most of other energy sources [1], [2]. According to the U.S.
Energy Information Administration (EIA), the U.S. marketed
natural gas production kept increasing since 2005 from 51.85
billion cubic feet per day (Bcf/day) to 78.94 Bcef/day in 2017,
and is expected to increase further in 2019. The major increase
of the consumption is attributed to electric power sector
[3]. The EIA expects that the total utility-scale electricity
generation from natural gas will rise from 32% in 2017 to
35% in 2019.

As the gas network and the power network becoming closely
interconnected, there arises opportunities to co-optimize both
systems simultaneously. Some research works [4]-[7] pro-
posed integrated optimization frameworks that include both
the optimal power flow and the optimal gas flow. To accurately
mimic the gas flow transient behaviors, [8]-[11] included the
dynamical models for the gas flow. Other works attempted to
analyze disturbances or risks for the interconnected system, for
example, [8] discussed possibilities of using gas-fired power
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plant to compensate wind power fluctuations; [12] considered
financial risks for the electric companies.

Although interactions are bidirectional between power and
natural gas systems, the dependence of power on gas prevails.
For example, the development of shale gas technology enables
the natural gas sector in electricity generation to increase in
recent years, occupying over one third of the total electricity
generation [3]. It exposes a potential risk that a breakdown
of gas network can substantially influence the interconnected
power grid. On the other hand, the natural gas systems are
primarily designed to be self-sustainable by the gas itself.
Technical report [13] examined how the power grids’ failures
can influence gas systems. It concluded that natural gas
networks are very reliable and resilient to the local short-term
disruptions of electricity. Only large scale long term electricity
outage can cause serious failures in gas networks [13]. This
biased dependence between power and gas systems indicates
that a reliable and resilient gas network design can serve as a
good support for the high-quality operations of both systems.

While reliable and resilient from local electricity failures,
extreme situations such as earthquakes, hurricanes, and ter-
rorist attacks may affect the functionality of the gas system
and degenerate its delivery capability. For example, in 2005
Hurricanes Katrina and Rita disrupted the U.S. oil and gas
production [14]; in 2013 terrorist’s attacks on the Amenas gas
plant reduced 10% of Algerian gas production. To address
these situations, [15]-[17] proposed performance indices to
evaluate disastrous resilience of natural gas networks. [18]
evaluated seismic vulnerability of interdependent gas and
electricity systems.

In the extreme case when a gas network is damaged, a
thorough evaluation should be conducted to understand the
system’s degenerated loadability. This information is beneficial
for gas utilities to schedule future delivery plans. It can
also serve as the critical information for other interconnected
systems. A traditional co-optimization model for both systems
can achieve this goal [4]-[7]. However, combining two large
complex systems together makes the problem much more
challenging to solve. Each system may not be able to share
the actual model in the co-optimization because of conflicts
of interests, security and confidentiality concerns. Therefore,
pre-evaluations of the gas loadability region with simple
descriptions are more practical for exchanging least amount
of information among interconnected systems. Such evalu-
ation needs to be computationally achievable and properly
accurate to ensure reliable functionality for the normal and
post-disaster operations. If multiple uncertain loads exists,
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the loadability boundary encloses a high dimensional region
defined by nonlinear network constraints which prevent us
from understanding it accurately. Few works discuss this topic
in the gas networks. [9] considered the monotonicity property
of the pipeline pressure and designed a framework for evalu-
ating the feasibility region at given directions. [19] applied
the monotone operator approach to establish the solution
guarantee for certain network topologies.

In this paper we first show the convexity of injection region
for the steady state gas flow model under certain conditions,
which further yields the convex loadability region of the gas
network. Then, we apply a sequential optimization algorithm
to approximate this convex loadability region by a sequence of
polytopes. Each polytope in the sequence can serve as an inner
estimation of the loadability region, and guarantees feasibility
of any load profile inside the polytope. The proposed method
is particularly favorable for fast feasibility screenings of load
profiles in large quantities, and a compromise of conservative-
ness can be controlled. The major contributions of the paper
are listed below.

1) It shows that the injection region of natural gas is convex
under certain conditions, which further indicates the
convexity of gas loadability region.

2) It proposes a monotone inner polytope sequence to ap-
proximate the convex loadability region with asymptotic
convergence and conservativeness control.

3) It applies a sequential optimization algorithm to compute
the proposed monotone inner polytope sequence.

The rest of the paper is organized as follow. Section II
describes the gas network model that is used in the paper.
Section III modified the model for simplicity. The main theo-
retical results are presented in Section IV. Section V describes
the monotone inner polytope sequence and the algorithm to
construct it. Numerical simulations are provide in Section VI.
Setion VII concludes the paper.

II. NATURAL GAS SYSTEM MODEL

This section describes the steady state natural gas network
model. Consider a natural gas network as a graph G(V, &)
with the node set V := {1,2,--- ,n} and the branch set
£ :=1{1,2,--- ,m}. We say node-i and node-j are adjacent
nodes if there is one pipeline segment connecting them. Node-
k is said to be an upstream node of node-i if there exists a
directed path connecting them by following the flow direction
from k to ¢. Similarly, node-j is a downstream node of node-i
if there is a directed path connecting them by following the
flow direction from 7 to j. A source node is a node without
upstream nodes. A sink node (load node) is a node without
downstream nodes. Node-i is called a merging node if it has
multiple adjacent upstream nodes. Node-j is called a splitting
node if it has multiple adjacent downstream nodes. Node-k is
called a transitive node if it only has one adjacent upstream
node and one adjacent downstream node. A node with both
multiple adjacent upstream nodes and adjacent downstream
nodes can always be represented by one merging node and
one splitting node.

The natural gas network is also subjected to the physical
laws of natural gas such as pressure-flow Weymouth equations

and mass conservation law, as well as engineering require-
ments such as compressors and pressure limits.

A. Weymouth Model

The steady state gas flow describes the relation between
pipeline mass flow rate and the corresponding node pressures.
Ignoring transient dynamics, a classical compressible steady
state gas flow model which is commonly used in natural gas
pipelines is called the “Weymouth model”

Xijj(mF = 73) = by j|vbs 5 (1)
where 7; is the gas pressure at node-i, v; ; is the gas flow
rate through pipeline-(i,j), A; ; > 0 is a pre-calculated constant
which is related to pipeline parameters, gas properties, etc.

Let P € R" be the column vector of [r?], C € R™*" be
the incidence matrix of G(V, £), 1 € R™ be the column vector

of flow [¢; ;], and M(A) € R™*™ be the diagonal matrix of
[/\i] If we choose the graph direction to be the flow direction
i,

and assume it is fixed', then the absolute operator in (1) can
be removed, yielding

CP =M(\)yp? (2)

where 12 represents the pointwise square, and 1 > 0.

B. Mass Flow Conservation Law

The gas system must preserve the total mass flow rate at
every node. It states that the total gas flow entering a node
should equal to the total gas flow leaving the node. Therefore,
we have

Z ik + Okin = Z Yk, + Pkout 3)
i—k Jik—j
for every k € V.

Let ¢ € R™ be the column vector of [¢k in, — Gk out], then

(3) can be written as

Chy=¢ 4)

C. Compressors

Compressors are active components in the gas system which
boost up gas pressures to achieve engineering requirements in
the network.

The boosting process inevitably consumes energy. Some
compressors are driven by electric power, thus are modeled
as power load. Some are driven by gas combustion, hence are
modeled as gas load. The mathematical description of a gas
load compressor is

Pj = K ; P; (5a)
H;j = 5i,j(Kf,3’j — Db g (5b)
Adij=aij+bijH;j+cijHY; (5¢)

where K ; is the boosting ratio; 3; ;, 0; ;, @i, bi j, and ¢; ;
are pre-determined parameters; A¢; ; is the consumed gas
flow. One can further substitute (5b) into (5c) and get

A j = a5+ Bi,jwi,j + éi,jwzz,j 6)

I'This assumption will be further discussed in Section IV
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D. Engineering Requirements
There are several engineering and operational requirements
for gas networks. In this paper we consider the node pressure
limits
sznSPSPmaz (7)
and the compressor ratio limits

1< K;; <K jmax ®)

IIT. NETWORKS WITH IDEAL COMPRESSORS

Section II has discussed a static natural gas network model.
To establish the convexity result in a simple way, we will
idealize the compressor model in this section with a mild
assumption, and discuss how to remove ideal compressors
while preserving equivalence.

A. Ideal Compressors

In Subsection II-C we provided a detailed compressor model
which is driven by gas combustion. Assume that the amount
of gas consumed by the compressor is much smaller than the
bulk gas flow through the compressor, then simplify (5) as

Pj = Ki,jpi (93)
1 S Ki,j S Ki,j,maz (9b)

where ¢ is a fictitious node at which the compressor takes in
gas flow, j is another fictitious node at which the compressor
outputs gas flow. These nodes are defined arbitrarily close to
the compressor in the middle of a pipeline (see Figure 1(a)).

Denote the set of these fictitious nodes as Vg, and the set
of compressors as &, then our refined network graph is given

by Go == G(VU Vs, EUE,).

B. Network Splitting

Note that the pressures on two fictitious nodes of a com-
pressor are not determined by the Weymouth model in (2)
with respect to the flow, but determined by the linear scaling
relation in (9a); while the mass flow conservation law (4) still
preserves. One can split the entire network G. into |E.| + 1
many individual sub-networks {Gs,s =1,2,---,|E.| + 1} by
removing every compressor from the network. The split net-
work and the original network are equivalent as long as every
pair of fictitious nodes associated with the same compressor
satisfies pressure relation in (9a) and mass conservation law.

Without loss of generality, consider a network G. with only
one compressor (see Figure 1(a)). It can be separated into
two individual sub-networks by removing the compressor as
shown in Figure 1(b). Let’s label the sub-network on the left
of Figure 1(b) as Gi, and the one on the right of Figure 1(b)
as Go. Then, the union of two sub-networks G; and G, is
equivalent to the original network G, if and only if

Pj = Ki,jPi (IOa)
Di = @ (10b)
where 7 and j are the fictitious nodes associated with the

COMPressor.
The network splitting technique will be revisited through
the proof of convexity in Appendix A.

(a) Before Splitting

(b) After Splitting

Fig. 1: Ideal Compressor and Network Splitting

IV. CONVEXITY OF GAS INJECTION REGION

According to the models from Section II and III, this section
establishes the convexity results of this paper. The proof for
the main theorem is provided in Appendix A.

A. Injection Region of Natural Gas System

(2), (4), (7), and (9) provide a standard description of natural
gas network. We list them together as

CP = M(\)y? (11a)
CTy=¢ (11b)

P, =K, ;P (11c)
Prin < Pj < P (11d)
1< K j < K jmax (11e)
>0 (11f)

Note that (11) is an under-determined system, given a load
profile ¢. Thus, gas network operators can take this flexibility
to optimize some cost and reach a unique operating point.
However, not every choice of ¢ admits a feasible solution to
(11). Therefore, we define the injection region ¢ of a natural
gas network as

F ={¢ e R" | (11) is nonempty}

where ¢ includes every node injection in the network.
Furthermore, we define the loadability region £ of a natural
gas network as the projection of ¢ for sink nodes

12)

Z :={¢ on sink node | (11) is nonempty} (13)

B. Convexity of Gas Injection Region

We list three conditions which together suffice the con-
vexity of gas injection region, yielding the convexity of the
corresponding loadability region. Failure of these conditions
can result in non-convexity of gas injection region. However,
it does not necessarily result in non-convexity of the gas
loadability region. One of our future work is to relax these
conditions for preserving convexity of the gas loadability
region.
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1) G, has a tree structure such that every upstream node of
a merging node is non-splitting.

2) Flow direction is fixed for every branch.

3) All the node pressure ranges are identical.

Condition 1 guarantees the solution of node pressure P
given a branch flow ¢, and helps construct a feasible pressure
profile for the proof. Condition 2 is a mild assumption since
the reverse of flow direction seldom happens or happens very
slowly in practice. Condition 3 provides a suitable range for
ensuring the required feasible pressure profile in the proof.
These conditions will be revisited in the proof in Appendix I.

The basic idea of convexity is to show that any point on
the line segment between two feasible gas injection profiles is
feasible. We start with two arbitrary feasible injection profiles,
¢q and ¢p € _#, where subscript @ and b differentiate two
injection profiles. Let ¥, and P, be the branch flow and node
pressure associated with ¢,; ¥, and P, be the branch flow
and node pressure associated with ¢;. Define

G 1= (1 - H)¢a + udp

where 4 € [0,1]. Then, we have two lemmas as follow.

(14)

Lemma 1. . := (1 — p), + piby is the only branch flow
corresponds to load profile ¢..

Proof of Lemma 1: Consider

C"ye = CT((1— p)ba + pahy) (152)
= (1—=p)C ¢a + pCTey (15b)
= (1= )b + mabs (15c¢)
= ¢ (15d)

Hence . is a branch flow solution with respect to ¢..

On the other hand, suppose there exists another branch flow
g which corresponds to ¢., then CT (1. — 14) = 0. By
Condition 1, CT has full column rank. Thus, Pe —WPg =0
which yields the uniqueness. ]

Lemma 2. The branch flow . admits at least one node
pressure profile P..

Proof of Lemma 2: By Condition 1, C has full row rank.

So CP = M(\)4? has at least one solution for any given ).

Thus, 1 = 1. results in at least one solution P,. [ |

Lemma 1 and 2 indicate that any injection profile ¢. on the

line segment between ¢, and ¢, has and only has one branch
flow 1. which further admits node pressure profile P..

Theorem 1. Consider a natural gas network G. with an ideal
compressor described by (9), under Conditions 1, 2 and 3, its
injection region 7 is a convex set.

The proof of Theorem 1 is long and omitted here. Details
are provided in Appendix A.

Corollary 1. Consider a natural gas network G. with h € 7
many ideal compressors described by (9), under Conditions 1,
2 and 3, its injection region 7 is a convex set.

The proof of this corollary follows the same arguments as
in the proof of Theorem 1.

Corollary 2. Consider a natural gas network G. with h € 7
many ideal compressors described by (9), under Conditions 1,
2 and 3, its loadability region £ is a convex set.

The proof of this corollary follows the argument that the
projection of a convex set is also convex.

V. ESTIMATING CONVEX LOADABILITY REGION

The above section reveals that a natural gas system can
have a convex loadability region under sufficient conditions.
The convexity property favors the estimation of the loadability
region via a simple algorithm in this section. Specifically, it
focuses on how to use a particular type of polytope sequence
to approximate a convex set. A detailed algorithm is provided
for computing this sequence at any given length.

A. Monotone Inner Polytope Sequence

Generically, understanding a semi-algebraic set is hard in
the sense of computational complexity. However, if the set is
convex, it can be approximated by the limit of a sequence
of polytopes. Each polytope in the sequence is regarded as
an estimation of the set. To guarantee feasibility, we require
every element in the sequence is inscribed in the convex set.

Mathematically, consider a convex set P. We say a sequence
{Px}r=1,2,... of polytopes Py to be the inner polytope se-
quence of P if

1) For any P; € {Pr}, P; CP

2) limjyoo Pi =P
Furthermore, if for any ¢ > j we have P; C P;, then the
sequence {Py} is said to be monotone.

Note that every polytope in the sequence can serve as an
estimation of the loadability region and certify the feasibility
of its enclosed points. The major advantage comes from the
cheap evaluation of a set of linear inequalities. Without these
polytopes, verifying feasibility requires iterative algorithms,
which in general is much more expensive. If the loadability
region is not convex, one can still use inner polytopes to
approximate it. One approach applies the Brouwer fixed point
theorem to certify the enclosed polytope is solvable [20].
However, the performance of error and convergence will not
be provided.

B. Constructing Monotone Inner Polytope Sequence

This part presents a sequential optimization algorithm to
construct a monotone inner polytope sequence for estimating
the natural gas loadability region. The proposed algorithm is
among a class of iterative approach for approximating convex
bodies [21]. The pseudo-code of this algorithm is provided in
Algorithm 1.

The basic iterative procedure is that at the i-th inner
polytope P; identifying the furthest parallel support function
for each facet F,, of P;. The feasible points on the support
functions are our new vertices. Using new vertices to enlarge
the previous polytope to get polytope P;;;, and repeat this
process to capture more feasible space at each iteration. The
optimization routine used in Algorithm 1 is the standard
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primal-dual interior point (PDIP) method?. A 2-dimensional
demonstration of this procedure is displayed in Figure 2.

Algorithm 1 Constructing Monotone Inner Polytope Sequence

1: Input system S(z;d). > = € RN=: state variables;
d € RN4; load variables

2 fori=1, 2, ---, N4 do > generate a starting polytope

3: Set cost function f; := e?d, where e; is the unit vector
with entry-i being 1.

4: Apply PDIP solver to maximize f; subjected to net-
work constraints.

5: Collect solution Jg_j in V.

6: end for

7: Construct the convex hull Cy associated with V.

8 Let the facet set of Cp be Fo = {H) | jo=1,---,Jo}.

9

fork=1, 2, ---, K do > K: length of sequence

10: for jo_1=1, 2, ---, Jx_1 do > facet index

11 Set cost function fj, , := ﬁ;‘; 11 d, where Tz);‘k_ 11
is the outer normal direction of hyperplane Hj .

12: Apply PDIP solver to maximize f;, , subjected to
network constraints.

13: Collect solution dy j, , in AVy_;.

14: end for

15: Let Vi, = Vi1 UAVk—l-

16: Construct the convex hull C}, associated with V.

17: Let the facet set of Cp be Fp = {Hj‘f‘k | x =

1,---, g}
18: end for

The plot in Figure 2(a) shows a convex set P of interests. To
obtain a starting polytope, one solves optimization problems
to find maximal points on each axis, for instance, point
Ap and By in Figure 2(b). Based on these points a 1-D
facet (Ag, A1) is determined, and the green area (O, Ag, A1)
beneath this facet in Figure 2(b) becomes our starting polytope.
Next, maximizing along the normal direction (green arrow in
Figure 2(c)) of facet (Ap, A1) provides us a new point Ay in
Figure 2(c). The new point A; creates two new facets (Ag, A1)
and (A;, Bp) above the old facet (Ag, Bp) with its vertices
Ap and By. The area beneath facets (Ag, A1) and (A1, Bp)
induces the second polytope (O, Ag, Ay, By). Following the
same strategy the third polytope (O, Ag, Az, Ay, By, By) is
shown in Figure 2(d). One can keep executing this process
to infinity, leading the polytope sequence to the exact convex
set P. To compromise both the accuracy and the computation,
usually the first few steps are enough.

Constructing polytopes to optimally approximate high di-
mensional convex bodies is a hard problem in general [22].
However, gas network regulations and market practice keep the
variable loads of interests low dimensional. These regulations
only allow a small number of variable node loads [23]. So
in the real applications the loadability region of interests is
usually in a low dimensional space, which is particularly

2 All simulations displayed in the paper were coded and executed in Matlab
2017b environment with a 2.8 GHz i7 CPU and 16 GB RAM. The specific
optimization solver used during simulations was the interior-point solver from
Matlab “fmincon” function with user defined gradient and Hessian functions.

(a) Original Convex Set (b) The starting Polytope

(c) The 15t Polytope (d) The 2™¢ Polytope

Fig. 2: A 2-D Example of Algorithm 1

suitable for the proposed method.

If very high dimensional uncertain deliveries need to be
investigated, some refinements can reduce the computational
complexity of the proposed method. For example, instead
of reconstructing a new convex hull at each step, one can
update the previous convex hull by adding a new vertex at a
time. Another approach may randomly select some simplices
defined by the known vertices (may not be the facets of
the convex hull) and compute their parallel support functions
to acquire new vertices. This approach cannot guarantee the
optimal selection of vertices, but can be computationally much
cheaper.

C. Convergence Analysis

Estimating convex bodies by polytopes is a classical prob-
lem. Many results have been established [21], [24]-[28]. A
thorough survey in this topic can be found in [22].

To establish the convergence rate, a metric needs to be
defined priorly. Specifically in this paper, we use the Nikodim
metric (also known as the symmetric difference metric) as
follow. Given two sets U and V, the Nikodim metric

p(U, V) :=Vol(UUV) —Vol(UNV) (16)

where Vol(-) is the volume operator. Note that if V C U,
p(U, V) = Vol(U) — Vol(V'), which can be used as a measure
of error for an inner estimation V' of U.

Since Algorithm 1 is in the class of iterative methods for
inscribed polytopes [21], [24] and the gas loadability region
has the twice continuously differentiable boundary, it follows
the results in [27]

p(P, Pr(ng)) = Kn2/ N asnp 500 (17)

where P is the convex loadability region; Pg(ng) is the k-
th polytope generated by our algorithm; n; is the number of
vertices; K is a constant with respect to the dimensionality Ny
and the affine area of the surface P. It suggests that as the
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number of vertices goes to infinity, the distance between the

estimation and the real convex set converges asymptotically.
The asymptotic convergence rate between two polytopes is
_ p(P, Pr(ni+1))

TCOTL’U T

(nk—H )2/(1—Nd)
p(P, Pr(nr)) ny,

Since the dimensionality N, is considered to be greater than
one, 2/(1 — Ng) < 0. As long as ngy1/nr > 1 is fixed,
the convergence rate 7., < 1 is also fixed. Therefore, the
generated polytope sequence converges geometrically to the
target convex set.

(18)

VI. NUMERICAL SIMULATIONS

This section presents simulation results based on a modified
realistic natural gas system, the Belgium gas network [29]. The
first part describes the network settings, while the second part
presents loadability regions and estimations for this system
based on the proposed algorithm.

A. Modified Belgium Gas Network

A detailed description of the Belgium gas network can
be found in [29]. The network graph has an “almost” tree
structure: it includes a few segments with parallel pipelines.
A special technique is applied to equivalently represent two
parallel pipelines by a single pipeline.

Fig. 3: One-Line Diagram of Belgium Gas Network

Consider two parallel pipelines described by

Niga(Pi = Py) = Wi, (192)
Nijo2(Pi = Py) =07 5 (19b)
A single equivalent pipeline is
Nigea(Pi = Pj) = 035 g (20)
By the mass flow conservation law we have
Wijeq = Yija+Wijz2 2D

Substituting (21) and (19) into (20) one obtains the equiv-
alence condition

Nigiea = (Vg + >\i,j,2)2 (22)

After converting parallel pipelines into single ones, the
modified Belgium gas network has a tree structure. We further
modify it slightly for satisfying sufficient conditions in Sec-
tion IV. A one-line paragram of the network graph is shown
in Figure 3. The green squares represent standard nodes or
junctions. The blue circles are fictitious nodes associated with
compressors drawn by pink lines. Parameters of this network
are computed from [29] and provided in Appendix B.

B. Estimations of Loadability Regions

To illustrate the performance of the proposed monotone
inner polytope sequence, we first consider a 3-dimensional
loadability region by relaxing loads at node 3, 6, and 15. All
the other loads are fixed at the given values in the Appendix.

After 4.56 seconds, Algorithm 1 terminates at the third
polytope of the sequence since it is appropriate to capture the
majority of the loadability region. The appropriateness will
be defined shortly below. Results are depicted in Figure 4.
Figure 4(a) shows the starting polytope in purple with the
maximal point on each axis. Based on the facet defined by
those maximal points, a new vertex in green is found which
gives rise to a larger green first polytope in Figure 4(b). Follow
the same strategy, the second polytope in red was identified
in Figure 4(c) which is much larger than the first polytope.
Finally, the thrid polytope in blue is identified in Figure 4(d).

We define the relative volume of the k-th inner polytope Py
of a convex set P by the volume ratio R,

R, := Vol(Py)/Vol(P) (23)

However, high-dimensional volume is hard to compute. Hence,
we evenly discretize each load to generate a discrete sample
pool® and count the numbers of interested points to approxi-
mate I2,. Specifically,

R, ~ Ni/N, 4)

where Ny, is the number of points inside polytope Py, while
N, is the number of points inside P. As the size of the sample
pool goes to infinity, the quotient Ny /N, goes to R,,.

Figure 7(a) shows the Relative Volume for our 3-D example.
The starting polytope, labeled index-0, occupies about 47.05%
of the total volume. Since the polytope sequence is monotone,
the volume increases along the sequence. At the third polytope,
the volume is about 98.90%. Computations on further poly-
topes will not enhance the volume substantially. Therefore, the
algorithm compromises between conservativeness and speed.

The next demonstration is to estimate a 4-dimensional
loadability region by the proposed method. Specifically, we
relax loads at node 3, 7, 16, and 20 in Figure 3 and fix
all other loads at given values. Since 4-D objects cannot
be displayed directly, we project the simulation results on
different subspaces.

Algorithm 1 terminates at the thrid inner polytope after
8.51 seconds. Figure 5 shows the projections of polytopes
on a 2-D load space at node 3 and 7. The yellow dots
are the discretized points which are feasible to the gas flow
problem. They roughly capture the projection of the 4-D
loadability region. One can see from Figure 5(a) to Figure 5(d)
that the projections of the inner polytopes gradually occupy
almost the entire loadability region. The 3-D projections of
these polytopes, as well as the loadability region, are shown
in Figure 6. Figure 6(a)-6(d) show the projections of the
polytopes on the load subspace at node 3, 7, and 16; while
Figure 6(e)-6(h) depict the projections of polytopes on the load

3In this paper, each relaxed load is evenly sampled with 21 points. So the
total number of sample points is 21%, where d is the dimensionality of the
loadability region.

2325-5870 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2019.2937212, IEEE

Transactions on Control of Network Systems

Load @ Node 19
Load @ Node 19

10 10
2 ~ o 20
U 1o “ ” Load@Node 10 % 0 o
Load @ Node 14 oad @ Node

2 20

Load @ Node 14

oad @ Node 10

(a) The Starting Polytope (b) The 15t Polytope

Load @ Node 19
Load @ Node 19

10
-~ 0 2 40
20 * o 10 2 o
0
0ad @ Node 10 Load @ Node 14

'y 10

Load @ Node 10 Load @ Node 14

(c) The 2™¢ Polytope (d) The 37% Polytope

Fig. 4: Inner Estimations of 3-D Loadability Region at Node 10, 14, and 19

25 25

n
S
2
7
s n
o S

Load @ Node 7
7
Load @ Node 7
>

Load @ Node 7

0 5 10 15 20 25 0 5 10 15 20 25
Load @ Node 3 Load @ Node 3

(a) The Starting Polytope Pro- (b) The 15¢ Polytope Projected (c) The 2™¢ Polytope Projected

jected on Node 3 and 7 on Node 3 and 7

5 10 15 20 25
Load @ Node 3

(d) The 37% Polytope Projected
on Node 3 and 7

0 5 10 15 20 25
Load @ Node 3

on Node 3 and 7

Fig. 5: 2-D Projections of Inner Estimations of 4-D Loadability Region at Node 3, 7, 16, and 20

subspace at node 3, 7, and 20. The projections of loadability
region are illustrated in Figure 6(i) and 6(j) by the yellow
balls. The relative volumes of these polytopes are presented
in Figure 7(b). Although the starting polytope, labeled index-0
in the figure, only occupies 10.20% of the loadability region,
the third polytope, labeled index-3, fills 95.19% of the total
feasibility region.

C. Feasibility Screening with Inner Polytope Estimations

As discussed before, the major advantage of the inner poly-
tope estimation is to provide a simple but accurate description
of the actual loadability region. We take this advantage to
screen different loading scenarios, and compare to the actual
feasibility checking based on an optimization method. At a
given load profile, minimizing a constant zero objective func-
tion subjected to network constraints to solve node pressures
and source injections.

Consider three variable loads at node 10, 14, and 19 ranging
in [0,22.5], [0,31], and [0, 5.5], respectively. Each range is
evenly discretized by 21 points. There are 9261 many 3-D
load combinations in total to verify. Screening whether these
load profiles are within the third inner polytope (shown in
Figure 4(d)) takes about 0.039 seconds. However, checking
the feasibility of these load profiles takes about 2575 seconds
on the same computer. The gain of the computational speed
is around 6.6 x 10* with a compromise of 1.1% (computed
by 1 — ;) conservativeness. A logarithmic comparison of the
execution time is depicted on the left part of Figure 8.

In another scenario with four variable loads at node 3,
7, 16, and 20 with ranges of [0,25.5], [0,23], [0,19], and
[0,6.5], respectively. Each load range is again evenly dis-
cretized by 21 points. Therefore, there are 194481 many 4-D
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load combinations to verify. Screening if these load profiles
are within the third inner polytope (shown in Figure 6(d)
and 6(h)) takes about 0.095 seconds. However, checking the
feasibility of these load profiles takes about 230377 seconds
on the same computer. The gain of the computational speed is
around 2.43 x 10° accompanied with a compromise of 4.81%
conservativeness. A logarithmic comparison of the execution
time is depicted on the right part of Figure 8.

These numerical results suggest that the inner polytope
estimation can serve as an easy alternative of the actual
loadability region for screening load profiles with limited
conservativeness.

VII. CONCLUSION

This paper discusses how to make a good estimation of
the loadability region of the natural gas flow problem for fast
feasibility screenings. It starts with the description of classic
gas flow model. Then, it defines the injection region and the
loadability region, and rigorously establishes the convexity
results for both regions under certain sufficient conditions.
Based on the convexity property, it further applied a sequential
optimization algorithm that constructs a monotone sequence
of inner polytopes to approaching the loadability region. The
elements in the sequence provide good estimations for the
loadability region with controlled conservativeness. Finally,
the paper demonstrates correctness of the theory and conver-
gence of the algorithm on a modified realistic gas network.

The convexity result is specifically tailored for structured
gas networks. One future direction is to extend the established
result to other systems, for example, cyclic gas networks,
or water systems. Another direction of interests would be
enhancing the scalability of the proposed method by designing
new update schemes for constructing convex hulls.
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APPENDIX A
PROOF OF CONVEXITY

Proof of Theorem 1: Let ¢, € £ be a feasible load
profile with the associated P,, 1, and K; ;. Let ¢, € £ be
another feasible load profile with the associated Py, v, and
K; ju. Consider

qbc = (1 - :u’)¢a + ,u(bb

where p € [0, 1]. By Lemma 1 we know that ¢, = (1—p)1,+
uy is the only branch flow profile.

Now let’s remove the compressor and split the network G,
into two sub-networks G; and Gs.

Since

(25)

(26a)
(26b)

Gie = Vije = (1 = )i ja + pijp
Gje = Vije= (1= p)ija+ pijp

we have ¢; . = ¢; . automatically. Therefore, for the split sub-
networks, (10a) is the only constraint we need to consider at
Pe-

Consider G; and G- separately, Lemma 2 guarantees that
each sub-network at least has one pressure profile. So we
need to check if these pressure profiles are feasible and
can be matched by (10a) for some K;;. € [l,Knaqzl-
Mathematically, we need to show the following is non-empty.

Pi. > Pimin (27a)

P > —Pimaz (27b)

CiP,. = U (27¢)

Pr. > Pomin (27d)

P, > —Psmaa (27e)

CoPs Us (271)
KijcPric—Pjec = 0 (27g)
Kije = (27h)

—Kije =2 —Kna (271)

where U1 = ((1 — /L)\/Cl.PLa + /JL\/Cl.PLb)Q, U2 =
(1= p)\/CoPyq + ,U\/CQPQJ))?, subscript 1 and 2 indicate
quantities associated with sub-network 1 and sub-network 2
respectively; subscript a and b represent quantities associated
with the first feasible solution and the second feasible solution
respectively.

Note that (27g)-(271) is equivalent to the following

KePic—ejP >0
—eiP1c+ejP.>0

(28a)
(28b)

where K := K4, for simplicity, e; and e; are the row vectors
that associate the fictitious nodes corresponds to the same
compressor. Therefore, we need to show that the following
primal problem (P) is feasible.

min  Jp=0"P . +0" Py, (292)
st. Pie> Pioin (29b)
—P1c > —Pimaa (29¢)
C\P.=U, (29d)
P> Pomin (29¢)
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_P2,c Z _P2,maw (29f)
CoPye = Uy (299)
Kel-PLC - ejPQ’C 2 0 (291’1)
—eiPLC + 6jP27c >0 (291)
Consider the dual problem (D)
mazr  Jp = Pljjminal - P17:77La3:ﬁ1 + UlTryl
+ P2 min®2 = PomaaB2 + U2 72 (30a)

st. op—f1 +CTy + Kel6, —eThy, = 0 (30b)

as— P2+ Ciya—ejfi+¢j =0 (30c)
alaﬁlaelaa2762792 >0 (30d)
71,72 free (30e)

Multiplying (30b) and (30c) on the left hand side with e;
and e;, respectively

6&0&1—61-‘1-0?’}/1)4-[(01—92 = 0 (31a)
ejlae—Bo+Cly)—01+0, = 0  (3lb)
Thus, we solve 61 and 0>
1
91 = ﬁ(ei‘/i + ej‘/Q) (323)
1
02 = 7(61"/1 + Keng) (32]3)

1-K

where V7 := a1 — 81 + ClT'yl and Vo := ap — B2 + ng.
Substituting (32) into (30b) and (30c), and considering
01,02 > 0 in (30d) we have

(I —ele)Vi = 0 (33a)
(I —eje)Va = 0 (33b)
eViteVa < 0 (33¢)
eVi+KejVp < 0 (33d)

where I; and I, are the identity matrices associated with the
two sub-networks.

Further define 7, := a1 — 81 and 72 := as — fs, then (33)
is equivalent to

M = —Clygm, ki#i (34a)

Mgy = —Capv2 k2 #J (34b)

My +m2,; < —Cfﬂl—CQT,j’m (34¢)
mi+Kny < —Clim—KCl  (34d)

where 7; ¢ is the s-th entry of 7;, and C{S is the s-th row of
Cl, forl=1,2.

Considering the sum of positively scaled (34c) and (34d)
we have

Cu(mi +m2,5) + Gy + K j) <
Cl(*clT,ﬂl - Cg?j%) + CQ(*ClT,ﬂl - KczT,j’Y2)
where (1,(s > 0.

Define wy := (3 + {2 and wy := {3 + K (s, then (35) is
equivalent to

(35)

Wi + wanaj < —wi1C M — walaCg ;72 (36)

for any w; and wo satisfying

(37a)
(37b)

wWo — W1 Z 0
K w1 — W2 Z 0
Inequality (36) will be revisited later in the proof.
Now let’s replace a1, g by 11, 72 in the dual problem (D),
and formulate an equivalent problem (Ds)

T T T
max JD2 = (Pl,min - Pl,maw)ﬁl + Pl,minnl

+(P27:mzn - P2,1:maac)52 + Pg:manQ

HUT v + Uf e (38a)
st. (34 (38b)
fr>—m (38¢)
By > —np (38d)
B1,82 >0 (38e)
V1,72, M1, M2 free (38f)

Since (1, 2 only appear in (38a), (38c), (38d), and (38e),
we can further eliminate (1,02 from problem (Ds) and
formulate a new equivalent problem (Ds).

max JDS = (Pljjmzn - Pljjmaz)ma‘r[()? _771] + Pljjminnl

+(P2,1:mzn - ngmam)max[ov _772] + ngmzan

AUT 4 UL (399)
st. (34) (39b)
V1,72, M1, M2 free (39¢)

where the max[-, -] operator in (39a) takes pointwise maxi-
mum value.
Substituting (34a) and (34b) into (39a) yields

mazx  Jp, =Uly + Uy +

( Z (Pl,min,kl - Pl,maz,kl)max[oa C1T,k1’Yl]
k1#1
+(P1,min,i - Pl,maz,i)ma‘x[oa —Ul,i] -

Z P1,mm,klcfkﬂl + Pl,min,inl,i) +
k174

( Z (PZ,min,k'g - P2,maa:,k2)max[07 Cg:szyQ}
ko#j
+(Pomin,j — Paymaz,j)maz(0, =12 ;] —

Z Pz,mm,mcgjk{}’z + Pz,min,jnz,j) (40a)
ka#j
s.t.  (34c),(344d) (40b)
1,72, M, N2 free (40¢)
Problem (40) is equivalent to
maxr Jp, = UlT’Yl —|—U2Tﬁ/2 +
( =Y P Clym+ 151,ﬂ71,i> +
k17
( - Z Py o, CF 2 + p2,j7]2,j> (41a)
ka#j
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s.t.  (34c),(34d)
Y1572, 72 fTe@

P Pl,min,kla
1,kq =
Pl,maa:,klv

(41b)
(41c)
where

if O{ g1 <0

if Oy, 1 >0

if CT, 72 <0

]5 o P2,min,k27
2,]€2 - N T
Py inaz kys  if 027k272 >0

P Piming, ifni; >0
1 = )
Pl,maz,ia if M, < 0
5 Py min,j, ifn2; >0
Py = .
P2,ma:v,j7 if 12,5 S 0

Note that (41a) can be bounded by

Ip, < =3 P Clym + Pram + Uy +
k1#1
> Pan,Cliv2+ Pajma +Usve (42)
ka#j
as long as any P.s € [Pmin,s, Plimas,s) for | = 1,2 and every

s. If ]51,5 also satisfies (37), we have (36) which suggests that
(42) is further bounded by B where

B = =Y PipClum—Paim+Uin
k1 i
- Z Py, CT 1y v2 — PojC3 2 + U 72
ka#j

= (U] - PIClm +(UF —PfCY)ye 43

According to Condition 3, we have P, 40,5 = Ppaq and
P mins = Prin for all [ = 1,2 and s. So there exists at
least a scalar Py in the intersection of all the pressure ranges.
Substituting P} , = P, in (43) for all I and s yields a specific
bound denoted by By

BO = B(1P071P0>’71772)
= Ul +Usy = P(17C{m +17C5 )

= Uiy +Ufy (44)

On the other hand, consider P; , = (1—p)Py o +pnPr p and
szl/« = (1_/J)P2,a+/J/P2,b' Since (P]_’a,PQﬂ) and (Pl,ba Pg)b)
are two feasible pressure profiles, they both satisfy (37). So
Py, and P, satisfy (37) as well. Thus, substituting 151 =
Py, and 132 = P, , into (43) we have

JDg S B(Pl,/uPZ;m’YIa’m)
= —u(l =) (Wi + Wie) (45)
where Wy = (/CiPra — \/CiPr,)” and Wy =
2

(VC2Pao —\/CaPyyp)".

Next, we are going to show that for any Bo(v},73) > 0
at some 75 and ~3, there exists another bound which is non-
positive. The basic idea is to find a feasible pressure profile
(Pf, Pg) satisfying (37) and making B(Pf, P35, ~v7,73) < 0.

Suppose at some given ] and 3 we have By > 0, consider
the index set 2 associated with 77 and 3 such that
Q:={s|vs>0,1=1,2} (46)

We are going to construct the desired pressure profile (P;, Py)

in the following way. To start with, let the set of source node be
S, and assign each source node pressure to P, temporarily.

1) Pick an unvisited source node i, € S, record its down-
stream node pressures until reaching the first merging
node, say, %,,. The downstream pressures are assigned
successively by the following way: if a branch from
node-n to node m with pressure P, determined and
P, undetermined. If the corresponding v ¢ 2, taking
P,, = Pg; else, taking P,, = P, — Pupn + Pum,
where P, = (1 — p)Pym + ptPym and P,, =
(1—p)Pan + pPyn.

2) Consider a merging node-¢,, with m many branches
entering it. For every entering branch denote its up-
stream node index set (including ¢,,) as I, where
k = 1,---,m. If all the node pressures for every
set I have been assigned, the pressure P;,, on node-
im has m choices {Pimn1, -, Pimm}. Take Pi, as
the minimum value Py, ymin from {Pym.1,- -+, Pimom }-
Update the node pressures Py, for every set I by
Pfk - P)i'm,k + Pim,’rrLi'rL~

3) If a merging node-i,, and all of its upstream node
pressures have been determined, adding ¢, as a new
source node to S. Repeat Step 1) and 2) until every
node pressure is determined.

This process eventually provides us a desired pressure
profile (Py, Py). Firstly, it is a feasible pressure profile in
the sense of being within pressure limits. Since the source
pressures have been assigned to P,,,, at the beginning, in
Step 1 a downstream pressure P, > P, ,, by the monotonicity
of pressure along the flow direction. In Step 2, since every
Pk 2> Py im, we also have Py, > P, ;n, at current step
(but can be updated by a further Step 2). However, the last
merging node which has no downstream merging node will
retain the pressure P;,, > P, ;» because no further Step 2
will be executed. It serves as the only source node for the rest
undetermined nodes as well. Therefore, by repeating Step 1,
any downstream pressure P, > P, ,. By Condition 3 from
Section IV, since P < Py < Ppyae, we also have Py <
P* < Pp4z. On the other hand, we assign the compressor’s
output pressure Ppypys as the value of min(K Pi*nput, Praz)s
where P, is the determined compressor’s input pressure.
Then Pouiput = Puoutput as well. Hence, the same arguments
also hold for the compressor’s downstream subgraph.

Let’s substitute (P;, Py, ~7,~5) in B. It actually replaces
each positive term associated with v* € ) by the corre-
sponding non-positive term in B(Pi ., P .77, 75). Thus,
B(Py, Py,~%,v3) < 0. Therefore, we have shown that
Jp, < 0 for every (7y1,72), suggesting that the dual problem
is bounded. By the strong duality theorem of linear program-
ming, the primal problem (P) is feasible, which concludes the
convexity. [ ]
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APPENDIX B
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PARAMETERS OF MODIFIED BELGIUM GAS NETWORK

TABLE I: Node Parameters

Node Index | Type | Load (kSCM/min) | 7maez (Bar) | 7min (Bar)
1 2 0 66 30
2 2 0 66 30
3 1 2.7208 66 30
4 1 0 66 30
5 2 0 66 30
6 1 2.8014 66 30
7 1 1.6500 66 30
8 2 0 66 30
9 1 0 66 30
10 1 6.4200 66 30
11 1 0 66 30
12 1 3.4720 66 30
13 1 8.0000 66 30
14 1 9.0000 66 30
15 1 2.7560 66 30
16 1 1.8400 66 30
17 1 0 66 30
18 1 0 66 30
19 1 1.1540 66 30
20 1 2.0000 66 30
21 3 0 66 30
22 3 0 66 30
23 3 0 66 30
24 3 0 66 30

Type 1 is the load node. Type 2 is the source node. Type 3 is the

fictitious node associated with a compressor.
kSCM/min means 10° standard cubic meters per minute

TABLE II: Source Parameters

Node Index | ¢maz (kKSCM/min) | ¢min (KSCM/min)
1 18.1 0
2 6.4 0
5 23.8 0
8 21.5 0

TABLE III: Pipeline and Compressor Parameters
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From Node | To Node A
1 2 17.496668
2 3 11.664448
3 4 2.672950
5 6 8.048349
6 7 4.071689
7 4 4.109421
4 11 8.318121
8 21 8.810786
22 9 8.810786
9 10 2.101347
10 11 2.881077
11 12 1.416588
12 13 1.437417
13 14 3.499335
14 15 1.749667
15 16 0.699865
11 17 0.024809
17 23 0.046192
24 18 2.006192
18 19 1.000821
19 20 0.013416

From Node | To Node Kmaz
21 22 1.5
23 24 1.5
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